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Abstract 

For a multistate system coupled to a general environment through terms local in the 
system basis, we show that the time derivatives of populations are given in terms of 
imaginary components of coherences, i.e. off-diagonal elements of the reduced density 
matrix. When the process exhibits rate dynamics, we show that all state-to-state rates can 
be obtained from the early “plateau” values of these imaginary components. The 
evolution of the state populations is then obtained from the short-time simulation results 
and the solution of the kinetic equations with the computed rate matrix. These 
expressions generalize the reactive flux method and its non-equilibrium version to multi-
state processes and show that even in the completely incoherent limit of rate kinetics, the 
time evolution of populations is governed by coherences. Further, we show that by virtue 
of detailed balance, the short-time values of the imaginary components of coherences 
fully determine the equilibrium populations.  
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The determination of reaction rates from first principles has attracted much interest since the early 
days of quantum and statistical mechanics. In addition to difficulties involved in the electronic structure 
calculations required to obtain potential energy surfaces, the theoretical description of finite-temperature 
rate dynamics poses a challenging problem. Most efforts have focused either on barrier crossing1 in the 
multidimensional potential energy surface that separates reactants from products, or on the rate of 
nonadiabatic transitions such as those relevant to electron transfer. An insightful picture of tunneling has 
emerged from semiclassical theory, which involves classical periodic orbits on the inverted barrier 
potential.2 Analytical and numerical treatments have revealed a wealth of intriguing behaviors that 
characterize the dependence of the reaction rate for condensed phase processes on parameters, which 
include the Kramers turnover3 along with the Grote-Hynes generalization4-5 and its quantum mechanical 
extension,6-7 the Marcus inverted regime,8-9 as well as tunneling, curve crossing and quantum interference 
phenomena.10-15 
 Reaction rates are associated with exponential kinetics. In condensed-phase processes such 
behavior is observed when reactive processes are sufficiently slow in comparison to time scales 
associated with the reactants. If a particular state of the reactant configuration is prepared, the density 
relaxes very rapidly to a local equilibrium, before any measurable transformation to products has 
occurred. Under these conditions, the flux through a surface that divides reactants from products settles 
rapidly to a “plateau” value, from which a slow exponential decay is observed with the same time 
constant that characterizes the reactive process.16 The reaction rate is then obtained from the plateau value 
of the reactive flux.17-19 Classical20 and quantum mechanical21-22 equilibrium correlation function 
formulations have been developed for evaluating the flux that determines the reaction rate.  
 In this Letter we generalize these ideas to processes that involve transformations among multiple 
species. In this case rate kinetics can be described by simple kinetic equations that involve a matrix of 
state-to-state transition rates. The population evolution is then given by the exponential of this matrix, i.e. 
combinations of exponential functions characterized by rate constants. We show, most generally, that the 
time derivatives of populations are (at any time) simply related to the imaginary parts of off-diagonal 
reduced density matrix (RDM) elements (the “coherences”), and that the rates can be obtained from these 
imaginary components, which exhibit a plateau regime. Thus, even though the populations may obey 
classical-like kinetic equations, the underlying dynamics is always and entirely driven by the time 
evolution of coherences.  

We consider the dynamics of discrete multistate Hamiltonians, which may represent a variety of 
processes, such as charge or energy transport, or condensed-phase reactive processes described by 
continuous potentials discretized along a reaction coordinate. In the case of a system described in terms of 
a continuous coordinate s (e.g. a double well potential), one may use the n lowest eigenstates of the 
system Hamiltonian to perform a unitary transformation to a discrete variable representation23-24 (DVR), 
in which the coordinate operator is diagonal. The system operator in the DVR basis can be expressed in 
terms of its spectral expansion,  
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where i   are the n localized DVR states (or sites) and the DVR eigenvalues is  serve as grid points. 
Thus, the Hamiltonian for discrete as well as (through this transformation) continuous systems is 
expressed in the form 

 

0
1 1

ˆ
n n

ij
i j

H H i j
= =

=∑∑                                                                   (2) 

 
with ij jiH H= . In addition to reactant-product processes, Eq. (2) can also be used to describe charge 
transport systems (where i  represent electronic states in a diabatic representation), excitation energy 
transfer in molecular aggregates (where i  are excited states of monomers), coupled spin systems, and 
many other situations. Typically, the system interacts with a large environment (the “bath”) at a particular 
temperature through terms that are diagonal in the site basis. For example, local interactions occur in 
continuous potentials where the coupling is expressed in terms of the system coordinate s, in two- or 
multi-state charge transfer Hamiltonians in a diabatic representation, and in large molecular aggregates 
where the environment consists of vibrational modes of individual molecules. We do not impose any 
restrictions on the form of the bath Hamiltonian or the initial density matrix.  

The RDM of the system (in the site representation) is given by 
 

 ( ) ( )ˆ ˆ/ /
b ˆTr 0iHt iHt

km t k e e mρ ρ−=  

                                                     (3) 

 
where ˆ (0)ρ  is the initial density operator and the trace is with respect to the bath. The site populations kP
are given by the diagonal elements of the RDM, which may be written as 
 

( ) ( ) ( )( )ˆ ˆ/ /ˆTr 0iHt iHt
k kkP t t e e k kρ ρ−≡ =  

 .                                             (4) 

 
Taking the time derivative of Eq. (4), we obtain  
 

( ) ( )( )ˆ ˆ/ / ˆˆTr 0 ,iHt iHt
k

d iP t e e H k k
dt

ρ−  =  
 



                                            (5) 

 
Since the system-bath coupling is diagonal in the site basis, only the system Hamiltonian contributes to 
the commutator. It is straightforward to see that Eq. (5) becomes 
 

( ) ( )
1

( ) ( )
n

k jk kj kj jk
j

d iP t H t H t
dt

ρ ρ
=

= −∑  



                                                 (6) 

 
Using the Hermitian property of the Hamiltonian and the RDM, we arrive at the result 
 

( )
1

2 Im ( )
n

k jk jk
j

d P t H t
dt

ρ
=

= ∑ 



.                                                       (7) 

 
We emphasize that the populations and coherences are to be obtained from the same initial condition. 
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 Eq. (7) is completely general and exact, regardless of the form of the bath Hamiltonian, as long as 
the system-bath coupling is diagonal in the system basis. It generalizes the expression obtained earlier25 
for a symmetric two-level system (TLS) and shows that in the absence of imaginary components in the 
coherences, populations remain stationary. This is always the situation at long times, when the process 
has reached equilibrium and the RDM elements are given by Boltzmann matrix elements, which are 
purely real-valued. In multistate systems this behavior is also observed at the start of the dynamics for a 
real-valued initial RDM. Conversely, if the system populations are evolving, some off-diagonal RDM 
elements must be complex-valued. Figure 1 illustrates Eq. (7). 

Note that the imaginary parts of the coherences in the column containing a site population may at 
particular instants add to zero. These situations correspond to extrema (or inflection points) of the site 
population, at which its time derivative vanishes. Further, we note that at the start of the evolution and as 
long as the initial RDM is real-valued, Eq. (7) guarantees that the time derivatives of all site populations 
are equal to zero, implying that populations evolve at least quadratically in time as 0t → . This is in line 
with the conclusions obtained in earlier work26 on the evolution of purity and the RDM for a symmetric 
TLS coupled to a bath.  
 
 

 
 

      Fig. 1.  Illustration of Eq. (7). Magenta and green areas show a visualization of positive and 
negative values of RDM imaginary parts in the case of a 4-state system coupled to a 
harmonic bath. The diagonal elements (blue squares) are purely real-valued. The time 
derivative of the population of the second site, indicated by a filled blue square, is 
proportional to the sum of Hamiltonian matrix elements multiplied by imaginary 
components inside the column outlined in yellow.  

 
 
 

In condensed-phase processes rate kinetics are observed in strongly incoherent regimes if there is 
adequate separation of time scales. We now discuss how Eq. (7) can be used to determine rate constants 
in such situations. We begin with the standard reactant-product process described in terms of two states, 
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. (8) 

At sufficiently high temperatures and strong system-bath coupling, the site populations rapidly settle into 
forms that satisfy kinetic equations. The two populations can then be described in terms of a forward and 
a reverse rate constant through the simple differential equations 
 

 1 1 1 1 2

2 1 1 1 2

( ) ( ) ( )
( ) ( ) ( )

P t k P t k P t
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−

−

= − +

= −





 (9) 

 
whose solution gives exponential population evolution, 
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In this case, knowledge of the forward and reverse rates is sufficient to fully characterize the dynamics, 
including the equilibrium constant 2 1 1 1( ) / ( ) /K P P k k−= ∞ ∞ =  (i.e. the populations of the two species  
when equilibrium has been reached). 

Exponential population dynamics requires a separation of time scales, implying that the time 
required for the system populations to reach equilibrium is much longer than the time of local 
equilibration with the environment, allowing the populations to enter a regime of exponential decay early 
on, i.e. long before appreciable deviations from their initial values have occurred, and Eq. (10) is valid 
excluding a very short interval of nonexponential transients.16 This realization has led to the development 
of classical and quantum mechanical flux correlation function formulations,20-22 which deduce the rate 
from the behavior of the flux in the “plateau” regime. The standard formulation is based on the 
equilibrium flux correlation function, but recent work has shown27 that the flux obtained with non-
equilibrium initial conditions contains precisely the same information and may be used to obtain the rate 
without the need for numerical evaluation of the full equilibrium density. Specifically, if 1(0) 1P = , Eq. 
(10) gives 

 
( )[ ] ( ) ( )1 1 1 1

1 1 1 1 1 p( ) 1 ( ) ,k k t k k tP t k k P e k e t t− −− + − +
−= − + − ∞ = − > .                                 (11) 

 
1P  is the non-equilibrium flux, which (for a real-valued initial RDM) vanishes at the start of the evolution. 

Using Eq. (7), this function may be obtained from the imaginary part of the off-diagonal element of the 
RDM. Since 1 p 1 pexp( ) 1k t k t−− −  , the non-equilibrium flux quickly grows from zero to the value given 
by the right-hand side of Eq. (10) at the onset pt  of the plateau regime, after which it decays exponentially 
over a time that is very long compared to pt . Assuming, as usual, that the exponential factor is very close 
to unity at this time, we recover the result25 
 

1 12 12 p
2 Im ( )k H tρ= 



.                                                              (12) 
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We now proceed to generalize these ideas to processes that involve multiple states, in regimes 

where the populations obey rate kinetics. Consider a general system of n states which are coupled through 
the Hamiltonian given by Eq. (2) and whose populations satisfy kinetic equations,  
 

 ( ) ( )d t t
dt

= ⋅P M P  (13) 

 
where ( )tP  is the vector that contains the populations kP  of the states at time t and M is a matrix of 
transition rates. Using Eq. (7), we obtain 
 

1 1

2( ) ( ) Im ( )
n n

k kj j jk jk
j j

P t M P t H tρ
= =

= =∑ ∑





 .                                           (14) 

 
This equation holds for any initial condition of the RDM. We now evaluate Eq. (14) with all initial 
conditions, ˆ (0) i iρ = , at the plateau time. We indicate the initial condition in the RDM elements 
through a superscript, ii

jkρ . Using again 1, 0i j iP P ≠   at the early plateau time, we obtain 
 

 p( )ii
kk ki

d t M
dt
ρ =                                                                (15) 

 
which leads to the result  
 

p
1

2 Im ( )
n

ii
ki jk jk

j
M H tρ

=

= ∑ 



.                                                        (16) 

 
Eq. (16) gives the state-to-state rates in terms of the (imaginary parts of) coherences at the plateau time. 

We note that while the matrix M has 2n  elements, there are only ( 1)n n −  forward and reverse 
rate constants. This implies that there is redundancy (i.e. linear dependence) in this matrix, i.e. 
det( ) 0=M . Differentiating the sum of populations, one can express a diagonal element kkM  in terms of 
all other elements jkM . This allows the kinetic equations to be written in a form that does not involve 
diagonal elements, 

( ) ( ) ( )
n n

k kj j jk k
j k j k

P t M P t M P t
≠ ≠

 
= −  

 
∑ ∑ ,                                                (17) 

 
implying that only 2n n−  elements of the matrix are required to fully characterize the kinetics. With 
j k≠  the elements of M are the forward and reverse rate constants between sites. If the basis states are 

used only as a discretization of a continuous system coordinate the individual rates may not have a direct 
physical meaning, but may be summed to give reactant-to-product rates (for example, to describe the rate 
dynamics between the left and right regions of a double well potential).  
 The system of differential equations involves the exponential of this matrix, thus the individual 
populations involve multiple exponential components. The relevant time scales are given by (reciprocals 
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of) the eigenvalues of the rate matrix M. Since the determinant of the rate matrix vanishes, one 
eigenvalue is always equal to zero, indicating that the map of Eq. (13) has a fixed point. The 
corresponding eigenvector determines the composition of the equilibrium RDM.  

Further, we note that in cases of imperfect separation of timescales, the populations may have 
deviated significantly from their initial values during the short time of transient evolution that precedes 
the plateau regime. The kinetic equations are valid for pt t>  and should be integrated with adjusted initial 
conditions given by the actual value of p( )kP t , while the population values obtained from the full 
propagation of the RDM should be used for pt t< . 
 Last, the detailed balance property states that  
 

( ) ( )ki i ik kM P M P∞ = ∞                                                              (18) 
 
which implies that the imaginary parts of the coherences at the plateau time fully specify the equilibrium 
populations through the relation 
 

p p
1 1

Im ( ) ( ) Im ( ) ( )
n n

ii kk
jk jk i ji ji k

j j
H t P H t Pρ ρ

= =

∞ = ∞∑ ∑  .                                          (19) 

 
This property is subtle and rather remarkable. 
 As an example, consider a three-state system where all states are coupled in the Hamiltonian, 
describing a physical situation where the transformation from 1  to 3  can occur through two pathways, 
i.e. through direct population transfer as well as through an intermediate state 2 . We label the rate 
constants symmetrically,  
 
 

(20) 
 
 

The kinetic equations for the evolution of the populations can be written in terms of six rate constants, 
 

1 1 1 1 2 3 3 3 1

2 1 1 1 2 2 2 2 3

3 2 2 2 3 3 3 3 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

P t k P t k P t k P t k P t

P t k P t k P t k P t k P t

P t k P t k P t k P t k P t

− −

− −

− −

= − + + −

= − − +

= − − +







                                              (21) 

 
The rate equations can be cast in the matrix form of Eq. (13) with the identifications 12 1 13 3,M k M k−= = , 

21 1 23 2,M k M k−= = , 31 3 32 2,M k M k−= = . Evaluating  kP  for all initial conditions ˆ (0) ,i i i kρ = ≠ , we 
obtain 
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   

   

   

   

 

 

11 11
23 23 p 13 13 p

2Im ( ) Im ( )H t H tρ ρ+ 

 

                  (22) 

 
The expressions in Eq. (22) agree with the general form given by Eq. (16). The diagonal components in 
Eq. (21) are 11 1 3M k k−= − − , 22 1 2M k k−= − −  and 33 2 3M k k−= − − , i.e. are given in terms of sums of off-
diagonal elements of the rate matrix, thus are not independent, in agreement with the remark made earlier. 
 If all coupling elements have the same value, the three-site system is completely symmetric and 
all rate constants are identical. In this case the eigenvector corresponding to the vanishing eigenvalue of 
M, which describes the equilibrium populations, has equal components on the three sites. Symmetry 
breaking (through nondegenerate site energies or unequal coupling matrix elements) leads to unequal site 
populations. A non-cyclic tight binding Hamiltonian (for example Eq. (24) below) with identical nearest 
neighbor couplings has different forward and reverse rates, which become equal only at infinite 
temperature, thus in general the equilibrium populations of each site depend on the location of the site.  

To illustrate these ideas, we present numerical results on several models of discrete systems 
coupled to separate harmonic baths (which might correspond to intramolecular normal mode coordinates 
of molecular aggregates28) characterized by the spectral density function29 

 
 c/1

2( )J e ω ωω πξω −= , (23) 

which peaks at the frequency cω  and where ξ  is the dimensionless Kondo parameter that quantifies the 
system-bath coupling strength. In all cases the bath is initially equilibrated with respect to a common 
ground state, as in the case of energy transfer following a Franck-Condon initial excitation.  

We describe the models in terms of a characteristic coupling value Ω  between system sites. To 
generate conditions for a reasonable separation of time scales we present results for c 100ω = Ω . We use 
two values of the Kondo parameter, 0.1ξ =  and 0.5, which correspond to reorganization energies equal 
to 20 Ω  and 100 Ω , respectively. To put these values in the context of chemical processes, it is useful 
to consider the value 2 10Ω 

1cm−  as a tunneling splitting typical of many proton transfer or 
isomerization processes. With this value of Ω , the characteristic bath frequency corresponds to 500 1cm−  
and the reorganization energy is 100 1cm−  with 0.1ξ =  and 500 1cm−  if 0.5ξ = . In the calculations 
shown in Figures 2-5 we obtain an adequate plateau at or above the intermediate temperature c 2ω β = , 
which is slightly higher than room temperature. We note that the temperature is very high with respect to 
the characteristic frequency of the system, i.e. 0.02βΩ = . As a result, all site populations attain equal 
values of 1 / n  at equilibrium.  

We also consider a slower bath with c 10ω = Ω . This relatively low-frequency bath does not 
produce a good separation of time scales and the flux does not exhibit a flat plateau. For the same system 
energy scale 2 10Ω 

1cm− , the characteristic frequency of the bath is now only 50 1cm− , typical of 
solvent modes. Nevertheless, we show that at the same temperature (for which now c 0.2ω β = ), the 
population evolution is still quantitatively described by kinetic equations and the rates obtained from the 
sloped flux function are highly accurate. On the other hand, if the system energy scale is characteristic of 
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Frenkel exciton30 couplings, 50Ω 

1cm− , a bath frequency c 10ω = Ω  corresponds to 500 1cm− . 
Realistic temperatures in this case correspond to c 2ω β =  or higher. As the temperature is decreased, 
time scales become truly mixed, eventually causing a breakdown of the kinetic equations.  
             The real time dynamics of the system was performed using the small matrix decomposition of the 
path integral31-33 (SMatPI). This is an exact, analytically derived decomposition of the quasi-adiabatic 
propagator path integral34 (QuAPI) which allows iterative propagation with small, 2 2n n×  matrices, 
thereby obviating the tensor storage of the iterative QuAPI algorithm.35-36 The real-time path integral37-38 
is an exact, fully quantum mechanical formulation of time-dependent quantum mechanics that allows an 
analytical treatment of harmonic bath degrees of freedom without approximation.39 The SMatPI algorithm 
employs two convergence parameters, the memory length L and the entanglement length maxr , which in 
many situations is shorter than the memory induced by the bath.33,40 The coupled kinetic equations were 
solved using the numerical differential equation solver of Mathematica.41  

Figures 2-5 show the time evolution of the site populations that develop from the initial condition 
(0) 1 1ρ = , as well as their time derivatives, as obtained from the SMatPI calculations and also from 

solving the kinetic equations with the rates obtained from the imaginary parts of the coherences, for 
several multistate model systems. In all cases it is seen that the time derivatives obtained from Eq. (7) 
agree exactly with those obtained through numerical differentiation of the SMatPI population results at all 
times. Further, the solution of the kinetic equations with rates obtained from the imaginary parts of the 
coherences are in excellent agreement with the SMatPI results. 

In the first model (Figure 2) we use a three-state system with identical site energies and nearest-
neighbor couplings, described by the Hamiltonian 

 
 ( )0

ˆ 1 2 2 1 2 3 3 2H = − Ω + + + ,   (24) 
 
which describes a sequential process. The bath is at the intermediate temperature c 2ω β = . We consider 
two values of the bath frequency, c 100ω = Ω  and 10 Ω , along with two values of the Kondo parameter. 
In all cases the populations of the first two sites start changing immediately, while the third site follows 
later, with a zero derivative at the initial time. On the time scale that corresponds to completion of the 
process, the populations, as well as the imaginary parts of the coherences (as time derivatives of 
populations), exhibit (multi-)exponential evolution. However, the imaginary components of the 
coherences are seen to rise very steeply before settling into their slow evolution and eventual decay. Upon 
magnification, a near-plateau, i.e. a linear region with a very small slope which is established at the early 
time p 0.1 0.2tΩ − . This linear shape is the short-time expansion of the exponential population 
derivatives. We note that an even larger value of cω  would result in a more pronounced separation of 
timescales and a truly flat (on the time scale of these graphs) plateau region in the population derivatives.  
 The dynamics is faster with smaller values of the reorganization energy ( 0.1ξ = and c 10ω = Ω ), 
causing a more conspicuous slope of the time derivatives. Even in the absence of a perfect plateau, the 
population dynamics reproduced by the rates obtained from the imaginary parts of the coherences match 
the path integral results perfectly. With the smaller value of system-bath coupling ( 0.1ξ = ), the evolution 
of population derivatives is nearly monotonic up to the plateau value. In contrast, the population 
derivatives undergo strongly nonmonotonic evolution prior to reaching the plateau when the 
reorganization energy is large ( 0.5ξ = ). The slower population dynamics observed in this case leads to a 
flatter plateau regime.  
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Fig. 2.  Site populations and their derivatives for the three-state model with the Hamiltonian given by Eq. (24). Solid lines 

show SMatPI results for the site populations and their numerical derivatives computed by finite difference. In the 
right panels, markers show the population derivatives obtained from the imaginary parts of the coherences, while in 
the left panels, markers show populations obtained from the solution of the kinetic equations with rates computed 
from the coherences at the plateau time. The insets show enlargements of the early dynamics. In (b) the right panel 
shows the convergence of the imaginary component of a coherence as a function of the SMatPI entanglement 
parameter maxr  and the memory length L. Red, green and blue correspond to sites 1, 2 and 3, respectively. (a) 

c 100ω = Ω , 0.1ξ = , c 2ω β =
. (b) c 100ω = Ω , 0.5ξ = , c 2ω β =

. (c) c 10ω = Ω , 0.1ξ = , c 0.2ω β =
. 

 
 
 
 In all cases shown in Fig. 2, the RDM needs to be propagated for a relatively short time. This 
time should be longer than pt  ( 1tΩ   in the present example) to verify the existence of a rate plateau. 
With the value 0.5ξ = , converged SMatPI results were obtained with a time step 0.005tΩ∆ = , 
entanglement length max 10r =  and memory length 40L = . With this time step, propagation to the time 

1tΩ =  required to establish the plateau involves 200 iteration steps, while propagation to the time 
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400tΩ∆ =  shown in the figure involves 80000 iterations. The SMatPI iteration algorithm is stable and 
extremely fast, so this propagation length does not present any difficulties. However, iteration to such 
long times would be challenging if the process involved a complex, anharmonic environment.  

Next, we show (in Fig. 3) results for a different three-state process, where state 1 is transformed 
to 3 through the direct pathway and also through an intermediate (state 2) according to the Hamiltonian  
 

( ) ( ) ( )31
0 2 2

ˆ 1 2 2 1 2 3 3 2 1 3 3 1H = − Ω + − Ω + − Ω +   .                         (25) 
 

In this case, population is transferred to states 2 and 3 simultaneously but with different rates, as expected 
based on the different coupling strengths to state 1. In Fig. 3a the bath parameters and temperature are 
identical to those of Fig. 2a, yet the dynamics is considerably faster because of the existence of two 
pathways and the larger value of one of the couplings. As a result, the separation of time scales is weaker 
in this case, giving rise to a somewhat larger slope of the flux in the plateau regime. Nevertheless, the 
computed rates again give rise to highly accurate populations, which are practically identical to those 
from the SMatPI results.  
 In the case of a two-state system with weak coupling to a harmonic bath, a decrease of 
temperature leads to larger rate.10,14 This trend is observed in the three-site dynamics as well. As the 
temperature is lowered, early-time transients survive much longer and merging time scales lead to 
deviations from uniform exponential behavior, affecting the accuracy of kinetic equation models. Fig. 3b 
shows results at the temperature c 5ω β = , which is lower than the previous temperatures, although still 
relatively high with respect to the system energy scales ( 0.5βΩ = ). Even though the time for 
completion of this process is comparable to that in Fig. 2c, the flux rises much slower in the present case 
and settles to a less defined plateau much later ( p 0.6tΩ  ). The populations obtained from the kinetic 
equations with rates extracted from the coherences deviate from the correct dynamics. However, 
initializing the kinetic equations with the population values from the path integral results at pt  leads to 
improved results which are almost quantitative. Further decrease of the temperature leads to oscillatory 
dynamics through inadequate damping of quantum coherence, which invalidate the kinetic equations. 
         We now move on to a four-state downhill process, where the Hamiltonian has nearest-neighbor 
couplings but the site energies decrease gradually according to the Hamiltonian  
 

( )
3

0
1

ˆ 1 1 50 2 2 100 3 3 150 4 4
i

H i i i i
=

= − Ω + + + − Ω − Ω − Ω∑    .                     (26)  

 
Fig. 4 shows the results for this process. Here the site populations rise sequentially, and those of sites 3 
and 4 (which are not directly coupled to 1) have a zero slope at early times. State 2 shows a pronounced 
peak in the population, while that of state 4 rises monotonically. In this case the equilibrium populations 
decrease monotonically from 1 to 4 because the temperature is moderate to low with respect to 
differences in site energies, (150 ) 3βΩ = . 
 Last, we present results for a 10-site system with nearest-neighbor couplings described by  
 

( )
9

0
1

ˆ 1 1
i

H i i i i
=

= − Ω + + +∑                                                      (27) 
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with the parameters of Fig. 2a ( c 2ω β = , c 100ω = Ω  and 0.1ξ = ). Figure 5 shows the site populations, 
which rise in sequence. Again, the rates computed from the imaginary parts of the coherences lead to 
excellent agreement between kinetic equations and path integral results.  
 
 

 
Fig. 3.   Site populations and their derivatives for the three-state model with the Hamiltonian given by Eq. (25). Solid lines 

show SMatPI results for the site populations and their numerical derivatives computed by finite difference. In the 
right panels, markers show the population derivatives obtained from the imaginary parts of the coherences, while in 
the left panels, they show populations obtained from the solution of the kinetic equations with rates computed from 
the coherences at the plateau time. In (b), triangles show results obtained by integrating the kinetic equation from 

0t = , while circles show solutions obtained after the pt , while early time populations are obtained from SMatPI 
results. The insets show enlargements of the early dynamics. Red, green and blue correspond to sites 1, 2 and 3, 
respectively. (a) c 100ω = Ω , 0.1ξ = , c 2ω β =

. (b) c 10ω = Ω , 0.1ξ = , c 5ω β =
.  

 
 
 
 
 
 
 
 
 
 
 
 
 
         
Fig. 4.   Same as Fig. 3, but for the four-state system given in Eq. (26).  The parameters are c 100ω = Ω , 0.1ξ = , c 2ω β =

. 
Red, green, blue and orange correspond to sites 1, 2, 3 and 4, respectively. 
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Fig. 5.  Site populations for the ten-state model with the Hamiltonian given by Eq. (27) with c 100ω = Ω , 0.1ξ = ,
c 2ω β =

. Solid lines show SMatPI results for the site populations, while markers show populations 
obtained from the solution of the kinetic equations with rates computed from the coherences at the plateau 
time. The populations of sites 2-10 rise in sequence.  

 
 

 
 A few remarks are in order before summarizing. First, the simple master equation describes 
Markovian dynamics. However, this does not imply that the rate constants can be calculated from a 
Markovian algorithm. This is so because the early time evolution, prior to the onset of the plateau regime, 
is non-Markovian. Thus, the determination of the rate matrix generally requires the use of powerful 
quantum dynamical methods.  
 Second, the validity of a set of simple kinetic equations with available rate parameters is 
important conceptually and, in the case of processes in complex, anharmonic environments, quite useful 
from a practical perspective. For very slow (>ns time scale) processes, knowledge of the rate matrix 
usually is sufficient. Obtaining the full time evolution of site populations can be useful in multistate 
processes, in particular when competing pathways are available. This can be done very easily through 
numerical integration of the kinetic equations. We note that in the case of a system coupled to a harmonic 
bath, iterative propagation of the RDM is performed extremely rapidly with the SMatPI algorithm, which 
involves repeated multiplication of 2 2n n×  matrices and which remains stable for tens of thousands of 
propagation steps. However, the kinetic equation approach should be more efficient for multistate systems 
( 10n > ) and/or very slow processes. Most importantly, the cost of long-time propagation generally is 
much higher when the system is coupled to a complex anharmonic environment. In this case, calculating 
the relatively short-time dynamics of the RDM that encodes the rate information via a reliable method and 
obtaining long-time populations by solving the coupled kinetic equations would be the most efficient 
approach, as long as the kinetic equation description is applicable.  
 In summary, when the interaction between a system and its environment is local in the system 
basis, imaginary components of coherences are directly related to time derivatives of populations. Each 
such time derivative can be thought of as a state-to-state flux, which (under conditions associated with 
rate dynamics) settles early on to a slow exponential decay with the usual plateau appearance familiar 
from reaction rate theory. The imaginary component of the multistate RDM (with all possible initial 
conditions) at the relatively short plateau time determines the state-to-state rate matrix, which may be 
used to obtain the population dynamics by solving a system of simple kinetic equations. We found the 
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procedure to be robust and accurate even when the plateau is visibly sloped and the onset of the plateau 
regime occurs later, as long as the kinetic equations are used only for the remainder of the time evolution.  
 Even when systems exhibit rate kinetics associated with classical hopping models, our analysis 
reveals that quantum coherences are present during the entire course of time evolution. Coherences are 
associated with quantum superpositions, which survive the massive damping that gives rise to exponential 
evolution. More severe damping of superpositions leads to slower dynamics. When thermal fluctuations 
and noisy environments drastically quench coherent superpositions of states, quantum transitions become 
very slow, leading to small rates. Thus, phenomenological kinetic equations emerge when noise dampens 
quantum superpositions extensively, creating slow processes and a separation of time scales that lead to 
exponential evolution, and not because of the absence of quantum effects.  

Since state-to-state rates determine equilibrium populations by virtue of the detailed balance 
property, we concluded that (for processes that exhibit rate kinetics) the early time evolution of 
coherences also encodes all information necessary for obtaining the populations at equilibrium. This 
striking observation applies to general multistate systems in contact with complex environments.  
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