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Abstract—Recent semi-supervised learning algorithms have
demonstrated greater success with higher overall performance
due to the use of better-unlabeled data representations. Nonethe-
less, recent research suggests that the performance of the SSL
algorithm can be degraded when the unlabeled set contains
out-of-distribution examples (OODs). This work addresses the
following research question: How do out-of-distribution (OOD)
data adversely affect semi-supervised learning algorithms? To
answer this question, we investigate the critical causes of OOD’s
negative effect on SSL algorithms. In particular, we found
that 1) certain kinds of OOD data instances that are close
to the decision boundary have a more significant impact on
performance than those that are further away, and 2) Batch
Normalization (BN), a popular module, may degrade rather
than improve performance when the unlabeled set contains
OODs. To address these challenges, we developed a unified
weighted robust SSL framework that can be easily extended
to many existing SSL algorithms and improve their robustness
against OODs. Having identified the limitations of low-order
approximations in bi-level optimization, we developed an efficient
bi-level optimization algorithm that could accommodate high-
order approximations of the objective and could scale to a large
number of inner optimization steps to learn a massive number
of weight parameters. Furthermore, we conduct a theoretical
analysis of the impact of faraway OODs in the BN step and
propose a weighted batch normalization (WBN) procedure that
uses the weights estimated by the bi-level optimization prob-
lem in the BN step. Additionally, we discuss the connection
between our approach and low-order approximation techniques.
Our extensive experiments on synthetic and real-world datasets
demonstrate that our proposed approach significantly enhances
the robustness of four representative SSL algorithms against
OODs compared to four state-of-the-art robust SSL strategies.

I. INTRODUCTION

Deep learning approaches have been shown to be success-
ful on several supervised learning tasks, such as computer
vision [6, 25], natural language processing [28], and speech
recognition [31]. However, these deep learning models are
data-hungry and often require massive amounts of labeled
examples to obtain good performance. Obtaining high-quality
labeled examples can be very time-consuming and expensive,
particularly where specialized skills are required in labeling
(for example, in cancer detection on X-ray or CT-scan images).
As a result, semi-supervised learning (SSL) has emerged as a
very promising direction, where the learning algorithms try to

* Equal Contribution. This work is done when Xujiang Zhao was with The
University of Texas at Dallas.

978-1-6654-5099-7/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDM54844.2022.00087

Killamsetty Krishnateja*, Rishabh Iyer, Feng Chen

The University of Texas at Dallas

{krishnateja.killamsetty,rishabh.iyer,feng.chen} @utdallas.edu

»
)
KN -
v (Y J Y/

Labeled Cl;ases

Unlabeled Classes

(a) Traditional semi-supervised learning

In Distribution

Unlabeled Classes

(b) Semi-supervised learning with OOD data
Fig. 1: (a) Traditional SSL. (b) SSL with OODs.

effectively utilize the large unlabeled set (in conjunction) with
a relatively small labeled set. Several recent SSL algorithms
have been proposed for deep learning and have shown great
promise empirically. These include Entropy Minimization [7],
pseudo-label based methods [15, 1, 3] and consistency based
methods [20, 14, 24, 17] to name a few.

Despite the success of these SSL methods, they are designed
with the assumption that labeled and unlabeled data have
the same distribution. Fig 1 (a) shows an example of this.
However, this assumption may not hold in many real-world
applications, such as web classification and medical diagnosis,
where some unlabeled examples are from novel classes unseen
in the labeled data. For example, Fig 1 (b) illustrates an
image classification scenario with out-of-distribution data,
where the unlabeled dataset contains two novel classes (bicycle
and clock) compared to the in-distribution classes (flower
and beetle) in the labeled dataset. When the unlabeled set
contains OOD examples (OODs), deep SSL performance can
degrade substantially and is sometimes even worse than simple
supervised learning (SL) approaches [18]. Moreover, it is
unreasonable to expect a human to go through and clean a
large and massive unlabeled set in such cases.

A typical approach to robust SSL against OODs is to assign
a weight to each unlabeled example based on some criteria and
minimize a weighted training or validation loss. In an ideal
weighting scheme, positive weights should be assigned only
to ID samples while zero weights should be assigned to OOD
samples. Yan et al. [29] applied a set of weak annotators to
approximate the ground-truth labels as pseudo-labels to learn
a robust SSL model. [4] proposed a distributionally robust
model that estimates a parametric weight function based on
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both the discrepancy and the consistency between the labeled
data and the unlabeled data. [5] (UASD) proposed to weigh
the unlabeled examples based on an estimation of predictive
uncertainty for each unlabeled example. The goal of UASD is
to discard potentially irrelevant samples having low confidence
scores and estimate the parameters by optimizing a regularized
training loss.

A state-of-the-art method [9], called DS3L, considers a
shallow neural network to predict the weights of unlabeled
examples and estimate the parameters of the neural network
based on a clean labeled set via bi-level optimization. It is
common to obtain a dataset composed of two parts, including
a relatively small but accurately labeled set and a large but
coarsely labeled set from inexpensive crowd-sourcing services
or other noisy sources.

There are three main limitations of DS3L and other
methods as reviewed above. First, it lacks a study of potential
causes about the impact of OODs on SSL, and as a result,
the interpretation of robust SSL methods becomes difficult.
Second, existing robust SSL methods did not consider the
negative impact of OODs on the utilization of BN in neural
networks, and as a result, their robustness against OODs
degrades significantly when a neural network includes BN
layers. The utilization of BNs for deep SSL has an implicit
assumption that the labeled and unlabeled examples follow
a single or similar distributions, which is problematic when
the unlabeled examples include OODs [11]. Third, the bi-
level learning algorithm developed in DS3L relies on low-
order approximations of the objective in the inner loop due
to vanishing gradients or memory constraints. As a result
of not using the high-order loss information, the learning
performance of DS3L could be significantly degraded in some
applications, as demonstrated in our experiments. Our main
technical contributions over existing methods are summarized
as follows:

The effect of OOD data points. The first critical contribution
of our work (Sec. III) is to analyze what kind of OOD unla-
beled data points affect the performance of SSL algorithms.
In particular, we observe that OOD samples lying close to the
decision boundary have more influence on SSL performance
than those far from the boundary. Furthermore, we observe that
the OOD instances far from the decision-boundary (faraway
OODs) can degrade SSL performance substantially if the
model contains a batch normalization (BN) layer. The last
observation makes sense logically as well since the batch
normalization heavily depends on the mean and variance of
each batch’s data points, which can be significantly different
for OOD points that came from very different distributions.
We find these observations about OOD points consistent across
experiments on several synthetic and real-world datasets.

Weighted Robust SSL. Framework. Our second contribution
is a unified, weighted robust SSL approach to improve many
existing SSL algorithms’ robustness by learning to assign
weights to unlabeled examples based on a bi-level optimization
approach. To address the limitation of low-order approxi-
mations in bi-level optimization (DS3L), we designed an
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implicit-differentiation based algorithm that considered high-
order approximations of the objective and is scalable to a
higher number of inner optimization steps to learn a massive
amount of weight parameters. In addition to address the BN
issue due to the faraway OODs, we propose weighted batch
normalization (WBN) to carry the weights (learned from bi-
level optimization) over in the BN step (Sec. IV-D).

Comprehensive experiments. We conduct extensive ex-
periments on synthetic and real-world datasets. The results
demonstrate that our weighted robust SSL approach signifi-
cantly outperforms existing robust approaches (L2RW, MWN,
Safe-SSL, and UASD) on four representative SSL algorithms.
We also perform an ablation study to demonstrate which
components of our approach are most important for its success.

II. SEMI-SUPERVISED LEARNING (SSL)

Given a training set with a labeled set of examples D =
{Xi, i }i—, and an unlabeled set of examples U = {x;}7";.
For any classifier model f(x, ) used in SSL, where x € R is
the input data, and 6 refers to the parameters of the classifier
model. The loss functions of many existing methods can be
formulated as the following general form:

Z(xi,y,,.,>ez> 1(f(xi,0),yi) + szeu r(f(x;,0)),

where [(-) is the loss function for labeled data (such as cross-
entropy), and r(+) is the loss function (regularization function)
on the unlabeled set. The goal of SSL methods is to design
an efficient regularization function to leverage the model
performance information on the unlabeled dataset for effective
training. Pseudo-labeling [15] uses a standard supervised loss
function on an unlabeled dataset using “pseudo-labels” as
a target label as a regularizer. II-Model [14, 20] designed
a consistency-based regularization function that pushes the
distance between the prediction for an unlabeled sample
and its stochastic perturbation (e.g., data augmentation or
dropout [23]) to a small value. Mean Teacher [24] proposed
to obtain a more stable target output f(x,#) for unlabeled set
by setting the target via an exponential moving average of
parameters from previous training steps. Instead of designing
a stochastic f(x,0), Virtual Adversarial Training (VAT) [17]
proposed to approximate a tiny perturbation to unlabeled
samples that affect the output of the prediction function most.
MixMatch [3], UDA [27], and Fix-Match [22] choose the
pseudo-labels based on predictions of augmented samples,
such as shifts, cropping, image flipping, weak and strong
augmentation, and mix-up [30] to design the regularization
functions. However, the performance of most existing SSL
can degrade substantially when the unlabeled dataset contains
OOD examples [18].

)]

ITI. IMPACT OF OOD ON SSL PERFORMANCE

In this section, we provide a systematic analysis of
the impact of OODs for many popular SSL algo-
rithms, such as Pseudo-Label(PL) [15], II-Model [14],
Mean Teacher(MT) [24], and Virtual Adversarial Training
(VAT) [17]. We illustrate the discoveries using the following
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synthetic and real-world datasets. While we mainly focus on
VAT as the choice of the SSL algorithm, the observations
extend to other SSL algorithms as well.

Synthetic dataset. We considered two moons dataset (red
points are labeled data, gray circle points are in-distribution
(ID) unlabeled data) with OOD (yellow triangle points) points
in three different scenarios that can exist in real-world, 1)
Faraway OOD scenario where the OOD points exist far from
decision boundary; 2) Boundary OOD scenario where the
OOD points occur close to decision boundary; 3) Mixed OOD
scenario where OOD points exist both far and close to the
decision boundary, as shown in Fig 2.

Real-world dataset. We consider MNIST as ID data with
three types of OODs to account for plausible real-world
scenarios. 1)Faraway OOD: We used Fashion MNIST (F-
MNIST) dataset, which contains fashion images as Faraway
OOD dataset as it inherently has different patterns compared to
MNIST dataset; 2) Boundary OOD: We used EMNIST dataset,
which contains handwritten character digits as Boundary OOD
dataset as it has similar patterns compared to MNIST dataset;
In addition to EMNIST, we also considered Mean MNIST (M-
MNIST) as a boundary OOD dataset, which was generated by
averaging MNIST images from two different classes (usage
of M-MNIST as boundary OOD is also considered in [8]);
4) Mixed OOD: For Mixed OOD dataset, we combined both
Fashion MNIST and EMNIST together.

For all experiments in this section, we used a multilayer
perceptron neural network (MLP) with three layers as a
backbone architecture for the synthetic dataset and LeNet
as a backbone for the real-world datasets. We consider the
following models in the experiments: 1) SSL-NBN: MLP or
LeNet model without Batch Normalization; 2) SSL-BN: MLP
or LeNet model with Batch Normalization; 3) SSL-FBN: MLP
or LeNet model where we freeze the batch normalization
layers for the unlabeled instances. Freezing BN (FBN) [18]
is a common trick to improve the SSL model robustness
where we freeze batch normalization layers by not updating
running_mean and running_variance in the training phase.

The following are the main observations. First, from Fig 2,
we see that with BN (i.e., SSL-BN), there is a significant
impact on model performance and learned decision boundaries
in the presence of OOD. This performance degradation is even
more pronounced in Faraway OOD since the BN statistics like
the running mean/variance can be significantly changed by
faraway OOD points. Secondly, when we do not use BN (i.e.,
SSL-NBN), the impact of the Faraway OOD and mixed OOD
data is reduced. However, in the case of boundary OOD (Fig
2 (b) and EMNIST/M-MNIST case of Fig 2 (d)), we still see
significant performance degradation compared to the skyline.
However, BN is a crucial component in more complicated
models (Eg: ResNet family), and we expect OOD instances
to play a significant role there. Finally, when freezing the
BN layers for the unlabeled data (i.e., SSL-FBN), we see
that the Faraway and Mixed OODs’ effect is alleviated; but
SSL-FBN still performs worse than the SSL-NBN in Faraway
and Mixed OODs (and there is big scope of improvement
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w.r.t the skyline). Finally, both SSL-NBN and SSL-FBN fail
to efficiently mitigate the performance degradation caused
by boundary OOD data points. We also show that similar
observations made on the CIFAR-10 dataset (Fig 2 (e)).

Proposition 1. Give in-distribution mini-batch T = {x;}",,
OOD mini-batch O = {x;}",, and the mixed mini-batch
TO = TUQ. Denote pipq is the mini-batch mean of M (either
O,T or IO). With faraway OOD: ||po — uzll2 > L, where
L is large (L > 0), we have:

luzo — pzll2 > g and BNz(x;) # BNzo(x;)

where BN aq(x;) is traditional batch normalizing transform
based on mini-batch from M (either T or ZO).

Proof: The mini-batch mean of 7: uz = % 2211 X;.
Th’e mixed mini-batch mean of ZO: pzo = ﬁ(Z?; X; +
S %) = $uz + 3po. Then we have,

1 1 L
lnzo — pzll2 = ||§MI + SHo — prllz > 3 >0

e . L2 1 2
The mini-batch variance of Z: 07 = - >~ (x; — puz)*. The
traditional batch normalizing transform based on mini-batch

T for x;: BNz(x;) = ’y\’;%fe + /3. The mini-batch variance
s
of 7O,
1 m m )
070 = %(fo +ZX?) - 1zo
i=1 i=1
_ Ly 1, 2
= 597+ 5090+ ; (ko — pz)
1
~ lno = p1)?, 2

and the traditional batch normalizing transform based on mini-
batch ZO for x;,

X; —ﬂB(IO)
BNzo(x;) = y——tB2) 15
() og(I10) + €
X; — 1O X; — 1 )
= + +
7<2 0%(I0)+€  2y/0%(10) + ¢ 4
- ( X; — po X — prI )
~ oy
o — prllz  [lro — prll2
~ MO g 3)
o — prll2

The approximations in Eq. (2) and Eq. (3) hold when o2 and
o2, have the same magnitude levels as j7, i.e., [|[uo — o022 >
L and ||po — 03||2 > L. Comparing Eq. (II) with Eq. (3),
we prove that BNz(x;) # BNzo(X;). [ ]

Proposition 1 shows that when unlabeled set contains
OODs, the traditional BN behavior could be problematic,
therefore resulting in incorrect statistics estimation, e.g., the

output of BN for mixed mini-bath BNz (x;) ~ fy“;‘(;:%+
3, which is not our expected result (BNz(x;) = 7’“_72“5 +0)
T €

The main takeaways of the synthetic and real data exper-
iments are as follows: 1) OOD instances close to decision
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Fig. 2: SSL performance with different type OODs in both synthetic and real-world datasets.

boundary (Boundary OODs) hurt SSL performance irrespec-
tive of the use of batch normalization; 2) OOD instances
far from the decision boundary (Faraway OODs) hurt the
SSL performance if the model involves BN. Freezing BN can
reduce some impact of OOD to some extent but not entirely;
3) OOD instances far from the decision boundary will not
hurt SSL performance if there is no BN in the model. To
this end, we answered the question "How out-of- distribution
data hurt semi-supervised learning performance?”. In the next
section, we propose a weighted robust SSL framework to
address above mentioned issues caused by OOD data points.

IV. METHODOLOGY

In this section, we first proposed the weighted robust SSL
(WR-SSL) framework in Sec. IV-A, and then introduce the
implicit-differentiation (high-order approximation) based opti-
mization algorithms to train the weighted robust SSL approach
in Sec. IV-B. More importantly, we proposed weighted batch
normalization to improve the robustness of our WR-SSL
framework against OODs in Sec. IV-D.

A. Weighted Robust SSL Framework

Reweighting the unlabeled data. Consider the semi-
supervised classification problem with training data (labeled D
and unlabeled /) and classifier f(z;6). Generally, the optimal
classifier parameter 6 can be extracted by minimizing the SSL
loss (Eq. (1)) calculated on the training set. In the presence
of unlabeled OOD data, sample reweighting methods enhance
the robustness of training by imposing weight w; on the j-th
unlabeled sample loss,

Le@,w)= > Uf(xi0),m) + Y wir(f(x5:0)),

(xi,y:)€D zjeU

where we denote L; is the robust unlabeled loss, and we treat
weight w as hyperparameter. Our goal is to learn a sample
weight vector w such that w = 0 for OODs, w = 1 for In-
distribution (ID) sample.

Denote Ly (6*(w), w) = Ly (0*(w))+A-Reg(w) as the valida-
tion loss with a regularization term over the validation dataset,
where Reg(w) is the regularization term, A is the regularization
coefficient, and Ly (0% (w)) £ 3 ey 1(f (X, 0°(W)), i)
This labeled set could either be a held out validation set, or the
original labeled set D. Intuitively, the problem given in Eq. (4)
aims to choose weights of unlabeled samples w that minimizes
the supervised loss evaluated on the validation set when the
model parameters 6*(w) are optimized by minimizing the
weighted SSL loss L1 (6, w).
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Bi-level optimization objective. Since manual tuning and
grid-search for each wj; is intractable, we pose the weights
optimization problem described above as a bi-level optimiza-
tion problem.

min Ly (6% (w),w),

st.  0%"(w) =argmin Lp(0, w). 4)
0

Calculating the optimal #* and w requires two nested loops
of optimization, which is expensive and intractable to ob-
tain the exact solution, especially when optimization involves
deep learning model and large datasets. Since gradient-based
methods like Stochastic Gradient Descent (SGD) have shown
to be very effective for machine learning and deep learning
problems, we adapt a high-order approximation strategy, as
described in Sec IV-B.

B. high-order Optimization Approximation

In this section, we developed an efficient high-order opti-
mization algorithms to train our weighted robust SSL frame-
work.

Implicit Differentiation. Directly calculate the weight gradi-

ent %}w)’w) by chain rule:
8£V(6*(w),w) o oLy oLy % 00* (W) 5)
ow ow 00%(w) ow
~—~— ~—

(@) (b) (e)

where (a) is the weight direct gradient (e.g., gradient from
regularization term, Reg(w)), (b) is the parameter direct gra-
dient, which are easy to compute. The difficult part is the term
(c) (best-response Jacobian). We approximate (c) by using the
Implicit function theorem [16],

00°(W) [ 0Ly 1L OLr
w [aeaeT} X OwooT ©
—_——— N —

(d) (e)

However, computing Eq. (6) is challenging when using deep
nets because it requires to invert a high dimensional Hessian
(term (d)), which often require O(m?) operations. Therefore,
we give the Neumann series approximations [16] of term (d)
which we empirically found to be effective for SSL,

1 p
} ~ lim [I — }
P—oo
=0

- AL

06007

[ 8£T

06007 M

where [ is the identity matrix.
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W = argmin Ly (6} (W), w)

Bi-level
Optimization

-
Weight-BN | -

w
Outer loop optimization

Weight-BN

. 03 (w) = argmin L7 (0, w,)| .~
t 0 4
Inner loop optimization

b1 =0 — VoL (0, We 1) i—».—»
Model parameter update

Since the algorithm mentioned in [16] utilizes the Neumann
series approximation and efficient hessian vector product to
compute the Hessian inverse product, it can efficiently com-
pute the hessian-inverse product even when a larger number
of weight hyperparameters are present. We should also note
that the implicit function theorem’s assumption % =0
needs to be satisfied to accurately calculate the Hessian inverse
product. However in practice, we only approximate 6*, and
simultaneously train both w and 6 by alternatively optimizing
0 using L7 and w using Ly .

C. Connections to low-order Approximation

Lemma 1. Suppose that the Hessian inverse of training loss
L7 with the model parameters 0 is equal to the identity matrix
% =1 (i.e., P = 0 for implicit differentiation approach).
Suppose the model parameters are optimized using single-step
gradient descent (i.e., J =1 for the low-order approximation
approach), and the model learning rate is equal to one. Then,
the weight update step in both implicit differentiation and low-

order approximation approach is equal.
Proof:

—1

. . oL _
Case 1: Our Approach: In Eq. 7, we have [W] =1
and substituting it in Eq. (6), we have:

a0*(w) 0Ly
w  owdoT ®
Substituting the above equation in Eq. (5), we have:
OLy (0" (w),w) _ 0Ly  OLy(6"(w)) y Ly ©)
ow - ow 00*(w) owdoT

Since, we are using unweighted validation loss Ly, there
is no dependence of validation loss on weights directly i.e.,

aaﬁ—w" = 0. Hence, the weight gradient is as follows:

0Ly (0" (w),w) _aﬁv(ﬁ*(w)) o oLt (10)
ow 020 (w) owooT
Since we are using one-step gradient approximation, we
have 6*(w) = 0704% where « is the model parameters
learning rate.
The weight update step is as follows:

6£V(9* (W)) 82£T
06*(w) owooT

where [ is the weight learning rate.

w'=w+p

an

Case 2: low-order approximation Approach

In low-order approximation approach, we have 0*(w) =
0—a 8'6%(9")’9) where « is the model parameters learning rate.
Using the value of 0%, the gradient of validation loss with

weight hyperparameters is as follows:

OLy (0" (w) _ ALy (6 — ac’)ﬁ%i(gw,t%)

ow ow
0Ly (0*(w)) %Ly (w,0)
= ow) Yot 1P
Assuming o = 1, we have:
0Ly (0*(w)) 78£V(9*(w)) » L (w,0) (13)
ow N 06*(w) 00owT
Hence, the weight update step is as follows:
% a[,\/ (9* (W)) BQET
= 14
L T (14)

where B is the weight learning rate

As shown in the cases above, we have a similar weight
update. Hence, it inherently means that using the low-order
approximation of J = 1 is equivalent to using an identity
matrix as the Hessian inverse of training loss with 6. [ ]

Lemma 1 shows that the weight gradient from implicit
differentiation is same as the weight gradient from the low-
order approximation method (e.g., DS3L) when P =0, J = 1.

D. Weighted Batch Normalization

In practice, most deep SSL model would use deep CNN.
While BN usually serves as an essential component for many
deep CNN models [10]. Specifically, BN normalizes input
features by the mean and variance computed within each
mini-batch. At the same time, OODs would indeed affect
the SSL performance due to BN (discussed this issues in
Sec. II). To address this issue, we proposed a Weighted Batch
Normalization (WBN) that performs the normalization for
each training mini-batch with sample weights w. We present
the WBN in Algorithm 1, where € is a constant added to the
mini-batch variance for numerical stability.

Proposition 2. With faraway OOD: ||po — pz||2 > L, where
L is large (L > 0), given perfect weights w = wzUwo, where
wz = 1 for mini-batch Z and wo = 0 for mini-batch O, we
have

and BNI(x,;) = WBNIo(x,;7w) (15)

UT = HTo
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where (1 is the weighted mini-batch mean of 1O, and
W BNzo(x;,w) is weighted batch normalizing transform
based on the set TO with weights w.

Proof: The symbols Z,0,ZO, uz, BNa(x;) are intro-

duced in Proposition 1. The weighted mini-batch mean of ZO

221 wzle + ZZT; wa‘z
i wy + 300wk,
Zle'XiJFZZZlO"A‘i
S 1+370,0

Wro. The weighted mini-batch

w
HTO

=pr, (16

witch proves that puz
variance of ZO,

ot _ Slaubls o) | T wblGi— ~iifo) ,
Do W Y W Doim Wyt 30 W
Sy - (xi —pzo)®
= =o7.

m
The weighted batch normalizing transform based on mini-
batch ZO for x;: WBNzo(x;,w) = y—=HEIo_ 4 =

. IO( ) Y \/%724—5 B

i— KT : ) — X
*y\/a%j + /3 which proves that BNz(x;) = W BNzo(x;, WL

Proposition 2 shows that our proposed weighted batch
normalization (WBN) can reduce the OOD effect and get the
expected result. Therefore, our weighted robust SSL frame-
work uses WBN instead of BN if model includes BN layer.
Ablation studies in Sec. V demonstrates that such our approach

with WBN can improve performance further. Finally, our
weighted robust SSL framework is detailed in Algorithm 2.

Algorithm 1: Weighted Batch Normalization
Input: A mini-batch M = {x;}i~, and sample weight
w = {w; }i~; Parameters to be learned: v, 8
Output: {t; = WBN p(x;, W)}
1 Weighted mini-batch mean: u%, + ﬁ > Wi
i=1 "1t

2 Weighted mini-batch variance:
w 2 1 m w 2
oM ST 21:1 wi(Xi — W)
T _ ’W
3 Normalize: #; + —/ M
\/(7"7\/1 +e€

4 Scale and shift: ¢; < v&; + 8 = WBNam (X, W)

E. Additional Implementation Details

In this subsection, we discuss additional implementational
and practical tricks to make our weighted robust SSL scalable
and efficient.

Last-layer gradients. Computing the gradients over deep
models is time-consuming due to an enormous number of
parameters in the model. To address this issue, we adopt
a last-layer gradient approximation similar to [2, 13, 12]
by only considering the last classification layer gradients of
the classifier model in inner loop optimization (step 8 in
algorithm 2). By simply using the last-layer gradients, we
achieve significant speedups in weighted robust SSL.

Infrequent update w. We update the weight parameters every
L iterations (L > 2). In our experiments, we see that we can
set L = 5 without significant loss in accuracy. For MNIST
experiments, we can be even more aggressive and set L = 20
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Algorithm 2: Weighted Robust SSL

Input: Labeled: D, Unlabeled: ¢/, Reg param: A
Output: Model params: 6, Instance/Cluster Weights: w
Set ¢ = 0; learning rate «, 3;
Initialize model parameters 6 and weight w;
Apply K-means to U (if CRW);
Apply WBN instead of BN (if model includes BN);
repeat
/* Inner loop optimization, initial 6Y = 6; */
for j=1,...,J do

| 0l(w)=0]"" —aVeLr(0] ', W)

/+ Outer loop optimization, set 8; = 6; */
Approximate inverse Hessian via Eq. (7);
Calculate best-response Jacobian by Eq. (6);
Calculate weight gradient Vy Ly via Eq. (5);
update weight via w;11 = wi — - VyLy;
/+ Update net parameters */

041 = 0r — aVoLr (0, Wii1)

t=t+1

until convergence

return 0,1, w1

® N U R W N =

10
11
12
13
14
15
16
7

-
®

Weight Sharing and Regularization. Considering the entire
weight vector w (overall unlabeled points) is not practical for
large datasets and easily overfits (see ablation study experi-
ments), we propose two ways to fix this. The first is weight
sharing via clustering, which we call Cluster Re-weight (CRW)
method. Specifically, we use an unsupervised cluster algorithm
(e.g., K-means algorithm) to embed unlabeled samples into
K clusters and assign a weight to each cluster such that we
can reduce the dimensionality of w from |M]| to | K|, where
|K| < |M|. In practice, for high dimensional data, we may
use a pre-trained model to calculate embedding for each point
before applying the cluster method. In cases where we do not
have an effective pre-trained model for embedding, we con-
sider another variant that applies weights to every unlabeled
point but considers an L1 regularization in Eq (4) for sparsity
in w. We show that both these tricks effectively improve the
performance of reweighting and prevent overfitting on the
validation set.

V. EXPERIMENTAL

To corroborate our algorithm, we conduct extensive experi-
ments comparing our approach (WR-SSL) with some popular
baseline methods. We aim to answer the following questions:
Question 1: Can our approach (WR-SSL) achieve better
performance on both different types of OODs with varying
OOD ratios compared with baseline methods?

Question 2: How do our approach compare in terms of
running time comparing with baseline methods?

Question 3: What is the effect of each of the components
of our approach (e.g., WBN, clustering/regularization, inverse
Hessian approximation, inner loop gradient steps)?

A. Datasets

We consider four image classification benchmark datasets.
(1) MNIST: a handwritten digit classification dataset, with
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Fig. 4: (a-d) show test accuracy with varying OOD ratios of 0% to 75%. (a) shows results with MNIST as ID and F-MNIST
as OOD, (b) shows results with MNIST as ID and M-MNIST as OOD, (c) (d) shows results with CIFAR10 dataset (6 classes
ID, 4 classes OOD). (a) (c) (d) uses BN layers for all baselines except our methods that uses WBN layers. (b) shows all
methods’ results using a model w/o BN layers. (a) (c) use VAT, whereas (b) (d) use PL. Our methods consistently outperform
all baselines across different datasets, base SSL algorithms, and models with or without BN layers.

50,000/ 10,000/ 10,000 training/validation/test samples, with
training data, split into two groups — labeled and unlabeled
in-distribution (ID) images (labeled data has ten images per
class), and with two types of OODs: a) Fashion MNIST,
b) Mean MNIST; (2) CIFAR10: a natural image dataset
with 45,000/ 5,000/ 10,000 training/validation/test samples
from 10 object classes, and following [18], we adapt CI-
FARIO to a 6-class classification task, using 400 labels per
class (from the 6 classes) and rest of the classes OOD (ID
classes are “bird”, “cat”, deer”, "dog”, ’frog”, "horse”, and
OOD data are from classes: “airline”, “automobile”, “’ship”,
’truck”™); (3) CIFAR100: another natural image dataset with
45,000/5000/10,000 training/validation/test images, similar to
CIFAR10, we adapt CIFAR100 to a 50-class classification
task, with 40 labels per class — the ID classes are the
first 50 classes, and OOD data corresponds to the last 50
classes; (4) SVHN-extra : This is SVHN dataset with 531,131
additional digit images, and we adapt SVHN-extra to a 5-class
classification task, using 400 labels per class. The ID classes
are the first five classes, and OOD data corresponds to the last
five classes.

B. Comparing Methods

To evaluate the effectiveness of our proposed weighted ro-
bust SSL approaches, we compare with five state-of-the-art ro-
bust SSL approaches, including UASD [5], DS3L (DS3L) [9],
L2RW [19], and MWN [21]. The last two approaches L2RW
and MWN, were originally designed for robust supervised
learning (SL), and we adapted them to robust SSL by replac-
ing the supervised learning loss function with an SSL loss
function. We compare these robust approaches on four rep-
resentative SSL. methods, including Pseudo-Label (PL) [15],
1I-Model (PI) [14, 20], Mean Teacher (MT) [24], and Virtual
Adversarial Training (VAT) [17]. One additional baseline is the
supervised learning method, named ”Sup,” which ignored all
the unlabeled examples during training. Even Fixmatch [22]
is the state-of-the-art SSL algorithm. We did not consider
Fixmatch as the representative SSL. method because Fixmatch
is non-efficiency (100 hours for training in 1 2080Ti GPU)
All the compared methods were built upon the open-source
Pytorch implementation by [18].
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C. Setup

In our experiments, we implement our approaches (Ours-
SSL) for four representative SSL methods, including Pseudo-
Label (PL), II-Model (PI), Mean Teacher (MT), and Virtual
Adversarial Training (VAT). The term ”SSL” in Ours-SSL rep-
resent the SSL method, e.g., (Ours-VAT denotes our weighted
robust SSL algorithm implemented based on VAT. We used
the standard LeNet model as the backbone for the MNIST
experiment and used WRN-28-2 as the backbone for CIFAR10,
CIFAR100, and SVHN experiments. For a comprehensive and
fair comparison of the CIFAR10 experiment, we followed the
same experiment setting of [18]. All the compared methods
were built upon the Pytorch implementation by [18].
Hyperparameter setting. For our WR-SSL approach, we
update the weights only using last layer for the inner opti-
mization, we set J = 3 (for inner loop gradient steps), P =5
(for inverse Hessian approximation) , K = 20 (for CRW),
A = 1077 (for L1), and L = 5 (for infrequent update) for
all experiments. We trained all the networks for 2,000 updates
with a batch size of 100 for MNIST experiments, and 500,000
updates with a batch size of 100 for CIFAR10, CIFAR100,
and SVHN experiments. We did not use any form of early
stopping but instead continuously monitored the validation set
performance and report test error at the point of the lowest
validation error. We show the specific hyperparameters used
with four representative SSL methods on MNIST experiments
in Table I. For CIFAR10, we used the same hyperparameters
as [18]. For CIFAR100 and SVHN datasets, we used the same
hyperparameters as CIFAR10'.

VI. RESULTS AND DISCUSSION
A. Performance with different OOD datasets

In all experiments, we report the performance over five
runs. Denote OOD ratio= Uyod/(Upod + Uin) Where Uiy, is ID
unlabeled set, U,,q is OOD unlabeled set, and U = U;,, +Upoq.
The following experimental results on each dataset are to
answer all Questions given in Sec. V.

In our experiments, we consider five different OOD datasets:
Fashion MNIST, Mean MNIST, a subset of CIFAR-10, a

IThe source code is accessible at https:/github.com/zxj32/WR-SSL
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Fig. 5: Running time results. (a)-(b) show our proposed approaches are only 1.7x to 1.8x slower compared base SSL
algorithms, while other robust SSL methods are 3x slower. (c) shows that the running time of our method would increase with
J (inner loop gradients steps) and P (inverse Hessian approximation) increase. (d)-(e) show running time of our strategies
with different combinations of tricks viz; last layer updates and updating weights every L iterations. Note that by using only
last layer updates, our strategies are around 2x slower. With L = 5 and last layer updates, we are around 1.7x to 1.8x slower

with comparable test accuracy.

TABLE I: Hyperparameter settings used in MNIST experi-
ments for four representative SSL. All robust SSL methods
(e.g., ours (WR-SSL), DS3L and UASD) are developed based
on these representative SSL.

Shared
Learning decayed by a factor of 0.2
at training iteration 1,000
coefficient = 1 (Do not use warmup)
Supervised
Initial learning rate 0.003
II-Model
Initial learning rate 0.003
Max consistency coefficient 20
Mean Teacher
Initial learning rate 0.0004
Max consistency coefficient 8
Exponential moving average decay 0.95
VAT
Initial learning rate 0.003
Max consistency coefficient 0.3
VAT ¢ 3.0
VAT ¢ 106
Pseudo-Label
Initial learning rate 0.0003
Max consistency coefficient 1.0
Pseudo-label threshold 0.95

subset of CIFAR-100, and a subset of SVHN. The exact
portions of OODs that belong to faraway OODs and boundary
OODs, respectively, can not be shown explicitly as we did
not find any existing methods can estimate the information.
We roughly consider Fashion MNIST as a relatively faraway
OODs since grayscale clothes images in Fashion MNIST are
different from the digital number in MNIST. Moreover, we
consider Mean MNIST (where the instances are mean images
of two MNIST classes) as relative boundary OODs because the
new fused images do not belong to MNIST class but contain
very similar feature vectors (see Fig 6). For the subset OODs
from CIFAR-10, CIFAR-100, and SVHN, we roughly consider
them as relatively mixed type OODs. The subset may contain
some classes close to in-distribution classes (e.g., seal v.s.
whale) and some very different from in-distribution classes
(e.g., flower v.s. fish).

We begin by running our algorithms on MNIST (.e.,
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MNIST as ID) with different types of OOD instances. First,
we use Fashion MNIST [26] as OOD, which are grayscale
article images. In this case, we compare all algorithms with
batch normalization. As shown in Fig 4 (a), the performance of
the existing SSL method decreases rapidly with an increase in
OOD ratio. In contrast, our approach can still maintain clear
performance improvement — e.g., our approach outperforms
the base VAT SSL algorithm by almost 18% when OOD
ratio = 50%. Compared with other robust SSL. methods, our
methods improve accuracy and suffer much less degradation
under a high OOD ratio. Next, we use Mean MNIST (where
the instances are mean images of two classes) as the OOD
data. As shown in Fig 4 (b), we see a similar pattern that the
accuracy of existing SSL methods decreases when the OOD
ratio increases. Across different OOD ratios, our method sig-
nificantly outperforms all baselines and the base SSL methods
— e.g., 8% increase with our approach over DS3L when OOD

ratio = 50%.
o @ | E’ g | 4
- Kk mIS eIk
- IR

Fig. 6: Examples of Mean
MNIST. Zo0q = ($1 + .’)3j)/2
where x;,x; are two samples
from different MNIST classes.

We now study our algo-
rithm’s performance on other
datasets, including CIFAR-10,
CIFAR-100, and SVHN. Simi-
lar to [18], we freeze BN lay-
ers for all the methods. Recall
for CIFAR-10, CIFAR-100, and
SVHN datasets, we use a subset
of the classes as ID and the rest
of the classes (from the same
dataset) as OOD. The average accuracy of all compared
methods v.s. OOD ratio is plotted in Fig 4 (c)-(d) for CIFAR-
10. Our approach consistently outperforms existing baselines
(and also the PL algorithm) by almost 4.5% when the OOD
ratio is 75%. In addition, we compared our approach with the
DS3L and UASD (SOTA robust SSL methods) on CIFAR100
and SVHN datasets and got a similar pattern. The results are
shown in Table II and III. Furthermore, in cases where we can
not apply clustering (CRW), we also show the performance of
our method without CRW. The result in Table II and III shows
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that shows that our approach still performs better than DS3L
and UASD, which demonstrate that our approach can achieve
stable performance.

TABLE II: SVHN-Extra with different OOD ratio.

OOD ratio 25% 50% 75%
VAT 941+ 0.5 93.6+ 0.7 92.84 0.9
L2RW-VAT 96.0+£ 0.6 935+ 0.8 92.74 0.8
MWN-VAT 96.2+ 0.5 93.8+ 1.1 93.0+ 1.3
UASD-VAT 963+ 0.5 942+ 09 933+ 1.3
DS3L-VAT 96.4+ 0.7 939+ 1.0 929+ 1.2
Ours w/o CRW | 96.6+ 0.6 9444 0.8 93.2+ 1.1
Ours-VAT 96.8+ 0.7 952+ 0.9 949+ 1.3

TABLE III: CIFAR100 with different OOD ratio.

OOD ratio 25% 50% 75%
UASD-MT 60.5+ 0.6 60.3+ 0.7 585+ 1.0
DS3L-MT 60.8+ 0.5 60.1+ 1.1 572+ 1.2
Ours w/o CRW | 61.5+ 04 60.7+ 0.6 59.0+ 0.8
Ours-MT 62.1+ 0.5 61.0+ 0.5 59.7+ 0.9
UASD-PI 61.1£ 0.5 60.0+ 0.9 584+ 1.0
DS3L-PI 60.5£ 0.6 60.1+ 1.0 574+ 1.3
Ours w/o CRW | 612+ 04 6044+ 04 589+ 0.6
Ours-PI 61.6+ 0.4 60.7£ 0.5 59.54+ 0.7

B. Efficiency Analysis

To evaluate the efficiency of our proposed approach, we
first compare the running time among all methods. Fig 5 (a)-
(b) shows the running time (relative to the original SSL algo-
rithm) for MNIST and CIFAR-10. We see that our proposed
approaches are only 1.7x to 1.8x slower than the original
SSL algorithm, while other robust SSL. methods (L2RW and
DS3L) are almost 3 x slower. We note that our implementation
tricks can also be applied to these other techniques (DS3L,
L2RW, MWN), but this would possibly degrade performance
since these approaches’ performance is worse than ours even
without these tricks. To further analyze our proposed speedup
strategies, we plot the running time v.s. accuracy in Fig 5 (d)-
(e) for different settings (with/without last and with/without in-
frequent updates). As expected, the results show that, without
the only last layer updates and the infrequent updates (i.e. if
L = 1), Algorithm 2 is 3 x slower than SSL baseline. Whereas
with the last layer updates, it is around 2x slower. We get the
best trade-off between speed and accuracy considering both
L =5 and the last layer updates. In addition, we analyze the
efficiency of our approach with varying inner loop gradients
steps (J) and inverse Hessian approximation (P). The result
shows that the running time of our method would increase with
J and P increase, we choose best trade-off between speed and
accuracy considering J = 3 and P = 5.

C. Additional Analysis

Analysis of weight variation. Fig 7 (a) shows the weight
learning curve of our approach and DS3L on Fashion-MNIST
OOD. The results show that our method learns better weights
for unlabeled samples compared to DS3L. The weight distri-
bution learned in other cases are also similar.

Size of the clean validation set. We explore the sensitivity
of the clean validation set used in robust SSL approaches
on Mean MNIST OOD. Fig 7 (b) plots the classification
performance with varying the size of the clean validation set.
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Surprisingly, our methods are stable even when using only 25
validation images, and the overall classification performance
does not grow after having more than 1000 validation images.
Ablation Studies. We conducted additional experiments on
Fashion-MNIST OOD (see Fig 7 (c)-(e)) in order to demon-
strate the contributions of the key technical components,
including Cluster Re-weight (CRW) and weighted Batch
Normalization (WBN). The key findings obtained from this
experiment are /) WBN plays a vital role in our weighted
robust SSL framework to improve the robustness of BN against
OOD data; 2) Removing CRW (or L1 regularization) results
in performance decrease, especially for VAT based approach,
which demonstrates that CRW (and L1 regularization) can
further improve performance for our robust-SSL approach;
3) Fig 7 (d)-(e) demonstrate that the performance of our
approach would increase with (inner loop gradients steps)
and inverse Hessian approximation) increase due to high-
order approximation. Based on this, we choose best trade-off
between speed and accuracy considering J = 3 and P = 5
when considering running time analysis in Fig 5 (c).

L1 vs CRW tricks. Next, we discuss the trade-offs between
L1 and CRW. We first analyzed the sensitivity of our proposed
CRW methods to the number of clusters used. Table IV
demonstrates the test accuracies of our approach with varying
numbers of clusters. The results indicate a low sensitivity of
our proposed methods to the number of clusters. We also find
that CRW generally can further improve the performance. Part
of this success can be attributed to the good pretrained features.
Our approach without CRW (only consider L1 regularization
to reduce overfitting) performs well even without this addi-
tional information ( Table II ,III, and Fig. 7 (c)).

TABLE 1IV: Test accuracies for different numbers of clusters
K on the MNIST dataset with 50% Mean MNIST as OODs .

# Clusters K=5 K=10 K=20 K =30
Ours-VAT | 947+ 0.7 953+ 04 963+ 0.5 95.6+ 0.5
Ours-PL 952+ 05 953+ 05 962+ 04 959+ 0.5

VII. CONCLUSION

In this work, we first propose the research question: How
out-of-distribution data hurt semi-supervised learning perfor-
mance? To answer this question, we study the impact of
OOD data on SSL algorithms and demonstrate empirically
that the SSL algorithms’ performance depends on how close
the OOD instances are to the decision boundary (and the ID
data instances). To address the above causes, we proposed
a novel unified weighted robust SSL framework, which is
designed to improve the robustness of BN against OODs. To
address the limitation of low-order approximations in bi-level
optimization (DS3L), we designed an implicit-differentiation
based algorithm that considered high-order approximations of
the objective and is scalable to a higher number of inner
optimization steps to learn a massive amount of weight pa-
rameters. In addition, we conduct a theoretical analysis about
the impact of faraway OODs in the BN step and discuss the
connection between our approach (high-order approximation
based on implicit differentiation) and low-order approximation
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Fig. 7: (a) shows that our method learns optimal weights for ID and OOD samples; (b) shows that our method is stable even
for small validation set containing 25 images; (c) shows that WBN and CRW (or L1 regularization) are critical in retaining
the performance gains of reweighting; (d)-(e) demonstrate that the performance of our approach would increase with (inner
loop gradients steps) and inverse Hessian approximation) increase due to high-order approximation.

approaches. We show that our weighted robust SSL approach
significantly outperforms existing robust approaches (L2RW,
MWN, Safe-SSL, and UASD) on several real-world datasets.
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