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Abstract—Recent semi-supervised learning algorithms have
demonstrated greater success with higher overall performance
due to the use of better-unlabeled data representations. Nonethe-
less, recent research suggests that the performance of the SSL
algorithm can be degraded when the unlabeled set contains
out-of-distribution examples (OODs). This work addresses the
following research question: How do out-of-distribution (OOD)
data adversely affect semi-supervised learning algorithms? To
answer this question, we investigate the critical causes of OOD’s
negative effect on SSL algorithms. In particular, we found
that 1) certain kinds of OOD data instances that are close
to the decision boundary have a more significant impact on
performance than those that are further away, and 2) Batch
Normalization (BN), a popular module, may degrade rather
than improve performance when the unlabeled set contains
OODs. To address these challenges, we developed a unified
weighted robust SSL framework that can be easily extended
to many existing SSL algorithms and improve their robustness
against OODs. Having identified the limitations of low-order
approximations in bi-level optimization, we developed an efficient
bi-level optimization algorithm that could accommodate high-
order approximations of the objective and could scale to a large
number of inner optimization steps to learn a massive number
of weight parameters. Furthermore, we conduct a theoretical
analysis of the impact of faraway OODs in the BN step and
propose a weighted batch normalization (WBN) procedure that
uses the weights estimated by the bi-level optimization prob-
lem in the BN step. Additionally, we discuss the connection
between our approach and low-order approximation techniques.
Our extensive experiments on synthetic and real-world datasets
demonstrate that our proposed approach significantly enhances
the robustness of four representative SSL algorithms against
OODs compared to four state-of-the-art robust SSL strategies.

I. INTRODUCTION

Deep learning approaches have been shown to be success-

ful on several supervised learning tasks, such as computer

vision [6, 25], natural language processing [28], and speech

recognition [31]. However, these deep learning models are

data-hungry and often require massive amounts of labeled

examples to obtain good performance. Obtaining high-quality

labeled examples can be very time-consuming and expensive,

particularly where specialized skills are required in labeling

(for example, in cancer detection on X-ray or CT-scan images).

As a result, semi-supervised learning (SSL) has emerged as a

very promising direction, where the learning algorithms try to

* Equal Contribution. This work is done when Xujiang Zhao was with The
University of Texas at Dallas.

(a) Traditional semi-supervised learning

(b) Semi-supervised learning with OOD data

Fig. 1: (a) Traditional SSL. (b) SSL with OODs.

effectively utilize the large unlabeled set (in conjunction) with

a relatively small labeled set. Several recent SSL algorithms

have been proposed for deep learning and have shown great

promise empirically. These include Entropy Minimization [7],

pseudo-label based methods [15, 1, 3] and consistency based

methods [20, 14, 24, 17] to name a few.

Despite the success of these SSL methods, they are designed

with the assumption that labeled and unlabeled data have

the same distribution. Fig 1 (a) shows an example of this.

However, this assumption may not hold in many real-world

applications, such as web classification and medical diagnosis,

where some unlabeled examples are from novel classes unseen

in the labeled data. For example, Fig 1 (b) illustrates an

image classification scenario with out-of-distribution data,

where the unlabeled dataset contains two novel classes (bicycle

and clock) compared to the in-distribution classes (flower

and beetle) in the labeled dataset. When the unlabeled set

contains OOD examples (OODs), deep SSL performance can

degrade substantially and is sometimes even worse than simple

supervised learning (SL) approaches [18]. Moreover, it is

unreasonable to expect a human to go through and clean a

large and massive unlabeled set in such cases.

A typical approach to robust SSL against OODs is to assign

a weight to each unlabeled example based on some criteria and

minimize a weighted training or validation loss. In an ideal

weighting scheme, positive weights should be assigned only

to ID samples while zero weights should be assigned to OOD

samples. Yan et al. [29] applied a set of weak annotators to

approximate the ground-truth labels as pseudo-labels to learn

a robust SSL model. [4] proposed a distributionally robust

model that estimates a parametric weight function based on
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both the discrepancy and the consistency between the labeled

data and the unlabeled data. [5] (UASD) proposed to weigh

the unlabeled examples based on an estimation of predictive

uncertainty for each unlabeled example. The goal of UASD is

to discard potentially irrelevant samples having low confidence

scores and estimate the parameters by optimizing a regularized

training loss.

A state-of-the-art method [9], called DS3L, considers a

shallow neural network to predict the weights of unlabeled

examples and estimate the parameters of the neural network

based on a clean labeled set via bi-level optimization. It is

common to obtain a dataset composed of two parts, including

a relatively small but accurately labeled set and a large but

coarsely labeled set from inexpensive crowd-sourcing services

or other noisy sources.

There are three main limitations of DS3L and other

methods as reviewed above. First, it lacks a study of potential

causes about the impact of OODs on SSL, and as a result,

the interpretation of robust SSL methods becomes difficult.

Second, existing robust SSL methods did not consider the

negative impact of OODs on the utilization of BN in neural

networks, and as a result, their robustness against OODs

degrades significantly when a neural network includes BN

layers. The utilization of BNs for deep SSL has an implicit

assumption that the labeled and unlabeled examples follow

a single or similar distributions, which is problematic when

the unlabeled examples include OODs [11]. Third, the bi-

level learning algorithm developed in DS3L relies on low-

order approximations of the objective in the inner loop due

to vanishing gradients or memory constraints. As a result

of not using the high-order loss information, the learning

performance of DS3L could be significantly degraded in some

applications, as demonstrated in our experiments. Our main

technical contributions over existing methods are summarized

as follows:

The effect of OOD data points. The first critical contribution

of our work (Sec. III) is to analyze what kind of OOD unla-

beled data points affect the performance of SSL algorithms.

In particular, we observe that OOD samples lying close to the

decision boundary have more influence on SSL performance

than those far from the boundary. Furthermore, we observe that

the OOD instances far from the decision-boundary (faraway

OODs) can degrade SSL performance substantially if the

model contains a batch normalization (BN) layer. The last

observation makes sense logically as well since the batch

normalization heavily depends on the mean and variance of

each batch’s data points, which can be significantly different

for OOD points that came from very different distributions.

We find these observations about OOD points consistent across

experiments on several synthetic and real-world datasets.

Weighted Robust SSL Framework. Our second contribution

is a unified, weighted robust SSL approach to improve many

existing SSL algorithms’ robustness by learning to assign

weights to unlabeled examples based on a bi-level optimization

approach. To address the limitation of low-order approxi-

mations in bi-level optimization (DS3L), we designed an

implicit-differentiation based algorithm that considered high-

order approximations of the objective and is scalable to a

higher number of inner optimization steps to learn a massive

amount of weight parameters. In addition to address the BN

issue due to the faraway OODs, we propose weighted batch
normalization (WBN) to carry the weights (learned from bi-

level optimization) over in the BN step (Sec. IV-D).

Comprehensive experiments. We conduct extensive ex-

periments on synthetic and real-world datasets. The results

demonstrate that our weighted robust SSL approach signifi-

cantly outperforms existing robust approaches (L2RW, MWN,

Safe-SSL, and UASD) on four representative SSL algorithms.

We also perform an ablation study to demonstrate which

components of our approach are most important for its success.

II. SEMI-SUPERVISED LEARNING (SSL)

Given a training set with a labeled set of examples D =
{xi, yi}ni=1 and an unlabeled set of examples U = {xj}mj=1.

For any classifier model f(x, θ) used in SSL, where x ∈ R
C is

the input data, and θ refers to the parameters of the classifier

model. The loss functions of many existing methods can be

formulated as the following general form:∑
(xi,yi)∈D

l(f(xi, θ), yi) +
∑

xj∈U
r(f(xj , θ)), (1)

where l(·) is the loss function for labeled data (such as cross-

entropy), and r(·) is the loss function (regularization function)

on the unlabeled set. The goal of SSL methods is to design

an efficient regularization function to leverage the model

performance information on the unlabeled dataset for effective

training. Pseudo-labeling [15] uses a standard supervised loss

function on an unlabeled dataset using “pseudo-labels” as

a target label as a regularizer. Π-Model [14, 20] designed

a consistency-based regularization function that pushes the

distance between the prediction for an unlabeled sample

and its stochastic perturbation (e.g., data augmentation or

dropout [23]) to a small value. Mean Teacher [24] proposed

to obtain a more stable target output f(x, θ) for unlabeled set

by setting the target via an exponential moving average of

parameters from previous training steps. Instead of designing

a stochastic f(x, θ), Virtual Adversarial Training (VAT) [17]

proposed to approximate a tiny perturbation to unlabeled

samples that affect the output of the prediction function most.

MixMatch [3], UDA [27], and Fix-Match [22] choose the

pseudo-labels based on predictions of augmented samples,

such as shifts, cropping, image flipping, weak and strong

augmentation, and mix-up [30] to design the regularization

functions. However, the performance of most existing SSL

can degrade substantially when the unlabeled dataset contains

OOD examples [18].

III. IMPACT OF OOD ON SSL PERFORMANCE

In this section, we provide a systematic analysis of

the impact of OODs for many popular SSL algo-

rithms, such as Pseudo-Label(PL) [15], Π-Model [14],

Mean Teacher(MT) [24], and Virtual Adversarial Training

(VAT) [17]. We illustrate the discoveries using the following

764

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 21,2023 at 01:08:15 UTC from IEEE Xplore.  Restrictions apply. 



synthetic and real-world datasets. While we mainly focus on

VAT as the choice of the SSL algorithm, the observations

extend to other SSL algorithms as well.

Synthetic dataset. We considered two moons dataset (red

points are labeled data, gray circle points are in-distribution

(ID) unlabeled data) with OOD (yellow triangle points) points

in three different scenarios that can exist in real-world, 1)

Faraway OOD scenario where the OOD points exist far from

decision boundary; 2) Boundary OOD scenario where the

OOD points occur close to decision boundary; 3) Mixed OOD

scenario where OOD points exist both far and close to the

decision boundary, as shown in Fig 2.

Real-world dataset. We consider MNIST as ID data with

three types of OODs to account for plausible real-world

scenarios. 1)Faraway OOD: We used Fashion MNIST (F-

MNIST) dataset, which contains fashion images as Faraway

OOD dataset as it inherently has different patterns compared to

MNIST dataset; 2) Boundary OOD: We used EMNIST dataset,

which contains handwritten character digits as Boundary OOD

dataset as it has similar patterns compared to MNIST dataset;

In addition to EMNIST, we also considered Mean MNIST (M-

MNIST) as a boundary OOD dataset, which was generated by

averaging MNIST images from two different classes (usage

of M-MNIST as boundary OOD is also considered in [8]);

4) Mixed OOD: For Mixed OOD dataset, we combined both

Fashion MNIST and EMNIST together.

For all experiments in this section, we used a multilayer

perceptron neural network (MLP) with three layers as a

backbone architecture for the synthetic dataset and LeNet

as a backbone for the real-world datasets. We consider the

following models in the experiments: 1) SSL-NBN: MLP or

LeNet model without Batch Normalization; 2) SSL-BN: MLP

or LeNet model with Batch Normalization; 3) SSL-FBN: MLP

or LeNet model where we freeze the batch normalization

layers for the unlabeled instances. Freezing BN (FBN) [18]

is a common trick to improve the SSL model robustness

where we freeze batch normalization layers by not updating

running mean and running variance in the training phase.

The following are the main observations. First, from Fig 2,

we see that with BN (i.e., SSL-BN), there is a significant

impact on model performance and learned decision boundaries

in the presence of OOD. This performance degradation is even

more pronounced in Faraway OOD since the BN statistics like

the running mean/variance can be significantly changed by

faraway OOD points. Secondly, when we do not use BN (i.e.,

SSL-NBN), the impact of the Faraway OOD and mixed OOD

data is reduced. However, in the case of boundary OOD (Fig

2 (b) and EMNIST/M-MNIST case of Fig 2 (d)), we still see

significant performance degradation compared to the skyline.

However, BN is a crucial component in more complicated

models (Eg: ResNet family), and we expect OOD instances

to play a significant role there. Finally, when freezing the

BN layers for the unlabeled data (i.e., SSL-FBN), we see

that the Faraway and Mixed OODs’ effect is alleviated; but

SSL-FBN still performs worse than the SSL-NBN in Faraway

and Mixed OODs (and there is big scope of improvement

w.r.t the skyline). Finally, both SSL-NBN and SSL-FBN fail

to efficiently mitigate the performance degradation caused

by boundary OOD data points. We also show that similar

observations made on the CIFAR-10 dataset (Fig 2 (e)).

Proposition 1. Give in-distribution mini-batch I = {xi}mi=1,
OOD mini-batch O = {x̂i}mi=1, and the mixed mini-batch
IO = I∪O. Denote μM is the mini-batch mean of M (either
O, I or IO). With faraway OOD: ‖μO − μI‖2 > L, where
L is large (L� 0), we have:

‖μIO − μI‖2 >
L

2
and BNI(xi) �= BNIO(xi)

where BNM(xi) is traditional batch normalizing transform
based on mini-batch from M (either I or IO).

Proof: The mini-batch mean of I: μI = 1
m

∑m
i=1 xi.

The mixed mini-batch mean of IO: μIO = 1
2m (

∑m
i=1 xi +∑m

i=1 x̂i) = 1
2μI +

1
2μO. Then we have,

‖μIO − μI‖2 = ‖1
2
μI +

1

2
μO − μI‖2 >

L

2
� 0

The mini-batch variance of I: σ2
I = 1

m

∑m
i=1(xi − μI)2. The

traditional batch normalizing transform based on mini-batch

I for xi: BNI(xi) = γ xi−μI√
σ2
I+ε

+ β. The mini-batch variance

of IO,

σ2
IO =

1

2m
(

m∑
i=1

x2i +
m∑
i=1

x̂2i )− μ2
IO

=
1

2
σ2
I +

1

2
σ2
O +

1

4
(μO − μI)2

≈ 1

4
(μO − μI)2, (2)

and the traditional batch normalizing transform based on mini-

batch IO for xi,

BNIO(xi) = γ
xi − μB(IO)√
σ2
B(IO) + ε

+ β

= γ
( xi − μO

2
√
σ2
B(IO) + ε

+
xi − μI

2
√
σ2
B(IO) + ε

)
+ β

≈ γ
( xi − μO

‖μO − μI‖2 +
xi − μI

‖μO − μI‖2
)
+ β

≈ γ
xi − μO

‖μO − μI‖2 + β. (3)

The approximations in Eq. (2) and Eq. (3) hold when σ2
I and

σ2
O have the same magnitude levels as μI , i.e., ‖μO−σ2

I‖2 >
L and ‖μO − σ2

O‖2 > L. Comparing Eq. (III) with Eq. (3),

we prove that BNI(xi) �= BNIO(xi).
Proposition 1 shows that when unlabeled set contains

OODs, the traditional BN behavior could be problematic,

therefore resulting in incorrect statistics estimation, e.g., the

output of BN for mixed mini-bath BNIO(xi) ≈ γ xi−μO
‖μO−μI‖2 +

β, which is not our expected result (BNI(xi) = γ xi−μI√
σ2
I+ε

+β).

The main takeaways of the synthetic and real data exper-

iments are as follows: 1) OOD instances close to decision
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(a) Faraway OODs (b) Boundary OODs (c) Mixed OODs (d) OODs in MNIST (e) OODs in CIFAR10

Fig. 2: SSL performance with different type OODs in both synthetic and real-world datasets.

boundary (Boundary OODs) hurt SSL performance irrespec-

tive of the use of batch normalization; 2) OOD instances

far from the decision boundary (Faraway OODs) hurt the

SSL performance if the model involves BN. Freezing BN can

reduce some impact of OOD to some extent but not entirely;

3) OOD instances far from the decision boundary will not

hurt SSL performance if there is no BN in the model. To

this end, we answered the question ”How out-of- distribution
data hurt semi-supervised learning performance?”. In the next

section, we propose a weighted robust SSL framework to

address above mentioned issues caused by OOD data points.

IV. METHODOLOGY

In this section, we first proposed the weighted robust SSL

(WR-SSL) framework in Sec. IV-A, and then introduce the

implicit-differentiation (high-order approximation) based opti-

mization algorithms to train the weighted robust SSL approach

in Sec. IV-B. More importantly, we proposed weighted batch

normalization to improve the robustness of our WR-SSL

framework against OODs in Sec. IV-D.

A. Weighted Robust SSL Framework

Reweighting the unlabeled data. Consider the semi-

supervised classification problem with training data (labeled D
and unlabeled U ) and classifier f(x; θ). Generally, the optimal

classifier parameter θ can be extracted by minimizing the SSL

loss (Eq. (1)) calculated on the training set. In the presence

of unlabeled OOD data, sample reweighting methods enhance

the robustness of training by imposing weight wj on the j-th

unlabeled sample loss,

LT (θ,w) =
∑

(xi,yi)∈D
l(f(xi; θ), yi) +

∑
xj∈U

wjr(f(xj ; θ)),

where we denote LU is the robust unlabeled loss, and we treat

weight w as hyperparameter. Our goal is to learn a sample

weight vector w such that w = 0 for OODs, w = 1 for In-

distribution (ID) sample.

Denote LV (θ
∗(w),w) = LV (θ

∗(w))+λ·Reg(w) as the valida-

tion loss with a regularization term over the validation dataset,

where Reg(w) is the regularization term, λ is the regularization

coefficient, and LV (θ
∗(w)) �

∑
(xi,yi)∈V l(f(xi, θ

∗(w)), yi).
This labeled set could either be a held out validation set, or the

original labeled set D. Intuitively, the problem given in Eq. (4)

aims to choose weights of unlabeled samples w that minimizes

the supervised loss evaluated on the validation set when the

model parameters θ∗(w) are optimized by minimizing the

weighted SSL loss LT (θ,w).

Bi-level optimization objective. Since manual tuning and

grid-search for each wi is intractable, we pose the weights

optimization problem described above as a bi-level optimiza-

tion problem.

min
w

LV (θ
∗(w),w),

s.t. θ∗(w) = argmin
θ

LT (θ,w). (4)

Calculating the optimal θ∗ and w requires two nested loops

of optimization, which is expensive and intractable to ob-

tain the exact solution, especially when optimization involves

deep learning model and large datasets. Since gradient-based

methods like Stochastic Gradient Descent (SGD) have shown

to be very effective for machine learning and deep learning

problems, we adapt a high-order approximation strategy, as

described in Sec IV-B.

B. high-order Optimization Approximation

In this section, we developed an efficient high-order opti-

mization algorithms to train our weighted robust SSL frame-

work.

Implicit Differentiation. Directly calculate the weight gradi-

ent
∂LV (θ∗(w),w)

∂w by chain rule:

∂LV (θ
∗(w),w)

∂w
=

∂LV

∂w︸ ︷︷ ︸
(a)

+
∂LV

∂θ∗(w)︸ ︷︷ ︸
(b)

× ∂θ∗(w)

∂w︸ ︷︷ ︸
(c)

(5)

where (a) is the weight direct gradient (e.g., gradient from

regularization term, Reg(w)), (b) is the parameter direct gra-

dient, which are easy to compute. The difficult part is the term

(c) (best-response Jacobian). We approximate (c) by using the

Implicit function theorem [16],

∂θ∗(w)

w
= −

[ ∂LT

∂θ∂θT

]−1

︸ ︷︷ ︸
(d)

× ∂LT

∂w∂θT︸ ︷︷ ︸
(e)

(6)

However, computing Eq. (6) is challenging when using deep

nets because it requires to invert a high dimensional Hessian

(term (d)), which often require O(m3) operations. Therefore,

we give the Neumann series approximations [16] of term (d)

which we empirically found to be effective for SSL,

[ ∂LT

∂θ∂θT

]−1

≈ lim
P→∞

P∑
p=0

[
I − ∂LT

∂θ∂θT

]p
(7)

where I is the identity matrix.
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Fig. 3: Main flowchart of the proposed Weighted Robust SSL algorithm.

Since the algorithm mentioned in [16] utilizes the Neumann

series approximation and efficient hessian vector product to

compute the Hessian inverse product, it can efficiently com-

pute the hessian-inverse product even when a larger number

of weight hyperparameters are present. We should also note

that the implicit function theorem’s assumption ∂LT

∂θ = 0
needs to be satisfied to accurately calculate the Hessian inverse

product. However in practice, we only approximate θ∗, and

simultaneously train both w and θ by alternatively optimizing

θ using LT and w using LV .

C. Connections to low-order Approximation

Lemma 1. Suppose that the Hessian inverse of training loss
LT with the model parameters θ is equal to the identity matrix
∂2LT

∂θ∂θT = I (i.e.,P = 0 for implicit differentiation approach).
Suppose the model parameters are optimized using single-step
gradient descent (i.e., J = 1 for the low-order approximation
approach), and the model learning rate is equal to one. Then,
the weight update step in both implicit differentiation and low-
order approximation approach is equal.

Proof:

Case 1: Our Approach: In Eq. 7, we have
[

∂LT

∂θ∂θT

]−1

= I

and substituting it in Eq. (6), we have:

∂θ∗(w)
w

= − ∂LT

∂w∂θT
(8)

Substituting the above equation in Eq. (5), we have:

∂LV (θ
∗(w),w)
∂w

=
∂LV

∂w
− ∂LV (θ

∗(w))
∂θ∗(w)

× ∂2LT

∂w∂θT
(9)

Since, we are using unweighted validation loss LV , there
is no dependence of validation loss on weights directly i.e.,
∂LV

∂w = 0. Hence, the weight gradient is as follows:

∂LV (θ
∗(w),w)
∂w

= −∂LV (θ
∗(w))

∂2θ∗(w)
× ∂LT

∂w∂θT
(10)

Since we are using one-step gradient approximation, we
have θ∗(w) = θ−α∂LT (w,θ)

∂θ where α is the model parameters
learning rate.

The weight update step is as follows:

w∗ = w + β
∂LV (θ

∗(w))
∂θ∗(w)

× ∂2LT

∂w∂θT
(11)

where β is the weight learning rate.

Case 2: low-order approximation Approach

In low-order approximation approach, we have θ∗(w) =

θ−α∂LT (w,θ)
∂θ where α is the model parameters learning rate.

Using the value of θ∗, the gradient of validation loss with
weight hyperparameters is as follows:

∂LV (θ
∗(w))

∂w
=

∂LV (θ − α∂LT (w,θ)
∂θ )

∂w

= −∂LV (θ
∗(w))

∂θ∗(w)
× α

∂2LT (w, θ)
∂θ∂wT

(12)

Assuming α = 1, we have:

∂LV (θ
∗(w))

∂w
= −∂LV (θ

∗(w))
∂θ∗(w)

× ∂2LT (w, θ)
∂θ∂wT

(13)

Hence, the weight update step is as follows:

w∗ = w + β
∂LV (θ

∗(w))
∂θ∗(w)

× ∂2LT

∂w∂θT
(14)

where β is the weight learning rate

As shown in the cases above, we have a similar weight

update. Hence, it inherently means that using the low-order

approximation of J = 1 is equivalent to using an identity

matrix as the Hessian inverse of training loss with θ.

Lemma 1 shows that the weight gradient from implicit

differentiation is same as the weight gradient from the low-

order approximation method (e.g., DS3L) when P = 0, J = 1.

D. Weighted Batch Normalization

In practice, most deep SSL model would use deep CNN.

While BN usually serves as an essential component for many

deep CNN models [10]. Specifically, BN normalizes input

features by the mean and variance computed within each

mini-batch. At the same time, OODs would indeed affect

the SSL performance due to BN (discussed this issues in

Sec. III). To address this issue, we proposed a Weighted Batch
Normalization (WBN) that performs the normalization for

each training mini-batch with sample weights w. We present

the WBN in Algorithm 1, where ε is a constant added to the

mini-batch variance for numerical stability.

Proposition 2. With faraway OOD: ‖μO − μI‖2 > L, where
L is large (L� 0), given perfect weights w = wI∪wO, where
wI = 1 for mini-batch I and wO = 0 for mini-batch O, we
have

μI = μw
IO and BNI(xi) = WBNIO(xi,w) (15)
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where μw
IO is the weighted mini-batch mean of IO, and

WBNIO(xi,w) is weighted batch normalizing transform
based on the set IO with weights w.

Proof: The symbols I,O, IO, μI , BNM(xi) are intro-

duced in Proposition 1. The weighted mini-batch mean of IO
:

μw
IO =

∑m
i=1 w

i
Ixi +

∑m
i=1 w

i
Ox̂i∑m

i=1 w
i
I +

∑m
i=1 w

i
O

=

∑m
i=1 1 · xi +

∑m
i=1 0 · x̂i∑m

i=1 1 +
∑m

i=1 0
= μI , (16)

witch proves that μI = μw
IO. The weighted mini-batch

variance of IO,

σw
IO

2 =

∑m
i=1 w

i
I(xi − μw

IO)
2∑m

i=1 w
i
I +

∑m
i=1 w

i
O

+

∑m
i=1 w

i
O(x̂i −−μw

IO) 2∑m
i=1 w

i
I +

∑m
i=1 w

i
O

=

∑m
i=1 1 · (xi − μIO)2

m
= σ2

I .

The weighted batch normalizing transform based on mini-

batch IO for xi: WBNIO(xi,w) = γ
xi−μw

IO√
σw
IO

2+ε
+ β =

γ xi−μI√
σ2
I+ε

+ β which proves that BNI(xi) = WBNIO(xi,w).

Proposition 2 shows that our proposed weighted batch

normalization (WBN) can reduce the OOD effect and get the

expected result. Therefore, our weighted robust SSL frame-

work uses WBN instead of BN if model includes BN layer.

Ablation studies in Sec. V demonstrates that such our approach

with WBN can improve performance further. Finally, our

weighted robust SSL framework is detailed in Algorithm 2.

Algorithm 1: Weighted Batch Normalization

Input: A mini-batch M = {xi}mi=1 and sample weight
w = {wi}mi=1; Parameters to be learned: γ, β

Output: {ti = WBNM(xi,w)}
1 Weighted mini-batch mean: μw

M ← 1∑m
i=1 wi

∑m
i=1 wixi

2 Weighted mini-batch variance:

σw
M

2 ← 1∑m
i=1 wi

∑m
i=1 wi(xi − μw

M)2

3 Normalize: x̂i ← xi−μw
M√

σw
M

2+ε

4 Scale and shift: ti ← γx̂i + β ≡ WBNM(xi,w)

E. Additional Implementation Details

In this subsection, we discuss additional implementational

and practical tricks to make our weighted robust SSL scalable

and efficient.

Last-layer gradients. Computing the gradients over deep

models is time-consuming due to an enormous number of

parameters in the model. To address this issue, we adopt

a last-layer gradient approximation similar to [2, 13, 12]

by only considering the last classification layer gradients of

the classifier model in inner loop optimization (step 8 in

algorithm 2). By simply using the last-layer gradients, we

achieve significant speedups in weighted robust SSL.

Infrequent update w. We update the weight parameters every

L iterations (L ≥ 2). In our experiments, we see that we can

set L = 5 without significant loss in accuracy. For MNIST

experiments, we can be even more aggressive and set L = 20
.

Algorithm 2: Weighted Robust SSL

Input: Labeled: D, Unlabeled: U , Reg param: λ
Output: Model params: θ, Instance/Cluster Weights: w

1 Set t = 0; learning rate α, β;
2 Initialize model parameters θ and weight w;
3 Apply K-means to U (if CRW);
4 Apply WBN instead of BN (if model includes BN);
5 repeat
6 /∗ Inner loop optimization, initial θ0t = θt ∗/
7 for j = 1, . . . , J do
8 θjt (w) = θj−1

t − α∇θLT (θ
j−1
t ,wt)

9 /∗ Outer loop optimization, set θ∗t = θJt ∗/
10 Approximate inverse Hessian via Eq. (7);
11 Calculate best-response Jacobian by Eq. (6);
12 Calculate weight gradient ∇wLV via Eq. (5);
13 update weight via wt+1 = wt − β · ∇wLV ;
14 /∗ Update net parameters ∗/
15 θt+1 = θt − α∇θLT (θt,wt+1)
16 t = t+ 1
17 until convergence
18 return θt+1,wt+1

Weight Sharing and Regularization. Considering the entire

weight vector w (overall unlabeled points) is not practical for

large datasets and easily overfits (see ablation study experi-

ments), we propose two ways to fix this. The first is weight

sharing via clustering, which we call Cluster Re-weight (CRW)

method. Specifically, we use an unsupervised cluster algorithm

(e.g., K-means algorithm) to embed unlabeled samples into

K clusters and assign a weight to each cluster such that we

can reduce the dimensionality of w from |M | to |K|, where

|K| 
 |M |. In practice, for high dimensional data, we may

use a pre-trained model to calculate embedding for each point

before applying the cluster method. In cases where we do not

have an effective pre-trained model for embedding, we con-

sider another variant that applies weights to every unlabeled

point but considers an L1 regularization in Eq (4) for sparsity

in w. We show that both these tricks effectively improve the

performance of reweighting and prevent overfitting on the

validation set.

V. EXPERIMENTAL

To corroborate our algorithm, we conduct extensive experi-

ments comparing our approach (WR-SSL) with some popular

baseline methods. We aim to answer the following questions:

Question 1: Can our approach (WR-SSL) achieve better

performance on both different types of OODs with varying

OOD ratios compared with baseline methods?

Question 2: How do our approach compare in terms of

running time comparing with baseline methods?

Question 3: What is the effect of each of the components

of our approach (e.g., WBN, clustering/regularization, inverse

Hessian approximation, inner loop gradient steps)?

A. Datasets

We consider four image classification benchmark datasets.

(1) MNIST: a handwritten digit classification dataset, with
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(a) Fashion MNIST. (b) Mean MNIST. (c) CIFAR10. (d) CIFAR10.

Fig. 4: (a-d) show test accuracy with varying OOD ratios of 0% to 75%. (a) shows results with MNIST as ID and F-MNIST

as OOD, (b) shows results with MNIST as ID and M-MNIST as OOD, (c) (d) shows results with CIFAR10 dataset (6 classes

ID, 4 classes OOD). (a) (c) (d) uses BN layers for all baselines except our methods that uses WBN layers. (b) shows all

methods’ results using a model w/o BN layers. (a) (c) use VAT, whereas (b) (d) use PL. Our methods consistently outperform

all baselines across different datasets, base SSL algorithms, and models with or without BN layers.

50,000/ 10,000/ 10,000 training/validation/test samples, with

training data, split into two groups – labeled and unlabeled

in-distribution (ID) images (labeled data has ten images per

class), and with two types of OODs: a) Fashion MNIST,

b) Mean MNIST; (2) CIFAR10: a natural image dataset

with 45,000/ 5,000/ 10,000 training/validation/test samples

from 10 object classes, and following [18], we adapt CI-

FAR10 to a 6-class classification task, using 400 labels per

class (from the 6 classes) and rest of the classes OOD (ID

classes are ”bird”, ”cat”, ”deer”, ”dog”, ”frog”, ”horse”, and

OOD data are from classes: ”airline”, ”automobile”, ”ship”,

”truck”); (3) CIFAR100: another natural image dataset with

45,000/5000/10,000 training/validation/test images, similar to

CIFAR10, we adapt CIFAR100 to a 50-class classification

task, with 40 labels per class – the ID classes are the

first 50 classes, and OOD data corresponds to the last 50

classes; (4) SVHN-extra : This is SVHN dataset with 531,131

additional digit images, and we adapt SVHN-extra to a 5-class

classification task, using 400 labels per class. The ID classes

are the first five classes, and OOD data corresponds to the last

five classes.

B. Comparing Methods
To evaluate the effectiveness of our proposed weighted ro-

bust SSL approaches, we compare with five state-of-the-art ro-

bust SSL approaches, including UASD [5], DS3L (DS3L) [9],

L2RW [19], and MWN [21]. The last two approaches L2RW

and MWN, were originally designed for robust supervised

learning (SL), and we adapted them to robust SSL by replac-

ing the supervised learning loss function with an SSL loss

function. We compare these robust approaches on four rep-

resentative SSL methods, including Pseudo-Label (PL) [15],

Π-Model (PI) [14, 20], Mean Teacher (MT) [24], and Virtual

Adversarial Training (VAT) [17]. One additional baseline is the

supervised learning method, named ”Sup,” which ignored all

the unlabeled examples during training. Even Fixmatch [22]

is the state-of-the-art SSL algorithm. We did not consider

Fixmatch as the representative SSL method because Fixmatch

is non-efficiency (100 hours for training in 1 2080Ti GPU)

All the compared methods were built upon the open-source

Pytorch implementation by [18].

C. Setup
In our experiments, we implement our approaches (Ours-

SSL) for four representative SSL methods, including Pseudo-

Label (PL), Π-Model (PI), Mean Teacher (MT), and Virtual

Adversarial Training (VAT). The term ”SSL” in Ours-SSL rep-

resent the SSL method, e.g., (Ours-VAT denotes our weighted

robust SSL algorithm implemented based on VAT. We used

the standard LeNet model as the backbone for the MNIST

experiment and used WRN-28-2 as the backbone for CIFAR10,

CIFAR100, and SVHN experiments. For a comprehensive and

fair comparison of the CIFAR10 experiment, we followed the

same experiment setting of [18]. All the compared methods

were built upon the Pytorch implementation by [18].

Hyperparameter setting. For our WR-SSL approach, we

update the weights only using last layer for the inner opti-

mization, we set J = 3 (for inner loop gradient steps), P = 5
(for inverse Hessian approximation) , K = 20 (for CRW),

λ = 10−7 (for L1), and L = 5 (for infrequent update) for

all experiments. We trained all the networks for 2,000 updates

with a batch size of 100 for MNIST experiments, and 500,000

updates with a batch size of 100 for CIFAR10, CIFAR100,

and SVHN experiments. We did not use any form of early

stopping but instead continuously monitored the validation set

performance and report test error at the point of the lowest

validation error. We show the specific hyperparameters used

with four representative SSL methods on MNIST experiments

in Table I. For CIFAR10, we used the same hyperparameters

as [18]. For CIFAR100 and SVHN datasets, we used the same

hyperparameters as CIFAR101.

VI. RESULTS AND DISCUSSION

A. Performance with different OOD datasets

In all experiments, we report the performance over five

runs. Denote OOD ratio= Uood/(Uood +Uin) where Uin is ID

unlabeled set, Uood is OOD unlabeled set, and U = Uin+Uood.

The following experimental results on each dataset are to

answer all Questions given in Sec. V.

In our experiments, we consider five different OOD datasets:

Fashion MNIST, Mean MNIST, a subset of CIFAR-10, a

1The source code is accessible at https://github.com/zxj32/WR-SSL
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(a) MNIST. (b) CIFAR10. (c) Running Time. (d) MNIST. (e) CIFAR10.

Fig. 5: Running time results. (a)-(b) show our proposed approaches are only 1.7× to 1.8× slower compared base SSL

algorithms, while other robust SSL methods are 3× slower. (c) shows that the running time of our method would increase with

J (inner loop gradients steps) and P (inverse Hessian approximation) increase. (d)-(e) show running time of our strategies

with different combinations of tricks viz; last layer updates and updating weights every L iterations. Note that by using only

last layer updates, our strategies are around 2× slower. With L = 5 and last layer updates, we are around 1.7× to 1.8× slower

with comparable test accuracy.

TABLE I: Hyperparameter settings used in MNIST experi-

ments for four representative SSL. All robust SSL methods

(e.g., ours (WR-SSL), DS3L and UASD) are developed based

on these representative SSL.

Shared
Learning decayed by a factor of 0.2
at training iteration 1,000
coefficient = 1 (Do not use warmup)

Supervised
Initial learning rate 0.003

Π-Model
Initial learning rate 0.003
Max consistency coefficient 20

Mean Teacher
Initial learning rate 0.0004
Max consistency coefficient 8
Exponential moving average decay 0.95

VAT
Initial learning rate 0.003
Max consistency coefficient 0.3
VAT ε 3.0
VAT ξ 10−6

Pseudo-Label
Initial learning rate 0.0003
Max consistency coefficient 1.0
Pseudo-label threshold 0.95

subset of CIFAR-100, and a subset of SVHN. The exact

portions of OODs that belong to faraway OODs and boundary

OODs, respectively, can not be shown explicitly as we did

not find any existing methods can estimate the information.

We roughly consider Fashion MNIST as a relatively faraway

OODs since grayscale clothes images in Fashion MNIST are

different from the digital number in MNIST. Moreover, we

consider Mean MNIST (where the instances are mean images

of two MNIST classes) as relative boundary OODs because the

new fused images do not belong to MNIST class but contain

very similar feature vectors (see Fig 6). For the subset OODs

from CIFAR-10, CIFAR-100, and SVHN, we roughly consider

them as relatively mixed type OODs. The subset may contain

some classes close to in-distribution classes (e.g., seal v.s.

whale) and some very different from in-distribution classes

(e.g., flower v.s. fish).

We begin by running our algorithms on MNIST (i.e.,

MNIST as ID) with different types of OOD instances. First,

we use Fashion MNIST [26] as OOD, which are grayscale

article images. In this case, we compare all algorithms with

batch normalization. As shown in Fig 4 (a), the performance of

the existing SSL method decreases rapidly with an increase in

OOD ratio. In contrast, our approach can still maintain clear

performance improvement – e.g., our approach outperforms

the base VAT SSL algorithm by almost 18% when OOD

ratio = 50%. Compared with other robust SSL methods, our

methods improve accuracy and suffer much less degradation

under a high OOD ratio. Next, we use Mean MNIST (where

the instances are mean images of two classes) as the OOD

data. As shown in Fig 4 (b), we see a similar pattern that the

accuracy of existing SSL methods decreases when the OOD

ratio increases. Across different OOD ratios, our method sig-

nificantly outperforms all baselines and the base SSL methods

– e.g., 8% increase with our approach over DS3L when OOD

ratio = 50%.

Fig. 6: Examples of Mean
MNIST. x̂ood = (xi + xj)/2
where xi, xj are two samples
from different MNIST classes.

We now study our algo-

rithm’s performance on other

datasets, including CIFAR-10,

CIFAR-100, and SVHN. Simi-

lar to [18], we freeze BN lay-

ers for all the methods. Recall

for CIFAR-10, CIFAR-100, and

SVHN datasets, we use a subset

of the classes as ID and the rest

of the classes (from the same

dataset) as OOD. The average accuracy of all compared

methods v.s. OOD ratio is plotted in Fig 4 (c)-(d) for CIFAR-

10. Our approach consistently outperforms existing baselines

(and also the PL algorithm) by almost 4.5% when the OOD

ratio is 75%. In addition, we compared our approach with the

DS3L and UASD (SOTA robust SSL methods) on CIFAR100

and SVHN datasets and got a similar pattern. The results are

shown in Table II and III. Furthermore, in cases where we can

not apply clustering (CRW), we also show the performance of

our method without CRW. The result in Table II and III shows
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that shows that our approach still performs better than DS3L

and UASD, which demonstrate that our approach can achieve

stable performance.

TABLE II: SVHN-Extra with different OOD ratio.
OOD ratio 25% 50% 75%

VAT 94.1± 0.5 93.6± 0.7 92.8± 0.9
L2RW-VAT 96.0± 0.6 93.5± 0.8 92.7± 0.8
MWN-VAT 96.2± 0.5 93.8± 1.1 93.0± 1.3
UASD-VAT 96.3± 0.5 94.2± 0.9 93.3± 1.3
DS3L-VAT 96.4± 0.7 93.9± 1.0 92.9± 1.2

Ours w/o CRW 96.6± 0.6 94.4± 0.8 93.2± 1.1
Ours-VAT 96.8± 0.7 95.2± 0.9 94.9± 1.3

TABLE III: CIFAR100 with different OOD ratio.
OOD ratio 25% 50% 75%
UASD-MT 60.5± 0.6 60.3± 0.7 58.5± 1.0
DS3L-MT 60.8± 0.5 60.1± 1.1 57.2± 1.2

Ours w/o CRW 61.5± 0.4 60.7± 0.6 59.0± 0.8
Ours-MT 62.1± 0.5 61.0± 0.5 59.7± 0.9
UASD-PI 61.1± 0.5 60.0± 0.9 58.4± 1.0
DS3L-PI 60.5± 0.6 60.1± 1.0 57.4± 1.3

Ours w/o CRW 61.2± 0.4 60.4± 0.4 58.9± 0.6
Ours-PI 61.6± 0.4 60.7± 0.5 59.5± 0.7

B. Efficiency Analysis

To evaluate the efficiency of our proposed approach, we

first compare the running time among all methods. Fig 5 (a)-

(b) shows the running time (relative to the original SSL algo-

rithm) for MNIST and CIFAR-10. We see that our proposed

approaches are only 1.7× to 1.8× slower than the original

SSL algorithm, while other robust SSL methods (L2RW and

DS3L) are almost 3× slower. We note that our implementation

tricks can also be applied to these other techniques (DS3L,

L2RW, MWN), but this would possibly degrade performance

since these approaches’ performance is worse than ours even

without these tricks. To further analyze our proposed speedup

strategies, we plot the running time v.s. accuracy in Fig 5 (d)-

(e) for different settings (with/without last and with/without in-

frequent updates). As expected, the results show that, without

the only last layer updates and the infrequent updates (i.e. if

L = 1), Algorithm 2 is 3× slower than SSL baseline. Whereas

with the last layer updates, it is around 2× slower. We get the

best trade-off between speed and accuracy considering both

L = 5 and the last layer updates. In addition, we analyze the

efficiency of our approach with varying inner loop gradients

steps (J) and inverse Hessian approximation (P ). The result

shows that the running time of our method would increase with

J and P increase, we choose best trade-off between speed and

accuracy considering J = 3 and P = 5.

C. Additional Analysis

Analysis of weight variation. Fig 7 (a) shows the weight

learning curve of our approach and DS3L on Fashion-MNIST

OOD. The results show that our method learns better weights

for unlabeled samples compared to DS3L. The weight distri-

bution learned in other cases are also similar.

Size of the clean validation set. We explore the sensitivity

of the clean validation set used in robust SSL approaches

on Mean MNIST OOD. Fig 7 (b) plots the classification

performance with varying the size of the clean validation set.

Surprisingly, our methods are stable even when using only 25

validation images, and the overall classification performance

does not grow after having more than 1000 validation images.

Ablation Studies. We conducted additional experiments on

Fashion-MNIST OOD (see Fig 7 (c)-(e)) in order to demon-

strate the contributions of the key technical components,

including Cluster Re-weight (CRW) and weighted Batch

Normalization (WBN). The key findings obtained from this

experiment are 1) WBN plays a vital role in our weighted

robust SSL framework to improve the robustness of BN against

OOD data; 2) Removing CRW (or L1 regularization) results

in performance decrease, especially for VAT based approach,

which demonstrates that CRW (and L1 regularization) can

further improve performance for our robust-SSL approach;

3) Fig 7 (d)-(e) demonstrate that the performance of our

approach would increase with (inner loop gradients steps)

and inverse Hessian approximation) increase due to high-

order approximation. Based on this, we choose best trade-off

between speed and accuracy considering J = 3 and P = 5
when considering running time analysis in Fig 5 (c).

L1 vs CRW tricks. Next, we discuss the trade-offs between

L1 and CRW. We first analyzed the sensitivity of our proposed

CRW methods to the number of clusters used. Table IV

demonstrates the test accuracies of our approach with varying

numbers of clusters. The results indicate a low sensitivity of

our proposed methods to the number of clusters. We also find

that CRW generally can further improve the performance. Part

of this success can be attributed to the good pretrained features.

Our approach without CRW (only consider L1 regularization

to reduce overfitting) performs well even without this addi-

tional information ( Table II ,III, and Fig. 7 (c)).

TABLE IV: Test accuracies for different numbers of clusters

K on the MNIST dataset with 50% Mean MNIST as OODs .

# Clusters K=5 K=10 K=20 K =30
Ours-VAT 94.7± 0.7 95.3± 0.4 96.3± 0.5 95.6± 0.5
Ours-PL 95.2± 0.5 95.3± 0.5 96.2± 0.4 95.9± 0.5

VII. CONCLUSION

In this work, we first propose the research question: How
out-of-distribution data hurt semi-supervised learning perfor-
mance? To answer this question, we study the impact of

OOD data on SSL algorithms and demonstrate empirically

that the SSL algorithms’ performance depends on how close

the OOD instances are to the decision boundary (and the ID

data instances). To address the above causes, we proposed

a novel unified weighted robust SSL framework, which is

designed to improve the robustness of BN against OODs. To

address the limitation of low-order approximations in bi-level

optimization (DS3L), we designed an implicit-differentiation

based algorithm that considered high-order approximations of

the objective and is scalable to a higher number of inner

optimization steps to learn a massive amount of weight pa-

rameters. In addition, we conduct a theoretical analysis about

the impact of faraway OODs in the BN step and discuss the

connection between our approach (high-order approximation

based on implicit differentiation) and low-order approximation
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(a) Weight variation curves. (b) Effect of validation set. (c) Ablation Study. (d) Ablation Study (e) Ablation Study

Fig. 7: (a) shows that our method learns optimal weights for ID and OOD samples; (b) shows that our method is stable even

for small validation set containing 25 images; (c) shows that WBN and CRW (or L1 regularization) are critical in retaining

the performance gains of reweighting; (d)-(e) demonstrate that the performance of our approach would increase with (inner

loop gradients steps) and inverse Hessian approximation) increase due to high-order approximation.

approaches. We show that our weighted robust SSL approach

significantly outperforms existing robust approaches (L2RW,

MWN, Safe-SSL, and UASD) on several real-world datasets.
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