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Occurrences

Junhyeon Kwon, Yingcai Zheng, Mikyoung Jun

• Proposed Hawkes process model describes aftershock occurrences flex-

ibly.

• Proposed model accounts for spatially varying aftershock productivity.

• Proposed model allows space-time interaction and spatial anisotropy of

aftershock occurrences.

• Proposed model improves the forecast accuracy.

• This paper presents the changes in seismicity after large magnitude

earthquakes.
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Abstract

Hawkes process is one of the most commonly used models for investigating the

self-exciting nature of earthquake occurrences. However, seismicity patterns

have complicated characteristics due to heterogeneous geology and stresses,

for which existing methods with Hawkes process cannot fully capture. This

study introduces novel nonparametric Hawkes process models that are flex-

ible in three distinct ways. First, we incorporate the spatial inhomogene-

ity of the self-excitation earthquake productivity. Second, we consider the

anisotropy in aftershock occurrences. Third, we reflect the space-time inter-

actions between aftershocks with a non-separable spatio-temporal triggering

structure. For model estimation, we extend the model-independent stochas-

tic declustering (MISD) algorithm and suggest substituting its histogram-

based estimators with kernel methods. We demonstrate the utility of the

proposed methods by applying them to the seismicity data in regions with

active seismic activities.
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model, Spatio-Temporal Nonseparability, Spatio-Temporal Point Process

1. Introduction

Earthquakes are well-known phenomena in nature with self-exciting prop-

erties in space and time (van der Elst and Brodsky, 2010). The stress changes

by an earthquake can cause and trigger additional earthquakes in the nearby

region. These “triggered” earthquakes can then trigger more earthquakes,

and this process leads to space-time clusters with a branching structure. In

this paper, we refer to a triggering event and its triggered events as the ‘main-

shock’ and ‘aftershocks,’ respectively. It is worth noting that in this definition

a small-magnitude earthquake can trigger a larger-magnitude aftershock.

This paper models the earthquake occurrences with the Hawkes process

models that are useful to explore data with self-exciting properties. One

simple form of the Hawkes processes is their temporal version. Assume that

we observe events at time points t1, t2, t3, · · · that have self-exciting prop-

erties. Conditional on the past events up to time t, Ht, it models the event

occurrence rate as

λ(t|Ht) = µ(t) +
∑
j:tj<t

g(t− tj), (1)

where µ(t) ≥ 0 is the so-called background rate from the background process.

The temporal triggering function, g(∆t), is a function of the time lag ∆t > 0.

A commonly used form of g is a · exp(−∆t/b) for positive constants a and

b. Figure 1 illustrates the changes in λ(t) in the time interval [0, 10] as the

events occur at t = 1, 3, 3.2, 3.3, 5, 7, with a = b = 1. Events become more

likely to occur as the triggering effects of the previous events accumulates.
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We can also observe that the triggering effect is diminishing as time passes

due to the structure assumed for g.

Figure 1: An example of conditional occurrence rate for a temporal Hawkes process.

Dotted red line represents the background rate µ (assumed to be constant in this example).

Hawkes processes have a wide range of applications including crime oc-

currences (Mohler et al., 2011; Zhu and Xie, 2022), terrorism (Jun and Cook,

2022), social media (Yuan et al., 2019), and infectious disease such as COVID-

19 (Browning et al., 2021). For earthquakes applications, Ogata (1988) sug-

gested the Epidemic-Type Aftershock Sequence (ETAS) model, which is a

temporal Hawkes process for earthquake occurrences. It assumes that the

earthquake productivity can be attributed to the background process for

the mainshocks plus the aftershocks triggered by previously occurred events.

Later, Ogata (1998) suggested a spatio-temporal ETAS model. It models the

mainshocks by the spatio-temporal Poisson point process, and the trigger-

ing effect by κ(m)g(∆x,∆y,∆t). Here, κ(m) is the aftershock productivity

(the expected number of the triggered aftershocks) for the earthquake with
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magnitude m, and g(∆x,∆y,∆t) is a spatio-temporal triggering density with

respect to the lags in longitude, latitude, and time.

It is helpful to visualize the earthquake occurrences to build a model that

reflects the nature of earthquake occurrences. Figure 2 illustrates the spatial

and spatio-temporal patterns of the earthquake occurrences of magnitude

5.0 or greater in South America during a one-year period, beginning in June

2015. The asterisk symbol represents the epicenter and occurrence time of

the magnitude 8.3 earthquake that struck Chile on September 16, 2015. We

can observe a distinct spatial cluster of earthquakes around the mainshock in

Figure 2a, and spatio-temporal cluster in Figure 2b. These clusters suggest

that a large earthquake in September 2015 triggers more aftershocks com-

pared to the occurrences of smaller earthquakes. Furthermore, the number

of triggered aftershocks appears to vary depending on both the location and

the magnitude. For example, there was an earthquake with magnitude 7.6 at

latitude around L = −10◦ in November 2015, and another with magnitude

7.8 at latitude around L = 0◦ in April 2016. Considering the small difference

in their magnitudes, these two events in November 2015 have much fewer

subsequent earthquakes compared to the one in April 2016. In addition to

the aftershock productivity and its resulting cluster structure, earthquake

activity can be seen mainly on the western coast of South America, known

for its active tectonic plate subduction. This example illustrates the need for

a flexible Hawkes process model with spatially inhomogeneous background

rate, space-time triggering density whose decay rate accounts for complex

cluster structure, and aftershock productivity which depends both on the

magnitude and location of the mainshock.
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(a) Spatial pattern
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(b) Spatio-temporal pattern

Figure 2: Clustered structure of earthquake occurrences (M ≥ 5.0) in South America be-

tween June 2015 and May 2016. (a) Spatial distribution; (b) Spatio-temporal distribution.

The mainshock epicenter is marked by an asterisk in both figures and its date is noted in

the figure b.

We consider nonparametric ETAS models, as it may be restrictive to as-

sume a certain parametric form for a complex process such as earthquake

occurrences. Existing works on nonparametric approaches (Marsan and

Lengliné, 2008; Fox et al., 2016; Gordon et al., 2021) used histogram estima-

tors to describe the triggering function. For example, a triggering function

g(∆t) in (1) is estimated in the form

ĝ(∆t) =
B∑
b=1

γbI[τb,τb+1)(∆t),

where the temporal lag is partitioned into B bins with edge points: τ1 <

τ2 < · · · < τB+1, γb > 0 is the height of the histogram in the bin [τb, τb+1),

and I is an indicator function such that I[τb,τb+1)(∆t) = 1 if ∆t ∈ [τb, τb+1)
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and 0 otherwise. However, these existing nonparametric ETAS models have

limited flexibility due to the assumption of a locally constant estimator. Fur-

thermore, these methods may not be flexible enough to deal with location

dependence and space-time interactions of aftershocks.

In this paper, we propose a new class of kernel-based nonparametric ETAS

models to study aftershock dynamics, focusing on three aspects. First, we

allow the model to have different aftershock productivity depending on the

spatial location of each event as well as its magnitude. Second, to account

for the anisotropy in the aftershock distribution, we use the Mahalanobis

distance to reflect geological characteristics such as fault direction in the

spatial domain. Third, we estimate the triggering density function for the

triggering dynamics in a nonseparable manner to explain the possible space-

time interaction dynamics.

Throughout the paper, we use the earthquake data from Advanced Na-

tional Seismic System (ANSS) Comprehensive Catalog (ComCat) , and this

can be accessed by the US Geological Survey website (https://earthquake.

usgs.gov/earthquakes/search/). The plate boundary information was

downloaded from GitHub repository of Hugo Ahlenius (https://github.

com/fraxen/tectonicplates) in the GeoJSON format, which is an en-

hanced conversion of the data originated from Bird (2003).

The rest of the paper is organized in the following way. Section 2 reviews

the spatio-temporal ETAS models both for parametric and nonparametric

approaches. In Section 3, we propose new kernel-based ETAS models with

flexible triggering functions. Earthquake data is analyzed for multiple re-

gions and time periods in Section 4. Various models are compared based
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on forecast accuracy, and changes in mainshock activity are investigated be-

fore and after some major earthquakes. Section 5 summarizes the proposed

model’s contributions and discusses the possibility of further extension as

future research topics.

2. Background

In this section, we review existing spatio-temporal ETAS models, both

parametric and nonparametric methods.

2.1. Parametric ETAS models

Let (x, y) denote the longitude and latitude of the location of earthquake

(epicenter), t denote the time of occurrence, and m denote the earthquake

magnitude. Here we use the moment magnitude which is defined as a con-

tinuous value Mw = (1.5)−1 log10 M0 − 6.07 for a seismic moment M0 in

N·m (Kanamori and Brodsky, 2004). We then consider the collection of N

earthquake occurrences sorted in time

{(xj, yj, tj,mj) : (xj, yj) ∈ D, tj − tj−1 ≥ 0, t0 = 0, tN ≤ T, 1 ≤ j ≤ N}

on a spatial domain D over a period of length T , in the unit of days. The

earthquake occurrences can be modeled as a spatio-temporal point process.

It is described by the (first-order) intensity function

λ(x, y, t,m) = lim
∆s,∆t,∆m→0

E [N{B(s,∆s)× [t, t+ ∆t)× [m,m+ ∆m)}]
|B(s,∆s)|∆t∆m

,

(2)

where N(·) is a counting measure of events, B(s,∆s) is a ball centered at

s = (x, y) with radius ∆s. We write a conditional intensity λ(x, y, t,m|Ht)
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by replacing the numerator of (2) with the expectation conditional on the

history Ht = {(xj, yj, tj,mj) : tj < t}, and this can be used to define a

spatio-temporal point process (Diggle, 2013).

In the spatio-temporal ETAS models, earthquake magnitudes are com-

monly considered in a separable manner for the conditional intensity as

λ(x, y, t,m|Ht) = J(m)λ0(x, y, t|Ht),

where J(m) is a density of earthquake magnitudes independent from the past

events, and λ0(x, y, t|Ht) is a conditional intensity only for location and time

(Ogata, 1998; Zhuang et al., 2002; Marsan and Lengliné, 2008; Fox et al.,

2016). In our study, we similarly regard the magnitude component as sepa-

rable as above and focus on estimating the remaining part. For simplicity,

we drop the subscript in λ0 for the rest of this paper. As in the introduction

of spatio-temporal ETAS models by Ogata (1998), the reduced conditional

intensity function is commonly written as

λ(x, y, t|Ht) = µ(x, y) +
∑
{j:tj<t}

ν(x− xj, y − yj, t− tj;mj)

where µ(x, y) is a background rate for the mainshock at the location (x, y),

and ν(x − xj, y − yj, t − tj;mj) represents the triggering effect at location

(x, y) and time t from the event occurred at epicenter (xj, yj) and time point

tj with magnitude mj. The triggering function ν is further divided as

ν(x− xj, y − yj, t− tj;mj) = κ(mj)g(x− xj, y − yj, t− tj;mj),

where κ(mj) is the number of aftershocks that would be triggered on average

by an event of magnitude mj, and g(x − xj, y − yj, t − tj;mj) is a density
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function which explains how the aftershocks of the j-th event would be scat-

tered both spatially and temporally centered on the epicenter (xj, yj) and the

time of occurrence tj. Spatial lags x−xj and y− yj in the triggering density

are sometimes scaled based on the magnitude mj because a large-magnitude

earthquake triggers aftershocks in a wider area (Utsu and Seki, 1955; Utsu,

1970). As time passes and as it becomes farther away from the epicenter,

the triggering function decays to 0 and the conditional intensity λ(x, y, t|Ht)

converges to the background rate µ(x, y).

Parametric ETAS models (Ogata, 1998; Zhuang et al., 2002; Veen and

Schoenberg, 2008; Ogata, 2011) use the results from the empirical study or

make physical hypotheses to assume specific mathematical forms for κ and

g. The aftershock productivity function κ(m) is commonly assumed to be

in an exponential form as κ(m) = a0 exp(a · m), for positive constants a0

and a. The triggering density is usually separated into spatial and temporal

components as

g(∆x,∆y,∆t;m) = g1(∆x,∆y;m)g2(∆t), (3)

where g1 explains the aftershock occurrences spatially with respect to the

lag of longitude ∆x and the lag of latitude ∆y, and g2 explains the after-

shocks occurrences temporally with respect to the temporal lag ∆t. The

temporal triggering function g2 is usually assumed to follow the modified

Omori formula, g2(∆t) ∝ (1 + ∆t/c)−p, with p > 1 a decay rate and c a

positive constant (Utsu, 1957; Utsu et al., 1995). Spatial triggering function

g1(∆x,∆y;m) takes various forms depending on the decay rate or the scaling

of spatial lag. In Ogata (1998), two widely used decay rates were considered.
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The first one is Gaussian (∆s =
√

∆x2 + ∆y2),

g1(∆x,∆y;m) ∝ exp

(
− 1

2d

∆s2

σ(m)

)
,

and the other is the inverse power law

g1(∆x,∆y;m) ∝
(

1 +
∆s2

dσ(m)

)−q
,

where d > 0 and q > 1 are the parameters to be estimated, and σ(m) is a

spatial lag scaling factor that is either σ(m) = 1 or σ(m) = exp(βm) for a

constant β > 0.

For the estimation of µ and other parameters in κ, g1, and g2, one can

maximize the log-likelihood

`(Θ) =
N∑
i=1

log λ(xi, yi, ti|Hti)−
∫ T

0

∫ ∫
D

λ(x, y, t|Ht)dxdydt

for the set of parameters Θ = {µ1, µ2, · · · , µk, a0, a, β, d, q, c, p} (Daley et al.,

2003; Reinhart, 2018). Here, (µ1, µ2, · · · , µk) are the heights of a 2-dimensional

histogram or the coefficients of splines. One of the most well-known attempts

is the so-called stochastic declustering method in Zhuang et al. (2002). By

assigning the probability for an earthquake being a mainshock, it stochas-

tically splits the entire earthquake population into mainshocks and after-

shocks. Initially, it assumes that µ(x, y) is constant and maximizes the

likelihood to estimate κ(m), g1(∆x,∆y;m), and g2(∆t). Given these es-

timates, the probability that the i-th event is a mainshock can be calculated

by ρi = µ(xi, yi)/λ(xi, yi, ti|Hti). Then one can update the estimate of the

background rate by µ̂(x, y) = T−1
∑N

i=1 ρiG(x−xi, y−yi), whereG is a (Gaus-

sian) kernel with an appropriate bandwidth. Now the stochastic declustering
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method iterates between the estimation of (κ, g1, g2) and µ until convergence.

Veen and Schoenberg (2008) proposed an EM-type algorithm that also es-

timates the ETAS models using the stochastic branching structure. This

framework is general in that it is also used to estimate the nonparametric

ETAS models from which our method is derived. As a result, we suspend

the algorithm explanation for the time being and discuss it later.

The underlying mechanism of earthquake occurrences may vary from lo-

cation to location due to factors we could not account for in the model.

Hence, a natural extension of ETAS models would be able to incorporate lo-

cation dependence property. Ogata (2004) suggested a penalized likelihood

estimation method of parametric model that every earthquake has its own

parameters. He interpolated the value of each parameter based on Delaunay

triangulation tessellated by the epicenters. Harte (2014) proposed a model

which used space-time closeness between the events to allow the parameters

to vary both spatially and temporally. Zhuang (2015) proposed weighted like-

lihood estimators based on residual analysis to estimate the spatially varying

parameters in ETAS models.

Another extension considered in our work is the anisotropy in the spatial

pattern of the aftershocks. Earthquakes occur as relative slip on pre-existing

fault planes. We use strike and dip angles to describe the fault plane orien-

tation. The slip angle describes the relative movement on the fault plane,

during an earthquake rupture, between the two blocks. The strike measures

the direction of the intersection line between the Earth’s surface and the fault

plane, and the dip is the angle between the fault plane and the surface. As a

result, we expect the epicenters of earthquakes around the same fault to be
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scattered in an elliptic shape, with eccentricity determined by the strike, dip,

and slip. For this reason, since the introduction of space-time ETAS models,

many previous works have made efforts to reflect the shape of the aftershock

pattern better. Ogata (1998) suggested finding a centroid of aftershock epi-

centers by magnitude-based clustering and fitting a bivariate normal density

to define the Mahalanobis distance for the spatial lags between the events.

Hainzl et al. (2008) pointed out that considering earthquakes to have point

sources can lead to overestimation of aftershock occurrences. They instead

assumed that earthquakes have line sources by using rupture geometry. In

a similar context, Guo et al. (2015) accounted for anisotropy by overlapping

the circular triggering density.

2.2. Nonparametric ETAS models

Although there have been many efforts with the parametric forms, the

physical mechanism behind the earthquake occurrences is still not well un-

derstood, and the state of the rock stress is uncertain too. Therefore, non-

parametric modeling can be a good alternative. A noteworthy example of

such is the work by Marsan and Lengliné (2008). They suggested a model-

independent stochastic declustering (MISD) method which assumed a con-

stant background rate µ(x, y) = µ. Fox et al. (2016) extended the method by

allowing the background rate to vary spatially. Both Marsan and Lengliné

(2008) and Fox et al. (2016) assumed that the triggering function is space-

time separable and did not use a spatial lag scaling factor. Each of the

functions κ, g1, and g2 does not assume a specific model except that it has

the shape of a histogram. The function’s domain is partitioned into multiple

bins, and MISD method estimates the histogram heights of these bins.

12



To determine the histogram heights of the bins, we need to introduce

indicating variables

χij =

1, if the i-th event was triggered by the j-th event

0, otherwise,

for 1 ≤ i, j ≤ N . Note that χii = 1 implies that the i-th event is a mainshock

because it triggered itself, and χij = 0 for i < j because an event cannot affect

the past. If we assume that all these indicating variables can be observed,

the complete log-likelihood of the ETAS model becomes

`c(Θ) =
N∑
i=1

χii log µ(xi, yi) +
N∑
i=1

N∑
j=1

χij log ν(xi − xj, yi − yj, ti − tj;mj)

−
∫ T

0

∫ ∫
D

µ(x, y)dxdydt

−
N∑
j=1

∫ T

0

∫ ∫
D

ν(x− xj, y − yj, t− tj;mj)dxdydt,

where Θ consists of the heights of the bins in the histograms for µ, κ, and

g. Since we do not know the actual triggering relationship that can be

represented by the indicating variables, both Marsan and Lengliné (2008)

and Fox et al. (2016) used an EM-type algorithm of Veen and Schoenberg

(2008) for the estimation. In the E step, we calculate the expectation of

the complete log-likelihood. Since χij and χii are indicating variables, their

expectations are the triggering probabilities of the corresponding pairs of

earthquakes, and they can be calculated as

pij =
ν(xi − xj, yi − yj, ti − tj;mj)

µ(xi, yi) +
∑
{j:tj<ti} ν(xi − xj, yi − yj, ti − tj;mj)
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if i > j, pij = 0 if i < j, and

pii =
µ(xi, yi)

µ(xi, yi) +
∑
{j:tj<ti} ν(xi − xj, yi − yj, ti − tj;mj)

.

Now we can make a lower-triangular N×N triggering probability matrix P =

(pij)1≤i,j≤N . It is useful in the M step to find the spatially inhomogeneous

pattern of the background rate µ(x, y) and determine the height of each bin

in the histogram estimators for κ(m), g1(∆x,∆y), and g2(∆t). Note that

we can give arbitrary numbers as initial values for the triggering probability

matrix P (Marsan and Lengliné, 2010; Fox et al., 2016), and iterate the E

step and the M step until convergence.

• Background rate

In the triggering probability matrix P , its diagonal element pii is a

probability that the i-th event is a mainshock. Hence, one can estimate

the spatially varying background rate in the spatial domain D by a

weighted kernel estimator

µ̂(x, y) =
1

qh1(x, y|D) · T

N∑
i=1

piiGh1(x− xi, y − yi), (4)

where Gh1(∆x,∆y) = h−2
1 · G(∆x/h1,∆y/h1) is a (Gaussian) kernel

with appropriate bandwidth h1, and qh1(x, y|D) =
∫ ∫

D
Gh1(x

′−x, y′−

y)dx′dy′ is a constant to remedy the edge effect near the boundary of

D. Our approach to edge correction is detailed in section 1.3 of Diggle

(2013) and Davies et al. (2018).

• Aftershock productivity

For each event, we can get the expected number of aftershocks through
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the column-wise summation of P without the diagonal element. So,

what we need to do is finding a function κ(m) which best explains the

relationship between the magnitude mj and the event-wise productiv-

ity
∑N

i=j+1 pij. For a given bin [ω1, ω2) in the magnitude domain, we

estimate the height of the histogram by

κ̂(m) =

∑
{j:ω1≤mj<ω2}

∑N
i=j+1 pij∑

{j:ω1≤mj<ω2} 1

when m in on a bin [ω1, ω2).

• Triggering density

Spatial triggering density g1 is assumed to be isotropic, which makes it

expressed as (∆s =
√

∆x2 + ∆y2)

g1(∆x,∆y) =
g01(∆s)

2π∆s
,

by a change-of-variable to the polar coordinate and integrating out the

angular variable. Now we can obtain the histogram estimators for g01

and g2 in a similar manner. For example, let us assume that we want

to find the heights on the bins of the histogram which is estimating g2.

Then, we have

ĝ2(∆t) =

∑
{(i,j):τ1≤tj−ti<τ2} pij

(τ2 − τ1)
∑N−1

j=1

∑N
i=j+1 pij

when ∆t is on a bin [τ1, τ2).

As an extension, we consider a nonparametric ETAS model whose after-

shock productivity depends both on magnitude and location of the main-

shock. Schoenberg (2022) suggested a nonparametric method that estimates
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the aftershock productivity for each event by deriving an analytic form and

maximizing the likelihood. But, Schoenberg (2022) smoothed the aftershock

productivities only in a magnitude domain without considering their spatial

variability. Furthermore, it requires the invertibility of an (N − 1)× (N − 1)

possibly ill-conditioned lower-triangular matrix G whose (i, j)-th element Gij

is g(xi+1 − xj, yi+1 − yj, ti+1 − tj) if i ≥ j, and 0 otherwise.

Nonparametric ETAS model with anisotropic triggering structure was

first suggested by Gordon et al. (2021). It estimates the fault direction of

each earthquake and assumes that aftershocks occur at varying angles to the

estimated direction. As a result, the spatial triggering density is a function of

both the relative angle and the spatial lag ∆s. Gordon et al. (2021) estimated

this bivariate function using a histogram estimator. However, its locally

constant form can lead to undesired bumps depending on how partition was

done. This problem can be alleviated by kernel methods. Mohler et al.

(2011) used the kernel smoothing method to estimate the Hawkes process

models. Zhuang and Mateu (2019) estimated periodic background rate by

introducing so-called relaxation parameters and using kernel-based residual

analysis. In this paper, we adopt the kernel smoothing approaches of Mohler

et al. (2011) and Fox et al. (2016). We estimate the aftershock productivity

and the triggering density as in (4).

3. Flexible Hawkes Process Models

This section proposes a new kernel-based nonparametric ETAS model,

which has three new attributes for flexibility. It can be expressed by a fol-
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lowing conditional intensity function

λ(x, y, t|Ht) = µ(x, y)+
∑
{j:tj<t}

α(xj, yj)κ(mj)g(x−xj, y−yj, t−tj; η, θ). (5)

Here, α(x, y) is for the first new attribute. It is a multiplicative correction

term which allows the aftershock productivity to change over space. Second,

our proposed triggering density g(∆x,∆y,∆t; η, θ) has two new parameters

to reflect the anisotropy in the aftershock spatial pattern. Parameters η ≥ 1

and θ determine the eccentricity and the major axis direction of the elliptic

spatial pattern of aftershocks, respectively (see (8)). Third, we also assume

space-time non-separability for the possible interaction between spatial and

temporal lags.

For the estimation of µ, α, κ, and g in (5), we use the kernel meth-

ods to allow the estimates to vary smoothly over space, time, or magnitude.

Smooth estimator is more advantageous for the global aftershock produc-

tivity κ(m) than the other components. According to Gutenberg–Richter

law, the frequency of earthquakes decreases exponentially as the magnitude

increases (Gutenberg and Richter, 1941). Therefore, earthquakes with large

magnitudes are relatively less frequent compared to those with smaller mag-

nitudes. In histogram based methods, one may account for this by assigning

wide bins for large magnitudes. However, the aftershock productivity is ex-

pected to increase faster as magnitude gets larger. This implies that the

constant productivity may be inappropriate especially on the wide bins with

large magnitudes. Hence, we propose to estimate aftershock productivity by

kernel smoothing of event-wise productivity:

κ̂(m) =

∑N−1
j=1 (

∑N
i=j+1 pij)Gh2(m−mj)∑N−1

j=1 Gh2(m−mj)
,
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where Gh2(∆m) = h−1
2 G(∆m/h2) is a (Gaussian) kernel with appropriate

bandwidth h2.

The rest of this section illustrates how three new attributes are estimated

nonparametrically by dividing them into three subsections. A new MISD

algorithm that incorporates these new features can be found in the Appendix

A.

3.1. Spatially varying aftershock productivity

This subsection contains our new work, in which we propose a non-

parametric ETAS model which can explain the aftershock productivity with

location as well as magnitude. Our approach is in common with Schoen-

berg (2022) in the point that κ(m) is obtained by smoothing the eventwise

productivity, but we do not need the invertibility of matrix G. To allow

spatially varying features, we introduce a regional aftershock productivity

correction factor α(x, y) and multiply it to the global productivity function

κ(m). To this end, we focus on the discrepancy between the magnitude-based

global aftershock productivity κ(mj) and the eventwise aftershock productiv-

ity
∑N

i=j+1 pij for j = 1, 2, · · · , N − 1. Since we are using a kernel smoothing

of
∑N−1

i=j+1 pij in the magnitude domain to get κ(mj), the estimated number

of triggered events can be obtained by summing up either of them for the

entire events in the catalog. Therefore, the ratio

A∗ =

∑N−1
j=1

∑N
i=j+1 pij∑N−1

j=1 κ(mj)

would have a value close to unity. Note that it is hard to have the equation

A∗ = 1 hold because κ(m) is estimated with a kernel method.
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However, on a local spatial neighborhood, this ratio will fluctuate from

the constant A∗ if there is a tendency that κ(m) overestimates (or underesti-

mates) the aftershock productivity compared to the eventwise productivity.

Let J denote such a region (or a set of event indexes occurring on that re-

gion) on which the actual aftershock productivity is underestimated by κ(m).

Then the ratio A∗J =
∑

j∈J
∑N

i=j+1 pij/
∑

j∈J κ(mj) which is restricted on

the region J becomes substantially larger than A∗. So, if AJ = A∗J /A
∗ > 1,

it would mean that the earthquakes occurring on the region J have higher

aftershock productivity compared to the rest part on average. If AJ < 1, it

would mean the opposite. Furthermore, if we define AD\J similarly as we

did for AJ on the region other than J in the spatial domain D, we have∑N−1
j=1

∑N
i=j+1 pij∑

j∈J AJκ(mj) +
∑

j∈D\J AD\Jκ(mj)
= A∗,

and this implies that we can understand AJ as a regional productivity cor-

rection factor which reflects the geological characteristics implicitly on the

region J .

Now there remains the problem of distinguishing the region J from the

other parts. In reality, however, the aftershock productivity can vary gradu-

ally over space as a result of many and sometimes unknown factors such as

different tectonic, geological, and stress states. Fortunately, we can bypass

this problem of uncovering the underlying structure by not partitioning the

space one from the other but instead calculating the productivity correction

factor on each point (x, y).

To this end, we consider local averages of the eventwise aftershock pro-

ductivity
∑N

i=j+1 pij and the global aftershock productivity κ(mj) based on

the same (Gaussian) kernel Gh3(∆x,∆y) = h−2
3 · Gh3(∆x/h3,∆y/h3) with
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appropriate bandwidth h3. Then we can calculate a spatially varying ratio

as a function of longitude x and latitude y,

α∗(x, y) =

∑N−1
j=1 (

∑N
i=j+1 pij)Gh3(x− xj, y − yj)∑N−1

j=1 κ(mj)Gh3(x− xj, y − yj)
. (6)

The aftershock productivity correction factor can then be obtained on each

point by

α(x, y) = α∗(x, y)/A∗, (7)

and this is multiplied to the value of κ of an event at the corresponding

location.

Estimation of α(x, y) can be incorporated in the iterative nonparametric

method in Section 2. Once the estimate of κ(m) is obtained, we can estimate

α(x, y) using Equations (6) and (7). After that, we can update the triggering

probability matrix P by

pij =
α(xj, yj)κ(mj)g(xi − xj, yi − yj, ti − tj)

µ(xi, yi) +
∑
{j:tj<ti} α(xj, yj)κ(mj)g(xi − xj, yi − yj, ti − tj)

for i > j, and

pii =
µ(xi, yi)

µ(xi, yi) +
∑
{j:tj<ti} α(xj, yj)κ(mj)g(xi − xj, yi − yj, ti − tj)

.

In this way, we obtain new estimates of κ(m) and α(x, y) based on these prob-

abilities, and the algorithm iterates until the convergence of the triggering

probability matrix.

3.2. Anisotropic spatial triggering mechanism

We also propose a nonparametric ETAS model whose triggering density

can account for the elliptic feature similarly as in Ogata (1998). We assume
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that the aftershocks are equally likely to occur if their Mahalanobis distances√
(∆x ∆y)S−1

ηθ (∆x ∆y)T are the same for a matrix

Sηθ =

cos θ − sin θ

sin θ cos θ

η 1

1 1/η

 cos θ sin θ

− sin θ cos θ

 . (8)

The parameter η ≥ 1 represents the ratio between the major and minor

axes of the ellipse, and θ denotes the angle between the major axis and a

virtual horizontal line. So, the triggering density can reflect the anisotropy

by adding the parameters η and θ as

g(∆x,∆y,∆t; η, θ) = g1(∆x,∆y; η, θ)g2(∆t),

and measuring the spatial lags with the Mahalanobis distance.

As in many other cases of point process data, it may be challenging to find

out the underlying geometry of the aftershock triggering mechanism. Even if

the ETAS model fits the data very well, we get O(N2) pairs of probabilistic

relationships. As a result, this paper makes use of the fact that most of the

earthquakes are caused by the relative motion of planar fault surfaces (Lay

and Wallace, 1995; Li et al., 2018). Since dominant fault strikes tend to

follow the direction of the nearby major plate boundary, we can approximate

the fault strikes with a straight line if we confine the spatial domain small

enough. Figure 3a illustrates the approximated subducting boundary in the

Chile region with dotted line. The black box depicts the region of our interest,

the red line is the portion of the subducting plate boundary, and the dashed

gray lines are non-subducting boundaries. The slope of the dotted line can be

easily calculated because boundary information is given in a piecewise linear

form. We perform a linear regression with a midpoint on each segment with
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corresponding segment length as a weight. As a result, we get θ = 75.64◦ as

a slope angle with respect to the horizontal direction (or the East direction).

On the other hand, Figure 3b shows three ellipses of

(∆x ∆y)S−1
ηθ (∆x ∆y)T = 1.

These ellipses share the same direction θ = 75.64◦, but have different axial

ratios η = 2, 3, 4 represented by solid, dashed, and dotted curves, respec-

tively. This implies that a larger value of η is required if the aftershocks are

more likely to concentrate along the line of direction θ. However, the degree

of the anisotropy η is difficult to determine directly. Therefore, we suggest

fitting the ETAS model with a range of η values and then choosing the one

that produces the most accurate forecasts.

3.3. Space-time interaction in aftershocks

A common assumption on the triggering density g(∆x,∆y,∆t) is that it

can be decomposed separately into spatial and temporal components as in

(3). However, space-time separability can reflect the space-time interaction in

the aftershock occurrences. In other words, it makes the triggering effect of a

mainshock have the same temporal decay rate at two locations with different

spatial lags. For this reason, we propose to use space-time non-separability.

The triggering density can be expressed as a bivariate function

g0(∆s,∆t) = 2π∆s g(∆x,∆y,∆t).

For fast computation, a binned kernel estimator (Silverman, 1982; Wand,

1994) is used by dividing the domain of g0 into an equally-spaced grid. How-

ever, we are more interested in the region of small ∆s and ∆t because after-

shocks are more likely to occur when they are close to the location and time
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Figure 3: (a) Plate boundary is approximated by a dotted black line. The box represents

the spatial domain of interest. The solid red line is the subducting portion of the plate

boundary, and the dashed gray lines are non-subducting boundaries. (b) Different values

of η = 2, 3, 4 are represented by solid, dashed, and dotted ellipses, respectively.

of the triggering mainshock. Before using the binned kernel estimator, we

log-transform and standardize these spatial and temporal lags as

∆s∗ij = log(∆sij + 1)/σs, ∆t∗ij = log(∆tij + 1)/σt,

where ∆sij and ∆tij are the spatial and the temporal lags of the i-th and the

j-th events when the latter precedes the former (1 ≤ j < i ≤ N), and σs and

σt are standard deviations of log(∆sij + 1) and log(∆tij + 1), respectively.

For each of these lags, there is a weight pij which tells whether the lag is for

a pair of events that are actually in a mainshock-aftershock relationship. As
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a result, we use a weighted kernel density estimator

ĝ∗0(∆s∗,∆t∗) =

∑
i>j pijGh4(∆s∗ −∆s∗ij,∆t

∗ −∆t∗ij)

qh4(∆s∗,∆t∗|R+ × R+)
∑

i>j pij
∑

i>j 1
,

where Gh4(·, ·) = h−2
4 · G(·/h4, ·/h4) is a bivariate (Gaussian) kernel with

appropriate bandwidth h4, and qh4(∆s∗,∆t∗|R+×R+) =
∫ ∫

R+×R+ Gh4(∆s′−

∆s∗,∆t′ − ∆t∗)d∆s′d∆t′ is a constant to remedy the edge effect near the

boundary as in (4). By change-of-variable, we can revert this back to original

unit as

ĝ0(∆s,∆t) =
ĝ∗0(∆s∗,∆t∗)

σsσt exp(σs∆s∗ + σt∆t∗)
.

4. Application to Earthquake Data

We now apply our newly proposed approaches to multiple earthquake

catalogs (with major earthquake activities). Catalogs from five time periods

in two different regions are investigated, and several variants of kernel-based

ETAS models are evaluated. Fitted results from the best model for each case

are then compared to those from the ETAS model, which does not assume

spatially varying productivity, anisotropy, and space-time interaction in af-

tershock occurrences. Finally, we compare how the estimated background

rate changes before and after major earthquakes.

4.1. Data specification

We examine the proposed approaches on earthquake data from Chile and

Japan regions. Tectonic plates subduct under the ocean near these countries

to drive the seismic activities, and we determine the spatial domains so that

the majority of the earthquakes are located away from the boundary in order

24



to reduce the problem of edge effect. The spatial domain near Chile is selected

as {(L, l) : L ∈ [−39◦,−25◦], l ∈ [−76◦,−70◦]} (Figure 4), where L and l

denote the latitude and longitude, respectively. In this area, the Nazca plate

in the Pacific Ocean subducts eastward under South America. The spatial

domain near Japan is {(L, l) : L ∈ [35◦, 41◦], l ∈ [139.5◦, 145.5◦]} (Figure 5),

where the western part of the Pacific plate subducts under Japan.

For the temporal domains, we choose three observation periods for the

Chile region and two for the Japan region before and after the recent large

earthquakes. An earthquake of magnitude 8.8 occurred near Chile on Febru-

ary 27, 2010, and another of magnitude 8.3 occurred on September 16, 2015.

In the Japan region, an earthquake of magnitude 9.1 occurred on March 11,

2011. Table 1 summarizes the earthquake data catalogs analyzed in this pa-

per, which excludes the deep earthquakes whose focal depths are over 100km

and cuts off the small earthquakes with magnitudes less than 4.0. Each of

the five catalogs lasts approximately six years, with the last year of each as a

forecast period for evaluating the flexible ETAS models. Catalogs from the

Chile region are labeled as ‘Chile A,’ ‘Chile B,’ and ‘Chile C’ in chronolog-

ical order, and similarly for the Japan region as ‘Japan A’ and ‘Japan B.’

Figures 4 and 5 illustrate the scaled spatial intensities T−1 · λ(x, y) for all

earthquakes (which do not distinguish the mainshocks and the aftershocks)

in the catalogs from Chile and Japan, respectively. Note that the length of

training period, T , is divided to get comparable values for different catalogs.

4.2. Model estimation

We use prefixes to name the models considered. For the aftershock pro-

ductivity, V stands for spatially varying α(x, y) and C for constant (i.e.
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Table 1: Summary of the earthquake catalogs from the Chile region {(L, l) : L ∈

[−39◦,−25◦], l ∈ [−76◦,−70◦]} and the Japan region {(L, l) : L ∈ [35◦, 41◦], l ∈

[139.5◦, 145.5◦]} (L: latitude, l: longitude)

Catalog Training period Forecast period

Chile A 01/01/2001 - 12/31/2005 (1273 events) 01/01/2006 - 12/31/2006 (296 events)

Chile B 02/27/2010 - 09/15/2014 (2882 events) 09/16/2014 - 09/15/2015 (228 events)

Chile C 09/16/2015 - 09/15/2020 (2291 events) 09/16/2020 - 09/15/2021 (261 events)

Japan A 01/01/2003 - 12/31/2007 (875 events) 01/01/2008 - 12/31/2008 (452 events)

Japan B 03/11/2011 - 03/10/2016 (7001 events) 03/11/2016 - 03/10/2017 (419 events)

α(x, y) = 1). For the triggering function, N stands for space-time non-

separable g, and S for separable g. Regarding the degree of anisotropy, we

compare the values η = 1, 2, 3, 4, · · · for each catalog. These are appended

after the prefixes as VN-1:1, VN-2:1, VN-3:1, and so forth. For the direction

of the anisotropy pattern, we orient the major axis to approximate the plate

boundary in each region. We use the coordinates of the boundary and apply

a weighted linear regression as described in subsection 3.2 to determine the

local plate boundary orientation. The angle of the estimated regression line

can be expressed as a counterclockwise angle from the horizontal line (the

east direction). We have obtained θ = 75.64◦ for three catalogs from Chile

and θ = 65.78◦ for two catalogs from Japan. But, we have to note that

the degree of anisotropy η can be different for two catalogs with same spatial

domain because the region of active seismic activity may vary over time from

period to period, shown in Figure 4.

For the estimation of µ(x, y) and α(x, y), a kernel method with fixed

bandwidth has its limitation due to the clustering structure of epicenters.
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(a) (b) (c)

Figure 4: Scaled spatial intensities T−1 · λ(x, y) of the catalogs (a) Chile A, (b) Chile B,

and (c) Chile C. The solid red line represents the portion of the subducting plate boundary,

and the dashed gray line represents the non-subducting boundary. The diamond symbol

( ) marks the epicenter of the major earthquake.

A small bandwidth results in a noisy estimate of the region with few earth-

quakes, while a large bandwidth blurs out the patterns in the seismically

active region. To alleviate this problem, we adjust the kernel bandwidth by

adopting the square root rule of Abramson (1982), which is used for the in-

tensity function estimation due to its small bias (Davies and Baddeley, 2018;

González and Moraga, 2022). We first estimate the weighted kernel density

f0 with a Gaussian kernel with bandwidth h0 = 0.5◦. Then we adjust the
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(a) (b)

Figure 5: Scaled space-time intensities T−1 · λ(x, y) of the catalogs (a) Japan A and (b)

Japan B. The solid red line represents the subducting plate boundary, and dashed gray

line represents the non-subducting boundary. Diamond symbol ( ) marks the epicenter of

the major earthquake. See Zheng and Lay (2006) for the discussion on the minor tectonic

plates in this region.

bandwidth on each epicenter (xi, yi) to be hi = h0f0(xi, yi)
−1/2γ−1, where γ

is the geometric mean of f(xi, yi)
−1/2. This allows the kernels centered on

the region of sparse earthquakes to have wider bandwidths, while the kernels

centered on the densely observed region to have narrower bandwidths. Since

the aftershock productivity function κ(m) is neither density nor intensity,

we use the k-th nearest epicenter to select the kernel bandwidth. Here, we

determine the value of k by using the leave-one-out cross validation with a

least-squares criterion. However, the triggering density g∗0(∆s∗,∆t∗) is es-

timated with a Gaussian kernel with a fixed bandwidth 0.2◦ to avoid the

computational burden resulting from O(N2) pairs of spatial and temporal

lags when there are N earthquakes.
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4.3. Model comparison

The results of all the models considered are compared based on their daily

forecast accuracy. We first fit the ETAS models to the historical events that

occurred during the training period of each catalog. We then evaluate the

conditional intensity (5) on the midpoints of 0.1◦× 0.1◦ cells over the spatial

domain at the beginning of every day during the forecast period. Now we

produce forecast based on a threshold value for the conditional intensity. If

the conditional intensity exceeds a certain threshold, we forecast that one

or more earthquakes might occur in the cell within 24 hours following the

midnight. Otherwise, we forecast that no earthquakes would occur in the

cell in that day. Hence, more space-time cells are forecasted to have one

or more earthquakes if the threshold is low and the opposite case is true if

the threshold is high. To remediate the effect of an arbitrary threshold, we

measure the forecast accuracy based on the area under the curve (AUC) of

the receiver operating characteristic (ROC) curve. To be more precise, we

calculate the partial AUC by limiting the region of interest for specificity

(true negative rate) in the ROC space. This region may vary depending

on the circumstances or some expert advice, but we limit the specificity

to 50-100% because sensitivity (true positive rate) reaches nearly 100% as

specificity drops to 50%. This allows for a better comparison of the models

by excluding cases of too low thresholds, which typically result in the increase

of false positive forecasts.

Tables 2 and 3 summarize the forecast results of the ETAS models from

Chile and Japan, respectively. The highest partial AUC from each catalog is

bold-faced, and it may be contrasted with a value from CS-1:1 to determine
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Table 2: Forecast accuracy of each model measured with partial AUC for the catalogs in

the Chile region. The partial AUC with the highest value is bold-faced for each catalog.

Chile A Chile B Chile C

1:1 2:1 3:1 4:1 1:1 2:1 3:1 4:1 1:1 2:1 3:1 4:1 5:1 6:1

VN 0.4129 0.4155 0.4153 0.4146 0.3772 0.3744 0.3732 0.3721 0.3840 0.3853 0.3857 0.3860 0.3860 0.3853

VS 0.4126 0.4149 0.4146 0.4137 0.3759 0.3734 0.3717 0.3706 0.3828 0.3847 0.3845 0.3863 0.3857 0.3848

CN 0.4096 0.4132 0.4137 0.4136 0.3687 0.3682 0.3673 0.3665 0.3791 0.3811 0.3826 0.3828 0.3829 0.3827

CS 0.4093 0.4124 0.4130 0.4129 0.3691 0.3681 0.3670 0.3657 0.3785 0.3805 0.3819 0.3822 0.3825 0.3823

how much the forecast improvement can be achieved by incorporating spa-

tially varying productivity, anisotropy, and space-time interaction in after-

shock occurrences. For the catalogs from Chile, models with spatially varying

productivity have higher forecast accuracy. The highest partial AUCs are ob-

tained by the models VN-2:1, VN-1:1, and VS-4:1 for the catalogs Chile A,

B, and C, respectively. The improvement is highlighted by the partial ROC

curves in Figure 6. For the catalog Chile A, VN-2:1 model makes nearly 5

percent points less false negative forecast compared to CS-1:1 to achieve the

sensitivity of 90%. For the catalog Chile B, VN-1:1 model improves the sen-

sitivity by nearly 10 percent points compared to CS-1:1 when the specificity

is around 90%. On the other hand, partial AUCs from the catalogs of Japan

show relatively little improvement compared to the model CS-1:1. However,

we note that small differences in partial AUCs can be actually significant

due to the correlation of the ROC curves since we are using the same space-

time grid for each catalog. Robin et al. (2011) addressed this problem and

modified the work of Hanley et al. (1983) to implement a bootstrap-based

significance test. The test statistic has the form, Z = (A1−A2)/sd(A1−A2),

where A1 and A2 are (partial) AUCs, and it approximately follows a standard
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normal distribution. For the calculation, we obtain sd(A1 − A2) by a strat-

ified bootstrapping of the conditional intensities over the space-time grid.

We generate 2000 bootstrap samples with the same size as in the original

one and calculate the AUCs for each case. One-sided tests against the model

CS-1:1 give the p-values 1.45×10−3, 5.77×10−4, 2.31×10−4, 4.41×10−1, and

5.62× 10−2 in the order of the catalogs from Chile A, B, C and Japan A &

B, respectively. This suggests that there is substantial evidence that flexible

models forecast significantly better for the Chile region. It is also notable

for the catalog Japan B that the p-value is quite small considering small

absolute difference between VN-1:1 and CS-1:1. This is resulting from small

variability in the difference between two partial AUCs, which suggests that

the proposed method performs better than the existing one in the majority

of the cells of the space-time grid.

Table 3: Forecast accuracy of each model measured with partial AUC for the catalogs

from Japan region. Partial AUC with the highest value is bold-faced for each catalog.

Japan A Japan B

1:1 2:1 3:1 4:1 1:1 2:1 3:1 4:1

VN 0.3898 0.3885 0.3864 0.3839 0.3679 0.3671 0.3665 0.3663

VS 0.3909 0.3890 0.3868 0.3846 0.3678 0.3670 0.3664 0.3662

CN 0.3896 0.3886 0.3867 0.3842 0.3673 0.3668 0.3661 0.3655

CS 0.3908 0.3892 0.3870 0.3847 0.3670 0.3663 0.3656 0.3651

4.4. Result analysis

Now we examine the changes in background rates µ(x, y) before and after

the major earthquakes. Figures 7 and 8 show the estimated background rates
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Figure 6: Forecast accuracy represented by ROC curves.

µ(x, y) for Chile and Japan regions, respectively. Note that we do not need to

scale µ(x, y) with the length of training period, T , because of its definition

(4). The plots in the top row show the estimation results from the most

restrictive model, CS-1:1, while the plots in the bottom row are from the

models that provide the best forecast accuracy. When utilizing the CS-1:1

model, the estimated background rate for Chile B is the lowest compared to

the other two catalogs in Chile. Allowing model flexibility, on the other hand,

has the opposite result, and Chile B becomes the period of the most intense

mainshock activity. In the Japan region, using flexible models noticeably

increases the background rate for the catalog Japan B while leaving the

estimate for Japan A practically unchanged. Another distinctive feature of

the flexible models is the change in the overall shape of the background rate

distribution, particularly for catalogs from the Chile region. Northward shift

is observed for the peaks of the estimated background rate as we allow for

spatial variation in aftershock productivity.
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(a) CS-1:1 for Chile A (b) CS-1:1 for Chile B (c) CS-1:1 for Chile C

(d) VN-2:1 for Chile A (e) VN-1:1 for Chile B (f) VS-4:1 for Chile C

Figure 7: Comparison of the estimated background rate µ(x, y) for the three catalogs in the

Chile region. The most restrictive model CS-1:1 (top row) is compared to the models with

the highest forecast accuracy (bottom row). The solid red line represents the subducting

plate boundary.
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(a) CS-1:1 for Japan A (b) CS-1:1 for Japan B

(c) VS-1:1 for Japan A (d) VN-2:1 for Japan B

Figure 8: Comparison of the estimated background rate µ(x, y) in Japan region. The most

restrictive model CS-1:1 (top row) is compared to the models with the highest forecast

accuracy (bottom row). Solid red line represents the subducting plate boundary.

One of the reasons which attribute to these phenomena is spatially varying

productivity, which is assumed in all the flexible models with the highest

forecast accuracy. Figures 9 and 10 illustrate the estimates of aftershock
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productivities for the earthquakes at the cutoff magnitude, α(x, y)κ(4.0), for

the best model of each catalog in Chile and Japan, respectively. By observing

these figures, we can identify the region with active aftershock occurrences

compared to other region. So, the estimated background rate becomes lower

in the corresponding area as we assume the spatial variability in aftershock

productivity. On the contrary, a region of low aftershock productivity yields

relatively more mainshocks compared to the models that assume α(x, y) = 1.

Regarding the catalogs of our interest, Chile B has a dramatic change in

the aftershock productivity at latitude L = −33◦ (Figure 9b) making the

corresponding period have vigorous mainshock activity, and Japan B shows

its lowest aftershock productivity along the coast around the latitude L = 39◦

(Figure 10b) making the original peak of background rate even higher. On

the other hand, catalogs Chile A and C have high aftershock productivity

between the latitudes L = −30◦ and L = −34◦ while Chile B has high

values between L = −33◦ and L = −39◦. These portions of spatial domain

coincides with the ones where the estimated background rates from CS-1:1

model become lower as we allow model flexibility for better forecast. Finally,

catalog Japan A has α(x, y) ≈ 1 on the portion of spatial domain where there

are many earthquake occurrences (Figure 10a), and this can be a reason why

we cannot achieve a significant improvement in forecast accuracy via spatially

varying aftershock productivity.

Note that we do not present the estimated aftershock productivity at

the cutoff magnitude for the location where there is no earthquakes nearby

in Figures 9 and 10. Although α(x, y) can be obtained for every point in

the spatial domain, its definition (6) as a ratio of two local averages can
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give unstable and misleading results for the portion where there are little

observation. Instead, we divide the spatial domain into 0.2◦ × 0.2◦ cells and

use the average of the estimated α(x, y) for better visual representation.

(a) VN-2:1 for Chile A (b) VN-1:1 for Chile B (c) VS-4:1 for Chile C

Figure 9: Comparison of the spatially-varying aftershock productivity at the cutoff mag-

nitude 4.0. Each output is based on the estimation result from the best model in each

period of Chile region. Solid red line represents the subducting plate boundary.

5. Discussion

We propose a new spatio-temporal flexible Hawkes model on earthquake

occurrences which builds on the previous works on ETAS models to focus

on understanding the aftershock dynamics. To the best of our knowledge,

this is the first attempt to use nonparametric ETAS models to allow after-

shock productivity to vary based on the spatial location as well as mag-

nitude. We achieve further flexibility by considering seismicity anisotropy
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(a) VS-1:1 for Japan A (b) VN-1:1 for Japan B

Figure 10: Comparison of the spatially-varying aftershock productivity at the cutoff mag-

nitude 4.0. Each output is based on the estimation result from the best model in each

period of Japan region. Solid red line represents the subducting plate boundary.

and space-time interaction (via non-separable structure) in aftershock occur-

rences. All of these new properties are incorporated into the fully kernel-

based ETAS model, in which we have extended the histogram-based ones

to obtain smoothly varying estimates. Stability of the model estimation is

demonstrated in the Appendix B by using the synthetic earthquake catalogs

simulated from a parametric ETAS model with inhomogeneous background

rate and spatially constant aftershock productivity, α(x, y) = 1. The results

confirm that spatially varying α-function (thus more flexible than true) is not

causing instability in terms of the model estimation and forecast accuracy.

By applying various combinations of the proposed approaches to earthquake

data from Chile and Japan, we have demonstrated improved forecast accu-

racy. We have also investigated possible new explanations for the change in
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mainshock activity before and after major earthquakes.

The research presented in this study is a step towards our goal to build an

earthquake forecast model that reflects the nature of their occurrences more

flexibly. We plan to test our eventual model in the CSEP (Collaboratory

for the Study of Earthquake Predictability) to see how it compares to other

forecast models and to look into the prospect of further progress. The ker-

nel bandwidth selection is one of the challenges that our model encounters,

which is inherent for nonparametric models in general. Cross validation is

a commonly adopted solution to select the kernel bandwidth. However, the

proposed model (5) has four components that needs bandwidth selection: µ,

α, κ, and g. Furthermore, iterative estimation algorithm changes the weights

in the kernel estimators for every iteration. This implies that the bandwidth

selection needs to be conducted more than once. Though we set them to

appropriate values for all catalogs and focus on changing the features of in-

terest, an objective method for bandwidth selection needs to be established

for more precise analysis.

On the other hand, we plan to allow the triggering density g(∆x,∆y,∆t; η, θ)

to have spatially varying anisotropy parameters (also including the depth

direction beyond the 2–D seismicity considered here) as future research. Ap-

proximating the fault plane orientation with a plate boundary is a crude and

oversimplified approach. Depending on the spatial domain of a given catalog,

there may be a number of faults that are not parallel to the plate boundary.

Fortunately, the fault plane (despite an ambiguous auxiliary plane) can be

estimated based on the first motion of seismic waves. The Global Centroid-

Moment-Tensor (GlobalCMT) Project inverts and provides the fault-plane
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solutions, available online at their website (Dziewonski et al., 1981; Ekström

et al., 2012). We may be able to build a more accurate ETAS model if we

could model η and θ based on the seismologically estimated strike, dip, and

slip, as well as the associated stress change at the aftershock location due to

the mainshocks (Hill, 2009; Toda et al., 2012). However, only earthquakes

with magnitudes 5.0 or greater are available in GlobalCMT.

Other than the topics mentioned above, future research areas for the

nonparmetric ETAS models include modeling of the earthquake occurrences

considering their focal depths. We can also develop a nonparametric ETAS

model which accounts for the Utsu-Seki law by scaling the spatial lags. The

law says that the spatial range of aftershocks is related with the mainshock

magnitude in an exponential fashion.
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Appendix A: Modified MISD algorithm

1. Initialize the triggering probability matrix P (0) = (p
(0)
ij )1≤i,j≤N as

p
(0)
ij = 1/i for j = 1, 2, · · · , i.

2. Iterate for ` = 1, 2, · · · , until maxi,j |p(`)
ij − p

(`−1)
ij | becomes smaller than

the convergence criterion ε > 0.

a. Estimate the background rate

µ(`)(x, y)← 1

qh1(x, y|D) · T

N∑
i=1

p
(`−1)
ii Gh1(x− xi, y − yi),

where T is a length of the temporal domain, D is a spatial domain,

and qh1(x, y|D) is an edge-correction factor at (x, y).

b. Estimate the productivity function

κ(`)(m)←
∑N−1

j=1 (
∑N

i=j+1 p
(`−1)
ij )Gh2(m−mj)∑N−1

j=1 Gh2(m−mj)
.

c. Estimate the regional productivity correction factor

α(`)(x, y)← 1

A∗

∑N−1
j=1 (

∑N
i=j+1 p

(`−1)
ij )Gh3(x− xj, y − yj)∑N−1

j=1 κ(`)(mj)Gh3(x− xj, y − yj)
,

where A∗ =
∑N−1

j=1

∑N
i=j+1 p

(`−1)
ij /

∑N−1
j=1 κ(`)(mj).

d. Estimate the triggering density

g
∗(`)
0 (∆s∗,∆t∗)←

∑
i>j p

(`−1)
ij Gh4(∆s∗ −∆s∗ij,∆t

∗ −∆t∗ij)

qh4(∆s∗,∆t∗|R+ × R+)
∑

i>j p
(`−1)
ij

∑
i>j 1

,

g
(`)
0 (∆s,∆t)← g

∗(`)
0 (∆s∗,∆t∗)

σsσt exp(σs∆s∗ + σt∆t∗)
,
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where ∆s∗ij = log(∆sij + 1)/σs, ∆t∗ij = log(∆tij + 1)/σt, ∆sij =√
(xi − xj)2 + (yi − yj)2, ∆tij = ti− tj, σs is a standard deviation

of log(∆sij + 1), σt is a standard deviation of log(∆tij + 1), and

qh4(∆s∗,∆t∗|R+ ×R+) is an edge-correction factor at (∆s∗,∆t∗).

e. Update the triggering probability matrix P (`) as

p
(`)
ii ←

µ(`)(xi, yi)

µ(`)(xi, yi) +
∑

j:tj<ti
α(`)(xj, yj)κ(`)(mj)g

(`)
0 (∆sij,∆tij)/(2π∆sij)

,

p
(`)
ij ←

α(`)(xj, yj)κ
(`)(mj)g

(`)
0 (∆sij,∆tij)/(2π∆sij)

µ(`)(xi, yi) +
∑

j:tj<ti
α(`)(xj, yj)κ(`)(mj)g

(`)
0 (∆sij,∆tij)/(2π∆sij)

.
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Appendix B: Stability of the model estimation

We illustrate the stability of the proposed model by using synthetic earth-

quake data. We generate a synthetic earthquake catalog from a parametric

ETAS model with an inhomogeneous background rate and a spatially con-

stant aftershock productivity function, i.e. α(x, y) = 1. The forecast accu-

racy and the estimated background rate are then compared between two mod-

els, VS-1:1 and CS-1:1, which share the assumptions of spatial isotropy and

space-time separability in the aftershock occurrences but differ in whether

α(x, y) varies over the spatial domain or not.

For the simulation, we produce 200 synthetic earthquake catalogs over a

square shape spatial domain {(x, y) : 0◦ ≤ x, y ≤ 6◦} for 4400 days utilizing

the branching structure of the Hawkes processes (Zhuang et al., 2004). For

each catalog, we discard the observations in the first 2000 days to use the

data in a steady state. The observations from the next 2000 days are then

used to fit the ETAS models, while the remaining observations from the last

400 days are used to measure forecast accuracy. Assumed parametric ETAS

model for the data generation has the form

λ(x, y, t|Ht) = µ(x, y) +
∑
{j:tj<t}

κ(mj)g1(x− xj, y − yj)g2(t− tj),

where µ(x, y) = 0.0125 · I{(x,y):1≤x,y≤5}(x, y) + 0.05 · I{(x,y):3≤x≤5,1≤y≤5}(x, y),

κ(m) = 0.2 exp(1.7(m − 4)), g1(∆x,∆y) = 0.668
0.00204π

(1 + ∆x2+∆y2

0.00204
)−1.668, and

g2(∆t) = 0.0947
0.0327

(1 + ∆t
0.0327

)−1.0947. Note that the background rate is nonzero

only in the middle of the spatial domain to reduce the edge effect in the

estimation, and the spatial and temporal triggering densities are using the

estimation results in Ogata (1998) as their parameters. In terms of mag-
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nitude distribution, we suppose that it is determined independently of past

occurrences using an exponential distribution with rate log 10, i.e. J(m) ∼

4 + Exp(log 10).

Now we fit the two models VS-1:1 and CS-1:1 to each of 200 synthetic

earthquake catalogs and compare the results. Our result confirms that there

is no instability in our results. First, estimated values of α function of the

model with spatially varying α are around 1 over the entire spatial domain.

Second, background rates are estimated almost identically by both mod-

els. Figure 11 illustrates the pixelwise average and standard deviation of

the background rate estimation results by the two models for 200 synthetic

earthquake catalogs, and both of them match closely with the assumed back-

ground rate. Lastly, we compare the forecast accuracy of the two models in a

same manner as in the section 4. The average partial AUCs for forecast accu-

racy are 0.36840 and 0.36836 for both models, respectively, and the pairwise

differences of them are very small.
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(a) VS:1-1, Pixelwise average (b) VS:1-1, Pixelwise standard deviation

(c) CS:1-1, Pixelwise average (d) CS:1-1, Pixelwise standard deviation

Figure 11: Estimation results of background rate by the models VS-1:1 and CS-1:1 for 200

synthetic earthquake catalogs.
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