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ime-series cross-section (TSCS) data are prevalent in political science, yet many distinct challenges

presented by TSCS data remain underaddressed. We focus on how dependence in both space and

time complicates estimating either spatial or temporal dependence, dynamics, and effects. Little is
known about how modeling one of temporal or cross-sectional dependence well while neglecting the other
affects results in TSCS analysis. We demonstrate analytically and through simulations how misspecification
of either temporal or spatial dependence inflates estimates of the other dimension’s dependence and thereby
induces biased estimates and tests of other covariate effects. Therefore, we recommend the spatiotemporal
autoregressive distributed lag (STAD L) model with distributed lags in both space and time as an effective
general starting point for TSCS model specification. We illustrate with two example reanalyses and provide R
code to facilitate researchers’ implementation— from automation of common spatial-weights matrices (W)
through estimated spatiotemporal effects/response calculations— for their own TSCS analyses.

INTRODUCTION

timson (1985) introduced political science to the
promise and peril of “regression in space and
time,” heralding a boom in research using
space—time data. During the 35+ years since, panel
and time-series cross-section (TSCS) data have come
to dominate quantitative empirical analyses in political
science. Figure 1 illustrates with yearly counts of key-
word text-identified TSCS articles appearing in Amer-
ican Political Science Review, American Journal of
Political Science, and Journal of Politics from 1980 to
2019.! In recent years, 2012-2019, at least 201 articles,
nearly 1 of every 8, contained TSCS data analysis, yet
very few of these analyses of data in “space and time”
seem to meaningfully consider both temporal and spa-
tial dependence.
Our manual review of these 201 TSCS articles found
only 94 that model temporal dependence directly, via
the inclusion of time lags;> only about 23 model spatial
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1 Of the 7,336 total articles, we counted those containing keyword
roots time-series cross-section, panel-data, or TSCS. The Appendix
details these and further textual analyses (Cook, Hays, and Franzese
2022).

2 Of the rest, 75 use time-indicator, time-trend, and/or differencing
strategies, 16 use some other strategy (e.g., time-period random-
effects), with some overlap, and 16 seem to employ no address of
temporal correlation at all.

dependence directly, using spatial lags,’ and merely
12, less than 6%, model both temporal and spatial
dependence directly. The dearth of TSCS studies
directly addressing space and time is especially prob-
lematic because, as we will demonstrate, proper
accounting of both is crucial for accurate estimation
of, and valid inference regarding, spatiotemporal
dynamics and covariate effects.

Applied researchers are not alone in neglecting to
address spatial and temporal dependence jointly;
many of the unique statistical challenges of TSCS
data analysis remain un- or underaddressed in meth-
odological research too. In particular, inadequate
attention has been paid to the methodological chal-
lenges presented in modeling spatial-temporal
dependence in TSCS data. Current understandings
of the problems arising from neglecting temporal or
spatial/cross-unit dependence derive from consider-
ations of one-way time-serial or cross-sectional data
or stylized two-way TSCS data, with dependence
assumed in only one dimension. As a result,
researchers have largely borrowed strategies from
time-serial or spatial-statistical methods designed
for unidimensional data, with little consideration of
two-dimensional spatial-temporal dependence and
its implications for diagnostics, specification, estima-
tion, and inference.*

3 Of the rest, 118 use only some unit fixed-effect strategy, 6 use some
spatial random-effect strategy, and 23 apply clustered or panel-
corrected standard-error adjustment, leaving 31 with no apparent
address of spatial association.

* Some do briefly mention issues of two-dimensional dependence
(e.g., Beck and Katz 1995; 2011; Franzese and Hays 2007; Wilson
and Butler 2007), but previous analyses generally consider only
one-way models that address time-serial or cross-sectional depen-
dence in data that assume away the other dimension of depen-
dence or that assume one dimension can be adequately addressed
orthogonally to the emphasized other dimension, which we show
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FIGURE 1. Count of Articles Using TSCS Data in the “Top-3” General PS Journals, 1980-2019
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We show that when both spatial and temporal depen-
dence are present, as in most real-world TSCS data, a
more complex set of relationships manifests because
temporal and spatial dependence are necessarily
related, and, therefore, cannot generally be safely con-
sidered separately. Consequently, one cannot simply
import strategies from time-series or cross-sectional
analysis but instead must directly confront the time-
series-cross-sectional nature of the data—that is,
address both time and space. Failing to do so will bias
estimates of all dependence parameters, which in turn
will induce biases also in estimates of the other covari-
ates’ coefficients and their dynamic and total effects,
and such mismodeled spatiotemporal dependence
thereby also compromises standard diagnostic tests
used to guide model specification. To list briefly our
conclusions, as demonstrated analytically and in simu-
lation below: inadequate address of spatial or temporal
dependence (1) biases the estimated coefficients on
both temporal and spatial lags, with the better-specified
process overestimated and the less-well-specified
underestimated, which (2) induces omitted-variable
bias in other covariates’ coefficient-estimates, and
these biased dependence parameters and covariate
coefficients combine to bias (3) the estimated spatio-
temporal effects and (4) the diagnostic and specifica-
tion tests derived from them. In sum, therefore, careful
specification of both temporal and spatial dependence

does not generally hold, and none explore the issues
emphasized here.

This paper emphasizes proper simultaneous specification of tem-
poral and spatial dependence, i.e., on the dimension, space and/or
time, of (inter)dependence in TSCS data. Cook, Hays, and Franzese
(2020) instead emphasize proper specification of the source of (pri-
marily) spatial interdependence, i.e., in y, X, and/or ¢.
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is essential for accurate estimates and valid inferences
in TSCS data analysis.

Furthermore, far from being a purely methodologi-
cal exercise, crucial political science substance is at
stake in thusly modeling well both the temporal
and spatial processes inherent in TSCS data. Consider,
for instance, the well-known “development and
democracy” (Lipset 1959) and “democratic dominoes”
(Starr 1991) propositions. We know that more-developed
political economies are more likely to become, and
far more likely to remain, democracies (Przeworski
et al. 2000; Robinson 2006), indicating temporal depen-
dence. We also know that democracy clusters spatially:
“the probability that a randomly chosen nation would
be a democracy is about 0.75 if a majority of its neigh-
bors are democracies, but only 0.14 if a majority of its
neighbors are non-democracies” (Gleditsch and Ward
2006, 916), suggesting spatial dependence. However,
simply knowing outcomes persist in time or cluster in
space is insufficient for model specification, as one must
determine the source of the observed spatial or tempo-
ral dependence. Spatiotemporal patterns of association
may arise from spatiotemporal dependence in the out-
come itself, spatial spillovers or temporal ‘spillfor-
wards’ in the observed covariates, spatiotemporal
dependence in the unobserved/unmodeled residual,
or any combination thereof (see Cook, Hays, and
Franzese 2020). These different sources correspond
to very different theories of our phenomena of
interest, motivate distinct empirical models, and imply
substantively importantly different effects. Consider
our development-and-democracy example; temporal
dependence may be present because (1) democracies
persist because accumulating experience with democ-
racy reinforces its institutionalization (i.e., autodepen-
dence in the outcome); (2) economic development
causes democracy contemporaneously and economic
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development persists or (3) past economic develop-
ment produces present democracy (i.e., spill-forwards
in covariates); and/or (4) some unobserved/unmodeled
covariate of democracy, culture perhaps, persists or has
a persistent effect on democracy (i.e., serial depen-
dence in the residuals). Analogously, the observed
spatial association or clustering of democracy may arise
because (1) economic development causes democracy
and development clusters spatially (i.e., spatial cluster-
ing in observed covariates), (2) developed or underde-
veloped neighbors spur democracy at home
(i.e., spillovers in covariates), (3) clustering occurs
through unobserved/unmodeled external or foreign
factors (i.e., clustered unobservables or spatially corre-
lated errors),” and/or (4) foreign democracy directly
influences domestic democracy, as argued in the dem-
ocratic dominoes literature (i.e., contagion or interde-
pendence).

Empirically distinguishing between these theoreti-
cally competing sources of spatial or temporal depen-
dence is difficult, even confining attention to a single
dimension, time or space, because spatial or temporal
lags of one type—for example, spatial lags of the
outcome —have power against alternative spatial pro-
cesses—for example, spatial spillovers in covariates.®
The empirical distinction is further complicated in
TSCS data, as dependence processes modeled in one
dimension, say spatial, will have power against depen-
dence processes in the other dimension, temporal, and
vice versa. For example, if democracies are both serially
autodependent (persist in time) and spatially interde-
pendent (contagious) for the reasons given above, then
any omitted spatial lag of the outcome would also be
serially autodependent and any omitted temporal lag
would also be spatially interdependent. As a result, the
included or better-modeled one of the dependence
processes would have power against the other omitted
or poorer-modeled process and so suffer omitted-var-
iable bias. This is why researchers must jointly model
the spatiotemporal process: when both spatial and
temporal dependence are present, obtaining accurate
estimates of one dimension of dependence while
neglecting the other is impossible.

Accurately distinguishing and estimating both spatial
and temporal dependence is also essential for obtaining
good estimates and tests of “the effect of x on y,” even if
researchers have little interest in theoretically under-
standing the spatiotemporal process itself. First, as the
spatiotemporal processes of the outcome y and of the
included x’s are generally related, any failure to

5 Conceptually, spatial dependence in unobservables or errors can
also arise from clustering, spillovers, and/or contagion, but the spe-
cific modality of unobserved dynamics in unobserved factors is
difficult to discern empirically.

% The order of the dependencies, i.e., the number of temporal or
spatial lags, is also important but not a focus here (nor in Cook, Hays,
and Franzese 2020). Time periodization of most TSCS data analyses
in political science is annual, and at that coarse temporal granularity
first-order time lags seem to suffice in most applications. Multiple
spatial-lag models bring greater complications, also not discussed
here (see Hays, Kachi, and Franzese 2010).

sufficiently model spatiotemporal autodependence will
bias covariate coefficient estimates on which tests of
causal-effect existence rely. Second, in the presence of
spatiotemporal lags of outcomes and/or covariates, the
coefficients on x alone are not the sought effect of x on
y. As Franzese and Hays (2007; 2008a; 2008b) and
Cook, Hays, and Franzese (2020) show, different forms
of spatiotemporal dependence imply substantively
importantly different effects, meaning how outcomes,
y, respond across units over time to hypothetical or
counterfactual “shocks” in covariates, dx.” Temporal
and/or spatial dependence in outcomes y are autore-
gressive processes, which imply geometrically fading
dynamics and long-run steady-state multipliers. For
example, a democratization event in one country at
some time propagates forward in time infinitely, fading
geometrically, and reverberates around through neigh-
boring countries, and then neighbors of neighbors, and
neighbors of neighbors’ neighbors, and so on infinitely,
again fading geometrically. This is distinct from the
effects of x on y if the spatiotemporal dependence arises
instead from spatial spillovers or temporal spill-for-
wards in x, where shocks only affect directly adjacent
neighbors or periods, or spatiotemporal autoregression
in the unobserved or unmodeled errors, where shocks
in x only affect the specific unit-time shocked. Thus,
good estimates of how development affects democracy,
to continue our example, will require proper specifica-
tion of both spatial and temporal dependencies.

Our suggested Spatiotemporal Autoregressive Dis-
tributed Lag (STADL) model, which follows on and
builds from Elhorst (2001; 2014), spans these depen-
dence source and dimension possibilities— that is, the
STADL nests within it most common spatial, temporal,
and spatiotemporal specifications—enabling proper
address of both spatial and temporal dependence and
therefore valid statistical tests and good substantive
estimates of spatiotemporal dynamic effects, making
the STADL an effective starting point for researchers’
TSCS data analyses.

SPATIAL, TEMPORAL, AND
SPATIOTEMPORAL DEPENDENCE

Spatial and temporal dependence have received con-
siderable attention elsewhere, separately, including by
political scientists (e.g., Box-Steffensmeier et al. 2014;
Franzese and Hays 2007; 2008a), so readers likely have
some familiarity with both the statistical importance
and the practical challenges of accounting for depen-
dence in political-science TSCS data. Accordingly, this
section is brief in reviewing these conventional separate
understandings of spatial and temporal dependence,
focusing primarily on identifying and modeling the
source(s) of this dependence. We then demonstrate
that spatial and temporal dependencies are necessarily
intertwined and therefore spatiotemporal dependence

7 As in Franzese (2020), we define effects EZ—,’;, and not just as
impulses= % = f,.
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is best considered jointly simultaneously. The next
section offers the STADL as a practical and effective
strategy for doing so.

Spatial Dependence

Cross-sectional or spatial dependence—meaning
“nearby” units have more-similar or less-similar reali-
zations than expected by chance alone —will manifest
whenever multiple units are observed in nonrandom
samples. For instance, with nearby defined geographi-
cally, mappings of almost any variable —for example,
the level of democracy —will exhibit geospatial cluster-
ing of so-called hotspots or coldspots. As previously
noted, however, such spatial dependence can arise by
several subtly, but substantively importantly, distinct
reasons: common traits among spatially proximate
units; exogenous spillovers in covariates across units;
interdependence/contagion in outcomes between units;
and/or due to clustering, spillovers, or interdependence
in unobservables.® Whether by clustering, spillovers, or
contagion, we can expect spatial (cross-unit) depen-
dence to manifest across the entire substantive range
of political science —intergovernmental diffusion of
policies and institutions among nations or subnational
jurisdictions (e.g., Graham, Shipan, and Volden 2013);
international diffusion of democracy (e.g., Starr 1991);
parties’, representatives’, and citizens’ votes and other
behaviors in legislatures and elections (e.g., Baybeck
and Huckfeldt 2002; Kirkland 2011; Tam Cho and
Fowler 2010); interdependence in globalization studies
(e.g., Simmons and Elkins 2004); contextual/neighbor-
hood effects in microbehavioral research (e.g., Huck-
feldt and Sprague 1987); wars, coups, riots, civil wars,
revolutions, terrorism (e.g., Buhaug and Gleditsch
2008)—and many more. Indeed, interdependence
across units is a defining characteristic of the social
sciences, where its study is prominent also in geography
and environmental sciences; in regional, urban, and
real-estate economics; in public health and epidemiol-
ogy; in education, psychology, sociology, and social
psychology; and beyond.

Spatial dependence, in short, is everywhere, empir-
ically and theoretically. Applied researchers almost
always, perhaps unknowingly, account for some clus-
tering in regression models simply through the inclu-
sion of exogenous covariates, which are also often
spatially clustered. We call this clustering in observed
covariates and note that its corresponding model is
nonspatial (NON): y,=x;8+ ¢,.” Insofar as these

8 We sidestep here issues of spatial-unit aggregation, i.e., the MAUP:
Modifiable Areal Unit Problem (Fotheringham and Wong 1991),
which are similar to, but more complex than, the more-familiar issue
of temporal granularity/aggregation affecting time-serial dependence
(Freeman 1989; Stram and Wei 1986). We also do not emphasize
crucial specification issues regarding W, the matrix of relative con-
nectivity or distance between the units, i.e., the network by which
spatial association manifests (see, e.g., Franzese and Hays 2008b;
Neumayer and Plimper 2016).

® We assume linear-additive separable mean and stochastic compo-
nent here solely for ease of exposition.
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spatially clustered x are omitted or are inadequate to
account for all of the spatial dependence in the depen-
dent variable, the remainder will manifest as spatially
correlated errors, as anything omitted from the system-
atic component is shunted to the residual component.
As shown elsewhere (Franzese and Hays 2007; 2008a),
left unaddressed, such spatial dependence risks ineffi-
ciency at best and typically bias as well.

Often, though, additional sources of spatial correla-
tion—correlated unobservables, exogenous spillovers,
and/or outcome interdependence—are also present.
When other manifest sources are omitted, including
spatially correlated x regressors not only fails to fully
address spatial dependence but can actually further
compromise our understanding of the data-generating
process. These included x have power against the
unmodeled spatial processes, which biases their coeffi-
cient estimates following the familiar omitted-variable
bias (OVB) formula and logic (Franzese and Hays
2007; 2008a). Accordingly, political scientists have
increasingly sought to model these other spatial pro-
cesses directly also, using the workhorse models of
spatial econometrics —spatial-error model (SEM), spa-
tially-lagged x model (SLX), and spatial-lag (of y)
model (SAR)—each of which assumes and reflects a
single additional source of cross-unit dependence—
correlated unobservables, exogenous spillovers, and
outcome interdependence, respectively—via an addi-
tional modeling device, the spatial lag, to bring
“neighboring” values of ¢, x, or y into the model. A
brief summary of these models will help familiarize
concepts and notation.

Each of these spatial models, and indeed any spatial
analysis whatsoever, must begin with specifying the
connectivity or spatial-weights matrix, W, an N x N
matrix with elements wy; reflecting the relative connec-
tion, tie, distance, or potential influence, from unit j to
unit i. This prespecification of W is primary to any
spatial analysis (Neumayer and Pliimper 2016), being
essential for everything from preliminary descriptives
and diagnostics through model specification and esti-
mation to effects calculation. Any relational data (e.g.,
trade, alliance comembership) can undergird W, and
theory and substance should always be paramount in
this indispensable foundational step of spatial analysis.
Absent strong theory, though, researchers often use
geographic proximity because geography correlates
with so many other potential bases for interconnection
(e.g., economic interchange, cultural and linguistic sim-
ilarities, and flows of people and information).'’

Different specifications of W allow researchers to
study alternative substantive/theoretical bases of cross-
unit relations.!! The researcher defines the relevant
concept of space and metric of distance for her

19 Given uncertainty over the relevant ties/network, a Bayesian
model-averaging approach to estimating W simultaneously with a
model of its effect seems promising (Juhl 2020).

1 Although misspecified W necessarily reduces the accuracy and
power of spatial-association tests/measurements and spatial-model
estimates, research shows the consequences of errors in W are often
less severe than feared (LeSage and Pace 2014) and clearly better
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application—again, geographic distance or contiguity is
a convenient and powerful default and will be ours here
—and then usually normalizes this W in some way to
ease interpretation, reduce dependence on scale fac-
tors, ensure the invertibility of the spatial multiplier,
etc. The most-common row normalization divides each
w; by the row-sum ) wj, which makes spatial lags
equal to weighted averages and thereby facilitates
direct interpretation of lag coefficients.!> With W spec-
ified and normalized, it then premultiplies a vector —eg,
X, or y—to produce so-called spatial lags—We, Wx, or
Wy, which are weighted averages of neighbors’ errors,
covariates, or outcomes—for use in preliminary mea-
sures and tests of spatial correlation, in specification
and estimation of spatial models, and in interpretation
of spatial effects.

Quickly reviewing the baseline spatial models, the
spatial error model (SEM) assumes spatially autocor-
related residuals, which are orthogonal to the included
regressors. Spatial-error processes result in nonspheri-
cal error variance—covariance matrices and conse-
quently inefficient ordinary least squares estimates
with incorrect standard errors, but coefficient estimates
remain unbiased. In the democracy-development
example, spatial error dependence may occur due to
unmodeled country-specific determinants of democ-
racy—for example cultural/historical legacies
(Acemoglu et al. 2008) —or from unmodeled spatially
correlated heterogeneity across countries in the effect
of development on democracy. Formally, the SEM
model is'?

y = xf+u,withu = iWu+¢, (1)

with W the N x N connectivity matrix defined above
and / the strength of spatial autocorrelation propagated
in this predetermined pattern, W.

Next, cross-unit spillovers or externalities in exoge-
nous observed factors (regressors, X) can also produce
spatial dependence in outcomes. In our democracy-
development example, exogenous spillovers occur if
economic development in a country influences not only
its own democracy but also that of neighboring coun-
tries, perhaps via development spurring the emergence
of transnational advocacy networks as Keck and Sik-
kink (1998) propose. Alternatively, conflict or public
health in neighboring countries, x;, may influence dem-
ocratic emergence or stability at home, y,. The spatial-

than ignoring spatial dependence outright (Betz, Cook, and Hollen-
bach 2020).

12 Some other common normalizations include spectral or min-max,
which have other convenient properties. Neumayer and Plimper
(2016) further discuss W specification and normalization issues, the
most important being that the choice of whether and how to normal-
ize crucially affects the substantive interpretation of the lag variable
and its coefficient.

13 This SEM assumes spatial-autoregressive errors, though moving-
average (spillover) or spatial-hierarchical (clustered) versions also
exist. The distinctions are not easily discerned empirically, being
unobserved processes in unobserved factors. Fortunately, the dis-
tinctions are also immaterial to effects as defined here.

lag x or SLX model captures exogenous spillovers like
these:

y =xf+ Wx0 +e. (2)

Here, the spatial lag of regressor, Wx, introduces neigh-
boring (as per W) values of x;; into the model for y;. '
With x exogenous, Wx is too, so SLX models can be
estimated efficiently by ordinary least squares, with
giving the strength of these exogenous spatial spill-
overs. Halleck Vega, and Elhorst (2015) and Wimpy,
Whitten, and Williams (2021) offer further discussions
of SLX.

Finally, where theory and/or substance indicate
interdependence or contagion in outcomes, a process
autoregressive in y like the increasingly widely used
SAR model is called for:

y=pWy+xf+e 3)

This spatial-lag y model may be most familiar to
readers, having quickly become the dominant model
of applied spatial work in political science. In the
democracy-development example, Starr’s (1991) dem-
ocratic dominoes notion implicates such spatial auto-
regression directly: democracy is contagious;
neighboring democracies cause democracy at home.
Mechanisms for causal contagion could be suasion,
diplomacy, foreign policy, or demonstration effects:
being surrounded by democracies could reveal much
to domestic actors about the workings, requisites, ben-
efits, and costs of democracy (Elkink 2011).

The primary substantive differences of spatial-auto-
regressive processes compared with the alternative
sources are its aforementioned exponentially reverber-
ating dynamic and steady-state effects. The main meth-
odological difference is that the spatial lag, Wy, being
other units’ outcomes, is an endogenous regressor.
Thus, consistent estimation of SAR models requires
instrumental variables (spatial two-stage least-squares
or generalized method-of-moments) or systems maxi-
mum likelihood (spatial ML). We suspect SAR’s pop-
ularity among these single-source spatial models owes,
first, to its substantive resonance in political science,
where outcomes are often social and/or strategic behav-
iors wherein some units’ outcomes/choices directly
influence others’ outcomes/choices. Second, the other
single-source models imply that clustering or spillovers
occur only in observed/modeled or only in unobserved/
unmodeled components, which seems generally less
plausible than that dependence would operate in both
asin SAR.'

In any case, these single-source models can be com-
bined in whatever pairs may be substantively/

4 To simplify exposition, we use a single covariate and lag; the
generalization to multiple covariates and lags is straightforward.
Wimpy, Whitten, and Williams (2021) discuss several advantages of
this general SLX model.

!5 SAR does impose equal, autoregressive processes in observed and
unobserved components, though, which may seem restrictive; multi-
ple-source models relax this restriction.
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theoretically implicated.'® For example, if one expects
spillovers in observed covariates (SLX) and in unob-
served features (SEM), but not necessarily to the same
extent or autoregressively as SAR implies, this SLX +
SEM combination gives the so-called spatial Durbin
error model (SDEM):

y = xf + Wx0 + u,with u = iWu +¢. “4)

These multisource models are advantageous in that
they allow researchers to simultaneously account for
alternative spatial processes, here exogenous spatial
spillovers and spatial error autocorrelation. This is
significant because spatial-model specifications often
have power against incorrect alternative spatial pro-
cesses: SAR, SLX, or SEM lag-coefficients or tests will
pick up unmodeled SLX, SEM, or SAR processes.'” As
a consequence, modeling one source of spatial depen-
dence (e.g., SAR) while neglecting others (e.g., SEM)
risks inaccurate estimates of the included dependence
parameter. Therefore, researchers are advised to con-
dition on these potential alternative processes when
performing diagnostic tests (Anselin et al. 1996) or
specifying their empirical models (Cook, Hays, and
Franzese 2020). Below we build on this, demonstrating
that in TSCS data different spatial models have power
against not only alternative spatial processes but also
alternative temporal processes. This motivates our sug-
gested STADL model, which combines multiple
dependence sources across both spatial and temporal
dimensions.

Temporal Dependence

Many readers may be more familiar with the time-
series analogs to the spatial processes/models just
described, owing to discussions in Keele and Kelly
(2006) and elsewhere, so we will be very brief here.
As with space, temporal dependence or serial correla-
tion may arise from four sources: y, may correlate with
v,_1 simply because exogenous covariates x correlate
over time, because unobserved/unmodeled factors &
exhibit serial correlation, because past values of x;
have lagged effects on current outcomes y,, and/or
because past outcomes y, . themselves continue to
shape current outcomes y,—that is, outcomes are per-
sistent, exhibiting inertia. Also as with space, these
alternative sources correspond to distinct substantive/
theoretical processes and model specifications.
Identical to the nonspatial model is the static model,
¥, = X + & here, democracy exhibits serial correla-
tion simply because the exogenous-covariate develop-
ment does. The SEM analog is the classic serially
correlated errors (SCE) model, y, = x;,f +u, with

16 Even the three-source model is estimable, albeit with great fragil-
ity, being identified by functional-form differences across the lag-y,
lag-x, and lag-¢ processes (Cook, Hays, and Franzese 2020; Elhorst
2014).

17 Riittenauer (2019) and Cook, Hays, and Franzese (2020) explore
the similarities and differences among these alternative specifications
in the purely spatial (cross-sectional) context.
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u, = du,1 + ¢&,'® which reflects persistence in unob-
served/unmodeled factors, such as cultural-historical
legacies, perhaps. The finite distributed-lag (FDL)
model, y, = x,f + x,_1y + &, corresponds to the SLX
model; substantively this would reflect that past devel-
opment directly affects present democracy, perhaps
through long-term structural changes whose effects
materialize later. Finally, in the temporal autoregres-
sive outcome process—the lagged-dependent-variable
(LDV) model—y, = ¢y, ; +x,8 + &, past democracy
directly influences present democracy, a persistent or
inertial process, which here substantively may reflect
democratic institutionalization wherein experience
with democracy itself yields increasingly entrenched
or consolidated democracy (Alexander 2001; Diamond
1994). Again in parallel with the spatial context, effects
of x on y in the static or SCE model are static:

ji—fci = f and % =0Vs#¢t , whereas effects are
dynamic in the FDL and LDV models, decaying dis-
cretely and persisting only to the lag-length order in
FDL models but persisting infinitely with exponential/
geometric decay, implying long-run steady-state
(LRSS) multipliers, 11?, and cumulative LRSS effects,

ﬁ -dx - B, in the autoregressive LDV model.!’

Spatiotemporal Dependence

With readers (re)familiarized with the base temporal
and spatial dependence models/processes, we turn next
to illustrating how these spatial and temporal depen-
dencies are necessarily related. Start with the simple
static/nonspatial linear-regression model, now indexed
by unit i and time £

Yir = Bo + BrXic + Ui, (%)

except here assume that some residual dependence
may result from omitted y;,_;, y;,, or both:

N

Uy = ¢yym_1 +py Z Wijyj#i,t + &it, with &ip ~ N(O, 0’2),
n=1

(6)

where S _ 1WiiYjsi, 18 the scalar representation of

spatial lag y presented above in matrix form: Wy.

Furthermore, let x be stochastic, exogenous, and follow
its own spatiotemporal process:

N
Xit = ¢xxi,t—1 +px Z WijXjti + ejr, with eitNN (0, 0'2).
n=1

™)

18 As before, we proceed with first-order, i.e., one-period, lags for
expositional simplicity (see footnote 6).

19 Also analogously (see footnote 21), the question of the effect of x on
y in temporally dynamic contexts requires more precise statement of
both the hypothetical/counterfactual, dx, and the effect, dy, refining to
specify dx when? in what period(s) is x “shocked”? and dy when? in
what period(s) do we want to know the response of y thereto?
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Given all standard regression assumptions other-
wise, we now walk through the relationship between
spatial and temporal dependence (also depicted visu-
ally in Figures 2-5).

First, restricting both ¢, = 0 and p, = 0 produces
i.i.d. residuals u;, so the nonspatlal statlc Equation 5
depicted in Figure 2 fully accurately models the rela-
tionship of x to y. Relaxing one restriction, say ¢, # 0,
but keeping the other, p, = 0, induces time- ‘serial
dependence in the res1duaf,s u, Wthh biases ,B in the
static model if ¢, # 0. This situation, depicted in
Figure 3, is textbook omitted-variable bias (OVB)—
with Cov(x;,y, ;) increasing in ¢, —and is easily reme-
died by including time-lagged y (LDV model) as is
commonly done. Similarly, freeing p, # 0 while keep-
ing ¢, = 0 also threatens OVB in the static model.
Agam OVB arises if x has dependence in the same
dimension as y, here if p, # 0 as depicted in Figure 4,
so that Cov(x;y;) #0, and the simple remedy,

FIGURE 2. Static Relationship

&

FIGURE 5. Space-Time Dependence

g

Ljt > Yjit

e /i

Tt > Yit

¢x ¢y

Pz by

Tjt—1 > Yjt—1

FIGURE 3. Time-serial Dependence

&

Cbx (by

Tt > Yi—1

FIGURE 4. Cross-Sectional Dependence

s

Lj > Yj

S

T; > Yi

increasingly common in applied work, adds spatial lag
y to form the spatially dynamic SAR model.

This is all familiar: with single-dimensional depen-
dence, purely cross-sectional/spatial or time-serial
modeling suffices. However, if both ¢, #0 and
py # Oasin Figure 5 so that both temporal and spatial

dependence manifest, researchers must model
dependence in both dimensions adequately. Omit-
ting/mismodeling spatial dynamics, for example, will
leave residual time-serial correlation because the
omitted/mismodeled spatial lag y; is serially corre-
lated with y;,;, which in turn exhibits that same
omitted/mismodeled spatial relation to the included
time lag y;, . Symmetrically, failing to model tempo-
ral dynamics adequately will leave spatial autocorre-
lation, as the missed aspect of the past, y;, ;, has the
same spatial relation to y;,_ as does y; to the included
spatial lag, y;.

To see that spatiotemporal dependence causes
bias (OVB) when only one of spatial or temporal
dependence is modeled, consider the spatiotempo-
ral-lag model: y, = fx; +pWy, + ¢y, , +& (which
is also Equation 20), as depicted in Figure 5.
If the truth is Equation 20 but one omits ¢y, ,
to estimate SAR or omits pWy, to estimate LDV,
then OVB arises if ppCov(Wy,,y, ;) # 0. This covari-
ance is necessarily nonzero because spatial depen-
dence implies Wy, <y, and temporal dependence
impliesy, | —vy,,s0y,_; — Yy, — Wy, meaning that
Cov(Wy,,y, ;) = Cov( f(y,),y,;) # 0. The sign and
magnitude of these OVB can be seen in Achen’s
(2000) derivation of the biased ¢ and f in an LDV
model when additional, unmodeled dynamics ¢,
remain in the residual:
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7 ¢eo-2
plim¢, = ¢, + , (8)
(1)
and
plim,E: 1- 9:8 B, 9
1_¢x¢y

where s> = o7 and g = plim @y)—qﬁy (see also Keele

and Kelly 2006). As Achen (2000) notes, any ¢, > 0
inflates ¢, and attenuates f estimates, and as just proven,
any unmodeled spatial dependence necessarily produces
precisely these same conditions because y;, = ¢,y;, 1+
Xief + wigyj, = PyYj1 + X8 + uj Therefore, any p, # 0
produces ¢, >0 and “Achen’s LDV-bias” manifests.
By the usual OVB logic, it follows also that omission or
underestimation of p, induces primarily overestimation
(inflation bias) of ¢,, being the coefficient on the included
regressor most related to the omitted/mismeasured Wy,
and those two biases in turn induce partially compensa-
tory bias of g, with the resultant direction depending on
whether the spatial or temporal dependence in x is stron-
ger and resembles more-closely those dependencies in y.

These biases arise because, in TSCS analysis with
temporal dependence modeled but spatial dependence
excluded, for instance, the factor among the included
that is most like the omitted “today’s democracy
abroad” —say German democracy today, y;,, as omitted
explanator of French democracy today, y;,—is “yester-
day’s democracy at home” —that is, French democracy
yesterday, time-lagged y;, ;. Intuitively, this is because
insofar as, “Germany yesterday” relates to “France
yesterday” —spatial dependence is present—and “Ger-
many yesterday” relates to “Germany today” —tempo-
ral dependence is also present—the omitted “Germany
today” relates to the included “France yesterday”. Of
course, all of the analogous holds also in the other
direction, regarding the omission or relatively inade-
quate address of temporal dependence.?”

In sum, even if Stimson’s (1985) “inherent” temporal
autocorrelation is accurately modeled, misspecification of
the spatial dynamics sets off a chain of biases: the primary
attenuation bias (or “zeroing” if omitted) of p, induces
overestimation/inflation bias (OVB) of ¢,, which com-
bine to induce misestimation of f,, usuaﬁy attenuation
because temporal dependence is generally stronger than
spatial. Naturally, these biased coefficient estimates mean
any related causal-inference tests are biased too, as are

20 In practice, given the typically greater strength of temporal than of
spatial dependence, omitted spatial factors’ relation to included
temporal factors is usually by far the strongest of the OVB formula’s
partial correlations, meaning inadequate address of spatial depen-
dence induces the largest inflation biases on temporal-dependence
parameters and secondary induced biases in other covariate coeffi-
cients. Conversely, included or better-specified spatial dependence
being typically considerably weaker than omitted or more-poorly
specified temporal dependence and the temporal persistence of other
exogenous covariates being likewise stronger than their spatial asso-
ciation, the OVB biases of temporal-dependence misspecification
tend to be more-evenly distributed across included parameters.
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estimates of the dynamic and total causal effects of x on y.
Specifically regarding effect estimates, typically, the initial
“impulses” from x to y (8,) are underestimated and the
spatiotemporal dynamics misconstrued as “too-
persistent” if spatial dependence is the mismodeled pro-
cess and, conversely, initial impulses overestimated and
spatiotemporal dynamics “too-contagious” if temporal
dependence is the mismodeled process. In either case,
long-run steady-state effect estimates are biased also.
Given that inadequate address of spatiotemporal
dependence will bias inferential tests and estimates of
coefficients, dynamics, and steady-state effects, even
researchers for whom spatiotemporal dynamics and
dependencies are a nuisance cannot neglect giving them
their careful attention. Furthermore, these biases induced
by relative neglect of spatial or, less commonly, temporal
dependence are of central substantive-theoretical
importance as well. In our development-and-democracy
terms, relative inadequacy in addressing spatial depen-
dence —inadequate account in the model that, and by
what process, democracy clusters—yields estimates
that imply inaccurately greater temporal persistence of
democracy—for example, an overestimate of democratic-
institutionalization and democratic-consolidation effects.
If democratic persistence derives from a temporally
autoregressive process as such arguments imply, this
overestimated temporal dependence will mean smaller
immediate-effect estimates—that is, smaller g, , with
slower decay and so larger long-run-steady-state mul-
tipliers in other covariates’ effects on democracy.
Beyond these misestimated dynamic and steady-state
effects, the biased f, means that hypothesis tests about
the effects of x on y will be biased too, likely increasing
false negatives (failure to reject when should).?!
Applied researchers also commonly deploy unit
and/or period fixed effects to account for spatial or
temporal dependence. Unit or period dummies or ran-
dom effects do address particular forms of spatiotempo-
ral dependence (Elhorst 2014), but they often fail to
adequately capture the spatiotemporal dependence typ-
ically present in TSCS data. Unit indicators absorb long-
run, fixed or constant, spatial clustering in outcomes,
plus any other time-invariant unmodeled unit-specific
factors. However, these captured “effects” are additive
mean shifts, time-invariant clustering, and not autore-
gressive or distributed-lag in form. Unit-specific effects
also cannot account time-varying unmodeled effects,
such as evolving spatially clustered sociocultural or insti-
tutional factors. Analogously, period fixed effects/time-
dummies account for spatially invariant, uniform shocks
common across all units. These too are fixed, additive
mean shifts, and so they cannot well-account autoregres-
sive or distributed-lag processes or unit or regional
variation in clustered additive shocks, such as influences
diffusing among members of regional organizations.

2! Notice also that, in spatiotemporally dynamic contexts, the usual
statement of the causal estimand, “the effect of x on y,” is itself
underspecified. For the question to be fully enunciated given spatio-
temporal interdependence, we need to ask about “the effect of x
when? and where? on y when? and where?”
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Finally, given the substantively and statistically critical
importance of adequately addressing spatiotemporal
dependence, researchers will want to conduct appropriate
and effective specification testing. In principle, one can
conduct specification searches from specific-to-general,
starting with sparse spatiotemporal models and determin-
ing, using Lagrange-Multiplier (LM) tests, whether to add
spatiotemporal-lag terms, or general-to-specific (Hendry
1995), starting with a more-general specification and using
Wald or likelihood-ratio (LR) tests to decide whether
some spatiotemporal-lag terms may safely be omitted.
However, in practice in this context, LM tests of under-
specified models will have power against incorrect alter-
natives (Anselin 1988): for example, LM tests may reject
the nonspatial model indicating missing spatial lag y
(SAR) or spatial-lag error (SEM) when actually temporal
dependence is the missing/poorly-specified process. LM
tests can be adjusted using cross-partial gradients of the
fuller-specification likelihood to prevent such false/mis-
leading rejections, but these robust-LM tests (Anselin
et al. 1996) as-yet exist for very few combinations of
spatiotemporal processes. Instead, we suggest the (first-
order) spatiotemporal autoregressive-distributed-lag
(STADL) model as a convenient and effective more-
general starting point (see f[ootnote 6), and “testing
down.” Researchers can test down using either Wald tests
or fit statistics and loss-of-fit tests, such as likelihood and
LR tests (Juhl 2021) or R? and F-tests of AR?, but fit-
testing may be preferred given that Wald-testing can be
sensitive to reparameterization.”> Perhaps better still,
researchers can use Akaike or Bayesian—-Schwartz Infor-
mation Criteria (AIC or BIC) fit statistics, which penalize
more appropriately for degrees of freedom consumed/
excess paramterization than do LR or F and also enable
nonnested model comparison, the latter being particu-
larly important given the many alternative models con-
tained within STADL to compare.

In summary, as we will further demonstrate by sim-
ulation and in reanalyses of real-world applications
below, TSCS analyses that relatively neglect spatial
(temporal) dependence will estimate greater temporal
(spatial) dependence than is actually present and cor-
respondingly misestimate spatiotemporal dynamic and
cumulative effects, yielding biased tests and erroneous
inferences regarding substantive theoretical proposi-
tions. The more-general STADL model offers an effec-
tive alternative for applied TSCS analyses.

THE STADL MODEL

The workhorse cross-sectional and time-serial models
from spatial and time-series econometrics were

22 Juhl (2021) shows Wald tests of alternative equivalent specifica-
tions can yield different results and so argues strongly for LR testing,
which is insensitive to such reparameterization. We agree but would
also note that Wald and LR tests rely on different estimates: param-
eters and standard errors versus likelihood fit. Researchers may have
greater confidence in one or the other, such as when using robust
standard errors, which usage indicates lesser confidence in likelihood
or fit. In any case, LM testing upward is clearly dominated.

introduced above. To review compactly, the baseline
spatial-econometric models correspond to the different
potential sources for observed spatial association: non-
spatial models (NON) for spatially clustered exogenous
covariates (including fixed effects), spatial error (SEM)
for clustering in unobservables, spatially lagged covari-
ates (SLX) for exogenous spillovers/externalities, and
spatial-lag/spatial-autoregressive (SAR) models for
endogenous contagion/interdependence:

Clustered Covariates = NON :

10
y, = X/ + &, withx, spatially correlated. (10)
Clustered Unobservables = SEM : (1)
y, = X + u;, withu, = IWu, + &.
Spillovers/Externalities = SLX : (12)
y, = X+ Wx,0 + &.
Interdependence/Contagion = SAR : (13)

Y, = pWy, + X+ &.

Vectors yy, X;, and & are N x 1; the matrix Wis N x N.
Notice, crucially, that “the effect of x” differs importantly
across these models/sources/processes. With clustered

exogenous covariates (NON), %; = f, and Z% =0Vj#
i,s # t. Likewise with spatial dependence confined to the
orthogonal unobserved component (SEM), the effect of x
ony is merely;%‘; = p, and%‘l =0Vj#i,s#t Inboth
of these models, with respect to the effect of x on y, “What
happens in France stays in France.” With exogenous
externalities— that is, in the spatial distributed-lag model
(SLX)—“What happens in France spills over into Ger-
many (and France’s other first-order neighbors according
to W),” and the story ends there: dy =W - dx, - 0 + dx;, - j.
Notice that both the hypothetical/counterfactual, dx,, and
the effect, dy;, are vectors, not scalars: with spatial spill-
overs, the effect of x differs depending on which units are
shocked, and these effects manifest not only in y; of the
shocked unit(s) but also in their first-order neighbors.”* In
the spatial-autoregressive (SAR) model corresponding to
interdependent/contagious contexts, “What happens in
France also influences Germany and France’s other
neighbors, which in turn influence their neighbors, includ-
ing France, which influences those neighbors’ neighbors’
neighbors, including Germany again, and so on,” with the
effect of dx, on y, reverberating outward and back thusly
In an exponentiating series:

dy,

= 1 + pW + W2  + W3 + W ) ax B
~~ ~— —— —— ——
self  neighbors  neighbors'neighbors  neighsneighs'neighs  neighbors*

®

=Y "W | dx, p = (1-pW)" - dx, - B

m=0 S N~
spatial multiplier shock impulse

(14)

2 Higher-order SLX models can capture some neighbor-of-neigh-
bor, etc., effects (Whitten, Williams, and Wimpy 2021).
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Again, insofar as researchers omit or misspecify the
spatial-dependence process, say Wy, p is underestimated
(p = 0 if omitted), and the OVB formula and intuition

implies inflated E, with those biases distributed propor-

tionately across the Ex according to those x’s partial
association with the misspecified/omitted Wy, meaning

larger induced biases will accrue to the f, whose x cluster
spatially more similarly to the pattern implied by W.

The time-series analogs, also first-order, are com-
pactly expressed using the lag operator, L'y, =
¥, Vt > s, or the matrix equivalent, Ly, (see footnote
26), as the serially correlated errors (SCE), finite dis-
tributed lag (FDL), and lagged dependent variable
(LDV) models, along with the static model (StM) with
serially correlated exogenous covariates, including
time-period fixed effects:

StM :y, = X, + u;, withx; serially correlated. ~ (15)

SCE :y, = x,f + u,, withu, = 6Lu, + ;. (16)
FDL :y, = x,f + Lx;y + &. 17)
LDV :y, = gLy, + %, + &. (18)

Notice again the dynamics, or lack thereof, of the
effects of x on y in these time-series models. In the
static and serially correlated errors models, the effect of
x, is confined to y,; there are no temporal dynamics:

jl—i"[ = f and % = 0 Vs # t. In distributed-lag or auto-
regressive processes, contrarily, and again paralleling
the spatial case, we need first specify dx when? and
expand our question to be about the effect on y when?
In the distributed-lag case, the effects of x simply spill
forward the number of periods equal to the lag-order,
dy, =IL- dx; - f, and are completely dissipated beyond
that: ‘Z—Q = 0 Vs > p. Temporally autoregressive pro-
cesses, finally, imply exponentiating decay for tempo-
rary shocks, or decaying accumulation for permanent
shocks, of long-run steady-state effects going forward
infinitely in time, like so:

dy, = pdx + ¢pdx + @*pdx + $Pdx + ...
<= ~— —— N N~
LRSS period0  period 1 period 2 period 3

D> _¢pd
s=0

———
if0<g<1,=

1
- () L

impulse ~ perm.
LR multiplier shock

response

(19)

From these differing expressions of the effects of x on y
implied by the range of possible spatial and temporal
processes, one can see how omissions or misspecifica-
tions of either temporal or spatial dependence will yield
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inaccurate tests and estimates of the substantive effects
of interest.

Given this critical substantive and statistical impor-
tance of allowing the estimation model to express
the spatiotemporal dependence inherent to TSCS
data in the manner that it manifests, we suggest a com-
bined spatiotemporal autoregressive-distributed-lag
(STADL) model of order (sy°sx",se”;ty!,ex",2e') |
where the s or ¢ indicate spatial or temporal lag, the y,
x, e indicate which terms are lagged, and the superscript
indicates the temporal order of the lag.>* We recommend
labeling only the terms actually used, so STADL(sy", ty")
would indicate a first-order spatiotemporal-lag model:

Y, = pWy, + Ly, + x4 + &, (20)

whereas the general version of the STADL
(G txq,te’,syp,st,sxR) is

My, =Fx, + Ag, (21a)

M= (1—¢1L—...—¢,,Lp—pow—...—pp,lw’”), (21b)

F= (Iﬁ+Ly1 4o+ Ly, + W + ... +WQ-19Q,]),
(21¢)

and

A= (I-8L-..—8, L' -gW-..-hg s WE) ' (21d)

where, M, F, and A are the space-time filters of the
outcome, predictors, and residuals, respectively.?

We express a first-order STADL conveniently for
interpretation of spatiotemporal effects as

y = gLy + pWy + x4 + Lxy + Wx0 + (I-6L-2W) ¢,
(22a)

y = (I-gL-p W)™ (x/f +Lxy + Wx6 + (I—5L—/1W)_ls),
(22b)

where I, L,and W are NT x NT;y, x,and ¢ are NT x 1;

and L creates a one-period time lag of variables it
premultiplies.”® Recall that in spatiotemporal analyses

24 For multiple spatial-weights matrices, W, the Ws can be sub-
scripted numerically or mnemonically; likewise, x can be subscripted
in cases where only some regressors X are lagged. Researchers
writing for audiences more-familiar with ADL and/or spatial nota-
tion, could use SAR/SLX/SEM+ADL(p,q) notation instead.

25 Although not a focus here, the STADL model can also easily
incorporate recursive spatial processes (Anselin 2001) with time-lagged
spatial lags (TLSL; Drolc, Gandrud, and Williams 2021). Like y;,_; or
Wx, TLSLs are predetermined in the system of equations, meaning they
can be treated as exogenous regressors. For interpretation, the W in
Equation 22 for TLSL will have its nonzero w;; in the off-diagonal
elements of the lower block first-minor. (See also footnote 26.)

26 Spatiotemporal TSCS analyses order the data as all N units in
period 1, all N units in period 2, ... . L’s N x N first block has all-0
elements, reflecting the omitted N first-period observations. All other
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of the effect of x, one must specify which units are
shocked and when—this is the “treatment” —and, cor-
respondingly, the responses or “effects” will be across
all units over all time-periods as determined by the
spatiotemporal process given in W and L. In time-series
analysis, one must specify when shock dx occurs, and
the default shocks are temporary, a one-period shock —
dx =+1in period fy with x reverting to its previous level
thereafter —and permanent—dx = +1 in time £, with the
higher x persisting infinitely. In spatial analysis, one
must specify where dx occurs, and the analogous
defaults are dx = +1 in one unit and dx = +1 in all
units. In space-time analysis, the combined spatial and
temporal defaults yield four default shocks: {unit-i or
all-units} x{1-period or permanent}.>’

A convenient way to express Equation 22 for differ-
entiation by x to track responses over time across all
units to some series of hypothetical/counterfactual
shocks in N units over T periods, is to create a NT X
1 vector, dx, containing the desired spatiotemporal
series of shocks:

dy = (I-gL—pW) ™" - (I8 + Ly + W0) - dx. (23)

The NT x 1 vector dy gives the response across all
N units period-by-period to this series of shocks, dx.
So, for instance, the 1-period, 1-unit default shock is a
1 in that unit’s row of the first N x 1 vector and
0 elsewhere. The 1-unit permanent shock repeats this
N x 1 vector down T periods. The all-units 1-period
shock starts with an N x 1 vector of ones, and all
subsequent elements are 0. The all-units permanent
shock is an NT x 1 vector of ones. Beyond these
defaults, any set of substantive hypothetical/counter-
factual shocks across units over time that researchers
may wish to consider may simply be entered as that
dx. Indeed, multiple columns of hypothetical shocks
can be offered and responses calculated at once, with
say NT x N matrices dX and dY. We suggest N
columns here to facilitate the scalar summaries of

elements are 0 too, except the diagonal of the lower block first-minor
(the N x N blocks immediately below the N x N block prime-
diagonal); those prime-diagonal elements of the lower block-minor
are all 1.

%7 Notice the ambiguity that arises here surrounding comparable
treatments and effects in static models versus in temporally, spatially,
and spatiotemporally dynamic models/processes: in static-nonspatial
models, all of x’s effects incur exclusively in the unit-time shocked;
in spatiotemporal models, contrarily, x;, has effects also in unit-times
j #i,s # t. Thus, in comparison to the static case, and to empirical
realism, the hypothetical of a one-unit or one-period dX shock
radically understates both a typical “treatment” and a typical “effect”
of x because the spatiotemporal model correctly distributes the total
influence of dX on dy across space and time, whereas the static model
incorrectly aggregates those unit-time differentiated relationships
into one summary relation. By the same token, hypothetical all-unit
permanent dX shocks overstate both a realistic dX and the static-
model dx effect estimates. Perhaps most realistic, and what static-
model estimates would be approximating, with bias due to misspe-
cifcation, would be a dX that followed its empirical spatiotemporal
average in the sample.

spatial effects that LeSage and Pace (2009) call
impacts. Working in a single-period cross-section,
they suggest a set of shocks across units given by
the N x N identity matrix, which corresponds to
shocking each unit alone —that is, the 1-unit default
shock, one at a time, column-by-column. For TSCS
data, the other 7-1 N x N blocks are all-zeros for
the 1-period shock, and the Iy repeats over all T for
the permanent shock. In a cross-section, the average
of the diagonal elements of the N x N dY gives LeSage
and Pace’s (2009) average direct effect (ADE) of unit on
itself, inclusive of spatiotemporal feedback, and the
sum of the off-diagonal elements divided by N gives
the average indirect effects (AIE), a summary of the
spillover effects. With dX just the identity matrix Ly, it
may be dropped from Equation 23 and the elements of
the multiplier times coefficients matrices may simply be
summed and averaged in these ways as LeSage and
Pace (2009) do.

Long-run steady-state (LRSS) responses in all N
units to some permanent N x 1 set of shocks, dx, is
found by returning to Equation 22a, setting y, ; =y,
and x,_; = %, by definition of LRSS, to obtain

dy = (I-gl-pW) ' (I + Iy + WO) -dx.  (24)

Note both the shocks/treatments dx and responses/
effects dy reference all N x 1 units i.”8

STADL models can be estimated via maximum-
likelihood (or Bayesian) methods, with likelihoods
(posteriors) given in Elhorst (2001) and LeSage and
Pace (2009) and maximization detailed in Anselin
(1988).>°39 Even previous works that discuss spatio-
temporal models and their estimation have neither
discussed or derived analytically, as above, nor evalu-
ated through simulation as next, the biases from omit-
ting or mismodeling one of the dependence dimensions
in estimates of the other dependence parameters, the
covariate coefficients, and the dynamic and total
effects.

1 and W in Equation 24 are N x N. Implicitly, some long-run,
permanently operant, W must be set.

2% Instrumental-variables estimators exist for some, but not all,
STADL model variations as well.

30 As with the three-source spatial model (see footnote 16), the three-
source temporal and STADL models are identified, but only frailly,
when all three sources are included (e.g., an unrestricted first-order
STADL model). Given this, researchers will want to use design
(Gibbons and Overman 2012) or theory (Cook, Hays, and Franzese
2020) to restrict some spatial and temporal parameters ex ante. In
Cook, Hays, and Franzese (2020), we suggest that researchers should
generally consider including terms capturing spillovers in the mean
component (either Wy or Wx) plus spatial error autocorrelation.
Similarly, a time-series model including a time-lagged outcome and a
correction for serially correlated errors would be robust to the
concerns of Achen (2000). Taken together, we believe applied
researchers with TSCS will be well served by including outcome lags
(Wy and Ly) or covariate lags (Wx and Lx)—whichever is best
motivated by their theory—and spatial and temporal error lags
(We and Lg).
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FIGURE 6. LDV Performance with Spatial Dependence—Bias in 3},

0.3 4

--=- 02
--- 03
...... 04
s== 05

0.2 0.3

MONTE CARLO ANALYSIS OF DYNAMIC
TSCS MODELS

Our Monte Carlo analyses demonstrate that the biases
shown analytically above are of substantively impor-
tant magnitudes in spatiotemporal TSCS data with
properties designed to be representative of common
political-science application contexts.

Given the combinatorically vast number of STADL-
model variations—2° = 64 first-order models alone —
we focus on evaluating the two currently most-widely
used in political science: LDV and SAR-—that is,
STADL(#y') and STADL(sy?). LDV and SAR model
performance under various forms of temporal or spatial
dependence is well known, but we know little as yet
about how either one-way model performs under spa-
tiotemporal dependence in both dimensions. There-
fore, we generate data from a STADL(sy",zy! ) —that
is, the first-order spatiotemporal autoregressive
model —with the exogenous covariate x also following
a STADL(sy",ty!) process, for realism and so induced
biases will manifest entirely in f:

Y, =&Y, oWy, + x5 + &, (25a)
and

X = X1+ p, WX + &x, (25b)

with xo, &, and &, drawn independent standard-normal.
To focus comparisons, we fix several conditions across
all simulations: N = 50 and 7 = 20, giving balanced
panels with common sampling dimensions (e.g.,
U.S. states over 20 years); W generated as k-nearest-
neighbor binary-contiguity (k = 5), row-normalized,
based on xy-coordinate locations for each unit drawn
U(0,100); and parameters =2, ¢, = 0.6, and p,=0.3.
We vary the strength of temporal, ¢,, and spatial, p,,

70

dependence in the outcome y (further design details in
the Appendix).?!

Figures 6 and 7 present simulation results for the
LDV-model estimates. Figure 6 shows that temporal-
lag coefficient-estimate ¢, suffers inflation bias for all
true spatial-lag coefficients p, > 0, with the bias mag-
nitude increasing in both p, and ¢,. Even when ¢, = 0,
substantial bias obtains—¢, reaches 0.18 at the modest
maximum spatial dependence considered here: p,, = .3
—and this bias grows as ¢, increases, the very condition
making account of temporal dependence more impor-
tant. The intuition is simple: the modeled temporal
dependence can partially compensate for the missing
(or, by extension, mismodeled) spatial dependence, in
omitted-variable-bias fashion.

Although the strength of temporal dependence is
important in itself, researchers often have greater inter-

est in E for testing and for estimating the effects of
covariates x. Figure 7 shows how the inflated ¢, esti-

mate generally attenuates the E estimate, with this
induced attenuation bias also quite sizable and increas-
ing in p, and ¢,. This is striking given that, with p), >
0and Cov(x, Wy) > (0, textbook discussion on omitting

the spatial lag indicates inflationary OVB in E The
opposite obtains here because that textbook inflation-

ary bias manifests so strongly in ¢, as to induce a
countervailing deflationary bias in f, underscoring

3! The Appendix reports results with a first-order spatiotemporal
autoregressive error, i.e., STADL(se", te!), DGP, so as to explore the
performance of commonly used outcome-lag models, LDV and SAR,
and our STADL model, under spatiotemporal error autocorrelation.
Results indicate the LDV and SAR models produce biased estimates
under spatiotemporal error autocorrelation, whereas STADL per-
forms well under all conditions.
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FIGURE 7. LDV Performance with Spatial Dependence—Bias in /3
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how conventional understandings from single-dimen-
sional analyses do not extend straightforwardly to
TSCS contexts.*”

Furthermore, the unmodeled spatial dependence
also undermines standard LM tests for serial correla-
tion in the LDV-model estimation residuals, producing
an unacceptably high false-positive rate, meaning that
using “remaining residual autocorrelation” to assess
the adequacy of the LDV in addressing dependence
will fail to guide specification properly (see Appendix).

In summary, with spatiotemporal dependence, LDV
underestimates the “impulse” effect of x,, % = f, but
overestimates ¢,. Thus, researchers may wonder how
well these biases offset in long-run steady-state effect-
estimates. In the LDV, the LRSS effect on unit i of
permanent dx;, is

dy iss

dyis.r IB . .
e T, and Fr 0Vj+#i, (26)

whereas the contemporaneous spatial steady-state
effects of one-unit dx on y in the SAR model are

dy _ -1
Z = a-pw) s, 27)

which is an N x N matrix of the effects, column-by-
column, of dx; in that column-unit i on y in all units.

2 The nearly monotonically negative bias in ﬁ seen in Figure 7 is the
resultant of a direct positive OVB of p, x Reg(Wy on x|Ly) and a
negative bias induced in compensation for the direct OVB in 5‘ The
net of these competing biases in / can manifest differently than seen
in Figure 7 depending on W and parameter values (See Appendix).
Beyond these biases in fand ay, their standard errors are also notably
off: average reported SE forﬁ considerably overstate the standard

deviation of 8, and yet, given the large biases in B, the estimated 95%
confidence intervals never bound the true value in our simulations,
i.e., coverage is zero.

Thus, the single estimated LRSS effect of x on y from
the LDV, or any other nonspatial model, is not even in
the correct dimensionality of the spatial effects (plural)
of dx on dy. As emphasized above, spatial dynamics
imply changes in x in any unit have effects across all
connected units and changes in x in different units have
different effects because units are differently connected
to each other. LeSage and Pace’s (2009) average direct
effects (ADE) scalar summary of the average across i of
%, inclusive of spatial dynamics, can be obtained, but
even the ADE will not compare closely to the LDV’s
LRSS because the LDV’s temporal dynamics are quite
imperfect substitutes for SAR’s spatial dynamics.

The correctly spatiotemporal dynamic and LRSS
effects of dX in the general first-order STADL, inclu-
sive of both spatial and temporal dynamics and feed-
back, are given in Equations 23 and 24. Their
simplifications to this STADL(sy",zy') model are

STADL(sy’, ty') LRSS Effects :

. (28a)
dY = (I-gI-pW) ™! . dX - ,

and
STADL (syo, ty]) Dynamic Effects :

S (28b)
dY = (I-gL—pW) ™" - dX - .

As explained above, for shocks to one unit at a time,
column-by-column, dX is the N x N identity matrix, I,
in the LRSS-effects Equation 28a, and, in the dynamic-
effects Equation 28b, dX is that Ly stacked vertically T
times for permanent shocks, and only in the first N x N
block for 1-period shocks. Each (N x 1) column of
the resulting dY in Equation 28a gives the LRSS
effects in all N units to shocking the column-unit. In
Equation 28b, these N x N blocks of effects in dY
evolve period-by-period T times vertically. The scalar
summaries of LRSS or period-by-period ADE and
AIE are found by averaging across the N x N effects-
block’s diagonals or over all its off-diagonal elements as
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FIGURE 8. Response-Path Estimates of LDV Model with Spatial Dependence
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FIGURE 9. Cumulative Response-Path Estimates of LDV Model with Spatial Dependence
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before. Given all this, clearly, even if the LDV model
accurately recovered the LRSS ADE —we will show it
does not—it would still produce biased estimates of
these unit-specific responses.

Figures 8 and 9 illustrate all this, for single-unit
shocks under one set of conditions: ¢, = 0.5 and
py=0.3. Figure 8 compares the N marginal period-by-
period incremental response paths—that is, impulse-
response functions, also known as the responses to
temporary (1-period) shocks—using Equation 28b of
(i) the true STADL model: N gray thinner response-
lines, and heavier black response-line average; (ii) the
estimated LDV model: one dashed response-line; and
(iii) the estimated static-model: one dotted response-
line.?* Labeled “Direct” are effects of shocks to unit i
on outcomes in unit i; “Indirect” are summed responses
in units j # i to shocks in unit i; and “Total” sums Direct

3 To compare the LDV and static models against the true results, we
use the STADL response paths generated from the generating
process (i.e., =2, ¢ = 0.5, and p = 0.3). However, using the estimated
STADL response paths would produce effectively identical results as

it is an unbiased estimator of these paramaters (i.e., [,E] = 2.0009,

E [ﬂ = 0.5003, E[p] = 0.2996). See the Appendix for greater detail.
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and Indirect. Figure 9 plots the analogous cumulative
response paths to permanent single-unit shocks.** As
shown analytically above, the LDV substantially
underestimates the contemporaneous effect for all N
units, and it overestimates the temporal persistence,
giving incorrectly slower decay. Thus, the LDV esti-
mates one smaller, but more-persistent, effect than the
true STADL’s heterogeneous, larger, quicker-decaying
correct effects. The LDV also overestimates (underes-
timates) the cumulative LRSS direct (total) effect at
6.41, to which it arrives more slowly, compared with the
average cumulative LRSS direct effect of 4.39 and total
effect of 10.0 from the correct STADL, to which the
STADL responses arrive more quickly. The static
model, meanwhile, radically overstates direct (and
total) contemporaneous effect and badly mischaracter-
izes (and understates) the direct (and total) cumulative
effects. In sum, even on average —that is, disregarding
the unit-specific variation—the LDV model performs
poorly, and the static nonspatial model very poorly.

3 The responses to all-unit shocks differ only for spatially aware
models, and follow the same patterns as seen in Figures 8 and 9, at
roughly N-times greater scale.
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FIGURE 10. SAR Performance with Temporal Dependence—Bias in p,
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The analogous explorations of SAR-model estima-
tion performance show (Figure 10) the expected infla-
tion bias in p\, when temporal dependence is present but
unmodeled. When ¢, = 0.5, for example, the p, esti-
mates from the SAR model average more than two
times (!) the true value of p,. As researchers more
commonly attach theoretic importance to their spa-
tial-dependence specifications than to temporal depen-
dence—selecting connectivity matrices to test
competing theories of diffusion, for example —this is
per se more substantively concerning than in the LDV
case. Researchers interested in evaluating spatial the-
ories must attend equally highly carefully to accurately
modeling temporal dynamics. Even with spatial pro-
cesses well-specified, and W and the spatial-lag terms
correct and well-measured in the model, failing to
adequately address temporal dependence can produce

wildly inaccurate understandings of the spatial processes
actually operating in the data.”

Regarding g, Figure 11 reveals the expected infla-
tionary bias from failing to model temporal depen-
dence, and this bias increases in the unmodeled ¢,.
However, this bias does not also increase with p,.
Why? First, temporal dependence often, as in our
simulation, far exceeds spatial dependence. Therefore,
the inflationary bias in f from the unmodeled temporal
dynamics weighs more heavily against the downward

35 The Appendix shows that, as with the LDV estimation-model case
above, average reported standard errors in SAR applied to STADL
(s%y,t'y) exceed actual standard deviations of coefficient estimates
across simulation trials and yet 95% confidence intervals rarely
contain true coefficient values; whenever p, # 0 and ¢, # 0, coverage
probabilities are far below 95%, due to the coefficient-estimate bias.
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TABLE 1. Reanalysis of Development and Democracy in Acemoglu et al. (2008)

Dependent variable: Democracy (Polity IV)

1 @)

(3) 4) (5)

Lagged RGDP per capita 0.237*** 0.228*** —-0.011 -0.006 0.053***
(0.01) (0.01) (0.027) (.027) (.0.008)
Temporal lag 0.449*** 0.746***
(.034) (0.021)
Spatial lag 0.134** 0.144** 0.040 0.092***
(0.06) (0.058) (0.050) (0.043)
Observations 854 854 854 854 854
Fixed country effects No No Yes Yes No
Fixed year effects No Yes Yes Yes Yes
LL -162.48 -129.62 253.20 345.07 247.24
DoF (parameters) 850 (4) 842 (12) 709 (145) 709 (145) 841 (13)
BIC 351.96 340.45 472.35 302.09 -406.74

Note: *p < 0.10, **p < 0.05, ***p < 0.01.

bias from overestimated p, than in the reverse scenario.
Second, our simulation parameters, again realistically,
set x also to manifest greater temporal than spatial
dependence: ¢, = 0.6 versus p, = 0.3. Thus, the corre-
lation between x;, and y;, ;, and so the bias from
omitting the latter, is greater than the bias induced by
overestimating p, and the correlation of x;, and y;.*

Although the ﬁestimate isinflated in proportion solely
to the temporal-dependence misspecification, that bias
plus the inflation bias also in p, seriously compromises
the effects estimates. Recall that in spatial-autoregres-
sive models, as in all models beyond the purely linear-
additive and separable, the effect of x on y is not 5, which
is merely the pre-spatiotemporal impulse, butinstead the
effects are given by Equations 23 and 24. For scalar
summaries of these multidimensional effects, we use
the average-direct and average-indirect effects, ADE
and AIE, described above. Comparing the values esti-
mated by the incorrect SAR with those from the true
STADL, we find that SAR overestimates the single-unit-
shock responses, SAR ADE =3.96 versus STADL ADE
=2.03, and radically overestimates the AIE, SAR AIE =
6.76 versus STADL AIE =0.82, and so the average total
effects (ATE), SAR ATE = 10.72 versus STADL ATE
= 2.85. Furthermore, despite the absence of temporal
dynamics from the estimation model, the long-run
steady-state (LRSS) total effects are also modestly over-
estimated: SAR LRSS ATE = 10.72 versus STADL
LRSS ATE = 10.

EMPIRICAL REANALYSES

To demonstrate the importance of modeling spatiotem-
poral dependence appropriately in applied TSCS data
analysis, we conduct two brief reanalyses of prominent

3 The Appendix verifies this: reversing the strengths of the depen-
dencies in x to ¢,= 0.3 and p,= 0.6, the relative magnitude of the bias
in #is reduced, and the extent of the bias is affected more noticeably
by the level of p.
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recent studies. First, we revisit Acemoglu et al. (2008)
to evaluate empirically the development—democracy
connection, our running illustration. Particularly apt
for our purposes, they include temporal autoregressive
dependence and fixed unit and period effects, but they
otherwise neglect spatial dependence. Second, we ana-
lyze data from Lithrmann, Marquardt, and Mechkova
(2020), who develop several new country-year indices
of vertical, horizontal, and diagonal political account-
ability, plus an overall accountability index. The article
focuses on demonstrating the content, convergent, and
construct validity of these measures, but includes ana-
lyses of accountability and infant morality in which they
account for spatial dependence and include fixed unit
and period effects while omitting autoregressive tem-
poral dependence. These reanalyses also nicely parallel
our simulation studies: one models temporal depen-
dence while relatively neglecting spatial dependence;
the other models spatial dependence while relatively
neglecting temporal dependence.

Reanalysis of Acemoglu et al. (2008) on
Development and Democracy

Acemoglu et al.’s (2008) main finding is that the oth-
erwise robust positive relation of economic develop-
ment with democratization disappears with country
fixed effects included. Table 1 reports five models using
their data to regress Polity IV Democracy on lagged
real GDP per capita (RGDPpc), plus various combi-
nations of fixed effects and autoregressive lags, with
column 4 replicating their main two-way-fixed-effects
regression. The results starkly highlight how these
specification choices affect one’s analysis and infer-
ences.

The column 1 model includes a spatial lag created
with a row-standardized nearest-neighbor weights
matrix (autogenerated by our tscsdep R package). With
this spatial autoregression the only spatiotemporal
dependence in model 1, the positive and significant
spatial-lag coefficient may be an overestimate.
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Column 2 adds fixed year-effects. Because democracy
trends globally over the sample period, this addition
greatly improves model fit: log likelihood increases
over 30% (-162.34 to -129.62) and BIC decreases from
351.7 to 340.2. The coefficient estimates are affected
only slightly, but notably p becomes larger and more
significant.

Column 3 adds country fixed effects, and column
4 replaces the spatial lag with a temporal lag, the
latter replicating Acemoglu et al.’s (2008) Table 3,
column 2. These results reflect the contribution from
their analysis: the statistical significance of the
RGDPpc coefficient estimate disappears with coun-
try fixed effects added. The spatial-lag coefficient
also becomes insignificant in column 3, with the
country fixed effects apparently absorbing sizable
time-invariant spatial clustering in both RGDPpc
and democracy. However, the influence on model
fit is less clear. LL improves greatly, but the BIC fit
statistic, which penalizes for overparameterizing the
model and overfitting the sample, gets much worse,
increasing almost 40% (340.2 to 472.3). Scholars can
reasonably disagree about the model-selection impli-
cations of these comparisons, but BIC strongly indi-
cates that the LL improvement from the country
dummies does not merit the 133 degrees of freedom
they consume.

Acemoglu et al.’s (2008) column 4 model improves
on 2 and 3 in terms of both coefficient significance and
model fit, underscoring the crucial importance of tem-
porally autoregressive dynamics in democratic devel-
opment. The final column 5 presents results from the
model with by far the best BIC (-406.6) and LL close to
model 3 despite 132 fewer estimated parameters. The
likelihood-ratio test of Model 5, which includes both
temporal and spatial lag, and period fixed effects,
versus Model 3 yields a chi-square statistic of 12.06,
which with 132 degrees of freedom overwhelmingly
fails to reject: p~1.0. The STADL(s), ) plus time
dummies model is therefore overwhelmingly preferred
by our model-selection criteria. The coefficients on
RGDPpc, the temporal lag, and the spatial lag are all
statistically significant. The comparison of the

STADL (s;),t;) plus time dummies 5 with Acemoglu

et al.’s temporally autoregressive two-way fixed-effects
model 4 is similar to the comparison of the models in
columns 3 and 2: the inclusion of country fixed effects
leads to a significant improvement in LL, but if we
penalize for overparameterizing and overfitting, the
BIC concludes emphatically that the LL increase does
not remotely justify the cost in parsimony terms (con-
sumed degrees of freedom).

Comparing the coefficient estimates across these
models also nicely illustrates in real-data application
the conclusions drawn above in our analytics and sim-
ulations. Failing to include a temporal lag in model 2
results in larger estimates of p and S relative to model 5,
where temporal dependence is directly accounted. This
parallels our simulations’ findings that SAR (here
model 2) suffers inflation bias in p and f when temporal
dependence is present but unmodeled. In the

simulations, the SAR model p averaged about twice
the true STADL p; similarly here, p from model 5 is
0.091, whereas model 2 p is roughly 1.8 times larger at
0.167.

This also has substantively important implications
for how development is estimated to affect democracy
across space and time. The positive, significant tem-
poral-lag and spatial-lag coefficients in our preferred
model 5 indicate that development effects on democ-
racy in one country at one time reverberate autore-
gressively both forward in time and across countries in
space. We can calculate summaries of these average
short-run (first-period) and long-run direct, indirect,
and total effects (ADE, AIE, ATE) as shown in
Equations 28a and 28b. Using model 5 coefficient
estimates, a one-unit single-country shock to RGDPpc
has contemporaneous ADE of +0.053 on democracy
in that same country and AIE of +-0.005 on democracy
in other countries, for a combined ATE of +0.058. The
respective long-run cumulative estimates are LRSS
ADE = +0.209, LRSS AIE = +0.021, and LRSS
ATE = +0.230. These differ considerably from model
(2), where the estimated effects have no temporal
dynamics and are instead instantaneous at ADE =
+0.237, AIE = 40.036, and ATE = +0.273. Although
these latter static SAR-model estimated effects might
seem not too dissimilar from the long-run effects from
spatiotemporally dynamic STADL model 5—differ-
ences of ADE +.028 ~ 13%, AIE + .015 ~ 71%, and
ATE = 4.043 = 19% —the effects from model 2 incur
immediately and fully, so the same-country, same-
period effects from a change in development on
democracy is ADE = +0.053 in model 5 versus ADE
= 40.237 in model 2, more than a fourfold (~447%)
difference.

In short, the choice of spatiotemporal model dramat-
ically affects one’s conclusions both of whether and of
how development relates to democracy.

Reanalysis of Liihrmann, Marquardt, and
Mechkova (2020) on Accountability
and Infant Mortality

In their recent APSR article, Lithrmann, Marquardt,
and Mechkova (2020) demonstrate construct validity
for their overall index of political accountability
(in part) by verifying its negative correlation with
infant-mortality rates. They estimate four time-series-
cross-sectional regressions, both in isolation and in
combination with alternative measures of accountabil-
ity taken from the World Bank and Freedom House.
We reanalyze one of their primary regressions:
MODEL 1 in their Figure 8. The model includes the
new overall accountability index and a large set of
controls, including country and year fixed effects as
some account of spatial and temporal dependence, plus
a regional-average infant-mortality variable. This
regional-average variable is actually a kind of spatial
lag, being the average dependent variable among
regional neighbors, but it is treated as an exogenous
regressor. Beyond the time-period indicators, temporal
dependence and dynamics are not modeled.
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The country indicators account for fixed (long-run)
additive spatial clustering in the outcome, infant mor-
tality rates. Fixed here means constant over the entire
sample period (1960-2010). Additive means the clus-
tering manifests as a single mean shift, as opposed to a
multiplicative effect on some observed or unobserved
covariate or an autoregressive spatially dynamic pro-
cess. The regional-average variable, which instead
gives a spatial-autoregressive process, accounts for
potential time-varying (long-run) spatial clustering. If
there are multiple regional equilibria over time (e.g.,
Southeast Asia 1961-1980; Southeast Asia 1981-2000;
Southeast Asia 2001-2010), though, the regional-aver-
age spatial lag cannot account for this. Country fixed
effects cannot either.

The year fixed effects can account for “short-run”
(unique year-by-year) common shocks that are global
in scope. Again, these are additive: some mean shift
each year that is common across all countries. The same
infant-mortality shock, equal to that year’s single time-
dummy coefficient, hits every country. Year fixed
effects cannot account for common shocks that are
regional or otherwise subglobal in nature — for example
an infant-mortality shock specific to Southeast Asia. If
the relevant regions or groups of countries were known
preanalysis, regional-period shock indicators (e.g.,
Southeast Asia 1987) could be included in regression
models, but the relevant spatiotemporal units are rarely
known, and this strategy quickly overloads degrees of
freedom.

An alternative strategy to account for regional
common shocks is to add spatial lags in first differ-
ences to regression models. Because spatial lags rep-
resent autoregression in space —countries influence
first-, second-, and third-order (etc.) neighbors with
geometrically decaying influence—they provide a
certain flexibility with respect to identifying the geo-
graphical boundaries of shocks that regional indica-
tors do not. The spatial-weights matrix could connect
k-nearest neighbors—for example, around each
country (automatically generated using tscsdep),
whereas regions must be preidentified for indicator-
variable strategies. Spatial lags are also more parsi-
monious than regional-period indicators because a
single spatial lag defines a “neighborhood” for every
sample-unit.

More generally, in STADL models, time-differ-
enced right-hand-side variables produce only short-
run effects in left-hand-side outcomes, whereas
regressors in levels produce long-run effects through
temporal multipliers. Lithrmann, Marquardt, and
Mechkova’s (2020) MODEL 1 includes a de facto
endogenous spatial lag in the regional averages,
which, for our reanalysis purposes, we will retain as
an (erroneously) exogenous regressor and will
assume to reasonably proxy the true spatial-depen-
dence process. MODEL 1 also includes country and
year fixed effects, but no temporal dynamics, a stark
omission given that infant-mortality rates are highly
persistent temporally. We also think heterogeneous
regional infant-mortality shocks are highly plausible.
Therefore, we add to our reanalysis model a temporal
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lag and a time-differenced nearest-neighbor spatial
lag:

Yie = Xuf + iy +pWily, + [ + & + &, (29)

with y;, being infant mortality in unit i in year t,x;;a 1 x
k vector of exogenous covariates for unit-year it, f a k x
1 vector of coefficients, p the spatial-lag coefficient, w;
unit-i’s 1 x N vector of spatial weights on units j, Ay, the
time-t N x 1 vector of differenced outcomes, f; a fixed-
unit effect, g, a fixed-period effect, and &, an i.i.d.
disturbance for unit-time iz. Some algebraic manipula-
tion rewrites this with a differenced outcome (more
convenient for expressing the likelihood):

Ay, = Xy + (9=1)y;1 +pWidy, + f; + g + €. (30)

Although the regional-average variable (treated as
exogenous still for comparability) incorporates some
spatial dependence, its coefficient is likely overesti-
mated because temporal dependence, likely very high
in infant mortality, is omitted, beyond the year effects
—and year effects, due to regional concentration in
infant-mortality shocks, likely miss considerable spatio-
temporal dependence also. Our analyses above suggest
that the unfortunate consequence of this misestimation
of the spatiotemporal dependence is that Lithrmann,
Marquardt, and Mechkova (2020) may have underesti-
mated the strength of their political-accountability mea-
sure’s relationship to infant mortality.

Table 2 column 1 replicates their original results.
Then, with tscsdep, we create a nearest-neighbor spa-
tial-weights matrix and estimate the spatiotemporal-
autoregressive STADL (s),zy') model incorporating
spatially and temporally lagged dependent-variable
regressors, reported in the second column. The LRSS
effects®” of each covariate x in x; are given in the third
column. Comparing the implicit spatial steady state
implied by the regional-average variable in the original
regression, which ignores temporal (autoregressive)
dynamics, with our estimate of the spatial steady-state
effect, we estimate that the former overstates the extent
of spatial dependence by nearly 44% in this compari-
son. More simply and starkly, comparing the first and
third columns, we estimate that the spatiotemporal
LRSS effect of Lithrmann, Marquardt, and Mechko-
va’s (2020) political accountability on infant mortality
rates (—9.500) is more than double the effect they

reported (ﬁ = —4.339) , which mostly ignores these

important spatial and temporal dynamic dependencies.
In column 4 (model 3), we drop the country dummies
from model 2. In contrast with the analysis in Table 1,
we find that the inclusion of country fixed effects here
leads to unambiguous improvement in model fit by
either LL or BIC. Model 2 is clearly the preferred
model among this set.

37 These LRSS use only the temporal multiplier as Liihrmann, Mar-
quardt, and Mechkova do not interpret their implicit spatial-lag
regional-average as such and our added spatial lag is in changes,
not levels.
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TABLE 2. Reanalysis of the Accountability/Infant Mortality Regression in Lihrmann, Marquardt, and
Mechkova (2020)
Dependent variable: Infant mortality

(1) LRSS 3) LRSS

Accountability —4.339*** —-0.190*** —-9.500 0.095*** 5.588
(0.350) (0.038) (0.001)

Foreign aid —0.048 0.016*** 0.800 0.010*** 0.588
(0.031) (0.003) (0.001)

GDP/capita (In) —10.551*** 0.797*** 39.85 0.071** 4176
(0.771) (0.086) (.036)

Economic growth 0.035 -0.019*** —-0.950 —0.022*** -1.294
(0.023) (0.003) (0.003)

Resource dependence 0.040* 0.013*** 0.650 0.008*** 0.471
(0.022) (0.002) (0.002)

Economic inequality -0.072** 0.006 0.300 0.001 0.059
(0.031) (0.003) (0.002)

Population (In) —17.743*** 0.706*** 35.30 0.014 0.824
(1.606) (0.178) (.015)

Urbanization —0.125*** 0.023*** 1.150 -0.006™** -0.353
(0.023) (0.003) (.001)

Political violence 0.332*** -0.016 —-0.800 —-0.006 -0.353
(0.128) (0.014) (.011)

Communist 0.387 —-0.746 -8.750 0.151 8.882
(1.620) (0.175) (0.115)

Infant mortality 0.646*** 0.009*** 0.450 0.010*** 0.588

(regional average) (0.020) 0.002) (.001)

Political corruption index -3.400* -0.254 -12.70 —0.374*** -22.00
(1.902) (0.206) (.094)

Temporal lag (level) -0.020*** -0.017***

(0.002) (0.001)
Spatial lag (difference) 0.033* 0.223***
(0.020) (0.019)

Observations 4,354 4,312 4,312

Dependent variable Level Diff. Diff.

Fixed country effects Yes Yes No

Fixed Year Effects Yes Yes Yes

LL -15,466.54 -5,809.74 -6,656.38

DoF (parameters) 4,149 (205) 4,105 (207) 4,251 (61)

BIC 32,659.1 13,351.9 13,823.3

Note: *p < 0.10, **p < 0.05, ***p < 0.01.

CONCLUSION

This paper considers the implications of the multi-
dimensional dependence, dynamics in both space
and time, that typically manifests in TSCS data. With
both spatial and temporal dependence present, we
have shown that modeling dependence in only one
dimension while neglecting the other biases estimates
of all dependence parameters, usually resulting in
inflation bias in the parameter(s) of the included or
better-specified dimension. Not only does this risk
misunderstandings about whether the observed spa-
tiotemporal patterns are due to temporal or spatial
dependence; it can also threaten researchers’ ability to
effectively discriminate between competing sources of
dependence —dependent outcomes, covariates, or
unobservables —along either dimension. These biases
in the dependence parameter estimates also induce
biases in the covariate coefficient estimates. With

these dependence parameter and covariate coefficient
estimates both biased, spatiotemporal-dynamic and
long-run-steady-state effects are biased too, as are
hypothesis tests and inferences made using these esti-
mates. Furthermore, we demonstrate that these esti-
mation biases with dependence in both space and time
differ from those considered heretofore in textbook
treatments of temporal or spatial dependence alone.
For example, usually omitted spatial interdependence
results in partially offsetting inflationary bias in the
covariate coefficients. However, we showed that in
TSCS analyses, if a time-lagged outcome is included in
the model, then the inflationary bias from the omitted
spatial lag will primarily manifest in this temporal lag,
and that in turn induces partially offsetting attenuation
in the covariate coefficients. Thus, researchers’ previ-
ous methodological understandings, which derived
from single-dimensional studies, can sometimes pro-
vide poor guidance when analyzing TSCS data.
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Given these concerns, we propose that researchers
instead use a spatiotemporal model, the first-order
STADL, as an effective starting point that nests many
of the most-widely used space-time specifications in
political science (e.g., the first-order LDV, ADL,
SAR, and SDM) and combinations thereof. We sug-
gested that beginning with this more-general STADL
specification and using model-restriction tests and
goodness-of-fit statistics to guide model refinement
reduces the risk of unmodeled dynamics, and so of
biased estimation and invalid inferences. Although
estimating these models is not significantly more diffi-
cult than estimating single-dimensional analogs, inter-
pretation of the results raises considerable challenges
because the meanings of both £, and the calculation of

% changes for different STADL models. Therefore,
we have discussed at length the varieties of spatiotem-
porally dynamic effects that different STADL specifi-
cations entail. To better enable researchers to adopt the
strategies presented here, we developed R package
tscsdep (see Appendix for detail; GitHub to download
https:/github.com/judechays/STADL) to automate the
construction of common weights matrices, W, including
for unbalanced panels, estimation of the first-order
STADL model, and calculation of STADL dynamic
and LRSS effects.

We see several priorities for expanding upon our
recommended STADL approach for TSCS data anal-
ysis. First, we have not addressed the topic of order
specification, focusing instead on source specification.
Second, we did not raise the possibility of overfitting
STADL models to sample idiosyncrasies. Finally, we
have not discussed the implications of measurement
error, particularly with respect to W, in spatiotempo-
rally interdependent data. We believe effective
approaches to these challenges extend naturally from
time-series and spatial econometrics. For instance,
autocorrelation and partial autocorrelation (AC,
PAC) functions used to guide time-series order speci-
fication might be extended to spatiotemporal AC and
PAC functions. Likewise, cross-validation and out-of-
sample performance are the gold-standard safeguards
against overfitting and are similarly extendable to spa-
tiotemporal TSCS contexts. On measurement error,
various Bayesian strategies of model averaging (Juhl
2020) and/or combining measurement and estimation
models seem most promising to us. These projects head
our research agenda going forward.
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