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1 INTRODUCTION

The “CG:SHOP Challenge” (Computational Geometry: Solving Hard Optimization Problems) orig-
inated as a workshop at the 2019 Computational Geometry Week (CG Week) in Portland, Oregon,
in June 2019. The goal was to conduct a computational challenge competition that focused atten-
tion on a specific hard geometric optimization problem, encouraging researchers to devise and
implement solution methods that could be compared scientifically based on how well they per-
formed on a database of carefully selected and varied instances. While much of computational
geometry research is theoretical, often seeking provable approximation algorithms for NP-hard
optimization problems, the goal of the CG Challenge was to set the metric of success based on
computational results on a specific set of benchmark geometric instances. The 2019 CG Challenge
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Fig. 1. A feasible sequence of positions that minimizes both makespan and total distance. Robot positions
are shown by circles, target positions by squares.

focused on the problem of computing minimum-area polygons whose vertices were a given set of
points in the plane. This Challenge generated a strong response from many research groups, from
both the computational geometry and the combinatorial optimization communities, and resulted
in a lively exchange of solution ideas.
For CG Week 2020, the second CG:SHOP Challenge became an event within the CG Week pro-

gram, with the top-performing solutions reported in the Symposium on Computational Geometry
proceedings. The schedule for the Challenge was advanced earlier, to give an opportunity for more
participation, particularly among students, e.g., as part of course projects.
The third edition of the Challenge in 2021 continued the 2020 format, leading to contributions

in the SoCG proceedings.

2 THE CHALLENGE: COORDINATED MOTION PLANNING

Coordinating the motion of a set of objects is a fundamental problem that occurs in a large spec-
trum of theoretical contexts and practical applications. A typical task arises from relocating a large
collection of agents from a given start into a desired goal configuration in an efficientmanner, while
avoiding collisions between objects or with obstacles.

2.1 The Problem

The specific problem that formed the basis of the 2021 CGChallengewas the following; see Figure 1
for a simple example.

Problem: Coordinated Motion Planning of unit squares in the plane.
Given: A set of n axis-aligned unit-square robots in the plane, a set S = {s1, . . . , sn } of n distinct

start pixels (unit squares) of the integer grid, and a setT = {t1, . . . , tn } of n distinct target pixels of
the integer grid. In addition, there may be a set of obstacles, consisting of a number of stationary,
blocked pixels that cannot be used by robots at any time.
Goal: The task is to compute a feasible set of trajectories for all n robots, with the trajectory for

robot i moving it from si to ti , such that the overall schedule is optimal with respect to an objective
function.
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In order to be feasible, a trajectory must satisfy a number of conditions. During each unit of
time, each robot can move (at unit speed) in a direction (north, south, east, or west) to an adjacent
pixel, provided the robot remains disjoint from all other robots during the motions. This condition
has to be satisfied at all times, not just when robots are at pixel positions. For example, if there are
robots at each of the two adjacent pixels (x ,y) and (x +1,y), then the robot at (x ,y) can move east
into position (x + 1,y) only if the robot at (x + 1,y) moves east at the same time, so that the two
robots remain in contact, during the movement, but never overlap.

The contest was run on two different objective functions, as follows.

MAX: Minimize the makespan, i.e., the time until all robots have reached their destinations.
SUM: Minimize the total distance traveled by all robots.

2.2 Related Work

Coordinating the motion of many agents plays a central role when dealing with large numbers
of moving robots, vehicles, aircraft, or people. How can each agent choose an efficient route that
avoids collisions with other agents as they simultaneously move to their destinations? These ba-
sic questions arise in many applications, such as ground swarm robotics [17, 18], aerial swarm
robotics [3, 26], air traffic control [5], and vehicular traffic networks [10, 19].
Multi-robot coordination dates back to the early days of robotics and computational geometry.

The seminal work by Schwartz and Sharir [20] from the 1980s considers coordinating themotion of
disk-shaped objects among obstacles. Their algorithms are polynomial in the complexity of the ob-
stacles, but exponential in the number of disks. Hopcroft et al. [12] and Hopcroft andWilfong [13]
proved PSPACE-completeness of moving multiple robots to a target configuration, showing the
significant challenge of coordinating many robots.
There is a vast body of other related work dealing with multi-robot motion planning, from both

theory and practice. For a more extensive overview, see [7]. In both discrete and geometric variants
of the problem, the objects can be labeled, colored, or unlabeled. In the labeled case, the objects are
all distinguishable and each object has its own, uniquely defined target position. In the colored

case, the objects are partitioned into k groups and each target position can only be covered by an
object with the right color. This was considered by Solovey and Halperin [21], who present and
evaluate a practical sampling-based algorithm. In the unlabeled case, objects are indistinguishable
and target positions can be covered by any object.
This scenario was first considered by Kloder and Hutchinson [14], who presented a practical

sampling-based algorithm. Turpin et al. [25] give an algorithm for finding a solution in polynomial
time, if one exists. This is optimal with respect to the longest distance traveled by any one robot
but only holds for disk-shaped robots under additional restrictive assumptions on the free space.
For unit disks and simple polygons, Adler et al. [1] provide a polynomial-time algorithm under
the additional assumption that the start and target positions have some minimal distance from
each other. Under similar separability assumptions, Solovey et al. [23] provide a polynomial-time
algorithm that produces a set of paths that is no longer than OPT + 4m, wherem is the number
of robots and OPT is the total length of the paths in an optimal solution. However, they do not
consider the makespan, only the total path length. On the negative side, Solovey and Halperin [22]
prove that the unlabeled multiple-object motion planning problem is PSPACE-hard, even when
restricted to unit square objects in a polygonal environment.
There is also a wide range of practical related work. Self-configuration of robots as active agents

was studied by Naz et al. [16]. A basic model in which robots are used as building material was
introduced by Derakhshandeh et al. [8, 9]. This resembles Claytronics robots like Catoms; see
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Fig. 2. Parallel reconfiguration, established by [6, 7]: (a) Start configuration. (b) A feasible, parallel re-
configuration move. (c) Parallel reconfiguration moves. (d) Target configuration. See https://www.ibr.cs.tu-
bs.de/users/fekete/Videos/CoordinatedMotionPlanning.mp4 for a video [2].

Goldstein and Mowry [11]. In more recent work, Thalamy et al. [24] consider using scaffolding
structures for asynchronous reconfiguration.
For an instance of parallel reconfiguration, a lower bound for the time required for all robots

to reach their destinations is the time it takes to move just one robot to its destination in the
absence of other robots, i.e., by the maximum distance between a robot’s origin and destination.
Moving a dense arrangement of robots to their destinations while avoiding collisions may require
substantially more time than this lower bound. This motivates the stretch factor, which is defined
to be the ratio of the time taken by a parallel motion plan divided by the simple lower bound.
In recent work, Demaine et al. [6, 7] provide several fundamental insights into these problems

of coordinated motion planning for the scenario with labeled robots. They develop algorithms that
(under relatively mild assumptions on the separation between robots, slightly more generous than
provided in the Challenge) achieve constant stretch factors that are independent of the number
of robots. Thus, these algorithms provide an absolute performance guarantee on the makespan of
the parallel motion schedule, which implies that the schedule is a constant-factor approximation
of the best possible schedule. For densely packed arrangements of robots (without separation as-
sumptions), they proved that a constant stretch factor is no longer possible, and gave upper and
lower bounds on the worst-case stretch factor. See Figure 2 for an illustration.

2.3 Instances

An important part of any challenge is the creation of suitable instances. If the instances are easy
to solve to optimality, the challenge becomes trivial. If instances require a huge amount of compu-
tation to find any decent solutions, the challenge may heavily favor teams that can afford better
computation equipment. The same is true if the set of instances becomes too large to manage with
a single (or few) computers.
A priori, it is difficult to tell how hard finding a good solution to an instance is and which param-

eters influence the difficulty of solving an instance (and in what way). Therefore, it is important
to create a set of instances that are diverse with respect to parameters that are likely to influence
their difficulty.
To create interesting and challenging instances, we thus developed an instance generator that

can be tuned by adjusting several parameters to create diverse instances. Basic parameters control
the size of the map, the density to which the map is filled with robots, and the distribution func-
tions for start and target positions. For the distribution functions, we used uniform distributions
and distributions based on various images, such as microscope images of bacteria colonies. The
image-based instances often have interesting, natural patterns; their accumulations of robots
in some areas were expected to yield challenging instances. Additionally, we created artificial
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Fig. 3. A visualization of two instances with obstacles (dark pixels). Start and target positions of robots are
indicated by red disks and green squares.

bottlenecks and accumulations of robots by inserting obstacles and clusters of robots to increase
the difficulty.
Obstacles are created by randomly placing rectangles with (truncated) normally distributed

sizes. Any area that is completely surrounded by obstacles also becomes an obstacle to ensure that
instances remain feasible. Despite its simplicity, this procedure is able to create various interesting
obstacles after some parameter tuning; see Figure 3 for an example.

The idea of robot clusters is to have groups of robots that are close to each other in the start and
target configurations but have to travel a significant distance as a group. During its motion, such a
robot cluster may have to pass through narrow obstacles or may clash with other clusters, yielding
interesting conflicts. Robot clusters are created by specifying the desired number of clusters and
the parameters of a normal distribution controlling their size. For each cluster, a start and a target
is randomly selected according to the distribution functions controlling the robots’ start and target
positions. A corresponding number of robots is then distributed within size-dependent windows
around the start and target positions of the cluster. These windows may be too small to contain
the start and target positions due to obstacles or robots that have already been placed; in that case,
we retry with a larger window.

As described above, certain parameters (such as the density) can be controlled directly by our
generator. To ensure that our instances are diverse even with respect to parameters for which
this is not possible, we generated a large set of instances by selecting a diverse set of possible
values for each parameter of our generator and then generating several instances for each possible
combination of these parameter values.
This resulted in a set of more than 10,000 candidate instances from which we then selected the

challenge instances as follows.Wemeasured several properties for each of the generated instances,
including the number of robots, the density, the number of robot clusters, the number of robots that
were part of a robot cluster, and the volume and free area of the map. Based on these properties,
we then defined and tuned a distance function between the instances and used a greedy dispersion
algorithm to select a total of 200 diverse instances from the candidates; see Figure 4 for an overview
of the distribution of some important properties across the selected instances.
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Fig. 4. A pair plot of the distribution of our instances according to several important instance properties.

2.4 Evaluation

The contest was run on a total of 203 instances, 3 of which were small, manually generated in-
stances. For either objective function, a team’s score for an instance I is the ratio L/V between L,
the objective value of the best submitted solution for I , andV , the best objective value of any valid
solution for I submitted by the team. The score for each instance is thus a number between 0 and 1,
with 1 being the score awarded to the teams with the best submitted solution and 0 being a default
score. As a consequence, the total score is a number between 0 and 203 for either contest, where
203 is best possible. For each contest (MAX and SUM), participants were compared based on their
total scores; the winner for each contest was the one with the highest score.
In case of ties, the tiebreaker was set to be the time a specific score was obtained. This turned

out not to be necessary.
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Fig. 5. Progress of the teams over time. Team Shadoks built its lead in the MAX-objective very early and
only did minor improvements over the rest of the time. For team gitastrophe, a continuous progress is visible.
Team UNIST, on the other hand, started relatively late. Most teams seem to have only focused on the SUM-
objective, as these scores show the largest jumps, with submissions picking up in the last month of the
competition.

2.5 Categories

The contest was run in an Open Class, in which participants could use any computing device, any
amount of computing time (within the duration of the contest), and any team composition. In the
Junior Class, a teamwas required to consist exclusively of participants whowere eligible according
to the rules of CG:YRF (the Young Researchers Forum of CGWeek), defined as not having defended
a formal doctorate before 2019.

2.6 Server and Timeline

The contest itself was run through a dedicated server at TU Braunschweig, hosted at https:
//cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2021/. It opened at 00:00 AoE on November 20, 2020,
and closed at 24:00 (midnight, AoE), February 15, 2021.
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Fig. 6. The scores over the instance sizes of the 10 best teams. We can see that team Shadoks is nearly
unbeaten on theMAX objective. TeamUNIST is very strong for smaller instances and SUM, but the approach
of team gitastrophe seems to scale better and wins on the larger instances by a significant margin.

Table 1. The Top of the Final Leaderboard for MAX

Position Team Score # Best

Solutions

1 Shadoks 202.9375 202
2 UNIST 174.0180 14
3 gitastropheJ 159.5472 24
4 S10ppy J035J 109.2778 3
5 École PolytechniqueJ 90.8213 3
6 TUeSWarMJ 83.0897 7
7 JoJoJ 75.2449 6
8 BlueTeamTechnionJ 65.0906 7
9 LasteamJ 41.6065 1
10 KleinkariertJ 36.0898 0

“Best solutions” are the best found by any participating team, which does
not exclude the possibility of better solutions, but provides a score of 1 for
that instance; scores are truncated to four decimal places. Junior teams are
indicated by J .

3 OUTCOMES

A total of 17 teams submitted solutions. In the end, the leaderboard for the top 10 teams in both
categories looked as shown in Tables 1 and 2; note that according to the scoring function, a higher
score is better.
The progress over time of each team’s score can be seen in Figure 5; the best solutions for all

instances (displayed by score) can be seen in Figure 6. For a breakdown of individual difficulty of
instances, see Figure 7 (for SUM) and Figure 8 (for MAX).

There were three clear frontrunners, with Team Shadoks placing first and third in MAX and
SUM, respectively; Team UNIST came in second in both categories, while Team gitastrophe placed
third and first in MAX and SUM. A closer look at the scores reveals that Team Shadoks achieved
almost perfect overall in MAX, which was sufficient to place first in the sum of both objective
functions, at 401.4318. Team UNIST managed a balanced outcome for both objective functions, for
a combined score of 365.8073. Conversely, Team gitastrophe achieved the best score for SUM, but
a slightly inferior result for MAX, resulting in a combined score of 358.0415; at the same time, they
also placed first in all three events in the Junior Class.
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Fig. 7. This plot provides some clues for the practical difficulty of instances, indicated by low average scores.
Because the scores are based on the best submitted solution, this implies that some teams with special
approaches were able to obtain significantly better results than the “basic” approach. In the plots, we split
the instances into five quantiles, such that the instances with high average score are shown in yellow, while
darker colors indicate lower average score, i.e., instances considered to be difficult. The most dominant factor
appears to be the number of robots. Because it correlates with many other parameters and the distribution
is not fully homogeneous, considering individual parameters would be highly skewed. We therefore also
show combinations of parameters, especially with the number of robots to counteract the effect that some
parameter ranges have on average significantly fewer or more robots. The diagonals show the distribution of
individual parameters; we can see that the easiest instances appear to be the small ones, because the better
quantiles are nearly full. Scatter plots show combinations of two parameters, with every instance shown as
one point in the plot. We can also see that increasing the density without changing the number of robots
makes the instances more difficult. Moreover, instances without obstacles seem to be easier to solve. Due to
lack of data, not much can be said for clusters, with difficulty mostly correlating with the number of robots
in the available data points.

These top 3 finishers were invited for contributions in the 2021 SoCG proceedings, as follows:

(1) Team Shadoks: Loïc Crombez, GuilhermeD. da Fonseca, YanGerard, Aldo Gonzalez-Lorenzo,
Pascal Lafourcade, Luc Libralesso [4]

(2) Team UNIST: Hyeyun Yang, Antoine Vigneron [27]
(3) Team gitastrophe: Jack Spalding-Jamieson, Paul Liu, Brandon Zhang, Da Wei Zheng [15]
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Fig. 8. A detailed analysis for MAX instead of SUM; refer to Figure 7 for the breakdown into subfigures.

Table 2. The Top of the Final Leaderboard for SUM

Position Team Score # Best

Solutions

1 gitastropheJ 198.4943 57
2 UNIST 191.7893 120
3 Shadoks 180.4952 0
4 cgi@tau 175.0754 6
5 BlueTeamTechnionJ 165.5633 34
6 TUeSWarMJ 146.2244 1
7 S10ppy J035J 133.450 1
8 Team ITIJ 109.4631 0
9 KleinkariertJ 81.7086 0
10 École PolytechniqueJ 75.4734 0

“Best solutions” are the best found by any participating team, which does not exclude
the possibility of better solutions, but provides a score of 1 for that instance; scores are
truncated to four decimal places. Junior teams are indicated by J .
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All three teams engineered their solutions based on a spectrum of heuristics for generating
start configurations, in combinations of a variety of local search methods, including simulated
annealing, k-optimization, and more refined, tailor-made approaches. Details of their methods
and the engineering decisions they made are given in their respective papers.

4 CONCLUSIONS

The 2021 CG:SHOP Challenge motivated a considerable number of teams to engage in intensive
optimization studies. The outcomes promise further insight into the underlying, important opti-
mization problem. Moreover, the considerable participation of junior teams indicates that the Chal-
lenge itself motivates a considerable number students and young researchers to work on practical
algorithmic problems.
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