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Large spatial datasets with many spatial covariates have become ubiquitous in many fields 
in recent years. A question of interest is to identify which covariates are likely to influence 
a spatial response, and whether and how the effects of these covariates vary across space, 
including potential abrupt changes from region to region. To solve this question, a new 
efficient regularized spatially clustered coefficient (RSCC) regression approach is proposed, 
which could achieve variable selection and identify latent spatially heterogeneous covariate 
effects with clustered patterns simultaneously. By carefully designing the regularization 
term of RSCC as a chain graph guided fusion penalty plus a group lasso penalty, the 
RSCC model is computationally efficient for large spatial datasets while still achieving the 
theoretical guarantees for estimation. RSCC also adopts the idea of adaptive learning to 
allow for adaptive weights and adaptive graphs in its regularization terms and further 
improves the estimation performance. RSCC is applied to study the acceptance of COVID-
19 vaccines using county-level data in the United States and discover the determinants of 
vaccination acceptance with varying effects across counties, revealing important within-
state and across-state spatially clustered patterns of covariates effects.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Large spatial data, which include numerous observations and variables on a large spatial domain, have become increas-
ingly common across a number of real-world applications. Using these spatial data, researchers are often curious to discover 
the relationship between a response variable and a set of covariates while also accounting for spatial dependence among 
the observations. In conventional spatial regression models, the relationships between response and a pre-determined set 
of covariates are often assumed to be constants over the spatial domain, and the spatial dependence among observations 
unexplained by the covariates is captured by a spatial random effect or, equivalently, by a spatially varying intercept term. 
However, two problems arise when dealing with large spatial data: First, as a study domain becomes larger, there may ex-
hibit spatially heterogeneous effects of covariates on the response. Second, when many covariates are available, to properly 
study the spatial heterogeneity in covariates effects, variable selection is usually needed to avoid overfitting and improve 
model interpretability.
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To date, most existing methodologies in spatial statistics have separately focused on one of these two issues—that is, 
modeling spatially heterogeneous covariates effects or spatial variable selection in large spatial data. Firstly, spatially varying 
coefficient regression (SVC) is an essential tool to account for spatially heterogeneous covariate effects, as SVC regression 
allows the linear relationships between response and covariates to vary across the spatial domain. Suppose that a response 
variable, y, and p covariates, x, are collected at n locations with (y1, xn), . . . , (yn, xn) ∈ R ×Rp . For each location, the SVC 
model assumes that yi and xi follow

yi = a + xTi bi + εi, (1)

where bi ∈ Rp is the location-specific coefficient vector, a is the global intercept term fixed for all locations, and εi is 
a random error term. To capture the spatial dependence unexplained by covariates, the first entry of xi can be set to 1, 
and then the first entry of bi refers to the spatially varying intercept for the ith location. Among existing SVC models, 
two different kinds of assumptions are usually made on the spatial dependence of bi : The first kind of assumption is 
that bi changes smoothly across the spatial domain. For example, the geographically weighted regression model (GWR, 
Fotheringham et al., 2003) extends the local linear regression to the geographical content to estimate the varying coefficients 
with smooth spatial kernel weighting functions. Gelfand et al. (2003) build a Bayesian framework of SVC by formulating a 
multivariate Gaussian process for bi . Recently, Kim and Wang (2021) propose a generalized SVC with bi approximated 
by smoothing splines. The second kind of assumption is that the effects of covariates vary across the study domain rather 
abruptly across areas within the study domain, thereby forming latent spatially clustered patterns. Under this assumption, Li 
and Sang (2019) propose a spatially clustered coefficient regression (SCC) model to estimate bi , which builds a graph fused 
lasso regularized optimization to encourage homogeneity between bi at two adjacent locations. Zhang et al. (2019) extend 
the SCC model to a regression setting over networks, and Lee et al. (2021) provide a clustered SVC model for spatio-
temporal data using scan statistics. Luo et al. (2021) construct the Bayesian spatially clustered coefficient (BSCC) model with 
a random spanning tree cut partition prior. Each of the studies mentioned above is designed for small p, that is, for studies 
with few covariates. When p is large, model overfitting will occur in most of these approaches, and many also face the high 
computational cost issue, especially the Bayesian methods.

Secondly, in research on high-dimensional statistics, several methods have been proposed for spatial variable selection. 
Zhu et al. (2010) develop a spatial adaptive lasso method for simultaneous model selection and parameter estimation in 
spatial regression for lattice data. Feng et al. (2016) and Shin et al. (2019) consider binary spatial regression models and 
proposed penalized quasi-likelihood methods with spatial dependence for variable selections. Thurman et al. (2015) and 
Choiruddin et al. (2018) propose variable selection methods via sparse regularization for point process models. Yet, each of 
these methods assumes that the regression coefficients of selected variables are constant across space. In doing so, these 
approaches may eliminate relevant variables with complex spatial relationships with the response that only emerge once 
spatially varying covariate effects are undertaken.

Currently, the study of variable selection in SVC models is at an early stage with limited work. Smith and Fahrmeir 
(2007) work on lattice data and propose a Bayesian variable selection procedure for SVC models. Reich et al. (2010) propose 
a Bayesian variable selection of Gaussian process-based SVC with a stochastic search algorithm to select important covari-
ates, which require large computation when the numbers of locations and covariates are large. Wheeler (2009) and Li and 
Lam (2018) provide GWR-based variable selection method with lasso and elastic-net penalties respectively. Both of them 
return variable selection results at each location that may not be easy to interpret in real applications. Recently, Dambon 
et al. (2021) provide a variable selection model for Gaussian process-based SVC models using optimization and covariance 
tapering to reduce computation. Each of these methods is based on the assumption of smoothly varying coefficients. There-
fore, a generally flexible and computationally efficient model is needed for researchers to implement simultaneous variable 
selection and identification of spatial patterns in regression coefficients, especially in the case that the coefficients vary with 
abrupt changes across the study domain with spatially clustered patterns.

Under the assumption that coefficients vary abruptly, we propose a new efficient regularized spatially clustered coeffi-
cient (RSCC) model which selects important variables and estimates spatially varying coefficients simultaneously. Our model 
can be seen as an extension of the spanning tree graph fused lasso-based SCC model proposed by Li and Sang (2019), 
with a newly designed regularization that differs from their method in several respects. Our regularization takes an additive 
form of two terms: The first term is a fusion penalty guided by a carefully designed variable-dependent chain graph that 
delivers covariate-specific spatially clustered patterns. The second term is a group lasso penalty to achieve spatial variable 
selection. This specific selection of the regularization term can speed up the algorithm and achieve low space and time 
complexity, thereby making the model well suited for large spatial datasets. This contrasts with naïvely combining existing 
general or tree graph-based fusion and group sparsity penalties, which would encounter severe computational challenges. 
In particular, we introduce the idea of adaptive learning to allow for adaptive weights and adaptive graphs in our regular-
ization terms, extending upon current SCC regularization methods that are built upon fixed graphs (e.g. Li and Sang (2019); 
Sass et al. (2021)). Computationally, we provide an efficient proximal gradient algorithm tailored for our model which has 
low computational complexity. Theoretically, we provide the non-asymptotic theoretical results to justify the proposed new 
regularization in our approach. We also show that the adaptive method has a faster convergence rate than its non-adaptive 
counterpart.

In addition, the proposed RSCC model has several other advantages. It allows the investigation of different clustered 
patterns with great flexibility in their shapes for different regression coefficients. Moreover, the number of selected variables 
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and clustered patterns are both treated as unknown and determined from data-driven approaches. Finally, since the method 
is built upon graphs, it can be used beyond the spatial context to solve the variable selection problem in other clustered 
coefficient models where observations can be related by a graph or a network. For examples of such contexts, see our 
discussion in Section 7.

To demonstrate the utility of the RSCC model to real data, we undertake a study of county-level COVID-19 vaccination 
rates in the United States. Several recent studies have shown that COVID-19 vaccination uptake varies by county and is 
not consistently correlated to key characteristics (Tolbert et al., 2021; Mollalo and Tatar, 2021). As these studies demon-
strate, the novelty of the recent pandemic means researchers have yet to arrive at a canonical set of covariates that explain 
cross-county vaccination rates. Therefore, rather than only focus on a small pre-defined set of variables, we instead collect 
38 social, demographic, and economic variables to serve as the candidate set of potential covariates. Our analysis of 3076 
counties identifies a number of influential factors (e.g., education, households, and cumulative COVID-19 cases) that gov-
ern vaccination acceptance. Moreover, our findings also indicate several interesting within-state and across-state spatially 
clustered patterns of covariate effects.

The paper is organized as follows. In Section 2, we propose our RSCC model. Section 3 describes the efficient algorithm 
for the implementation of our model. In Section 4, we present the theoretical results of this model. Sections 5 and 6 include 
the simulations to illustrate the model performance and the application to the COVID-19 vaccination acceptance. We offer 
discussions in Section 7. The proofs, additional simulation results, and information about the real data are provided in the 
supplementary material.

2. Methodology

2.1. Spatially clustered coefficients

We first review the original spatially clustered coefficients (SCC) model described by Li and Sang (2019) that ignores 
variable selections. To begin with, SCC encodes the spatial proximity information into a graph G = (V, E), where the vertex 
set V represents n locations, and the edge set E consists of the edges between locations. G is required to be a connected 
graph that for each pair of vertices in V , there is a path of edges in E connecting them. When we have point-referenced 
spatial data, one popular choice is to construct the nearest neighbor graph that connects each vertex with its K -nearest 
neighbors (K -NN graph) or neighbors within a certain radius r (r-NN graph). In practice, the number of neighbors in K -
NN graph or the radius in r-NN graph needs to be chosen with care to guarantee that G is a connected graph. Another 
approach is to use the Delaunay triangulation graph (Lee, 1980). When spatial data are areal units (polygons), one may 
construct G treating areal units as point-referenced data using the centroid point to represent each unit. Alternatively, G can 
be constructed to reflect the bordering information between areal units. We call this kind of G built by spatial information 
as a spatial graph.

Based on G = (V, E), SCC estimates the coefficient matrix B = (b1, . . . , bn)T ∈Rn×p of the SVC model (1) by solving

argmin
a,B

1

2n

n∑
i=1

(yi − a − xTi bi)
2 + λP (B;G), (2)

where

P (B;G) =
p∑

j=1

∑
(i1,i2)∈E

|bi1, j − bi2, j| (3)

is the graph fused lasso penalty (Hoefling, 2010), which incorporates graph information to pursue latent clustered patterns of 
regression coefficients. For the jth covariate, the graph fused lasso pursues a sparse solution on bi1, j − bi2, j for (i1, i2) ∈ E . 
When bi1, j − bi2, j = 0, the ith1 and ith2 locations shares the same coefficient. On the contrary, the non-zero elements of 
bi1, j − bi2, j correspond to a set of edges which, if removed from the graph, will partition the vertices of G into a number of 
disjoint connected components. These edges can be called as the cutting edge of G induced by P (B; G). By using a spatial 
graph in P (B; G), the SCC method naturally partitions locations into several disjoint groups that locations in the same group 
are spatially continuous and share the same coefficient. Thus, each regression coefficient is piecewise constant and can be 
interpreted as having a spatially clustered pattern in the spatial domain. For different covariates, P (B; G) also allows them 
to have different latent clustered patterns in their coefficients.

The main issue of the SCC model in (2) is that solving the regression problem with the general graph fused lasso is 
usually computationally expensive. Though researchers have developed several alternating direction methods of multipliers 
(ADMM) (Boyd et al., 2011) and path following algorithms (Shen and Huang, 2010; Arnold and Tibshirani, 2016) to solve 
the graph fused lasso problems, their computation cost could be high for a large general graph G . To solve this problem, Li 
and Sang (2019) replace the original spatial graph with a common fixed spanning tree graph for all covariates.

Moreover, the SCC model in (2) could not achieve variable selection, and when p is large, it faces the problem of overfit-
ting and is unidentifiable. To achieve variable selection and varying coefficient estimation simultaneously, we propose a new 
3
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regularized SCC (RSCC) model with two sources of constraints on the structure of B: one focusing on spatial heterogeneity 
like (3), and one focusing on variable selection. Specifically, RSCC estimates B by minimizing the objective function:

L(a,B) = 1

2n

n∑
i=1

(yi − a − xTi bi)
2 + λ1PC (B) + λ2PV (B), (4)

where λ1 and λ2 are two penalty parameters, PC is the penalty function to capture the spatially clustered patterns of B, 
and PV is the penalty function to select relevant variables. In the following paragraphs, we will discuss the specific design 
of PC and PV to achieve an effective and efficient model.

2.2. The selection of PC

The straightforward selection of PC is to directly use the graph fused lasso in (3). However, the computational issue of 
the graph fused lasso is even aggravated in our model with two regularization terms, and hence a penalty enabling efficient 
computations is desired for PC .

Padilla et al. (2018) show that when a graph has a certain simple structure such as a chain or a tree graph structure, 
one can take advantage of these structures to design efficient algorithms to solve the graph fused lasso problem. We are 
motivated to consider a similar strategy to replace the original graph in the graph fused lasso penalty with a simple graph 
chosen in an adaptive fashion, which includes the proximate pairs of samples that are likely to share similar coefficients. 
Different from selecting a tree graph in the SCC model by Li and Sang (2019), we select to design a chain graph in our 
model, since, among the many choices of the simple graph, the chain graph could achieve the fastest computation (Padilla 
et al., 2018). The main advantage of the chain graph lies in the fact that it provides an order of n observations so that the 
graph fused lasso is reduced to a 1-dimensional fused lasso problem, for which several existing efficient algorithms (Barbero 
and Sra, 2018; Zhou et al., 2012) can be adapted to solve the problem.

2.2.1. Variable dependent chain graph
Care needs to be taken to generate a chain graph from the original spatial graph G because naïvely choosing one would 

severely sacrifice model accuracy. Compared to the original graph, a chain graph may include edges that connect two 
disconnected vertices in the original graph. When partitioning a chain graph by cutting a set of edges, the number of 
disjoint connected components will be the number of cutting edges plus 1, which means that the number of piecewise 
constants in a variable’s spatially clustered coefficient is equal to the number of estimated cutting edges plus 1 when using 
a chain graph in the graph fused lasso. Thus, with a poor choice of chain graph, the number of piecewise constants in a 
variable’s spatially clustered coefficient estimated by the model will be much larger than that with the original graph.

We now briefly introduce two essential tools of graph analysis, the minimum spanning tree (MST) and the depth-first 
searching (DFS) algorithms, which are used to design a new chain graph for our model.

MST is a subgraph of the original G . By assuming that each edge in G has a corresponding weight, MST is the spanning 
tree of G that connects all vertices of the original graph with no cycles and with minimum total edge weights. Thus, the 
vertex set of MST includes all n observed locations, and the edge set of MST is an edge subset of size n − 1 of the original 
graph. When the weight of each edge reflects the spatial distance of its two vertices, MST is in general capable of preserving 
spatial proximity information in G .

DFS is a commonly used algorithm to generate a chain structure from a graph, which travels from a root vertex and 
explores other vertices through edges along each branch as far as possible before backtracking. As proved by Padilla et al. 
(2018), the graph fused lasso penalty constructed over the DFS-induced chain will not exceed twice the graph fused lasso 
penalty over the original graph. In our situation, this property helps us control the number of edges connecting observed 
locations with different coefficient values in the proposed chain graph.

As different variables could have different clustered patterns of coefficients, we propose a variable-dependent chain graph 
with adaptive learning. For each variable, we generate a specific chain graph G j: We begin with an initial estimator Bini of 
B, whose choice will be discussed in Section 3.4. For the jth variable, |binii1, j

− binii2, j
| can be used to reflect the variable-

specific difference between locations i1 and i2, and a smaller value of |binii1, j
− binii2, j

| indicates that i1 and i2 are more likely 
to have the same coefficient in reality. Using |binii1, j

− binii2, j
| as the edge weight, we build a MST of the original graph. Then, 

we apply the DFS algorithm to this MST to generate the variable-dependent chain graph G j , referred to as the adaptive 
MST-DFS-induced chain. Fig. 1 provides an example to generate G j with 9 vertices.

Algorithm 1 summarizes the steps to generate the proposed chain graphs. Indeed, theoretically, we will prove in The-
orem 3 in Section 4 that under mild assumptions, the number of edges connecting two observed locations with different 
piecewise constants in the jth spatially varying coefficient in the adaptive MST-DFS-induced chain will not exceed 2(R j − 1)
as n → ∞, where R j is the true number of piecewise constants. This nice property guarantees a good balance between 
model accuracy and computational efficiency when using the adaptive MST-DFS-induced chain in the graph fused lasso.

2.2.2. Chain graph-based adaptive fused lasso
We now provide the specific form of PC with G j, j = 1, . . . , p below. For the jth variable, its chain graph G j defines a 

direct path of n samples, i.e. ( j1 → j2 → ·· · → jn). To reduce the estimation bias of the lasso-type penalty and improve 
4
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Algorithm 1 Variable-dependent Chain Graph.
Input: G = (V, E), an initial estimator Bini of B.
for j = 1, 2, . . . , p : do

(1) Construct a MST of G with |binii1, j
− binii2, j

| as the edge weight of (i1, i2) ∈ E .
(2) Apply the DFS algorithm to the MST in (1) to generate a chain graph, denoted as G j .

end for
Output: G j , j = 1, . . . , p.

Fig. 1. An example of deriving the adaptive MST-DFS-induced chain from the original graph for a variable: Left-top: The original graph whose values on 
vertices represent an initial estimation of coefficients; Right-top: For each edge, using the absolute difference between the values of its two vertices as the 
edge weight to generate an MST from the original graph, showing in red color; Left-bottom: The DFS algorithm is applied on the MST. The green arrows 
show the path of DFS to explore all vertices of the MST; Right-bottom: The order that DFS reaches the vertices forms a chain graph, which is the adaptive 
MST-DFS-induced chain. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

variable selection accuracy, we also adopted adaptive weights (Zou, 2006; Viallon et al., 2013) in PC . Thus, our proposed PC

is a chain graph-based adaptive fused lasso penalty with the form:

PC (B) = PC (B;G1, . . . ,Gp) = λ1

p∑
j=1

n−1∑
i=1

w( ji , ji+1), j|b ji , j − b ji+1, j|,

where w( ji , ji+1), j denotes the adaptive weight for the edge ( ji, j ji+1 ) in G j determined from an initial estimator Bini , and 
b ji , j denotes the ( ji, j)

th entry of B.
For the sake of notation simplicity, we use w j,i to represent w( ji , ji+1), j . Let H j ∈ R(n−1)×n be the incidence matrix of 

G j ; the (i, ji)th entry of H j is equal to 1, the (i, ji+1)
th entry of H j is equal to −1 for i = 1, 2, . . . , n − 1, and all the other 

entries of H j are 0. Denote W j ∈ R(n−1)×(n−1) as the diagonal matrix with w j,i along the diagonal.
Then, PC (B) can be written in the matrix form:

PC (B) = λ1

p∑
j=1

∥∥W jH jB j
∥∥
1 . (5)

2.3. The selection of PV

We then introduce the form of PV to impose sparsity regularization to determine the non-zero columns B j . Note that 
when a spatial covariate is not a true predictor, the corresponding column of regression coefficients of this covariate be-
comes a zero vector. By treating the parameters in each B j as a group, PV should help achieve the group selection of 
parameters and hence identify important spatial covariates to avoid over-fitting in estimation and improve the interpreta-
tion of the model. There are many existing methods that focus on group selection (see (Huang et al., 2012) for a selective 
review of the literature). In this paper, we choose the adaptive group lasso for the form of PV , since the adaptive group 
lasso method can achieve the oracle property for the regression problem with group selection (Wang and Leng, 2008).

Specifically, PV (B) takes the form

PV (B) =
p∑

u j
∥∥B j

∥∥
2 , (6)
j=1

5
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where u j is a weight parameter for adaptive learning determined from an initial estimator Bini .

2.4. Sparse spatially clustered coefficients

Denote X = (x1, . . . , xn)T ∈ Rn×p as the design matrix. Let X̃ = [
diag(X1), . . . , diag(Xp)

] ∈ Rn×(np) where X j ∈ Rn is the 
jth column vector of X. Denote vec(B) = (BT

1 , . . . , BT
p )

T . By incorporating the penalties PC in Eq. (5) and PV in Eq. (6), we 
have the final matrix form of the objective function which we minimize to obtain an estimator of θ = (a, vec(B)T )T ∈Rnp+1:

L(θ) = 1

2n

∥∥∥Y− 1a − X̃vec(B)

∥∥∥2

2
+ λ1

p∑
j=1

∥∥W jH jB j
∥∥
1 + λ2

p∑
j=1

u j
∥∥B j

∥∥
2 . (7)

It is noticeable that L(θ) is a convex function of θ , which can be efficiently solved by the convex optimization method 
to be introduced in Section 3.

3. Algorithm

3.1. Proximal gradient method

Taking advantage of the fact that the proximal operators of PC and PV can be solved efficiently, we minimize the convex 
objective function in Eq. (7) using the proximal gradient method.

Denote the first term of L(θ) as f (θ) = 1
2n

∥∥∥Y− 1a − X̃vec(B)

∥∥∥2

2
. Firstly, with a fixed point θ t , we bound L(θ) by:

L(θ) ≤ f (θ t)+ < θ − θ t,∇ f (θ t) > + l

2

∥∥θ − θ t
∥∥2
2 + PC+V (B),

where PC+V (B) = PC (B) + PV (B), ∇ f (θ t) is the gradient of f (θ) at θ t , < ·, · > denotes an inner product operator, and l is 
the Lipschitz constant of ∇ f (θ) that |∇ f (θ �) − ∇ f (θ�)| ≤ l 

∥∥θ � − θ�
∥∥
F for any θ �, θ� ∈ Rn×p . We can choose l as two times 

of the largest eigenvalue of (1, X̃)T(1, X̃)/n (Beck and Teboulle, 2009).
Secondly, the proximal gradient method updates the value of θ iteratively with the previous point θ t by solving:

θ t+1 = argmin
θ

1

2
‖θ − Z‖22 + 1

l
PC+V (B), (8)

where Z = θ t − (1/l)∇ f (θ t). We observe that updating θ via solving Eq. (8) is equivalent to update a and the columns of B
separately via at+1 = Z0 and

Bt+1
j =argmin

B j

1

2

∥∥B j − Z j
∥∥2
2 + λ1

l

∥∥W jH jB j
∥∥
1 + λ2u j

l

∥∥B j
∥∥
2 , (9)

for j = 1, 2, . . . , p, where (Z0, ZT
1 , . . . , ZT

p )
T = Z. Eq. (9) belongs to the proximal operator problem associated with the com-

bination of the weight-included fused lasso and the group lasso.
We further improve the above proximal gradient method with two computational strategies. First, since L(θ) is a convex 

function, a that minimizes L(θ) should be a solution of ∂L(θ)
∂α = 0. By simple algebra, we have a = Ȳ − X̄vec(B), where Ȳ is 

the mean value of Y and X̄ contains the mean value of each column of X̃. Thus, we update at+1 by

at+1 = Ȳ − X̄vec(Bt+1), (10)

instead of at+1 = Z0. Second, we adopt the fast version of proximal gradient methods proposed by Beck and Teboulle (2009), 
which replaces the fixed value θ t in Z by:

θ̃
t = θ t + αt−1 − 1

αt
(θ t − θ t−1). (11)

By using this strategy, the number of iterations of proximal gradient methods is proved to improve from O (1/ε) to O (1/
√

ε)

to achieve a convergence tolerance of ε .
We summarize the details of our proximal gradient method in Algorithm 2.
6
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Algorithm 2 Proximal Gradient Method.

Input: Y, X, G j, j = 1, . . . , p, λ1, λ2, l, ε , α−1 = 1, θ0 = θ−1 = 0.
for t = 0, 1, 2, . . . : do

Calculate αt = 1 + √
1+ 4(αt−1)2/2;

Construct θ̃ t
by Eq. (11);

Calculate (Z0, ZT
1 , · · · , ZT

p ) = Z = θ̃
t − (1/l)∇ f (θ̃

t
);

Update Bt+1 by solving Eq. (8) and get at+1 by Eq. (10);
end for
Stopping criterion: Keep the above iteration until t satisfies L(θt ) − L(θ t+1) < ε
Output: θ t+1.

3.2. Solving the proximal operator

In this subsection, we discuss the way to solve Eq. (9) efficiently. We first define the standard form of the proximal 
operator associated with the adaptive fused lasso and the group lasso as follows: For any vector z ∈ Rn , the proximal 
operator associated with the adaptive fused lasso and the group lasso is to solve:

proxF L+GL(z, λ1,λ2) = argmin
β

‖z− β‖22 + λ1 ‖WHβ‖1 + λ2 ‖β‖2 , (12)

where H ∈ (n − 1) × n is a matrix whose (i, i)th entry is 1 and (i, i + 1)th entry is -1 for i = 1, 2, . . . , n − 1. The other entries 
of H are all 0. W is a diagonal matrix containing the adaptive weights. It is easy to check that Eq. (9) is a specific case of 
Eq. (12) by reordering the rows of W jH jB j and choosing particular values for z, β , λ1, and λ2. To efficiently solve Eq. (12), 
we propose the following theorem:

Theorem 1. Define:

proxF L(z, λ1) = argmin
β

‖z− β‖22 + λ1 ‖WHβ‖1 ,

and

proxGL(z, λ2) = argmin
β

‖z− β‖22 + λ2 ‖β‖2 .

proxF L(z, λ1), proxGL(z, λ1), and proxF L+GL(z, λ1, λ2) have the following relation:

proxF L+GL(z, λ1, λ2) = proxGL
(
proxF L(z, λ1), λ2

)
.

Theorem 1 can be proved in a similar way to Theorem 1 in Zhou et al. (2012). Theorem 1 shows that Eq. (12) can 
be computed through a two-step strategy which involves proxF L(z, λ1) and proxGL(z, λ2) respectively. For proxGL(z, λ2), its 
analytical solution is:

proxGL(z, λ2) =
{
max(0,‖z‖2 − λ2)

‖z‖2

}
z.

For proxF L(z, λ1), several efficient algorithms with O (n) computational complexity have been developed based on the ideas 
of taut string and dynamic programming (Johnson, 2013; Barbero and Sra, 2018). Condat (2013) develops another fast 
algorithm via the analysis of KKT conditions, which is easy to implement and only requires n + 7 storage. Precisely, if m is 
the number of nonzero entries in H ·proxF L(z, λ1), the computational complexity of Condat’s method is O (nm). In this paper, 
we use the weight-included version of Condat’s method for its easy implementation. The detailed algorithm is provided in 
the supplementary material.

Overall Computational Complexity: We now make a summary of the overall computational complexity to solve RSCC. In 
Algorithm 1, the computational complexity of finding the MST is O (|E | logn) where |E | is the number of edges in the orig-
inal graph, and the computational complexity for running the DFS algorithm on the MST is O (n). Thus, the computational 
cost of constructing the adaptive MST-DFS included chains for all variables is O (p|E | logn). In Algorithm 2, to achieve a 
convergence tolerance of ε , the number of iterations should be at least O (1/

√
ε). As the smallest computational complexity 

to solve each small problem in Eq. (9) is O (n) (Barbero and Sra, 2018), the computational cost for Algorithm 2 is O (np/
√

ε). 
To conclude, the overall computational complexity of RSCC is O (p|E | logn + np/

√
ε), which is applicable for large datasets.

3.3. Tuning parameters

There are two tuning parameters in our model: λ1 for seeking spatially clustered patterns and λ2 for variable selection. To 
make a proper choice of their values, we use the generalized information criterion (GIC). GIC is proposed by Fan and Tang 
7
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(2013) to select the tuning parameters in penalized generalized linear models. Different from the traditional information 
criteria such as the Bayes information criterion (BIC), GIC is applicable to the case when the number of parameters increases 
at most exponentially with the sample size n. Our model considers the case that includes (np + 1) parameters in total with 
p = O (nc) for some c ≥ 0, and then we calculate its GIC by:

GIC(λ1, λ2) = log

[
1

n

n∑
i=1

(yi − a − xibi)
2

]
+ 1

n
log {log(n)} log(n) · df(λ1, λ2), (13)

where df(λ1, λ2) is the degree of freedom of the model with tuning parameters (λ1, λ2) and is estimated by the number 
of selected edges plus the total number of predicted cutting edges in G1, . . . , Gp . Theorem 3 of Fan and Tang (2013) shows 
that the GIC defined in Eq. (13) can consistently identify the true model.

In practice, assume that there are m1 and m2 candidates for the values of λ1 and λ2 respectively, and we need to find 
the combination of (λ1, λ2) leading to the smallest GIC. Instead of running m1m2 models with different value combinations 
of penalty parameters separately, we adopt the strategy of warm starts (Hastie et al., 2015) to sequentially solve m1m2
models, which dramatically reduces the overall computing time.

3.4. Initial estimator and adaptive weights

An initial estimator Bini of B is needed for building adaptive MST-DFS-induced chains and determining adaptive weights 
W j and u j in Eq. (7). With Bini, u j and W j could be determined by:

u j = (‖Bini
j ‖2)−α and W j = diag[(H jB

ini
j )−α].

α is a tuning parameter that is usually set to 1 or 2.
The traditional selection of Bini is B’s ordinary least square (OLS) estimator, whereas, in our problem, the number of 

parameters is larger than the number of observations, and the OLS estimator is not unique. Instead, we run the non-
adaptive version of RSCC to get the initial estimator that we will prove is consistent in Theorem 2 under mild conditions. 
Specifically, we build a common MST-DFS chain graph G∗ for all variables by first finding the MST of the original graph 
with the Euclidean distance between observed locations as the weight of each edge and then run the DFS algorithm on this 
MST to get the chain graph G∗ . By using ui = 1, W j = In−1, and G j = G∗, j = 1, . . . , p, we solve Eq. (7) and obtain the initial 
estimator Bini.

4. Theorem

We now show that besides fast computing, RSCC achieves theoretical guarantees for estimation. To make a brief overview, 
we first provide a non-asymptotic bound for the estimation error of our model that depends on the number of truly related 
variables and the number of edges in graphs connecting locations with different coefficients in Theorem 2. Then we provide 
Corollary 1 that shows the selection consistency of our estimator. Finally, Theorem 3 shows the relationship between the 
number of piecewise constants in the spatially clustered coefficients and the number of edges connecting locations with 
different coefficient values in the variable-dependent chain graph.

For simplification, we assume that the global intercept term a is known and fixed at 0 in the following discussion. All 
theoretical results are also applicable to the case of unknown a since a can be generalized to a spatially clustered coefficient 
with only one piecewise constant.

We first introduce the notations used in this section. Use B∗ to denote the true value of B and B̂ to denote the estimator 
of B from Eq. (7). We define a series of index sets J , I1, · · · , Ip to indicate the support space of B∗:

J = { j :
∥∥∥B∗

j

∥∥∥
2
�= 0, j = 1,2, . . . , p},

I j =
{{i ∈ {1,2, . . . ,n − 1} : Hi, jB

∗
j �= 0} if j ∈ J ,

∅ if j /∈ J ,

(14)

where Hi, j denotes the ith row of H j . Clearly, J contains the indexes of truly related variables, and I j collects the edges in 
G j that connect locations with different coefficient values on the jth variable. We further define H̃ j = (HT

j , 1n/n)T ∈ Rn×n . 
It is easy to check that H̃ j is always a full rank matrix. Let H̃−1

j denote the inverse matrix of H̃ j . We decompose H̃−1
j =

(H−
j , 1−

j ) so that H−
j ∈Rn×(n−1) contains the first n − 1 columns of H̃−1

j , and 1−
j ∈Rn represents the last column of H̃−1

j .
To present the theoretical result of our method, we introduce three assumptions:

Assumption 1. There exists a constant γ > 0 such that for any V ∈ C(B∗; λ1, λ2),

1 ∥∥∥X̃vec(V)

∥∥∥2 ≥ γ ‖V‖2F ,

n 2

8
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where

C(B∗;λ1, λ2) = {V ∈Rn×p :
∑
j∈J

λ1

∥∥∥WIC
j , j

HIC
j , jV j

∥∥∥
1
+

∑
j∈J C

[
λ1

∥∥W jH jV j
∥∥
1 + λ2u j

∥∥V j
∥∥
2

]

< 3
∑
j∈J

[
λ1

∥∥WI j , jHI j , jV j
∥∥
1
+ λ2u j

∥∥V j
∥∥
2

]
}.

WI j , j denotes the sub-matrix of W j containing rows corresponding to the indexes in I j . HI j , j , WIC
j , j , and HIC

j , j are defined in the 
same way.

Assumption 2. ε1, ε2, . . . , εn are independent sub Gaussian random variables that P (|εi| > t) ≤ 2exp(−t2/2σ 2
i ).

Assumption 3. X, W j , and μ j follow ‖X‖∞ < ∞, max j∈J ‖W−1
j ‖∞ < ∞, max j∈J

∥∥∥WI j , j

∥∥∥∞ < ∞, max j |u−1
j | < ∞, and 

max j∈J |u j | < ∞.

Assumption 1 requires a restricted strong convexity property at B∗ . Assumption 2 requires that the distribution of the 
error term is not too dispersed. Assumption 3 restricts the 
∞ norms of covariates and weights. All assumptions are com-
monly adopted in high-dimensional regression model literature (see, e.g., Bühlmann and Van De Geer, 2011; Hastie et al., 
2015).

Theorem 2. Under Assumption 1, for λ1/2 > max j∈J
∥∥∥ 1
n εT diag(X j)H

−
j W

−1
j

∥∥∥∞ and λ2/2
√
n > maxi, j | 1n εi Xi ju

−1
j |,

∥∥∥B̂− B∗
∥∥∥
F

≤ 6(λ1a1 + λ2a2)

γ
, (15)

and

1

2n

∥∥∥X̃vec(B̂− B∗)
∥∥∥2

2
≤ 18(λ1a1 + λ2a2)2

γ
,

where a1 = √|J |max j∈J
√|I j |max j∈J

∥∥∥WI j , j

∥∥∥∞ and a2 = √|J |max j∈J |u j |.

Both a1 and a2 include |J |, which shows that the upper bound of the estimating error depends on the number of truly 
related variables. a1 also includes max j∈J

√|I j |, which is the max number of edges that connect locations with different 
coefficient values among the variable-dependent graphs.

Under Assumption 2, we can prove that the smallest rates of λ1 and λ2 satisfying the requirements of Theorem 2
are λ1 = O (C1

√
log(n|J |)/n) and λ2 = O (C2

√
log(n)/n) as n → ∞, where C1 = max j∈J ‖X j‖∞ max j∈J ‖W−1

j ‖∞ and C2 =
max j ‖u−1

j X j‖∞ . Accordingly, we establish Corollary 1 to provide the selection consistency of our estimator.

Corollary 1. If |J | max j∈J |I j | = o(n/ log(n)), under the Assumptions 1, 2 and 3, there exists δ > 0 such that
(i) ‖B̂ j‖2 < δ ⇔ j /∈J ; (ii) |Hi, jB̂ j | < δ ⇔ i /∈ I j , with probability tending to 1 as n → ∞.

We now investigate how adaptive learning would improve the convergence rates in Theorem 2 and Corollary 1. First, 
we consider that W j and u j are built by a consistent estimator of Bini following the approach in Section 3.4 with α = 1. If 
‖Bini − B∗‖F = O (

√
log(n)/n) for example, then max j∈J ‖W−1

ICj , j
‖∞ = O (

√
log(n)/n) and max j∈J C ‖u−1

j ‖∞ = O (
√
log(n)/n). 

Thus, the smallest rate of λ1 reduces to O (C∗
1

√
log(|J |max j∈J |I j |)/n) to satisfy the requirements of Theorem 2 where 

C∗
1 = max j∈J ‖X j‖∞ · max j∈J ‖W−1

I j , j
‖∞ . Meanwhile, the rate of λ2 does not change, but ‖X‖∞ < ∞ in Assumption 3 can 

be relaxed to ‖X j‖∞ < ∞ for j ∈ J and ‖X j‖∞ = O (
√
n/ log(n)) for j ∈ J C . The results of Corollary 1 will be improved 

accordingly.
Second, we show the advantage of using the variable-dependent chain graph over the non-adaptive common chain graph. 

According to the definitions in Eq. (14), the rate of |J | only depends on B∗ , whereas the rate of |I j | depends on B∗ as well 
as H j constructed from the adaptive MST-DFS-induced chain G j . We provide the next Theorem:

Theorem 3. Denote R j as the true number of piecewise constants in the jth variable’s spatially clustered coefficient. Suppose that each 
H j is constructed from the adaptive MST-DFS-induced chain G j described in Section 2.2 with the assumptions: (i) The sub-graph of 
locations with the same coefficient in the jth variable is connected in G; (ii) Bini is a consistent estimator of B. Then for I j defined by 
Eq. (14) with H j , |I j| ≤ 2(R j − 1), and hence max j∈J |I j | ≤ 2(max j R j − 1), with probability tending to 1 as n → ∞.
9
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Theorem 3 shows that as n → ∞, the value of |I j | is only controlled by the true number of piecewise constants in the 
jth variable’s spatially clustered coefficient. Then Corollary 1 holds only if |J | max j∈J R j = o(n/ log(n)). This nice property 
shows that RSCC could be applied to a large scope of problem theoretically.

The proofs of results in this section are included in the supplementary material.

5. Simulation

For each simulation, we randomly generate 1000 spatial locations s1, . . . , s1000 from the square domain [0, 1] ×[0, 1]. We 
then generate p = 20 or 100 variables that are not only spatially dependent within each variable but also dependent across 
variables to mimic many real-world spatial processes. Specifically, the design matrix of p covariates for the simulation is 
generated from X = Z�, where ��T = � with �i j = ρ |i− j| , and Z = (zi j)1000×p includes p independent realizations generated 
at 1000 locations from a Gaussian Process GP(0, C) with covariance function C(zi1 j, zi2 j) = exp(−||si1 − si2 ||/φ). By this way, 
the p covariates are correlated according to their indices, and for each covariate, the sample values are correlated according 
to their locations. The parameters ρ and φ affect the strength of the covariate and sample correlation respectively and are 
set as ρ = 0.3 and φ = 0.5. Among p covariates, we randomly select 3 variables with index j1, j2 and j3 as the truly related 
variables and calculate the response value at the ith location by:

yi = a + βi j1xij1 + βi j2xij2 + βi j3xij3 + εi,

where εi is the i.i.d error from N (0, 0.12), and a is the fixed intercept term sampled form U (−1, 1). Particularly, 
βi j1 , βi j2 , and βi j3 are designed with different spatially clustered patterns in the spatial domain: βi, j1 has four piece-
wise constants with (1.5, −0.75, 0.75, −1.5) as the values of coefficients respectively. βi, j2 has five piecewise con-
stants with (−0.5, 1, −1.5, −1, 0.5) as the values of coefficients respectively. βi, j3 has six piecewise constants with 
(−0.5, −1.5, 1, −1, 1.5, 0.5) as the values of coefficients respectively. The specific values of βi j1 , βi j2 , and βi j3 for each 
location are as shown in the first row of Fig. 2.

For model comparison, we consider five compared methods and two oracle methods:

• Elastic-net (EN) (Zou and Hastie, 2005): EN is used as a representative method for constant-coefficient models with 
variable selection. The penalty parameter and the allocation parameter of EN are determined by BIC. EN becomes the 
lasso regression when the allocation parameter is tuned as 0.

• SCC (Li and Sang, 2019): The SCC method is a representative method for spatially clustered coefficient models without 
variable selection.

• Two-step SCC (TS-SCC): Based on the variable selection results of EN, we then use the SCC method to estimate their 
clustered coefficients.

• GWL (Wheeler, 2009): GWL is a GWR-based variable selection method. It builds a local linear regression with the lasso 
penalty for each location and achieves location-wise variable selection. We treat a variable as selected by GWL only if 
it is selected by the model of one location.

• VS-GPSVC (Dambon et al., 2021): VS-GPSVC is a variable selection method for Gaussian process-based SVC models, 
which achieves jointly selecting the fixed and random effects of variables. To accelerate the computation, we choose the 
exponential covariance function with a tapering parameter equal to 0.05.

• OracleVS: OracleVS builds the SCC method with known truly related covariates.
• OracleALL: Both the truly related covariates and their true clustered patterns are known and the ordinary least square 

method is used to estimate the coefficients in each clustered pattern.

We use a K = 5 nearest neighborhood network built on the Euclidean distance among locations as the original graph 
G for the graph-based methods, RSCC, SCC, and TS-SCC. If the constructed network is not connected, we gradually increase 
K until we get a connected network. For tuning parameter selection, we determine the values of λ1 and λ2 in RSCC by 
selecting the combination with the smallest GIC proposed in Section 3.3 from a 10*10 grid that covers a large range from 
e−8 to e0 for both λ1 and λ2.

To evaluate the performance of different methods in variable selection and coefficient estimation, we calculate three 
evaluation metrics: (1) the number of true-positive discoveries (TP); (2) the number of false-positive discoveries (FP); (3) 

the estimation error between θ̂ and θ (EE): EE =
√∥∥∥θ̂−θ

∥∥∥2

2
np .

To show the efficiency of RSCC, we also record the computational time (Time) of running each method on one core 
including tuning parameter selection with minute as the unit of time.

Table 1 includes the simulation results. We observe that RSCC achieves better results of all three metrics than those 
of the five compared methods in both choices of p and could finish in a reasonable time. First, RSCC detects three true 
variables in all runs and has a low average FP, which demonstrates its superior performance in variable selection. VS-GPSVC 
performs the second best in variable selection with an FP slightly larger than RSCC. In contrast, EN only selects 2.43 and 
1.84 out of 3 truly related variables on average for p = 20 and 100 respectively. The reason that EN fails to select all truly 
10



Table 1
Mean performance (standard deviation) of different methods for variable selection and coefficient estimation in 100 simulations with the variable size 
p = 20 or p = 100. The unit of Time is minute.

Method (n, p) = (1000, 20) (n, p) = (1000, 100)

TP FP EE Time TP FP EE Time

RSCC 3.00 2.40 0.23 2.44 3.00 5.73 0.13 13.54
(0.00) (3.27) (0.03) (0.39) (0.00) (7.59) (0.02) (1.78)

EN 2.43 13.25 0.50 0.00 1.84 48.83 0.22 0.00
(0.69) (2.69) (0.06) (0.00) (0.86) (11.67) (0.02) (0.00)

TS-SCC 2.43 13.25 0.39 0.63 1.84 48.83 0.24 1.91
(0.69) (2.69) (0.05) (0.11) (0.86) (11.67) (0.03) (0.47)

SCC 3.00 17.00 0.37 0.78 3.00 97.00 0.26 3.96
(0.00) (0.00) (0.04) (0.02) (0.00) (0.00) (0.03) (0.07)

GWL 3.00* 17.00* 0.44 6.01 3.00* 97.00* 0.27 26.27
(0.00) (0.00) (0.06) (0.28) (0.00) (0.00) (0.03) (2.22)

VS-GPSVC 3.00 3.90 0.32 9.65 2.91 7.49 0.14 520.45
(0.00) (1.05) (0.02) (0.72) (0.30) (2.92) (0.01) (7.08)

OracleVS 3.00 0.00 0.21 0.14 3.00 0.00 0.10 0.14
(0.00) (0.00) (0.03) (0.00) (0.00) (0.00) (0.02) (0.00)

OracleALL 3.00 0.00 0.00 0.00 3.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

* For GWL, a variable is treated as selected only if it is selected by the model of one location.

related variables is that it does not consider the change of coefficient across locations. The number of FP is also large for EN. 
GWL has T P = 3 and F P = 17 for all 100 simulations, which means that every variable is selected by the local linear model 
of at least one location. Thus, the variable selection results of GWL are not easy to interpret. Second, the EE of RSCC is 
the smallest among the compared methods and is close to those of OracleVS, which demonstrates the effectiveness of RSCC 
in coefficient estimation. Third, the computational time of RSCC is 2.44 minutes when p = 20 and 13.54 minutes when 
p = 100 on average, which is smaller than GWL and VS-GPSVC. We also observe that the computational time of VS-GPSVC 
increases a lot from 9.65 minutes to 520.35 minutes as p increases from 20 to 100. This result shows that RSCC is an 
efficient approach and could be used to analyze large spatial data.

Fig. 2 gives an example of the estimated coefficients for different methods with p = 20. Overall, RSCC could assign loca-
tions with different piecewise constants in the spatially clustered coefficient with different coefficients, and its performance 
is comparable to that of OracleVS. In contrast, SCC without variable selection fails to detect several clusters of regression 
coefficients for each variable, indicating that including many FP variables in the model may weaken the accuracy of the 
estimation on the coefficients of truly related variables. TS-SCC performs even worse than SCC as it does not select the 
third related variable, which shows that a proper variable selection is important to reveal the latent spatial patterns of the 
coefficients and increase the interpretability of the model. GWL and VS-GPSVC have similar results and can not capture 
discontinuities in the regression coefficients since both of them assume smoothly varying coefficients, whereas the true 
regression coefficients in the data generation model are assumed to have spatially clustered patterns. We remark that when 
true regression coefficients exhibit smoother spatial patterns, GWL and VS-GPSVC might provide more accurate estimations 
than our method, but they may come with a higher computational cost, especially for large spatial datasets.

Despite its superior performance over the competing methods, we note that RSCC tends to cut a true cluster of obser-
vation with the same piecewise constant of a coefficient into several small clusters with different piecewise constants. This 
phenomenon results from the usage of chain graphs to reduce the computation when clustering the coefficients for large 
datasets as discussed in Section 2.2. Nevertheless, the number of redundant clusters is not large in general, and as the EE of 
RSCC is close to OracleVS, the estimated values from these redundant clusters are usually close, owing to the use of adaptive 
variable-dependent weights when constructing chain graphs.

The sensitivity analysis of simulations can be found in the supplementary material. In summary, we find that RSCC is still 
superior to other methods when the sample or covariate correlation (φ or ρ) of spatial covariates is high, and the prediction 
performance also seems to be robust to the selection of the number of neighbors K used when constructing the K nearest 
neighborhood graph as the original graph G . We also show that by choosing a relatively large range and grid for (λ1, λ2)

when finding their best combination via GIC, RSCC could achieve a proper selection of (λ1, λ2) with good performance on 
variable selection and coefficient estimation within a reasonable time.

6. Correlates of COVID-19 vaccination acceptance in the United States

Since early 2020, the COVID-19 pandemic has quickly spread across the world. In December 2020, the United States 
began a mass vaccination effort after the Food and Drug Administration granted emergency use authorization to the Pfizer-
BioNTech vaccine (and shortly thereafter the Moderna and Johnson & Johnson vaccines as well). This mass vaccination 
effort is widely seen as the most effective population-wide response to COVID-19. However, the effectiveness of this vaccine 
effort depends crucially on the number of recipients, with herd immunity only possible when enough of the population 
has been vaccinated (or previously infected). Attempts to achieve widespread vaccine compliance have been complicated 
Y. Zhong, H. Sang, S.J. Cook et al. Computational Statistics and Data Analysis 177 (2023) 107581
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Fig. 2. Estimated coefficients of different methods in one simulation with (n, p) = (1000, 20). βi, j1 has four piecewise constants with (1.5, −0.75, 0.75, −1.5)
as the values of coefficients respectively. βi, j2 has five piecewise constants with (−0.5, 1, −1.5, −1, 0.5) as the values of coefficients respectively. βi, j3 has 
six piecewise constants with (−0.5, −1.5, 1, −1, 1.5, 0.5) as the values of coefficients respectively.
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Fig. 3. The percentage of vaccination acceptance (PerVac) of different counties in the United States at July 22, 2021.

by vaccine hesitancy and refusal, often due to personal beliefs or safety concerns within the population (Moghadas et al., 
2021). Thus, identifying which social and economic covariates affect the vaccination acceptance of the population and how 
their effects are become an important subjects of study. While survey research has helped identify reasons why individuals 
may be hesitant to receive the COVID-19 vaccine, we are also interested in spatial-level patterns of behavior—that is, why 
cities, counties, and states, vary in their acceptance of (or hesitancy towards) the vaccine. Recently, several studies have 
shown that COVID-19 vaccination uptake varies systematically across counties. Moreover, this variation is not consistently 
correlated to expected inputs. For example, Tolbert et al. (2021) find that the correlation between the vaccination rates and 
COVID-19 impact is not consistent for different regions of the United States, and Mollalo and Tatar (2021) use multiscale 
GWR to study the varying relationship between vaccine hesitancy and several pre-selected demographic variables.

Building on existing research, we use the RSCC model to both: i) identify the correlates of COVID-19 vaccination accep-
tance in the United States, and ii) estimate spatial heterogeneity in the effects of these covariates. Our spatial domain is 
the conterminous United States—that is, we exclude Alaska, Hawaii, and all other islands. As in previous research (Tolbert et 
al., 2021; Mollalo and Tatar, 2021), we focus on county-level vaccination data in the United States. A county in the United 
States is a political subdivision of a state that consists of a geographic region with specific boundaries and usually some 
level of governmental authority. In COVID-19 research, county-level analysis is common given the wide data available at this 
level (e.g. CDC data), thereby allowing researchers to do nationwide studies with a common unit of analysis (e.g. Chin et 
al. (2020)). Moreover, counties in different parts of the United States have distinct cultural, social, and economic practices, 
which may influence how these contextual factors translate into vaccination acceptance among the mass public.

To undertake our analysis we gather data on all 3075 counties (i.e., subdivisions of U.S. states) in the conterminous 
United States. We collect the percentage of people who have received the full-dose vaccine before July 22, 2021 from the 
Center for Disease Control and Prevention (CDC), since as of July 2021 U.S. residents had access to COVID-19 vaccinations for 
several months. Scaling the number of vaccinated people by the total population of each county, we generate our response 
variable (PerVac) as shown in Fig. 3. As potential inputs, we consider 37 county-level social and economic variables that 
potentially affect vaccination acceptance. These variables are collected from the 2019 American Community Survey 5-Year 
Data (ACS5), which reflects the social and economic conditions before COVID-19 spread. We also include the cumulative 
COVID-19 cases as an additional covariate. The descriptions and pre-processing of variables are given in the supplementary 
material. By using RSCC, we are able to simultaneously select the subset of variables that are significant determinants of 
PerVac, find spatially varying relationships between them, and identify potential spatially clustered patterns among counties. 
In addition to spatially varying coefficients on covariates, we also allow the intercept to vary across space in each of the 
models to capture the spatial dependence that is unexplained by covariates. To run RSCC, we build a graph G of counties 
by their bordering information: If two counties have an adjoining boundary, there is an edge between their corresponding 
vertices in G . G is used as the original graph in RSCC to further construct variable-dependent chain graphs.

Table 2 summarizes the range of coefficients for different variables estimated by RSCC. First, 14 variables are selected by 
RSCC, with 11 of them demonstrating spatially varying coefficient effects. This suggests that models restricting these covari-
ates’ effects to a single common parameter neglect important spatial variation in these regression coefficients. By neglecting 
this variation, these restricted coefficient models necessarily explain less of the variation in the outcome and provide a less 
complete account of the relationship between the inputs and outcome than can be obtained from our RSCC results. Sec-
ond, most of the spatially varying coefficients are always in the same direction—Ln_Population, Age65Above, Edu.Bachelor, 
NoEarningHouseHold, SalaryHouseHold, TotalLaborForce, and Ln_CumulCases positively affect PerVac, and Poverty.Above1.5 
negatively affects PerVac across all counties. Interestingly, however, there are three covariates (Race.White, Ln_HouseUnits, 
and Ln_MedianHouseValue) where the ranges of the coefficients cross zero. For these three variables, researchers using 
mean coefficients (such as in ordinary least squares) would not only risk neglecting this heterogeneity, but also could in-
13
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Table 2
Range of estimated coefficients of 14 variables selected 
by RSCC.
Variable Coefficient

Ln_Population 0.002 ∼ 0.019
Age65Above 0.056 ∼ 0.178
Race.White -0.015 ∼ 0.046
Race.AmIndian 0.311
Race.Hispanic 0.208
Edu.HighSchool 0.308
Edu.Bachelor 0.685 ∼ 1.003
Poverty.Above1.5 -0.128 ∼ -0.094
NoEarningHousehold 0.469 ∼ 0.542
SalaryHousehold 0.327 ∼ 0.383
TotalLaborForce 0.313 ∼ 0.435
Ln_HouseUnits -14.396 ∼ 7.432
Ln_MedianHouseValue -1.330 ∼ 2.280
Ln_CumulCases 1.075 ∼ 1.567

Table 3
Performance of different methods for the vaccination acceptance in counties of the United States.
Metric RSCC EN TS-SCC SCC GWL VS-GPSVC

PE (%) 6.45 7.64 7.63 7.64 7.07 6.95
#Selected 14 33 33 38 38* 25/12**

* For GWL, a variable is treated as selected only if it is selected by the model of one county.
** VS-GPSVC detects that 25 variables have fixed effects and 12 variables have random effects. Among them, 8 

variable have both the fixed and random effects.

correctly conclude that the effects of a covariate to be indistinguishable from zero and fail to include it in the model as a 
result.

To better represent the spatially clustered patterns of these covariate effects, we plot the estimated coefficients county 
map for SalaryHousehold, Ln_HouseUnits, and Ln_CumulCases in Fig. 4. There are several noticeable within-state and across-
state patterns in the results. For SalaryHousehold (the top map), we observe that the estimated coefficients divide the United 
States into several regions; the west and mid-west regions as well as the eastern region near North Carolina and Virginia 
have the highest impact, followed by the northeast region and the south and mid-east region. For Ln_HouseUnits (the center 
map), we can see how the sign of the coefficient changes across different regions. For example, we observe that in much 
(though not all) of California there is a largely negative effect, while in other parts of the country (Florida, Georgia, etc.) 
there is a consistently positive effect. This plot also clearly demonstrates that the latent boundaries of the spatially clustered 
patterns of coefficients occasionally coincide with state boundary lines (e.g. Texas and Louisiana). Recall that RSCC does 
not utilize any state-level information, meaning that this result reflects the ability of RSCC to successfully discover abrupt 
changes across some states, which may be due to state-level variation in vaccination policies. Note as well, however, that 
these patterns do not strictly conform to state boundaries (e.g. Wyoming has both counties with positive and negative 
coefficients), which suggests that state-level variables alone would be insufficient to account for the variation observed 
here, and in our more flexible RSCC model, we are able to identify that parts of some states (e.g. southeast California) 
may be more similar to counties in neighboring states (e.g. Arizona) in terms of how the inputs affect vaccination uptake. 
For Ln_CumulCases (the bottom map), we could find that the regions on the east part of the United States have a higher 
coefficient than the south and the middle parts. All these spatially clustered patterns discovered by RSCC provide new 
insights for scientists about the relationship between vaccination acceptance and social and economic variables and could 
motivate future research into systematically explaining the heterogeneity of these covariate effects across counties.

Lastly, since model comparison metrics based on estimation results are not available due to unknown true spatial re-
gression coefficients, we compare the performance of different methods based on prediction although it is not primarily 
of interest in this areal unit data analysis. Specifically, we randomly select 5% of the counties to serve as the test dataset 
and use the remaining samples as the training dataset to build a model for each method. Then we estimate the coefficient 
of each observation in the test dataset by using the mean of its bordering counties’ coefficients in the training dataset 
and predict its PerVac. Finally, the mean squared prediction error (PE) in the test dataset for each method is calculated as 
the evaluation metric. Table 3 includes PE and the number of selected variables (#Selected) for RSCC and compared meth-
ods. RSCC has the smallest PE among all methods while selecting a much smaller number of variables than EN and GWL, 
indicating that RSCC is capable of achieving superior predictive performance with a much more parsimonious model.

7. Discussion

The paper proposes a new regularized spatially clustered coefficient regression model, called the RSCC model, to select 
important variables and estimate the spatially clustered coefficients simultaneously. Moving forward, RSCC could be further 
14
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Fig. 4. Real data results: estimated coefficients for SalaryHousehold, Ln_HouseUnits, and Ln_CumulCases. The counties rendered in white have missing values 
in the covariates and are excluded from our study.

refined in several ways. First, the regularization term of RSCC puts constraints on the size of the coefficients, and hence 
the results can be sensitive to the method of standardization of covariates. Second, the RSCC estimator does not come 
with an uncertainty measure, thereby making statistical inference difficult, a common issue shared by regularization-based 
approaches. We will investigate these research topics in future work.

In practice, RSCC could handle large spatial data with np ≈ 106 on a single core within at most several hours. For a 
spatial dataset with larger n and p, our current computational method needs to be further improved to handle both storage 
and computing problems—for example, with the use of parallel computing.

RSCC could also be applied and extended to many other statistical contexts and biological problems. First, one could 
also easily extend RSCC to the variable selection problems in non-Gaussian outcomes, and multivariate regression models 
with spatially clustered coefficients. The algorithm and theoretical results in this paper can be applied in a similar way to 
derive such extensions. Second, RSCC only requires a graph to incorporate the relational information among observations, 
and thus its usage is not restricted to the spatial problem. For example, RSCC can be extended to study the change of 
relationship between genes in single-cell RNA sequencing (scRNAseq) data. Cells included in one scRNAseq analysis are 
always heterogeneous and belong to different cell types. For different cell types, the relationship between the target gene 
15
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and other genes varies a lot (Hamey et al., 2017). Fortunately, since the process of cell differentiation is continuous, the 
gene expression levels of different cells are usually located on a continuous low-dimensional manifold in high-dimensional 
space, and cells with the same subtype are close in the manifold. Then RSCC can be built with the neighborhood graph of 
cells in this manifold to find cell clusters and the relevant gene to the target gene simultaneously.
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