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We use artificial intelligence (Al) to learn and infer the physics of higher order gravitational wave
modes of quasi-circular, spinning, non precessing binary black hole mergers. We trained Al models
using 14 million waveforms, produced with the surrogate model NRHybSur3dqgs, that include modes
up to £ <4 and (5,5), except for (4,0) and (4, 1), that describe binaries with mass-ratios q < 8,
individual spins 5{1,2) € [—0.8,0.8], and inclination angle 6 € [0, r]. Our probabilistic Al surrogates can
accurately constrain the mass-ratio, individual spins, effective spin, and inclination angle of numerical
relativity waveforms that describe such signal manifold. We compared the predictions of our Al
Keywords: models with Gaussian process regression, random forest, k-nearest neighbors, and linear regression, and
Al with traditional Bayesian inference methods through the PyCBC Inference toolkit, finding that Al
Black holes outperforms all these approaches in terms of accuracy, and are between three to four orders of magnitude
H?gh performance computing faster than traditional Bayesian inference methods. Our Al surrogates were trained within 3.4 hours using
Higher-order waveform modes distributed training on 1,536 NVIDIA V100 GPUs in the Summit supercomputer.
© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction ing systems for multi-messenger sources [39-41], including the

modeling of multi-scale and multi-physics systems [42-44], among

The development of rigorous, reproducible, statistically and do-
main informed artificial intelligence (Al) is leading to remarkable
breakthroughs in science and engineering [1], and guiding hu-
man intuition to find new fundamental results in pure mathemat-
ics [2]. Al applications in gravitational wave astrophysics are evolv-
ing from prototypes to production scale discovery frameworks.
Since we developed the first Al models to create a scalable, com-
putationally efficient method to search for and find gravitational
waves [3,4], this approach has been embraced and further devel-
oped by an international community of researchers [5-7]. To date,
Al has been explored for a variety of signal processing tasks, in-
cluding detection [8-24], gravitational wave denoising and data
cleaning [25-27], parameter estimation [28-34], rapid waveform
production [35,36], waveform forecasting [37,38], and early warn-
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others.

Production scale Al frameworks for gravitational wave detec-
tion that harness high performance computing (HPC) and scientific
data infrastructure have also been developed [45,46], furnishing
evidence for the scalability, reproducibility and computational ef-
ficiency of Al-driven methodologies [47]. Fig. 1 provides a glimpse
of the rapid convergence of Al and extreme scale computing to
study astrophysical scenarios that require waveforms with richer
and more complex morphology. In view of these developments, it
is time to further push the frontiers of Al applications to quantify
their suitability to describe high-dimensional signal manifolds that
contain waveforms whose morphology is significantly richer and
much more complex than what has already been explored in the
literature. This article represents a step in that direction. The driver
we have selected for this study consists of characterizing higher or-
der gravitational wave modes emitted by quasi-circular, spinning,
non-precessing binary black hole mergers. We densely sample a
parameter space that consists of binaries with mass-ratios q < 8,
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individual spins s, 5, € [—0.8,0.8], and inclination angle ¢ € [0, 7]
using a training dataset of 14M waveforms. The sheer size of this
training dataset requires the combination of Al and HPC, and thus
we harnessed the Summit supercomputer at Oak Ridge National
Laboratory to reduce the training stage from months (using a sin-
gle V100 GPU) to 3.4 hours using distributed training over 1536
NVIDIA V100 GPUs.

While this article showcases the convergence of Al and HPC for
a computational grand challenge, the main goal of this analysis is
to explore what new insights we may obtain by conducting Al-
driven studies of the signal manifold of higher order gravitational
wave modes. In particular, in this article we aim to explore the
following open questions [48]:

1. Is it possible for Al to learn and accurately characterize the
physics of high-dimensional gravitational wave signal mani-
folds?

2. Is it possible to exploit the computational efficiency and scal-
ability of Al to train models with tens of millions of modeled
waveforms and conduct fast data-driven analyses with fully
trained Al models?

3. Is it true that probabilistic Al models provide more accurate
inference predictions when we combine extreme scale com-
puting to reduce time to insight, physics-informed Al archi-
tectures and optimization schemes to accelerate convergence,
and high dimensional signal manifolds that include higher or-
der wave modes to expose Al models to features and patterns
that provide a detailed description of the waveform dynamics
of black hole mergers?

4. What insights do we gain when we characterize gravitational
wave signal manifolds with waveforms with complex mor-
phology?

As we describe below, the answer to questions 1-3 above is a
resounding YES. In terms of new insights, we find that our de-
terministic and probabilistic Al models provide informative con-
straints for the mass-ratio, individual spins and inclination angle
of higher order waveform modes. These are important results,
since our previous work [48] showed that, when we only consider
¢ = |m| =2 modes, it was difficult to constrain the individual spins
of comparable mass-ratio systems, as well as the spin of the sec-
ondary for asymmetric mass-ratio systems. This study shows that
the inclusion of higher order modes alleviates these problems, and
provides an informed description of the ability of Al to character-
ize this high dimensional signal manifold. Throughout this paper
we use geometric units in which G =c=1.

This paper is organized as follows. Section 2 describes the ap-
proach used to create our Al models. We present and discuss our
findings in Section 3. Future directions of work are outlined in Sec-
tion 4.

2. Methods

Here we describe the datasets, Al architectures and training
methods followed to create our Al models.

Datasets We use the surrogate model NRHybSur3dgs [49] to
generate time-series datasets that include both the plus, hy, and
cross, hy, polarizations. These may be represented as a com-
plex time-series h = hy — ihx. h may also be expressed as a
sum of spin-weighted spherical harmonic modes, #s;, on the 2-
sphere [50]

[} l

h(t,6,00) =Y > fum(®)>Yem (0, p0), (1)

=2 m=-1

Physics Letters B 835 (2022) 137505

where ~2Y,;,, are the spin-weight—2 spherical harmonics, 6 is the
inclination angle between the orbital angular momentum of the
binary and line of sight to the detector, and ¢q is the initial bi-
nary phase, that we set to zero in this study. Our waveforms
include higher order modes with £ <4 and (¢,m) = (5,5), ex-
cluding the (¢,m) = (4,0) and (4, 1) modes; cover the time span
t € [—10,000M, 130 M] with the merger peak occurring at t = OM;
and are sampled with a time step At =1M. Fig. 2 presents a sam-
ple of waveforms that help visualize the importance of including
higher order modes in terms of the amplitude and phase evolution,
as well as the morphology of the ringdown phase. The top panel
presents a waveform signal that only includes the ¢ = |m| =2
mode at an optimally oriented configuration, & = 0, that maxi-
mizes the amplitude of the signal for detectability purposes. The
bottom panels show what new information may be obtained as
we construct waveform signals that include higher order modes,
i.e., the amplitude and phase of the pre-merger waveform signal
exhibits novel, non-linear features as well as a richer and much
more complex ringdown phase. In stark contrast, the top panel
will only change the amplitude of the waveform signal for angles
0 = {mr /4,  /2}, since the ¢ = |m| =2 mode signal is modulated by
a constant multiplicative factor that is set by the inclination an-
gle [51,52].

Training dataset It consists of ~ 14 million waveforms that cover a
4-D parameter space that encompasses mass-ratio, individual spins
and inclination angle {q, s, 5,6}, respectively. We generate it by
sampling the mass-ratio q € [1, 8] in steps of Aq = 0.1; individual
spins s7 € [—0.8,0.8] in steps of As? =0.02; and the inclination
angle 6 € [0, r] in steps of A6 =0.1.

Validation and test datasets Each of these sets consist of ~
800, 000 waveforms, and are generated by alternately sampling
values that are inbetween the training set values.

Al architecture We use a slightly modified WaveNet [53] neu-
ral network architecture for our model. WaveNet’s main features
that are relevant for this work include dilated causal convolutions,
gated activation units, and the usage of residual and skip con-
nections. These features help capture long range correlations in
the input time-series, and facilitate the training of deeper neural
networks. Furthermore, since we are interested in regression anal-
yses, we turn off the causal padding in the convolutional layers.
We use a filter size of 2 in all convolutional layers and stack 3
residual blocks each consisting of 14 dilated convolutions. For a
more in depth discussion of the architecture we refer the reader to
[48,53]. The output from the WaveNet is then fed into three sep-
arate branches of fully-connected layers. Each branch is trained to
predict the mass ratio, g, the effective spin parameters, (Seff, Oeff),
and the inclination angle, 6, respectively, where

Z v4
Seff = 0157 + 0255,

3q

3
with o1=14+— and oy =1+ —, (2)
4q 4

mys; +mas;  qs§ + 55
mi+my  14q
Since our goal is to predict {q, s7,s3, 6}, we solve Egs. (2) and (3)

in conjunction with the predicted ¢ values in order to extract the
individual spins s?.

and Oeff =

3)

Training methodology We employ mean-squared error (MSE) be-
tween the predicted and the ground-truth values as the loss func-
tion. During training, we monitor the loss on the validation set to
dynamically reduce learning rate as well as to stop training before
over-fitting. We reduce the learning rate by a factor of 2 whenever
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Convergence of Al and extreme scale computing for gravitational wave astrophysics
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Physics Letters B 808, 0370-2693
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Achieved: December 2021
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Fig. 1. Convergence of Al and extreme scale computing Progress harnessing Al and high performance computing to learn and describe the physics of gravitational wave
signal manifolds. A signal manifold with richer complexity (from left to right) provides new opportunities to combine TB-size training datasets with extreme scale computing,
allowing the development of novel distributed training algorithms and optimization schemes that incorporate physics and maths principles to accelerate the convergence and

performance of Al surrogates.
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Fig. 2. Impact of higher order modes. For a binary black hole merger with parameters {q.s?,s3} = {7.05,0.77,0.77}, we show waveforms with (I = |m| =2;0 = 0) (top
panel), and waveforms including higher order modes up to £ <4 and (5, 5), excluding the (4,0) and (4, 1) modes, for 6 = {0, 7 /4, 7w /2} (bottom panels).

the validation loss does not decrease for 3 consecutive epochs, and
stop the training when the validation loss does not decrease for
5 consecutive epochs. Training the model on 256 nodes, equiva-
lent to 1,536 NVIDIA V100 GPUs, in the Summit Supercomputer
then takes about 71 epochs, using LAMB [54] optimizer with ini-
tial learning rate set to 0.001.

Normalizing Flow: In addition to the above analysis for point es-
timates, we also trained a normalizing flow model to estimate the
posterior distribution. To do that, instead of extracting the param-
eters directly, we use the WaveNet model as a feature extractor
and then condition a normalizing flow model on the extracted fea-
tures to estimate the posterior distribution. This method was first
delineated in [55], and then used in other studies [28,33]. We fol-
low the same procedure, making use of the nflows library [56].

Normalizing flow is an example of a “likelihood-free” inference
method, and is made up of a composition of invertible maps to
transform a simple base probability distribution (e.g., a multivari-
ate Gaussian) into a desired posterior distribution which could be
very complicated. The transformed distribution is then given by
the change of variable formula:

px(®) =pz(@) |detll @)1 ", (4)

where Z is the random variable for the base distribution, X is
the random variable for the transformed distribution, and f is
the normalizing flow (i.e., the invertible transformation), such that
X = f(Z). In our case, the goal is to model the conditional poste-
rior distribution p(y|h) for the parameters y corresponding to the
waveform strain h. We do this in two steps (as illustrated in Fig. 3);
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[h,, h]

WaveNet

[

——| Normalizing Flow

Fig. 3. Normalizing flow model architecture. Schematic representation that indi-
cates how we feed the waveform [hy,hy] into a WaveNet model to extract the
feature vector h. Then the normalizing flow f; , takes in this feature vector and
transforms the base distribution N (it =0, ¥ =1) into the predicted posterior dis-
tribution q(y|h).

first we pass the strain h through the WaveNet model to extract a
feature vector h. We then use a conditional version of normalizing
flow fhﬁ, specifically a neural spline flow [57], to trans-
form the base Standard Multivariate Gaussian AV (u =0, % =1)
to the predicted posterior distribution q(y|h). The function fh 9
therefore depends on the input waveform h (through the feature
vector h), and is parameterized by learnable weights ©. The nor-
malizing flow model is then trained by updating the parameter
¥ so that predicted distribution g(y|h) matches the true posterior
distribution p(y|h). This is achieved by minimizing the negative
log-likelihood, i.e., given a batch of N ground-truth parameters y;
and their corresponding waveforms h;, the objective for the nor-
malizing flow model is to minimize:

N
L:—%ngqwimi) (5)

i=1

where, according to Equation (4);

-1
ailh) = par@ |detlly;, 1] (6)

3. Results

We present results using deterministic and probabilistic Al
models, which we described in Section 2. As described above,
these Al models have been designed to take in time-series wave-
form signals that includes both polarizations (hs,hy), and then
output the most likely values for {q, s7, s5,0} that best reproduce
the input signal.

3.1. Deterministic Al models
In Fig. 4 we provide a sample of results of the predictive ca-

pabilities of our deterministic Al models for a variety of input
waveform signals. Note that ground truth waveforms are shown in

Physics Letters B 835 (2022) 137505

blue, whereas waveforms whose parameters, {q, s7, s5, 6}, are pre-
dicted by Al are shown in dotted red. We quantify the accuracy
of our Al models by computing the overlap, O(h|hp), between
ground-truth, h;, and Al-predicted, hp, waveforms using

helhp) = helhplt
Othliy) = max (fulhplte. ¢cl)

with e =he (helh) ™"/ (7)
where [t¢, ¢¢] are the amounts by which the normalized waveform
sz has been time- and phase-shifted.

Fig. 5 summarizes the accuracy with which deterministic Al
models estimate the parameters of higher order modes for all
mass-ratios and spins for a sample of inclination angles. There we
notice that predictions degrade in accuracy for edge-on systems,
i.e.,, O =m /2. Note that a mild shift is seen in the predicted values
of the inclination angle, 6, from its ground truth value in pan-
els with 6 = {0, '}, although the distribution has the true value
well within a 1 — o deviation from its median. This shift is likely
because 0 and m correspond to the domain boundary of 6 as
0 <6 < m, which leads to a one-sided wrap-around of the recov-
ered distribution of 8 values, and in turn leads to a shift in the
median recovered value toward the boundary.

We provide a more comprehensive analysis of these results in
Fig. 6, where we show overlap calculations between ground truth
and predicted signals in terms of symmetric mass-ratio and effec-
tive spin (1, oefr) for all mass-ratios and spins under consideration
for a sample of inclination angles. Again, here we find that our re-
sults are optimal for all angles except for edge-on binaries. We can
understand this if we recall that for § = /2 we lose half of the
information we feed into our Al models since hy (t,0 =m /2) — 0.
In summary, our deterministic Al models provide informative point
parameter estimation results for the parameter space under con-
sideration.

3.2. Comparison to other machine learning methods

We have compared the predictions of our Al models with other
machine learning algorithms, including, Gaussian Process Regres-
sion, Random Forest, k-Nearest Neighbors and Linear Regression.
The results of this analysis are shown in Fig. 7.

For this comparison, we had to reduce the amount of training
data, since traditional machine learning models are sub-optimal to
handle the TB-size training datasets used to train our Al mod-
els. Thus, we considered a reduced data set that describes black
hole binaries with mass-ratios q € {4.0,4.1} and inclination an-
gles 6 € {0.0,0.1}, and all possible spin combinations. Then, we
tested these machine learning models on a test set with g = 4.05
and # = 0.05, and all possible spin combinations. Using the same
metric we have considered above to quantify the performance of
our Al models, e.g., mean absolute error, Fig. 7 presents the aver-
age absolute errors over all four parameters under consideration,
(g, 5%.55,0). It is apparent that even in this scenario that provides
a clear advantage to traditional machine learning models, neural
networks still provide better results.

These results demonstrate the ability of Al to search across
the signal manifold of higher order modes, and pinpoint a set
of parameters, {q.s%,s3,6}, that best describes the properties of
waveforms that include higher-order modes. While this is infor-
mative, we also want to know the uncertainty associated with
such Al-predicted values. To extract such information, we estimate
posterior distributions using a combination of WaveNet with nor-
malizing flow, as described in Section 2.
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Fig. 4. Comparison between ground truth and Al-predicted waveforms Ground truth waveforms (in blue) and Al predicted waveforms (dotted red). Top panels: {q,s7,s3} =
{2.05, —0.79, 0.77}, bottom panels: {q, s%, sé} ={7.85,0.77, —0.79}. We show waveforms, from left to right, with inclination angles 6 = {0, r /4, 7w /2}. In all these cases, the

overlap between ground truth and predicted waveforms is O > 0.98.
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Fig. 5. Statistical results of deterministic Al models Absolute errors for all mass ratios, q, and individual spins, (s7,s3), for a sample of inclination angles. The true values of

inclination angles are [0.054, 0.70, 1.57, 3.09] and are rounded-off for labeling above.

3.3. Probabilistic Al models

We have selected binary black hole systems to quantify the
ability of Al to reconstruct the astrophysical parameters of systems
that are known to be hard to characterize. In particular, we con-
sider comparable mass-ratio binaries, for which it is difficult to tell
apart individual spins, as well as asymmetric mass-ratio systems,
for which it is difficult to accurately constrain the spin of the sec-
ondary.

We directly compare our Al-driven results with the Bayesian
inference PyCBC Inference toolkit [58]. For consistency with
Al-driven analysis, the inference results produced by PyCBC In-
ference assume noiseless signals, and a flat power spectral den-

sity. We scale the dimensionless signals used above to the source
location of a fiducial real event, GW150914, and use a flat noise
power spectral density with amplitude set to the median noise
level between 20 — 2048Hz of the zero-detuning high-power de-
sign sensitivity curve for LIGO instruments [59].

Below we present probabilistic parameter estimation results for
six astrophysical parameters: (q, s3, 55, Oeff. Sef, 8), using the fol-
lowing nomenclature: ground truth values are shown in blue; Al
results are shown in black; PyCBC Inference results are shown
in green:

e Fig. 8 presents results for an equal mass binary black hole
merger. These results show that our Al model produces sharp,
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Fig. 6. Overlap between ground truth signals and those predicted by deterministic Al models Overlap between ground truth and Al-predicted signals in terms of symmetric
mass-ratio, 1, and effective spin, o, for a sample of inclination angles.
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Fig. 7. Comparison between Al and traditional machine learning methods Al predictions are compared with machine learning methods considering a reduced dataset with
mass-ratios q € {4.0, 4.1} and inclination angles 6 € {0.0, 0.1}, and spin combinations. This approach is needed since these methods are sub-optimal to handle tens of millions
of waveforms for training purposes. The trained machine learning models were then tested on a dataset with g =4.05, & = 0.05 and all spin combinations. The mean absolute
errors shown are the average of absolute errors over all four parameters (q, s3, 53, 0).

narrow distributions that provide informative constraints for e Figs. 9 and 10 present q = 4 binaries whose i) primary and
the astrophysical parameters that describe this signal. We secondary are rapidly rotating and aligned, and ii) primary is
also notice that PyCBC Inference provides constraints that rapidly rotating and the secondary is moderately rotating and
agree with ground truth values, though these distributions anti-aligned, respectively. Here again, Al inference results and
tend to be broad and with long tails, in particular for the spin ground truth values are in close agreement. PyCBC Infer-
of the secondary, s, and the inclination angle, 6. ence results provide broader distributions for all parameters
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of interest, or uninformative constraints, in particular for the
spin of the secondary. It is also noteworthy that while PyCBC
Inference does not provide informative constraints for the
spin of the secondary, estimates for the effective spin parame-
ter, oeff, are indeed informative, though they still present long
tail distributions.

Figs. 11 and 12 present results for ¢ = 7 binaries for two con-
figurations. First, both binary components are rapidly rotating
and aligned. Second, the primary is rapidly rotating and the
secondary is nearly spinless. We selected these two config-
urations to illustrate that in either scenario Al estimates do
provide narrow distributions, and informative constraints for
all parameters under consideration, and in particular for the
spin of the secondary. We now notice that for asymmetric
mass-ratio black hole mergers PyCBC Inference does not
provide tight constraints for the mass-ratio. Furthermore, this
traditional Bayesian approach does not provide informative
constraints for the secondary of the binary, and the inclina-
tion angle has a broad, long-tailed distribution. As before, the

Oeff Serr 2]

Fig. 8. Probabilistic Al and Bayesian inference results, ¢ = 1 case. Al posterior distributions (in black), PyCBC Inference results (in green), and ground truth values (in
blue) for an equal mass-ratio binary black hole merger. Al histograms show the distribution of 100, 000 samples drawn from the posterior.

effective spin parameter, oeff, provides informative constraints,
though with a long tail.

Benchmark results These results provide evidence that Al surro-
gates are capable of learning and inferring the physics that de-
scribes quasi-circular, spinning, non-precessing, higher-order wave-
form modes of binary black hole mergers. In addition to these
findings, we also provide results to compare the computational ef-
ficiency of Al and traditional Bayesian inference to produce Figs. 8
to 12. In terms of computational performance we found that

e We produced Al results presented in these figures by drawing
100,000 samples from the posterior distribution using normal-
izing flow. This is done in less than a second using a single
A100 NVIDIA GPU for all cases under consideration, i.e., irre-
spective of the properties of the binary black hole merger.

e For PyCBC Inference, we used 10 single-thread processes
on an AMD EPYC 7352 with 24 physical cores to draw a similar
amount of samples from the posterior distribution within
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Fig. 9. Probabilistic Al and Bayesian inference results, g = 4, positive and aligned spin case. As Fig. 8, but now for a binary with mass-ratio ¢ = 4 whose binary components

are rapidly spinning.

1 hour 41 minutes for Fig. 8
3 hours 49 minutes for Fig. 9
4 hours 21 minutes for Fig. 10
6 hours 37 minutes for Fig. 11
2 hours 20 minutes for Fig. 12

In summary, our probabilistic Al surrogates are between three to
four orders of magnitude faster than traditional Bayesian inference
methods. These results also indicate that we should clearly differ-
entiate the physics we can infer from gravitational waves, and how
the choice of signal processing tools will enhance or limit the sci-
ence reach of our studies. For instance, it has been argued in the
literature that it would be difficult to infer the spin of the sec-
ondary for asymmetric mass-ratio binaries, since the rotation of
the lighter black hole has a marginal influence on the morphol-
ogy of the waveform. What we are learning from this study is that
we ought to tell apart the physics of the problem from the sig-
nal processing tools utilized to study the astrophysical properties
of compact binaries, and for that matter for any system. It is true
that traditional Bayesian inference is unable to provide informa-

tive constraints for the spin of the secondary, even for moderately
asymmetric mass-ratio mergers, as we see in Figs. 9 and 10; or for
asymmetric mass-ratio systems, as we see in Figs. 11 and 12. How-
ever, our probabilistic Al models do provide informative constraints
for the spin of the primary and secondary for binaries with mass-
ratios 1 < q < 8. This is because the subtle features and patterns
that the spin of the secondary imprints in the waveform signal
are identified and learned by Al, and this empowers us to infer
these astrophysical parameters from complex signals that include
higher-order waveform modes.

We also learn another piece of information from this analysis.
As the broader community continues to develop Al-driven method-
ologies for accelerated inference, we should endeavor to develop
novel Al tools, and to not limit the capabilities of these algo-
rithms to simply accelerate parameter estimation analyses, pro-
viding nearly identical results to traditional Bayesian inference
pipelines. Doing so will limit our ability to learn new insights
from gravitational wave observations. As we have learned from this
study, Al methods that are designed to mimic Bayesian pipelines
will provide uninformative constraints on the spin distribution of
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Fig. 10. Probabilistic Al and Bayesian inference results, ¢ = 4, anti-aligned spin case. As Fig. 9, but now the secondary is slowly rotating in the —z direction.

compact binaries, in particular for the secondary, thereby limit-
ing the knowledge or insights we could gain about the formation
channels of these sources. Similarly, uninformative constraints for
the inclination angle of these sources would have implications for
gravitational wave cosmology.

This study has shown that in the case where we look at the
signal manifold of higher-order waveform signals for black hole
mergers, there is a wealth of astrophysical information we can ex-
tract from these signals using probabilistic Al methods. We have
also learned that Bayesian approaches cannot capture features and
patterns that enable the measurement of important astrophysical
parameters, and that this is not a result of biases introduced by
noise, since we are not considering the effect of noise at this stage.
These signal processing limitations in parameter estimation are in-
herent to traditional Bayesian inference.

Another important result of this paper is that we have de-
signed a methodology to train Al models that adequately handle
training datasets that include tens of millions of modeled wave-
forms, thereby paving the way to extend this analysis for the case
in which these types of signals are contaminated with simulated
and advanced LIGO noise. The methods introduced in this paper

will enable us to quantify the biases introduced by noise in pa-
rameter estimation analyses, and how to handle them to extract
informative Al-driven parameter estimation results using higher
order gravitational wave modes.

4. Conclusions

We have developed scalable and computationally efficient
methods to design Al models that are capable of characterizing the
signal manifold of higher order wave modes of quasi-circular, spin-
ning, non-precessing binary black hole mergers. Our approached
enabled us to train several Al models using a dataset of over 14
million waveforms within 3.4 hours with 256 nodes, equivalent
to 1,536 NVIDIA V100 GPUs, achieving optimal convergence and
state-of-the-art regression results.

We have demonstrated that Al can abstract knowledge from
time-series data that help constrain the physical parameters that
determine the dynamical evolution of higher order modes of black
hole mergers. In particular, we have presented evidence that Al
provides deterministic and probabilistic predictions that tightly
constrain the mass-ratio, individual spins, inclination angle, and ef-
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Fig. 11. Probabilistic Al and Bayesian inference results, g = 7, positive and aligned case. As Fig. 8, but now for a binary with mass-ratio ¢ = 7 whose binary components are

rapidly spinning.

fective spin parameters for a variety of astrophysical scenarios. We
also found that deterministic and probabilistic Al predictions are
consistent with each other, and in good accord with ground truth
physical parameters.

We have also demonstrated that our Al surrogates outperform
other machine learning methods (encompassing Gaussian regres-
sion, random forest, k-nearest neighbors, and linear regression),
and PyCBC Inference both in terms of computational effi-
ciency and accuracy. The results we have introduced in this article
provide benchmarks for the expected performance of Al to esti-
mate the astrophysical parameters of binary black hole mergers in
the absence of noise. In future work, we will present studies for
the impact of simulated and advanced LIGO noise to conduct in-
formative Al-driven inference for high dimensional waveform man-
ifolds.
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