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ABSTRACT

Single particle reconstruction (SPR) in cryo-electron mi-
croscopy (cryo-EM) is a prominent imaging method that
recovers the 3D shape of a biomolecule, given a large number
of its noisy projections from random and unknown views.
Recently, CryoGAN [1] cast SPR as an unsupervised dis-
tribution matching problem and solved it via a Wasserstein
generative adversarial network (WGAN) framework. The ap-
proach bypasses the estimation of the projection parameters.
The reconstruction criterion in CryoGAN is Wasserstein-1
distance. Despite the desirable properties of Wasserstein
distances (WD) such as continuity and almost everywhere
differentiability, they are difficult to compute and require
careful tuning for a stable training. Sliced Wasserstein dis-
tance (SWD), on the other hand, has shown desirable training
stability and ease to compute. Therefore, we propose to re-
place Wasserstein-1 distance with SWD in the CryoGAN
framework, hence the name CryoSWD. In low noise regimes,
we show how CryoSWD eliminates the need to have a dis-
criminator which is crucial in CryoGAN. However, coupling
CryoSWD with a discriminator boosts its performance, es-
pecially in high noise settings. While performing as good
as CryoGAN, CryoSWD does not require a gradient penalty
term for stabilizing the training and imposing Lipschitz con-
tinuity of the discriminator.

Index Terms— Cryo-electron microscopy, 3D ab-initio
reconstruction, sliced Wasserstein distance, CryoGAN.

1. INTRODUCTION

Studying the 3D structure of biomolecules is the key to un-
derstand their function and enables better design of medi-
cal and therapeutic strategies. Recently, cryo-electron mi-
croscopy (cryo-EM) has become a prevalent tool to image
biomolecules in their native states with no need for crystal-
lization [2]. Specifically, in cryo-EM single particle recon-
struction (SPR), samples of the same molecule are frozen in
cryogenic temperatures and imaged via an electron micro-
scope [3]. As the relative orientation of the frozen particles
with respect to the electron beam is random, each projection
image corresponds to a random and unknown view of the 3D
molecule. Furthermore, to avoid radiation damage, the elec-
tron dose is kept low, thus leading to noisy projection images
with low signal-to-noise ratios (SNR). The ultimate goal in

SPR is to recover the 3D shape of the underlying biomolecule
given its noisy and random projection image set. We specif-
ically focus on 3D ab-initio SPR which unlike refinement-
based solutions, does not require an initial 3D map [4, 5].

SPR approaches either (1) incorporate the estimation of
the projection parameters in the reconstruction pipeline or (2)
fully bypass it. In one example of the former, the 3D views
corresponding to each projection is estimated via template
matching or common-line based methods [0]. Next, the 3D
map is reconstructed via direct Fourier methods [7] or itera-
tive regularized optimizations [8]. Note that, these methods
rely on the quality of the template and the estimated projec-
tion parameters degrade with lower SNRs [9]. Other exam-
ples of (1) are alternating optimization [10] and maximum
likelihood based [1 1, 12] methods. These methods primarily
rely on iterative updates of the 3D map and the projection pa-
rameters. As the size of the projection dataset can be very
large (10* — 106), updating the projection parameters can be-
come prohibitively expensive.

On the other hand, moment-based ab-initio SPR meth-
ods detour the estimation of the projection parameters by first
summarizing the large projection dataset into a set of rotation-
invariant features [ 13, 4, 14] and the 3D map is recovered after
solving a non-convex optimization. While these approaches
no longer require multiple passes through the whole projec-
tion dataset, they are often used to find a low-resolution ab-
inito model and are sensitive to initialization.

Similarly, CryoGAN [!] circumvents the estimation of
the projection parameters while solving SPR through a dis-
tribution matching lens. In other words, CryoGAN reframes
SPR as finding a 3D map such that the distribution of the
projection dataset generated from the estimated 3D map
matches the given projection image dataset. To achieve this,
Wasserstein-1 distance is chosen as the reconstruction crite-
rion and minimized in a Wasserstein generative adversarial
network (WGAN) framework [15].

In the context of GANS, properties such as continuity
alongside almost everywhere differentiability make Wasser-
stein distances (WD) a desirable metric to use [15, 16].
However, training stability concerns [17] and intractability
of computing WD especially for high-dimensional distri-
butions has led to the use of sliced Wasserstein distance
(SWD) [18, 17, 19, 20] as an alternative. SWD computes the
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Wasserstein distance between the probability distributions
that are projected onto random 1D subspaces. While previ-
ous works using SWD mainly focus on learning to generate
samples from a target data distribution [18, 17], here our goal
is to solve an inverse problem (i.e. cryo-EM SPR).
Motivated by the advantages of SWD in generative mod-
eling, in this work we adopt SWD criterion to solve SPR. Fol-
lowing CryoGAN, we solve SPR via a distribution matching
formulation. However, motivated by the aforementioned ad-
vantages of SWD, we choose SWD as our distribution match-
ing loss. We show that our method, namely CryoSWD, can
recover the overall shape of a 3D map without using a dis-
criminator in high SNR regimes. However, jointly training
a discriminator improves the quality of the reconstructed 3D
map. We hope this paper opens future research directions on
the adoption of SWD criterion in various inverse problems.
This paper is organized as follows. We define the SPR
forward model in Section 2. We describe our method and
results in Sections 3-4 and conclude the paper in Section 5.

2. FORWARD MODEL

Let V: B(R3) —R" U {0} denote the 3D density map com-
pactly supported in a ball B(R?). In cryo-EM, the measure-
ments are noisy random projections of V', modeled as:

Co = CoxPgr,V +ey, {PREV}($7y) = /V(RET:E)dZ (D)

where ¢, : R? — R, ¢/ € {1,...,L} is the (-th projection
image. The X-ray transform Pg, : B(R?) — B(R?) takes
the line integral along the z-direction of its input rotated by
3 x 3 rotation matrix Ry € SO(3) in special orthogonal group
SO(3) and z is the 3D coordinate, = [z, y, 2]T €R3. Note
that, R, defines the projection view corresponding to (,. We
assume the projection views are unknown and {R,}F | are
uniformly distributed in SO(3).

In addition, Cy : R? — R is the contrast transfer function
(CTF) of the microscope affecting ;. Finally, each projec-
tion image is corrupted by additive Gaussian noise e¢(x, y) ~
N(0,0?). In practice, the projection images (; have finite
resolution and are discretized to mxm pixels. In addition, we
also consider V' to be discretized in voxels on its finite com-
pact support. In 3D SPR, the goal is to find V' given its large
set of random noisy projections {¢s}Z_;.

3. METHOD
3.1. Background on CryoGAN [1]
Let Dyear = {Cé}é:=1 be the real projection dataset with

Prear distribution.  Also, Py, (v) is the distribution of the
synthesized projection dataset Dgyn, generated following
( = C*Prv + &, with R uniformly distributed in SO(3)
and e(x,y) ~ N(0,0?). CryoGAN [1] defines SPR as:

‘7 = Il}hl VVl (Preah IP)syn (U) )7 (2)

where W7 is the Wasserstein-1 distance [20]. As computing
W1 between high-dimensional distributions is intractable, of-
ten Kantorovich-Rubinstein duality [15] is invoked and thus

Algorithm 1 CryoSWD

Require: «, f3: learning rates for the discriminator and the
3D map. ngse: the number of update iterations of the dis-
criminator per 3D map update iteration.

Require: Initialize V' with zeros and (¢, ¢) randomly.
Output: Estimated 3D map V given Dyey = { Q}ZL:r

1: while not converged do
2 Draw Ng random samples of {wk}gjl, wy € SPL
3 fort =0,...,ngjsc_1 do
4: Sample a random batch from Dyey, {Cp} {)3:1.
5 Sample a random batch from Dgyy,, {G} B
6 Update (¢, ¢) with gradient ascent steps using the
gradients of (9) with respect to (¢, ¢).
end for
Sample a random batch from Dyey and Dyyy.
: Compute the embeddings of the real and synthetic
batches, i.e. up = ¢((p) and Uy, = B(G).
10: Compute real and synthetic projected embeddings,
ive. { (T, wi) 122y and { (T, wi) 122,
11: For each wy;, sort the batch of projected embeddings.
12: Update v using gradient descent step with the follow-
ing gradient.

1 No B
~ 2
V. (s 2 2 o) i )

k=1 b=1

3

13: end while

solving (2) is equivalent to:

~

V=min sup Ecorlf(O =Bz, o) [f(Q] 3

Yo lfllpst
with f belonging to the family of 1-Lipschitz functions. In
WGAN [15] context, f is modeled by a neural network critic
and the Lipschitz continuity constraint is enforced through
gradient penalty terms [21].

3.2. CryoSWD

In CryoSWD, we replace the W3 criterion used in Cryo-
GAN with SWD. Specifically, we use the quadratic sliced
Wasserstein-2 distance (.S W22). Suppose Prea and Py, are
probability distributions on R?, d = m? (consider flattened
versions of the projection images). Then, the quadratic SW,
between the two distributions is defined as [17]:

SW3 (Preat, Psyn) = / ) 1W§(Prﬁal7P§;n)dw 4)
i

1 Ngq
~ Vol S W (DD )
k=1

where W5 denotes the Wasserstein-2 distance, S~ is the d-
dimensional unit sphere and P, (]P’f;’yn) is the distribution of
the projected Py (Psyy) distribution along w € S%=1.In prac-
tice, (4) is approximated by (5), using a finite summation with
Nq SW projection directions randomly sampled from S?~!,
AISO, Drbzal = {((,w)K € Dreal} and D(;;/n = {<§1w>|c €
Dyyn } denote the projected datasets by w.
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Fig. 1. Examples of projection images of HP1 and HJC maps.

We emphasize the difference between projection operator
employed in the computation of SWy and the X-ray trans-
form denoted by Pg in the cryo-EM forward model. While
the former operates by taking the inner product of its input
with projection directions w € S9-1  the latter takes the line
integral of its input along the view specified by R € SO(3).

As Dy, and Dg, are 1D distributions, the W between
the two has a closed form expression based on the solution of
the optimal transport map [22, 17, 19] and is written as:

=7 ZH )

where 7 and 7’ denote the permuted indices sorted such that:
(Crpyw) < <<7w+1aw>’ Gi € Dyear and <<7r;aw> < <<7r§+law>’

51- € Dgyn, forall 1 < ¢ < L. Finally, plugging (6) in (5) leads
to:

WQ( rea17 syn Cﬂ"aw>”2 (6)

No L
N L ZZ” Gris i) =
k=1 i=1
For high-dimensional distributions, to obtain better results,
SWD minimization is often accompanied by training a dis-
criminator (parameterized by a neural network) and mapping
the dataset to an adversarially learnt embedding space [17,
19]. Thus, our final formulation of CryoSWD becomes:

SVVQQ(Preal, syn Cﬂ'gﬂwk>||2. (@)

No L
v:argn}uin L;;H uﬂ'z’wk u7‘r’7wk>|‘2’ (8)
$,p= arg max > fp(@(@Q)+ Y Il —p(@(C)]  ©)
¥ e Dreal CEDgyn

where ¢ : R? — R™ is a neural network encoder and ¢ :
R™ — Ris a classifier with a final sigmoid layer. Note that (¢,
) parameterize the discriminator. Also, u = ¢((), ¢ € Dyeal
and u = c;S(Z ), (e Dyyy are the encoded samples from the
real and synthetic datasets. Note that, in (8), as we project the
encoded datasets to a n-dimensional space (n can be different
from d), w € S"~1. In practice, (8)-(9) is implemented using
mini-batches of the real and synthetic datasets. We provide
the outline of CryoSWD in Algorithm 1.

4. NUMERICAL RESULTS

In our experiments, we use four different 3D biomolecu-
lar maps and generate each from their protein sequences in
Chimera [23]. The generated maps are then pre-processed
and zero-padded to the size of 128 x 128 x 128. The four
maps alongside their protein data bank (PDB) IDs are: Holl-
iday junction complex (5j0n), SARS-CoV-2 RNA-dependent
RNA polymerase (7btf), Human patched 1 (6oeu) and pre-
catalytic spliceosome (5nrl). Throughout the rest of this
draft, we refer to these maps as HJIC, Sars, HP1 and Splice.
We evaluate CryoSWD on synthetic datasets with L = 20k

GT No disc. Disc. No disc. Disc.

a@«%%

Fig. 2. Effect of the discriminator. r; and r» are the resolutions
of the reconstructed 3D maps, without and with a discriminator, re-
spectively. Here the 3D maps are of dimension 64 X 64 x 64 and the
voxel sizes for HIC and Splice are 44 and 7.4 A.
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(a) SWD (b) 3D maps
Fig. 3. (a) SWD between the distribution of the synthetic datasets

with varying sizes (IV) induced by two 3D maps v1 and its smoothed
version v2. P denotes the distribution of the encoded dataset by ¢.
(b) v1 and v2 maps, used to generate the datasets in (a).

projection images, synthesized following (1). We experi-
ment on datasets with and without the CTF effect. In this
draft, we do not consider the effect of image in-plane transla-
tions. To generate datasets with CTF, we consider four CTF
groups with defocus levels varying in [1, 2] microns range.
We specifically study two settings: (1) high SNR (SNR = 5)
with no CTF, (2) low SNR (SNR = 0.05) with CTF. In
datasets with CTF and without CTF, the size of the projection
images are 135x135 and 128x128, respectively. Examples of
projection images under both settings are provided in Fig. 1.
We assess the quality of the estimated maps using Fourier
shell correlation (FSC). FSC measures the normalized cross-
correlation between two 3D maps in Fourier domain at vari-
ous radial frequency shells [24]. To determine the resolution
of the results, we compute the FSC between the reconstruc-
tion and the ground truth (GT) and use FSC=0.5 criterion.
We compare CryoSWD against CryoGAN' [1]. We fix
the same critic/discriminator architecture and initialize the 3D
maps with zeros for both methods. The number of discrimina-
tor updates per 3D map updates is ngisc = 4 and we train both
models for 80 epochs. We choose a batch size of B = 32
and use Adam optimizer. We keep identical configurations
between the CryoGAN and CryoSWD experiments except
for a few parameters. In all CryoGAN experiments, follow-
ing [1] default setting, the discriminator and the 3D maps
learning rate is & = 0.001, however in CryoSWD, we se-
lect the learning rate from @ € {5 x 107°,107%}. Also, we

1Our implementation of CryoSWD and CryoGAN experiments are based
on the public CryoGAN [ ] repository.
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Fig. 4. FSC between the GT and reconstructed 3D maps. The hori-
zontal axis is spatial resolution (1/4).

use N = 3x10% and generate {wk}ivfl by drawing standard
normal samples and normalizing them to unit norm.
CryoSWD without a Discriminator: In Fig. 2, we visualize
the results of CryoSWD for HIC and Splice datasets, with and
without the use of the discriminator. With no discriminator,
we optimize the loss function (7) to recover the 3D map and
set B = 500 and o = 0.05. For this experiment, we set
SNR = 1000 with no CTF. We observe that, even without
the use of the discriminator, minimizing SW5 in (7), leads to
a reconstruction that is close to the overall shape of the GT.
However, using a discriminator and an encoder that maps the
projection images to an adversarially learnt embedding space
helps in reconstructing finer details of the GT.

We noticed that, without a discriminator the reconstruc-
tion fails in higher noise regimes. To investigate this, we con-
sider two distributions, Py = Pyyy(v1) and P» = Pyn(v2),
where vy is a smoother version of v;. We now define three
sets of samples: S}V"l, S}V’Q and SJQV each containing N in-
dependent samples drawn from P;, P, and P»,. In Fig. 3
(green and blue curves), we plot SW22 computed from (7),
between the distributions of these sets denoted by Py, Px”
and P%. As Sy' and Sy” are sampled from the same distri-
bution, they have a small SWD. Also, in high SNR regime,
P]{,"Q and P% are more distant, especially as N grows. How-
ever, with increased levels of noise (SNR = 0.05), SWD be-
tween the two shrinks and approaches SWy (811\,’1, 811\;2), de-
spite the differences between v; and ve. This highlights the
difficulty in minimizing SWD in (7) when noise intensifies.
On the contrary, if we train a discriminator, the SW distance
between the embedded samples of the different datasets (i.e.
S}V’l and 8%, black and red curves in Fig. 3-(a)) would be sig-
nificantly larger than the SWs distance of the same datasets
coming from the same distribution P; (blue and green curves
in Fig. 3-(a)). This implies that encoding the noisy projections
to an adversarially learned embedding space, further separates
the two datasets and can lead to better reconstructions.
Qualitative and Quantitative Results: In Fig. 4-5, we com-
pare CryoSWD against CryoGAN. We noticed that the per-
formance of CryoGAN, especially in low noise settings, is

(d) HP1
Fig. 5. Visualization of the reconstructed volumes. Gray: GT

map, : CryoGAN [1], no CTF, SNR=5, Cyan: CryoGAN [1],
with CTF, SNR=0.05, Purple: CryoSWD, no CTF, SNR=5, Pink:
CryoSWD, with CTF, SNR=0.05.

sensitive to the choice of gradient penalty (GP) weight. After
tuning GP weight, we observe that the performance of Cryo-
GAN and CryoSWD are close for most datasets. However,
unlike CryoGAN, CryoSWD does not need GP term to en-
force training stability and in high SNR regimes allows a rea-
sonable reconstruction without training a discriminator.

5. CONCLUSION & FUTURE WORK

In this paper, we proposed to use sliced Wasserstein distance
(SWD) as a reconstruction criterion in single-particle cryo-
EM. Specifically, we replaced Wassersten-1 with SWD in the
CryoGAN pipeline. CryoSWD, similar to CryoGAN, solves
SPR in a distribution matching sense. In low noise settings,
CryoSWD recovers the 3D maps without the need to train a
discriminator. When coupled with a discriminator, CryoSWD
results further improve in both low and high noise settings.
In this draft, following CryoGAN, we assumed the dis-
tribution of the projection views are known a-priori and
uniform. While having a uniform prior empirically works
well [1], to better match the projection image dataset distri-
bution, it is important to take into account the recovery of the
projection view distribution. Furthermore, we observed that
CryoSWD with no discriminator fails with intensified noise.
It would be interesting to investigate the effect of multi-scale
reconstruction on making CryoSWD more robust to noise.
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