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Abstract. Proving local well-posedness for quasilinear problems in pde’s presents a number of difficulties,
some of which are universal and others of which are more problem specific. On one hand, a common standard

for what well-posedness should mean has existed for a long time, going back to Hadamard. On the other
hand, in terms of getting there, there are by now both many variations, but also many misconceptions.

The aim of these expository notes is to collect a number of both classical and more recent ideas in this

direction, and to assemble them into a cohesive road-map that can be then adapted to the reader’s problem
of choice.
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1. Introduction

Local well-posedness is the first question to ask for any evolution problem in partial differential equations.
These notes, prepared by the authors for a summer school at MSRI [13] in 2020, aim to discuss ideas
and strategies for local well-posedness in quasilinear and fully nonlinear evolution equations, primarily of
hyperbolic type. We hope to persuade the reader that the structure presented here should be adopted
as the standard for proving these results. Of course, there are many possible variations, and we try to
point out some of them in our many remarks. While a few of the ideas here can be found in several of the
classical books, see e.g. [30],[10], [3],[24], some of the others have appeared only in articles devoted to specific
problems, and have never been collected together, to the best of our knowledge.

1.1. Nonlinear evolutions. For our exposition we will adopt a two track structure, where we will broadly
discuss ideas for a general problem, and in parallel implement these ideas on a simple, classical concrete
example.

Our general problem will be a nonlinear partial differential equation of the form

(1.1) ut = N(u), u(0) = u0,

i.e. a first order system in time, where we think of u as a scalar or a vector valued function belonging to a
scale of either real or complex Sobolev spaces. This scale will be chosen to be Hs := Hs(Rn) for the purpose
of this discussion, though in practice it often has to be adapted to the class of problems to be considered.
The nonlinearity N represents a nonlinear function of u and its derivatives,

N(u) = N({∂αu}|α|≤k),
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where we will refer to k as the order of the evolution. Here typical examples include k = 1 (hyperbolic
equations), k = 2 (Schrödinger type evolutions) and k = 3 (KdV type evolutions). But many other situations
arise in models which are nonlocal, e.g. in water waves one encounters k = 1

2 for gravity waves respectively

k = 3
2 for capillary waves.

Some problems are most naturally formulated as second order evolutions in time, for instance nonlinear
wave equations. While some such problems admit also good first order in time formulations (e.g. the
compressible Euler flow), it is sometimes better to treat them as second order. Regardless, our road-map
still applies, with obvious adjustments.

Our model problem will be a classical first order symmetric hyperbolic system in R× Rn, of the form

(1.2) ∂tu = Aj(u)∂ju, u(0) = u0,

where u takes values in Rm and the m×m matrices Aj are symmetric, and smooth as functions of u. Here
the order of the nonlinearity N is k = 1, and the scale of Sobolev spaces to be used is indeed the Sobolev
scale.

1.2. What is well-posedness ? To set the expectations for our problems, we recall the classical Hadamard
standard for well-posedness, formulated relative to our chosen scale of spaces.

Definition 1.1. The problem (1.1) is locally well-posed in a Sobolev space Hs(Rn) if the following properties
are satisfied:

(i) Existence: For each u0 ∈ Hs there exists some time T > 0 and a solution u ∈ C([0, T ];Hs).
(ii) Uniqueness: The above solution is unique in C([0, T ];Hs).
(iii) Continuous dependence: The data to solution map is continuous from u0 ∈ Hs to u ∈ C([0, T ];Hs).

As a historical remark, we note that Hadamard primarily discussed the question of well-posedness in the
context of linear pde’s, specifically for the Laplace and wave equation, beginning with an incipient form
in [8], and a more developed form in [9]. It is in the latter reference where the continuous dependence is
discussed, seemingly inspired by Cauchy’s theorem for ode’s.

The above definition should not be taken as universal, but rather as a good starting point, which may
need to be adjusted depending on the problem. Consider for instance the uniqueness statement, which, as
given in (ii), is in the strongest form, which is often referred to as unconditional uniqueness. Often this
may need to be relaxed somewhat, particularly when low regularity solutions are concerned. Some common
variations concerning uniqueness are as follows:

a) The solutions u in (i) are shown to belong to a smaller space, Xs
T ⊂ C([0, T ];Hs(Rn)), and then the

uniqueness in (ii) holds in the same class.
b) Unconditional uniqueness holds apriori only in a more regular class HN with N > s, but the data

to solution map extends continuously as a map from Hs to C([0, T ];Hs).

Since we are discussing nonlinear equations here, the lifespan of the solutions need not be infinite, i.e.
there is always the possibility that solutions may blow up in finite time. In particular, in the context of
well-posed problems it is natural to consider the notion of maximal lifespan, which is the largest T for which
the solution exists in C([0, T );Hs); here the limit of u(t) as t approaches T cannot exist, or else the solution
u may be continued further.

In this context, the last property in the definition should be interpreted to mean in particular that, for a
solution u ∈ C([0, T ];Hs), small perturbations of the initial data u0 yield solutions which are also defined
in [0, T ]. This in turn implies that the maximal lifespan T = T (u0) is lower semicontinuous as a function of
u0 ∈ Hs(Rn).

In view of the above discussion, it is always interesting to provide more precise assertions about the
lifespan of solutions, or, equivalently, continuation (or blow-up) criteria for the solutions. Some interesting
examples are as follows:

a) The lifespan T (u0) is bounded from below uniformly for data in a bounded set,

T (u0) ≥ C(∥u0∥Hs) > 0.
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This implies a blow-up criteria as follows:

lim
t→T (u0)

∥u(t)∥Hs = ∞.

b) The blow-up may be characterized in terms of weaker bounds,

lim
t→T (u0)

∥u(t)∥Y = ∞.

relative to a Banach topology Y ⊃ Hs, or perhaps a time integrated version thereofˆ T (u0)

0

∥u(t)∥Y dt = ∞.

To conclude our discussion of the above definition, we note that many well-posedness statements also
provide additional properties for the flow:

Higher regularity: if the initial data has more regularity u0 ∈ Hσ with σ > s, then this regularity carries
over to the solution, u ∈ C[(0, T );Hσ], with bounds and lifespan bounds depending only on the Hs

size of the data.
Weak Lipschitz bounds: on bounded sets in Hs, the flow is Lipschitz in a weaker topology (e.g. up to

Hs−1 in our model problem).

Both of these properties are often an integral part of a complete theory, and frequently also serve as inter-
mediate steps in establishing the main well-posedness result.

In all of the above discussion, a common denominator remains the fact that the solution to data map is
locally continuous, but not uniformly continuous. It is very natural indeed to redefine (expand) the notion
of quasilinear evolution equations to include all flows which share this property.

In many problems of this type, one is interested not only in local well-posedness in some Sobolev space Hs,
but also in lowering the exponent s as much as possible. We will refer to such solutions as rough solutions.
Then, a natural question is what kind of regularity thresholds should one expect or aim for in such problems?
One clue in this direction comes from the scaling symmetry, whenever available. As an example, our model
problem exhibits the scaling symmetry

u(t, x) → u(λt, λx), λ > 0.

The scale invariant initial data Sobolev space corresponding to this symmetry is the homogeneous space

Ḣ
sc
, where sc = n/2. This space is called the critical Sobolev space, and should heuristically be thought of

as an absolute lower bound for any reasonable well-posedness result. Whereas in some semilinear dispersive
evolutions one can actually reach this threshold, in nonlinear flows it seems to be out of reach in general.

1.3. A set of results for the model problem. In order to state the results, we begin with a discussion
of control parameters. We will use two such control parameters. The first one is

A = ∥u∥L∞ .

This is a scale invariant quantity, which appears in the implicit constants in all of our bounds. Our second
control parameter is

B = ∥∇u∥L∞ ,

which instead will be shown to control the energy growth in all the energy estimates. Precisely, the norm
B, plays the role of the Y norm mentioned in the discussion above.

The primary well-posedness result for the model problem is as follows:

Theorem 1. The equation (1.2) is locally well-posed in Hs in the Hadamard sense for s > d
2 + 1.

The reader will notice that this result is one derivative above scaling. It is also optimal in some cases,
including the scalar case (where the problem can be solved locally using the method of characteristics), but
not optimal in many other cases where the system is dispersive.

For the uniqueness result we have in effect a stronger statement, which only requires Lipschitz bounds for
u. This however does not improve the scaling comparison relative to the critical spaces:
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Theorem 2. Uniqueness holds in the Lipschitz class, and we have the L2 difference bound

(1.3) ∥(u1 − u2)(t)∥L2 ≲ eC(A)
´ t
0
B(s) ds∥(u1 − u2)(0)∥L2 .

This is exactly the kind of weak Lipschitz bound discussed earlier. With a bit of additional effort, for the
Hs solutions in Theorem 1 this may be extended to a larger range of Sobolev spaces,

(1.4) ∥(u1 − u2)∥L∞([0,T ];Hσ) ≲ ∥(u1 − u2)(0)∥Hσ , |σ| ≤ s− 1.

The small price to pay here is that now the implicit constant in the estimate depends not only on A and B
but also on the norms of u1 and u2 in C([0, T ];Hs).

A key role in the proof of the well-posedness result is played by the energy estimates, which are also of
independent interest:

Theorem 3. The following bounds hold for for solutions to (1.2) for all s ≥ 0:

(1.5) ∥u(t)∥Hs ≲ eC(A)
´ t
0
B(s) ds∥u(0)∥Hs .

Finally, as a corollary of the last result, we obtain a continuation criteria for solutions:

Theorem 4. Solutions can be continued in Hs for as long as
´
B remains finite.

Theorem 1 has been first proved by Kato [16], borrowing ideas from nonlinear semigroup theory, see e.g.
Barbu’s book [4]. The existence and uniqueness part, as well as the energy estimates, can also be found in
standard references, e.g. in the books of Taylor [30], Hörmander [10] and Sogge [24] (in the last two the wave
equation is considered, but the idea is similar). However, interestingly enough, the continuous dependence
part is missing in all these references. We did find presentations of continuous dependence arguments inspired
from Kato’s work in Chemin’s book [3], and also on Tao’s blog [26].

Our objective for remainder of the paper will be to provide complete proofs for the four theorems above,
which the reader may take as a guide for his problem of choice. While these results are not new in the
model case we consider, to the best of our knowledge this is the first time when the proofs of these results
are presented in this manner. Along the way, we will also provide extensive comments and pointers to
alternative methods developed along the years.

In particular, we would emphasize the frequency envelope approach for the regularization and continuous
dependence parts, as well as the time discretization approach for the existence proof. The frequency envelope
approach has been repeatedly used by the authors, jointly with different collaborators, in a number of papers,
see e.g. [23], [29],[18], [12], [15], with some of the ideas crystalizing along the way. The version of the existence
proof based on a time discretization is in some sense very classical, going back to ideas which have originally
appeared in the context of semigroup theory; however, its implementation is inspired from the authors’
recent work [15], though the situation considered here is considerably simpler.

1.4. An outline of these notes. Our strategy will be, in each section, to provide some ideas and a broader
discussion in the context of the general equation (1.1), and then show how this works in detail in the context
of our chosen example (1.2).

In the next section we introduce the paradifferential form of our equations, both the main equation and
its linearization. This is an idea that goes back to work of Bony [6], and helps clarify the roles played by
different frequency interaction modes in the equation. Another very useful reference here is Metivier’s more
recent book [21].

Section 3 is devoted to the energy estimates, in multiple contexts. These are presented both for the full
equation, for its linearization, for its associated linear paradifferential flow, and for differences of solutions.
The latter, in turn, yields the uniqueness part of the well-posedness theorem. A common misconception here
has been that for well-posedness it suffices to prove energy estimates for the full equation. Instead, in our
presentation we regard the bound for the linearized problem as fundamental, though, at the implementation
level, it is the paradifferential flow bound which can be found at the core.

Section 4 provides two approaches for the existence part of the well-posedness theorem. The first one,
more classical, is based on an iteration scheme, which works well on our model problem but may run into
implementation issues in more complex problems. The second approach, which we regard as more robust,
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relies on a time discretization, and is somewhat related to nonlinear semigroup theory, which also inspired
Kato’s work. Two other possible strategies, which have played a role historically, are briefly outlined.

Section 5 introduces Tao’s notion of frequency envelopes (see for example [27]), which is very well suited to
track the flow of energy as time progresses. This is then used to show how rough solutions can be obtained as
uniform limits of smooth solutions. This is a key step in many well-posedness arguments, and helps decouple
the regularity for the initial existence result from the rough data results.

Finally the last section of the paper is devoted to the continuous dependence result, where we provide
the modern, frequency envelopes based approach. At the same time, for a clean, elegant reinterpretation of
Kato’s original strategy we refer the reader to Tao’s blog [26].

1.5. Acknowledgements. The first author was supported by a Luce Professorship, by the Sloan Founda-
tion, and by an NSF CAREER grant DMS-1845037. The second author was supported by the NSF grant
DMS-1800294 as well as by a Simons Investigator grant from the Simons Foundation. Both authors are
extremely grateful to MSRI for their full support in holding the graduate summer school “Introduction to
water waves” in a virtual format due to the less than ideal circumstances.

2. A menagerie of related equations

While ultimately one would want all the results stated in terms of the full nonlinear equation, any successful
approach to quasilinear problems needs to also consider a succession of closely related linear equations, as
well as associated reformulations of the nonlinear flow. Here we aim to motivate and describe these related
flows, stripping away technicalities.

2.1. The linearized equation. This plays a key role in comparing different solutions; we will write it in
the form

(2.1) vt = DN(u)v, v(0) = v0,

where DN stands for the differential of N , which in our setting is a partial differential operator of order k.
One may also reinterpret the equation for the difference of two solutions as a perturbed linearized equation
with a quadratic source term; some caution is required here, because often some structure is lost in doing
this, and the question is whether that is not too much.

In the particular case of (1.2), the linearized equation takes the form

(2.2) ∂tv = Aj(u)∂jv +DAj(u)v ∂ju, v(0) = v0.

2.2. The linear paradifferential equation. One distinguishing feature of quasilinear evolutions is that
the nonlinearity cannot be interpreted as perturbative. Nevertheless, one may seek to separate parts of the
nonlinearity which can be seen as perturbative, at least at high regularity, in order to better isolate and
understand the nonperturbative part.

To narrow things down, consider a nonlinear term which is quadratic, say of the form ∂αu1∂
βu2, and

consider the three modes of interaction between these terms, according to the Littlewood-Paley trichotomy,
or paraproduct decomposition,

∂αu1∂
βu2 = T∂αu1

∂βu2 + T∂βu2
∂αu1 +Π(∂αu1, ∂

βu2),

where the three terms represent the low-high, high-low respectively the high-high frequency interactions.
The high-high interactions in the last term are always perturbative at high regularity, so are placed into the
perturbative box. But one cannot do the same with the low-high or high-low interactions, which are kept on
the nonperturbative side. This is closely related to the linearization, and indeed, at the end of the day, we
are left with a paradifferential style nonperturbative part of our evolution, which we can formally write as

(2.3) wt = TDN(u)w, w(0) = w0.

Here, one can naively use Bony’s notion of paraproduct [6] to define the linear operator TDN(u) as

TDN(u)w =
∑︂
|α|≤k

T∂pαN(u)∂
αw,

where pα is a placeholder for the ∂αu argument of the nonlinearity N . However there are also other related
choices one can make, see for instance the discussion at the end of this subsection. For a discussion on the
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use of paradifferential calculus in nonlinear PDE’s (though not the above notation) we refer the reader to
Metivier’s book [21].

One can think of the above evolution as a linear evolution of high frequency waves on a low frequency
background. Then one can interpret solving the nonperturbative part of our evolution as an infinite dimen-
sional triangular system, where each dyadic frequency of the solution is obtained at some step by solving
a linear system with coefficients depending only on the lower components, and in turn it affects the coeffi-
cients of the equations for the higher frequency components. Of course, this should only be understood in a
philosophical sense, because a variable coefficient flow in general does not preserve frequency localizations.
This can sometimes be achieved with careful choices of the paraproduct quantizations, but it never seems
worthwhile to implement, as the perturbative terms will mix frequencies anyway and add tails.

Turning to our model problem, in a direct interpretation the associated paradifferential equation will have
the form

(2.4) ∂tw = TAj(u)∂jw + TDAj(u)∂juw , w(0) = w0.

However, upon closer examination one may see several choices that could be made. Considering for instance
the first paraproduct, which of the following expressions would make the better choice at frequency 2k ?

Aj(u)<k−8∂jwk, Aj(u<k−8)∂jwk, [Aj(u<k−8)]<k−4∂jwk.

The last one may seem the most complicated, but it is also the most accurate. In many cases, including
our model problem, it makes no difference in practice. However, one should be aware that often a simpler
choice, which is made for convenience in one problem, might not work anymore in a more complex setting.

Remark 2.1. Here the frequency gap, which was set to be equal to 8 in the above formulas, is chosen rather
arbitrarily; its role is simply to enforce the frequency separation between the coefficients and the leading term.
On occasion, particularly in large data problems, it is also useful to work instead with a large frequency gap
as a proxy for smallness, see e.g. [25].

2.3. The paradifferential formulation of the main equations. Consider first our general equation
(1.1), which we can write in the form

(2.5) ut = TDN(u)u+ F (u), u(0) = u0.

Here one would hope that the paradifferential source term can be seen as perturbative, in the sense that

F : Hs → Hs, Lipschitz.

Similarly we can write the linearized equation (2.1) in the same format,

(2.6) vt = TDN(u)v + F lin(u)v, v(0) = v0,

with the appropriate nonlinearity F lin. This is still based on the paradifferential equation (2.5), but can no
longer be interpreted as the direct paralinearization of the linearized equation. This is because the expression
F lin(u)v also contains some low-high interactions, precisely those where v is the low frequency factor.

3. Energy estimates

Energy estimates are a critical part of any well-posedness result, even if they do not tell the entire story.
In this section we begin with a heuristic discussion of several ideas in the general case, and then continue
with some more concrete analysis in the model case.

3.1. The general case. Consider first the energy estimates for the general problem (1.1), where it is simpler
to think of this in the paradifferential formulation (2.3). An energy estimate for this problem is an estimate
that allows us to control the time evolution of the Sobolev norms of the solution. In the simplest formulation,
the idea would be to prove that

d

dt
∥u∥2Hσ ≲ C∥u∥2Hσ ,

with a constant C that at the very least depends on the Hs norm of u.
There are two points that one should take into account when considering such estimates. The first

is that it is often useful to strenghten such bounds by relaxing the dependence of the constant C on u.
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Heuristically, the idea is that this constant measures the effect of nonlinear interactions, which are strongest
when our functions are pointwise large, not only large in an L2 sense. Thus, it is often possible to replace the
constant C with an analogue of the uniform control norm B in the model case, perhaps with some additional
implicit dependence on another scale invariant uniform control parameter A. See however the discussion in
Remark 3.2.

A second point is that, although it is tempting to try to work directly with the Hs norm, it is often the
case that the straight Hs norm is not well adapted to the structure of the problem; see e.g. what happens in
water waves [2], [12]. Then it is useful to construct energy functionals Eσ adapted to the problem at hand.
For these energies we should aim for the following properties

i) Energy equivalence:

(3.1) Eσ(u) ≈ ∥u∥2Hσ .

ii) Energy propagation

(3.2)
d

dt
Eσ(u) ≲A B∥u∥2Hσ ,

where the control parameter B satisfies

(3.3) B ≲ ∥u∥Hs .

Now consider our main equation written in the form (2.3). For the perturbative part of the nonlinearity
F we hope to have some boundedness,

(3.4) ∥F (u)∥Hσ ≲A B∥u∥Hσ .

This in turn allows us to reduce nonlinear energy bounds of the form (3.2) to similar bounds for the linear
paradifferential equation (2.5). One may legitimately worry here that some structure is lost when we decouple
the paradifferential coefficients from the evolution variable; however, the point is that these two objects are
indeed separate, as they represent different frequencies of the solution.

Remark 3.1. In our discussion here we took the simplified view that bounds for F begin at σ = 0. But this
is not always the case in practice, and often one needs to identify the lower range for σ where this works;
see e.g. the nonlinear wave equation [23], the wave map equation [29], or the water wave problem considered
in [1].

Now consider the paradifferential evolution (2.5), and begin with the L2 case by setting σ = 0. Then we
need to produce a linearized type energy E0,lin

u so that the solutions satisfy

(3.5)
d

dt
E0,lin

u (w) ≲A B∥w∥2L2 .

Then the associated nonlinear energy at σ = 0 would be

E0(u) = E0,lin
u (u).

If E0,lin
u (w) = ∥w∥2L2 , then the bound (3.5) would simply require that the paradifferential operator TDN(u)

is essentially antisymmetric in L2. If that is not true, then the backup plan is to find an equivalent Hilbert
norm on L2 so that the antisymmetry holds. Some care is however needed; if this norm depends on u, then
this dependence needs to be mild.

The next step is to consider a larger σ. By interpolation it suffices to work with integer σ, in which case
one might simply differentiate (2.3),

(∂σw)t = TDN(u)(∂
σw) + [∂σ, TDN(u)]w.

Here we would be done if the last commutator is bounded from Hσ into L2. In principle that would be the
case almost automatically at least when the order k of N is at most one. One can heuristically associate
this with the finite speed of propagation in the high frequency limit.

Remark 3.2. The case k > 1, which corresponds to an infinite speed of propagation, is often more delicate;
see e.g. [18, 17, 19] for quasilinear Schrödinger flows, or [14] for capillary waves. There one needs to further
develop the function space structure based on either dispersive properties of solutions, or on normal forms
analysis.
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3.2. Coifman-Meyer and Moser type estimates. Before considering our model problem, we briefly
review some standard bilinear and nonlinear estimates that play a role later on. In the context of bilinear
estimates, a standard tool is to consider the Littlewood-Paley paraproduct type decomposition of the product
of two functions, which leads to Coifman-Meyer type estimates, see [7], [22]:

Proposition 3.3. Using the standard paraproduct notations, one has the following estimates

(3.6)

∥Tfg∥L2 ≲ ∥f∥L∞∥g∥L2 ,

∥Tfg∥L2 ≲ ∥g∥BMO∥f∥L2 ,

∥Π(f, g)∥L2 ≲ ∥f∥BMO∥g∥L2 ,

as well as the commutator bound

(3.7) ∥[Pk, f ]g∥L2 ≲ 2−k∥∂xf∥L∞∥g∥L2 .

Here Pk is the Littlewood-Paley projection onto frequencies ≈ 2k.

These results are standard in the harmonic/microlocal analysis community. For nonlinear expressions we
use Moser type estimates instead:

Proposition 3.4. The following Moser estimate holds for a smooth function F , with F (0) = 0, and s ≥ 0:

∥F (u)∥Hs ≲∥u∥L∞ ∥u∥Hs .

Of course many more extensions of both the bilinear and the nonlinear estimates above are available.

3.3. The model case. We now turn our attention to our model problem, where, if we adopt the expression
(2.4) for the paradifferential flow, the source term F (u) is given by

(3.8) F (u) = Aj∂ju− TAj(u)∂ju− TDAj(u)∂juu.

We can rewrite this in the form

(3.9) F (u) = Π(Aj(u), ∂ju) + T∂juAj(u)− TDAj(u)∂juu.

For this expression we can show that it always plays a perturbative role:

Proposition 3.5. The above nonlinearity F satisfies the following bounds:
i) Sobolev bounds

(3.10) ∥F (u)∥Hσ ≲A B∥u∥Hσ , σ ≥ 0.

ii) Difference bounds

(3.11) ∥F (u)− F (v)∥Hσ ≲A B [∥u− v∥Hσ + ∥u− v∥L∞(∥u∥Hσ + ∥v∥Hσ )] , σ ≥ 0,

as well as

(3.12) ∥F (u)− F (v)∥L2 ≲A B∥u− v∥L2 .

The next to last bound shows in particular that F is Lipschitz in Hs for s > d/2. The simplification in
the case σ = 0 is also useful in order to bound differences of solutions in the L2 topology.

Proof. i) We use the expression (3.9) for F . The first term can be estimated using a version of the Coifman-
Meyer estimates and Moser estimates by

∥Π(Aj(u), ∂ju)∥Hσ ≲ ∥Aj(u)∥Hσ∥∂ju∥BMO ≲A B∥u∥Hσ .

For the second term we use again paraproduct bounds and Moser estimates to get

∥T∂juAj(u)∥Hσ ≲ ∥∂ju∥L∞∥Aj(u)∥Hσ ≲A ∥∂ju∥L∞∥u∥Hσ .

The third term is similar to the second.

ii) First, we note the representation

A(u)−A(v) =: G(u, v)(u− v),
8



which we use to separate u−v factors. Here G(u, v) is a smooth function of u and v. Then taking differences
in the first term of F , we need two estimates

∥Π(Aj(u), ∂j(u− v))∥Hσ ≲ ∥∂Aj(u)∥L∞∥u− v∥Hσ ≲A B∥u− v∥Hσ

respectively

∥Π(G(u, v)(u− v), ∂jv)∥Hσ ≲ ∥G(u, v)(u− v)∥Hσ∥∂v∥L∞ ≲A B(∥u− v∥Hσ + ∥u− v∥L∞(∥u∥Hσ + ∥v∥Hσ )),

noting that for σ = 0 the last term can be avoided.
Similarly we have two estimates corresponding to the second term in F , namely

∥T∂juAj(u)− T∂jvAj(v)∥Hσ = ∥T∂ju[G(u, v)(u− v)]− T[∂ju−∂jv]A
j(v)∥Hσ

≲ ∥T∂ju[G(u, v)(u− v)]∥Hσ + ∥T[∂ju−∂jv]A
j(v)∥Hσ ,

where
∥T[∂ju−∂jv]A

j(v)∥Hσ ≲ ∥u− v∥L∞∥∂jAj(v)∥Hσ ≲A B∥u− v∥L∞∥v∥Hσ ,

respectively

∥T∂ju[G(u, v)(u− v)]∥Hσ ≲A ∥∂ju∥L∞(∥u− v∥Hσ + ∥u− v∥L∞(∥u∥Hσ + ∥v∥Hσ )),

both with obvious simplifications if σ = 0. Finally, the bounds for the third term in F are similar to the
ones for the second.

□

Remark 3.6. For this Proposition 3.5 one can further relax B to a BMO norm,

B = ∥∇u∥BMO.

On the other hand we can also simplify the paradifferential equation (2.4) to a simpler version

wt = TAj(u)∂jw,

but in this case we no longer can relax B to a BMO norm.

Next we consider the paradifferential equation:

Proposition 3.7. Assume that u ∈ L∞
t,x and ∇u ∈ L1

tL
∞
x (i.e. B ∈ L1

t ). Then the paradifferential equation
(2.4) is well-posed in all Hσ spaces, σ ∈ R, and

(3.13)
d

dt
∥w∥2Hσ ≲A B∥w∥2Hσ .

Proof. We first consider the energy estimate, where we work with the corresponding inhomogeneous equation,

(3.14) ∂tw = TAj(u)∂jw + TDAj(u)∂juw + f , w(0) = w0.

The L2 bound is easiest; we have

1

2

d

dt
∥w∥2L2 =

ˆ
w · TAj(u)∂jw + w · TDAj(u)∂juw + w · f dx.

In the second term we simply estimate the para-coefficient in L∞. In the first term we commute and integrate
by parts, to arrive at

1

2

ˆ
−w · T∂jAj(u)w + w · (TAj(u) − (TAj(u))

∗)∂jw dx,

where due to the symmetry of the matrices Aj we have the bound

(3.15) ∥(TAj(u) − (TAj(u))
∗)∂jw∥L2 ≲A B∥w∥L2 ,

which shows that the corresponding paraproduct operators are self-adjoint at leading order. Here we use the
∗ notation to denote the adjoint of an operator. Hence we obtain⃓⃓⃓⃓

d

dt
∥w∥2L2

⃓⃓⃓⃓
≲A B∥w∥2L2 + ∥w∥L2∥f∥L2 ,

which further by Gronwall’s inequality yields

(3.16) ∥w∥L∞
t ([0,T ];L2

x)
≲A e

´ T
0

B dt(∥w(0)∥L2
x
+ ∥f∥L1

tL
2
x
).
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This by itself does not prove well-posedness in L2, it only proves uniqueness. However, a similar bound
will hold for the backward adjoint system in the same spaces; this is because the adjoint system coincides
with the direct system modulo L2 bounded terms. Together, these two pieces of information yield L2 well-
posedness for the paradifferential system in L2. This is a standard linear duality argument, where the
solutions are constructed by a direct application of the Hahn-Banach Theorem. In a nutsell, one has the
following equivalencies, see for instance [11]:

Energy estimates for the direct forward problem ⇐⇒ Existence for the adjoint backward problem

Energy estimates for the adjoint backward problem ⇐⇒ Existence for the direct forward problem

Exactly the same argument applies in Hσ, with the small change that now the the adjoint system should
be considered in H−σ. There the bound (3.15) is replaced by

(3.17) ∥(⟨D⟩σTAj(u) − (TAj(u))
∗⟨D⟩σ)∂jw∥L2 ≲ ∥∇A(u)∥L∞∥w∥Hσ ≲A B∥w∥Hσ .

□

Combining the last two propositions, Proposition 3.5 and Proposition 3.7, we obtain the Hσ bound in
Theorem 3.

3.4. The linearized equation. Next, we turn our attention to the linearized equation, which we also write
in a paradifferential form

(3.18) ∂tv = TAj(u)∂jv + TDAj(u)∂juv + F lin(u)v, v(0) = v0,

where

F lin(u)v := Π(Aj(u), ∂jv) + Π(DAj(u)∂ju, v) + T∂jvAj(u) + Tv(DAj(u)∂ju) := F lin
Π (u)v + F lin

T (u)v.

We note here that the equation (3.18) is not exactly a true paralinearization of the linearized equation,
as F lin

T (u)v does contain low-high interactions. This difference is observed in the estimates satisfied by the
two terms.

On one hand, the term F lin
Π (u)v satisfies good bounds in all Sobolev spaces,

(3.19) ∥F lin
Π (u)v∥Hσ ≲A B∥v∥Hσ , σ ≥ 0,

so it can be seen as a true perturbative term. This a simple, Coifman-Meyer type estimate which is left for
the reader.

On the other hand, assuming we know that u ∈ Hs, the term F lin
T (u)v can at best be estimated in Hs−1,

and there of course we could not use the control norms, instead we would have to use the full Hs norm of
u. However, we can use the control norms for L2 bounds to directly estimate

(3.20) ∥F lin
T (u)v∥L2 ≲A B∥v∥L2 .

Combining the last two estimates with Proposition 3.7 we perturbatively obtain

Proposition 3.8. Assume that A ∈ L∞ and that B ∈ L1. Then the linearized equation (2.2) is well-posed
in L2, with bounds

(3.21)
d

dt
∥v∥2L2 ≲A B∥v∥2L2 .

We observe the obvious fact that one does not need paradifferential calculus in order to prove this propo-
sition; a simple integration by parts suffices. However, it is instructive to dissect the terms in the equation
and understand their respective roles. Also, it is interesting to observe that in appropriate settings, the
linearized equation can be thought of as a perturbation of the associated paradifferential equation.

Remark 3.9. Well-posedness and bounds for the linearized equation can be also obtained in all Hσ spaces
for |σ| ≤ s − 1. However, this can no longer be done in terms of our control parameters; for instance if
σ = s− 1 then we need to use the full Hs norm of the solutions. While interesting, this observation will not
be needed for the rest of the paper.
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3.5. Difference bounds and uniqueness. The easiest way to compare two solutions u1 and u2 for (1.1)
is to subtract their respective equations, to obtain an equation for v = u1 − u2. In the general case, using
the form (2.5) of the equation, we obtain

vt = TDN(u1)v + TDN(u1)−DN(u2)u2 + F (u1)− F (u2).

Here we identify this equation as the paradifferential equation associated to u1, but with two source terms,
which we would like to interpret as perturbative in a low regularity Sobolev space, say L2. That would yield
a bound of the form

(3.22) ∥v(t)∥L2 ≲ eC(A)
´ t
0
B(s)ds∥v(0)∥L2 ,

where A = A1 +A2, B = B1 +B2, with Ai = ∥ui∥L∞ , and Bi = ∥∇ui∥L∞ , for i = 1, 2.

Let us see how this works out in our model problem. We will show that

Proposition 3.10. Let u1 and u2 be two Lipschitz solutions to (1.2) with associated control parameters
A1, B1 respectively A2, B2. Then their difference v = u1 − u2 satisfies the bound (3.22).

Proof. We have already seen in Proposition 3.7 that the paradifferential evolution is well-posed in L2, and
in Proposition 3.5 that we have a good Lipschitz bound for F . It remains to bound the remaining difference

∥TDN(u1)−DN(u2)u2∥L2 ≲A B∥u1 − u2∥L2 .

For this we write
TDN(u1)−DN(u2)u2 = TAj(u1)−Aj(u2)∂ju2 + TDAj(u1)∂ju1−DAj(u2)∂ju2

u2

= TAj(u1)−Aj(u2)∂ju2 + T(DAj(u1)−DAj(u2))∂ju1
u2 − T∂jDAj(u2)(u1−u2)u2

+ T∂j(DAj(u2)(u1−u2))u2.

For the first term we have a Coifman-Meyer type bound

∥TA(u1)−A(u2)∇u2∥L2 ≲ ∥u1 − u2∥L2∥∇u2∥BMO ≲ B∥u1 − u2∥L2 .

The second term is even easier,

∥T(DAj(u1)−DAj(u2))∂ju1
u2∥L2 ≲ ∥(DAj(u1)−DAj(u2))∂ju1∥L2∥u2∥L∞ ≲A B∥u1 − u2∥L2 ,

and the third term is similar. Finally, in the fourth term we can use Coifman-Meyer to rebalance again the
derivatives and obtain

∥T∂j(DAj(u2)(u1−u2)u2∥L2 ≲ ∥DAj(u2)(u1 − u2)∥L2∥∇u2∥BMO,

concluding as before. □

Remark 3.11. The observant reader may have noticed that for our model problem the difference bound can
be directly proved using a simple integration by parts, without any need for paradifferential calculus, and may
wonder why we are doing it this way. There are three reasons for this: (i) to show that it works, (ii) to show
how both the bound for the full equation and the bound for the difference equation can be seen as two sides
of the same coin, and (iii) to provide a guide for the reader for situations where a simpler approach does not
work.

Remark 3.12. In the same vein as in Remark 3.9, bounds for the difference equation can be also obtained
in all Hσ spaces for |σ| ≤ s− 1.

Remark 3.13. In our particular example it was easy to cast the difference equation in a form which is
very much like the linearized equation. However, this is not always the case. For this reason, we point out
that there is another way one can think of difference bounds, namely by viewing the two initial data u01 and
u02 as being connected via a one parameter family of data u0h where h ∈ [1, 2]. Then we can interpret the
difference u2 − u1 as

u2 − u1 =

ˆ 2

1

d

dh
uh dh,

where uh are the solutions with data u0h. Here the integrand represents a solution to the linearized equation
around uh. Hence difference bounds for u2 − u1 can be obtained by integrating bounds for the linearized
equation. The only downside to such an argument is that such bounds will require the control parameters for
the entire family of solutions, rather than just the end-points.
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4. Existence of solutions

Here we consider the question of existence of solutions for the evolution (1.1) with initial data in Hs, where
s will be taken sufficiently large. The idea here is to construct a good sequence of approximate solutions
un, which will eventually be shown to converge in a weaker topology. The tricky bit is to choose the correct
iteration scheme.

Naively, one might think of trying to base such a scheme on the linearized flow, setting

∂t(u
n+1 − un)−DN(un)(un+1 − un) = −(∂tu

n −N(un)), (un+1 − un)(0) = 0,

where the expression on the right represents the error at step n. Here one can eliminate the time derivative
of un and rewrite this as

∂tu
n+1 −DN(un)un+1 = N(un)−DN(un)un, un+1(0) = u0.

This would be akin to a Nash-Moser scheme, which, even when it works, loses derivatives. That may be
reasonable in a small divisor situation, but not so much if our goal is to obtain a Hadamard style well-
posedness result. Nevertheless, Nash-Moser schemes have been used on occasion to produce solutions for
quasilinear evolutions, though often they prove to be unnecessary.

Remark 4.1. We observe that for the existence of solutions one does not need to work from the start at low
regularity. As we will see, rough solutions can be constructed later on as limits of smooth solutions. This
is strictly speaking not necessary in our model problem, but for more nonlinear, geometric problems it does
seem to make a difference. This is because in such situations it is often easier to compare exact solutions
via the linearized equation which is a geometric object, instead of working with approximate solutions where
the geometric character might be lost.

We will present two strategies to prove existence, and at the end we point out several other methods
which have been successfully used in existence proofs.

4.1. Take 1: an iterative/fixed point construction. In order not to lose derivatives in the approximation
scheme, the idea here is to carefully choose how to distribute un+1 and un in the iteration. A key observation
is that, whereas solving the linearized equation would cause a loss of derivatives, solving the paradifferential
equation does not in general. Then, a good starting point would be the formulation (2.3) of the equations,
which would suggest the following iteration scheme:

(4.1) ∂tu
n+1 − TDN(un)u

n+1 = F (un), un+1(0) = u0.

We will apply this scheme on a time interval [0, T ], with T = T (M) sufficiently small depending on the initial
data size

M := ∥u0∥Hs .

For the above sequence un the aim would be to inductively prove two uniform bounds in [0, T ]:

(4.2) ∥un∥L∞
t Hs

x
≤ CM,

and

(4.3) ∥un+1 − un∥L∞
t L2

x
≤ C(M)T∥un − un−1∥L∞

t L2
x
,

where C is a fixed large constant. In the last bound, the time interval size T is used in order to gain
smallness for the constant, which is needed in order to obtain convergence. Together, these two bounds
imply convergence in L∞

t L2
x to some function u, as well as L∞

t Hs
x regularity for the limit. This in general

suffices in order to show that the limit solves the equation.
To obtain uniform bounds for this evolution one would need two pieces of information:

(1) Well-posedness of the paradifferential equation (2.3) in L2 and more generally in all Hs spaces.
Heuristically, the two should be equivalent, as the operator TDN(un) does not change the dyadic
frequency localization. In practice though it might not be as easy, as leakage to other frequencies
may occur, and in particular even the associated Hamilton flow might not preserve the dyadic
localization on a unit time scale.
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(2) Lipschitz property of F in Sobolev spaces. More generally, a bound of the form

(4.4) ∥F (u)− F (v)∥Hσ ≤ C(∥u∥Hs , ∥v∥Hs)∥u− v∥Hσ , σ ≥ 0,

which should be thought of as a Moser type inequality.

In addition to uniform bounds in a strong norm Hs, one would also like to have convergence in a weaker
topology, say L2 for the purpose of this presentation. The difference equation reads

(4.5) (∂t − TDN(un))(u
n+1 − un) = F (un)− F (un−1) + (TDN(un−1) − TDN(un))u

n.

Here energy estimates in L2 would follow from (1) and (2) above, provided that the last difference has a
good bound

∥(TDN(un−1) − TDN(un))u
n∥L2 ≲ C(∥un−1∥Hs , ∥un∥Hs)∥un − un−1∥L2 .

This is in general relatively straightforward if s is large enough.

Remark 4.2. The argument above yields solutions which are apriori only in L∞
t Hs

x as opposed to C(Hs),
as desired. Getting continuity in Hσ for σ < s is relatively straightforward by interpolation, but proving
continuity in Hs requires considerable extra work1 if one wants a direct argument. The easy way out is to
rely on the arguments in the next section, where we show that all Hs solutions can be seen as uniform limits
of smooth solutions.

Remark 4.3. The above iterative argument can be rephrased as a fixed point argument as follows. For
u ∈ C[0, T ;Hs] we define Lu(t) := v as the solution to

∂tv − TDN(u)v = F (u), v(0) = u0

Then the desired solution u has to be a fixed point for L. Solutions to this fixed point problem may often be
obtained using the contraction principle in the right topology. Precisely, the strategy is to choose the domain
of L to be the ball B(0, CM) in L∞[0, T ;Hs], but endow this ball with a weaker topology, e.g. C[0, T ;L2].
Then both the mapping properties of L and the small Lipschitz constant can be achieved by choosing the time
T sufficiently small. Here for the domain we have to choose L∞ rather than continuity in order to guarantee
completeness.

We now implement this scheme for our model problem. Denoting M = ∥u0∥Hs , we will prove inductively
that for fixed large enough T and small enough T , we have the bound

∥un∥C(0,T ;Hs) ≤ CM.

Taking this as induction hypothesis we have the following bounds for the control parameters An and Bn

associated to un:
An, Bn ≲ CM.

Then we can estimate un+1 in Hs by combining Proposition 3.7 and Proposition 3.5 to obtain

d

dt
∥un+1∥2Hs ≲ C(M)(1 + ∥un+1∥2Hs),

and by Gronwall’s inequality we arrive at

∥un∥C(0,T ;Hs) ≲ MeC(M)T ,

with a universal implicit constant. This completes the induction if we first choose C large enough (to
dominate the implicit constant), and then T small enough (depending on C and M).

On the other hand, in order to prove the convergence in L2 we use the equation (4.5) for the difference
un+1 − un, and claim that the following L2 estimate holds:

(4.6)
d

dt
∥un+1 − un∥2L2 ≲ C(M)∥un+1 − un∥2L2 + C(M)∥un − un−1∥2L2 .

Assuming this is true, by Gronwall’s inequality we obtain

∥un+1 − un∥C(0,T ;L2) ≲ C(M)TeC(M)T ∥un − un−1∥C(0,T ;L2),

which gives us the small Lipschitz constant if T is sufficiently small, depending only on M .

1e.g. by showing continuity in time of solutions to the linear paradifferential equation.
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It remains to prove (4.6). For the paradifferential equation we can use Proposition 3.7 and for the F
difference we can use Proposition 3.5, so it remains to examine the last term in (4.5), and show that

∥(TDN(un−1) − TDN(un))u
n∥L2 ≲ C(M)∥un−1 − un∥L2 .

In the case of the model problem the difference on the left reads

TAj(un−1)−Aj(un)∂ju
n + TDAj(un−1)∂jun−1−DAj(un)∂junun.

For the first term we have the obvious bound

∥TAj(un−1)−Aj(un)∂ju
n∥L2 ≲ ∥Aj(un−1)−Aj(un)∥L2∥∂jun∥L∞ ≲ C(M)∥un−1 − un∥L2 .

The second term is split into three parts,

T(DAj(un−1)−DAj(un))∂junun − T∂jDAj(un−1)(un−1−un)u
n + T∂j [DAj(un−1)(un−1−un)]u

n,

where the first two parts are easy to estimate. A similar bound follows for the third term after we move the
derivative onto the high frequency factor, using an estimate of the form

∥T∂fg∥L2 ≲ ∥f∥L2∥∂g∥BMO,

which is a corollary of the second bound in (3.6).

4.2. Take 2: a time discretization method. Here the idea is to discretize time at a small scale ϵ, and
to construct approximate discrete solutions uϵ(jϵ) with the following properties:

i) Uniform bounds

(4.7) ∥uϵ(jϵ)∥Hs ≤ CM, j ≪M ϵ−1;

ii) Approximate solution

(4.8) ∥uϵ((j + 1)ϵ)− uϵ(jϵ)− ϵN(uϵ(jϵ))∥L2 ≲ ϵ2.

Once this is done, if s is large enough2 then it is a relatively straightforward matter to show that a uniform
limit u exists3 on a subsequence as ϵ → 0, by applying the Arzela-Ascoli theorem. This works in a time
interval [0, T ] with T ≪M 1. By passing to the limit in the above bounds in a weak topology, it follows the
limit u solves the equation and has regularity

u ∈ L∞(0, T ;Hs) ∩ Lip(0, T ;L2).

The nice feature of this method is that one really only needs to carry out one single step. Precisely, given
u0 ∈ Hs with size M , and 0 < ϵ ≪ 1, one needs to find u1 (which corresponds to uϵ(ϵ) above) with the
following properties:

i)’ Uniform bounds

(4.9) ∥u1∥Hs ≤ (1 + C(M)ϵ)∥u0∥Hs ;

ii)’ Approximate solution

(4.10) ∥u1 − u0 − ϵN(u0)∥L2 ≲ ϵ2.

Reiterating this, the bound (4.7) follows by applying a discrete form of Gronwall’s inequality.

Remark 4.4. The ϵ2 bound in ii)’ can be harmlessly replaced by ϵ1+δ with a small constant δ > 0.

Remark 4.5. Sometimes the square Hs norm of u is not the correct quantity to propagate in time, and one
needs to replace it with appropriate equivalent energies Es in property (ii)’.

Remark 4.6. The choice of the L2 in (ii)’ above was in order to keep the exposition simple. However,
sometimes a different topology may be required by the problem, see e.g. [29], [1].

2For instance in our model case case s > n/2 + 1 suffices.
3Here one may extend uϵ to all times by linear interpolation.
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The remaining question is how to construct the single iterate satisfying properties (i)’,(ii)’ above. The
obvious choice would be Euler’s method, which is to set

u1 = u0 + ϵN(u0),

but this does not work because it loses derivatives.
Inspired by the nonlinear semigroup theory [4], one may choose instead to solve

u1 − ϵN(u1) = u0.

This idea has potential at least when this is an elliptic equation. Alternatively one may opt for a paradiffer-
ential version

u1 − ϵTDN(u0)u1 = u0 + ϵF (u0),

which has the advantage that one only needs to solve a linear elliptic equation. However, ellipticity is not
guaranteed.

Instead, here we will adopt a two steps approach, which has the advantage that no partial differential
equation needs to be solved. Precisely, our steps are as follows:

STEP 1: Regularization. Here we take the initial data u0 and we regularize it on an ϵ dependent scale.
Precisely, if k is the order of the nonlinearity N , then it is natural to choose the spatial truncation frequency
scale to be ϵ−

1
2k , which corresponds to an order 2k parabolic regularization; this regularization scale is needed

in order to be able to bound the error in the Euler step. Then our regularization ũ would have the following
properties:

(a) Regularization

(4.11) ∥ũ∥Hs+k ≲ ϵ−
1
2 ∥u0∥Hs .

(b) Energy bound

(4.12) Es(ũ) ≤ (1 + C(M)ϵ)Es(u0).

(c) Approximate solution

(4.13) ∥ũ− u0∥L2 ≲ ϵ2.

STEP 2: Euler iteration. Here we simply set

(4.14) u1 = ũ+ ϵN(ũ),

so that the approximate solution bound (4.10) becomes relatively straightforward, and the energy bound
(4.9) becomes akin to proving the energy estimate; see the example below.

We now implement the above strategy on our chosen model problem. Here our chosen energy is simply
the Sobolev norm,

EN (u) = ∥u∥2HN .

Our equation has order k = 1, so the proper regularization scale is δx = ϵ
1
2 . Hence, we use a Littlewood-Paley

projector to simply define

ũ = P
<ϵ−

1
2
u,

and the three properties (a), (b) and (c) above are trivially satisfied.
Next we turn our attention to the Euler iteration (4.14) for which we need to establish the properties (i)’

and (ii)’. We begin with (i)’, where it suffices to compare the energies of u1 and ũ. For |α| ≤ N we have

∂αu1 = ∂αũ+ ϵ∂α(Aj(ũ)∂j ũ).

If |α| < N , then in the second term on the right we have at most N derivatives, so this term has size O(ϵ)
in the L2 norm

∥∂α(Aj(ũ)∂j ũ)∥L2 ≲A ∥ũ∥HN ,

and we can neglect it.
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It remains to consider |α| = N . Then we can separate the terms with no more than N derivatives and
estimate them as above, using appropriate interpolation inequalities,

∂α(Aj(ũ)∂j ũ) = Aj(ũ)∂α∂j ũ+OL2(B∥ũ∥HN ).

Hence we have

∂αu1 = ∂αũ+ ϵAj(ũ)∂α∂j ũ+OL2(ϵ),

and, neglecting O(ϵ) terms, we compute L2 norms,

∥∂αu1∥2L2 = ∥∂αũ∥2L2 + 2ϵ

ˆ
∂αũ · Aj(ũ)∂α∂j ũ dx+ ϵ2∥Aj(ũ)∂α∂j ũ∥2L2 .

The last L2 norm has size O(ϵ) in view of property (a) above. In the integral, on the other hand, we use the
symmetry of A to integrate by parts,

2

ˆ
∂αũ · Aj(ũ)∂α∂j ũ dx = −

ˆ
∂αũ · ∂jAj(ũ)∂αũ dx,

which can again be estimated by ≲A B∥ũ∥2HN . Thus we obtain

∥u1∥2HN ≲A (1 + ϵB)∥ũ∥2HN ,

as desired, as B can be estimated by the Sobolev norm of u0 by Sobolev embeddings.
It remains to consider (ii)’, where, by (c) above, it suffices to show that

∥Aj(u)∂ju−Aj(ũ)∂j ũ∥L2 ≲M ϵ.

This is a soft argument, where we simply write

∥Aj(u)∂ju−Aj(ũ)∂j ũ∥L2 ≲M ∥A(u)−A(ũ)∥L2 + ∥∂ju− ∂j ũ∥L2 ≲M ∥u− ũ∥H1 ,

where the H1 norm on the right is bounded by interpolating (c) above with the uniform HN bound provided
by (b). This requires N ≥ 2.

4.3. Other strategies. Most of the other strategies to prove existence of solutions are based on constructing
approximate flows, and solutions are obtained as limits of solutions to the approximate flows. There are two
such methods which are more widely used.

a) Parabolic regularization. Here one uses a parabolic regularization of the original flow (1.1), defining
the approximate solutions uϵ by

uϵ
t = N(uϵ)− ϵ(−∆)kuϵ, u(0) = u0,

where the correct choice for the parabolic term seems to be to double the order of the original equation.
These problems can often be solved for a short, ϵ dependent time, as semilinear problems, with a direct,
fixed point argument. However, in doing this, the main challenge is to prove uniform in ϵ bounds for these
approximate flows. This sometimes requires more careful choices of the regularization term, to make it fit
better with the geometry of the problem.

b) Galerkin approximation. Here the idea is to work with a low frequency projector in the equation, e.g.
of the type

ut = P<hN(P<hu)

with h → ∞, see e.g. the example in [30]. The local solvability for this evolution becomes trivial as this
evolution is an ordinary differential equation in a Hilbert space, but the challenge is again to prove uniform
in ϵ bounds for these approximate flows. The double use of the projector above is a choice that usually
facilitates achieving this objective. Depending on the problem, this may require careful choices for the
frequency projectors, adapted to the problem.
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5. Rough solutions as limits of smooth solutions

Here we explore the idea of constructing rough solutions as limits of smooth solutions. There are at least
two good reasons to do this, which we discuss in order:

(1) In quasilinear problems one does not expect any sort of uniformly continuous dependence of solutions
on the initial data, so the continuity of the flow map becomes a purely qualitative assertion. However,
one can still ask for a quantitative way of comparing solutions, and such a quantitative venue is found
by using the regular approximations as a convenient proxy. This is discussed in the last section.

(2) It is also often the case that more regular solutions are sometimes easier to produce, and in such
situations, obtaining the rough solutions as limits of smooth solutions might be the only option. This
is particularly the case in problems where the state space is not a linear space, such as Schrödinger
maps [20], Yang-Mills or other problems with a nontrivial gauge structure. See also [15] for an
implementation of this idea in a free boundary problem. This is because in such problems it is
always easier to obtain estimates for the linearized equations, or at least to compare exact solutions,
rather than to cook up a constructive scheme which is consistent with the geometry.

To make this analysis quantitative, it is very useful to track the flow of energy between different frequencies.
Whereas energy cascades (energy migration to higher frequencies) have long been associated with blow-up
phenomena, well-posedness should correspond to a lack thereof. To quantify this, we will use Tao’s notion
of frequency envelopes.

5.1. Frequency envelopes. Frequency envelopes, introduced by Tao (see for example [27]), are a very
useful device in order to track the evolution of the energy of solutions between dyadic energy shells. As there
is always nearby leakage between the dyadic shells in nonlinear flows, on needs to do this in a more stable
way, rather than look directly at the exact amount of energy in every shell.

This is realized via the following definition:

Definition 5.1. We say that {ck}k≥0 ∈ ℓ2 is a frequency envelope for a function u in Hs if we have the
following two properties:

a) Energy bound:

(5.1) ∥Pku∥Hs ≤ ck,

b) Slowly varying

(5.2)
ck
cj

≲ 2δ|j−k|, j, k ∈ N.

Here Pk represent the standard Littlewood-Paley projectors, and δ is a positive constant, which is taken
small enough in order to account for energy leakage between nearby frequencies.

One can also try to limit from above the size of a frequency envelope, for instance by requiring that

∥u∥2Hs ≈
∑︂

c2k.

We call such envelopes sharp. Such frequency envelopes always exist, for instance one can take

ck = sup
j

2−δ|j−k|cj .

For a better understanding see Figure 1 below, where the actual dyadic norms, indicated by red bullets on a
logarithmic scale, are lifted (based on the above formula) to a slowly varying frequency envelope, indicated
by the green circles.

We will use frequency envelopes in order to track the evolution of energy in time as follows: we start with
a sharp frequency envelope for the initial data, and then seek to show that we can propagate this frequency
envelope to the solutions to our quasilinear flow, at least for a short time.

Remark 5.2. One alternative here is to unbalance the choice of δ in (5.2), asking for a small δ if k < j, but
replacing δ with a large constant for k > j. This heuristically corresponds to a better control of leakage to
higher frequencies, and it is useful in order to deal with higher regularity properties also within the frequency
envelope set-up.
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Figure 1. Construction of sharp frequency envelopes.

5.2. Regularized data. Consider an initial data u0 ∈ Hs with size M , and let {ck}k≥0 be a sharp frequency

envelope for u0 in Hs. For u0 we consider a family of regularizations uh
0 ∈ H∞ := ∩∞

s=0H
s at frequencies

≲ 2h where h is a dyadic frequency parameter. This parameter can be taken either discrete or continuous,
depending on whether we have access to difference bounds or only to the linearized equation. Suppose we
work with differences. Then the family uh

0 can be taken to have similar properties to Littlewood-Paley
truncations:

i) Uniform bounds:

(5.3) ∥Pku
h
0∥Hs ≲ ck.

ii) High frequency bounds:

(5.4) ∥uh
0∥Hs+j ≲ 2jhch, j > 0.

iii) Difference bounds:

(5.5) ∥uh+1
0 − uh

0∥L2 ≲ 2−shch.

iv) Limit as h → ∞:

(5.6) u0 = lim
h→∞

uh
0 in Hs.

Correspondingly, we obtain a family of smooth solutions uh.
Here in the simplest setting where the phase space is linear one may simply choose uh

0 = P<hu0, which
would have all the above properties. However, in geometric settings where the phase space is nonlinear, a
more complex regularization method may be needed, for instance using a corresponding geometric heat flow,
see [28] or a variable scale regularization as in [15].

5.3. Uniform bounds. Corresponding to the above family of regularized data, we obtain a family of smooth
solutions uh. For this we can use the energy estimates as in Theorem 3 to propagate Sobolev regularity for
solutions as well as difference bounds as in Proposition 3.10. This yields a time interval [0, T ] where all these
solutions exist, and whose size T depends only on M = ∥u0∥Hs , where we have the following properties:

i) High frequency bounds:

(5.7) ∥uh∥C(0,T ;Hs+j) ≲ 2jhch, j > 0.

ii) Difference bounds:

(5.8) ∥uh+1 − uh∥C(0,T ;L2) ≲ 2−shch.
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From (5.7) one may obtain a similar bound for the difference uh+1 −uh. Interpolating this with (5.8), we
also have

(5.9) ∥uh+1 − uh∥C(0,T ;Hm) ≲ 2−(s−m)hch, m ≥ 0.

One may use these bounds to establish uniform frequency envelope bounds for uh,

(5.10) ∥Pku
h∥C(0,T ;Hs) ≲ ck2

−N(k−h)+ ,

on the same time interval which depends only on the initial data Hs size. This is a direct consequence of
(5.7) for k ≥ h, while if k < h we can use the telescopic expansion

uh = uk +

h−1∑︂
l=k

(︁
ul+1 − ul

)︁
,

and use (5.7) for the first term and (5.8) for the differences.

5.4. The limiting solution. Consider now the convergence of uh as h → ∞. From the difference bounds
(5.8) we obtain convergence in L2 to a limit u ∈ C(0, T ;L2), with

∥u− uh∥C(0,T ;L2) ≲ 2−sh.

On the other hand, expanding the difference as a telescopic sum we get

u− uh =

∞∑︂
m=h

um+1 − um,

where, in view of the above bounds (5.7) and (5.8), each summand is essentially concentrated at frequency
2m, with Hs size cm and exponentially decreasing tails. This leads to

(5.11) ∥u− uh∥C(0,T ;Hs) ≲ c≥h :=

⎛⎝∑︂
m≥h

c2m

⎞⎠ 1
2

,

so we also have convergence in C(0, T ;Hs).
This type of argument plays multiple roles:

(1) It produces rough solutions as smooth solutions, justifying the earlier assertion that it often suffices
to carry out the initial construction of solutions only in a smooth setting.

(2) It establishes the continuity of solutions as Hs valued flows, which is sometimes missing from the
constructive proof of existence.

(3) It provides the quantitative bound (5.11) for the difference between the rough and the smooth
solutions, which plays a key role in the continuous dependence proof in the next section.

6. Continuous dependence

Here we use frequency envelopes in order to prove continuous dependence of the solution u ∈ C(0, T ;Hs)
as a function of the initial data u0 ∈ Hs, and also discuss some historical alternatives.

6.1. The continuous dependence proof. Consider a sequence of initial data

u0j → u0 in Hs, s >
d

2
+ 1,

and the corresponding solutions uj , u which exist with a uniform lifespan [0, T ], where T depends only
on the initial data size ∥u0∥Hs . We will prove that uj → u in C(0, T ;Hs). Once we have this property,
it automatically extends to any larger time interval [0, T1] where the solution u is defined and satisfies
u ∈ C(0, T1;H

s). This should be understood in the sense that for all large enough j, the solutions uj are
defined in [0, T1], with similar regularity, and the convergence holds as j → ∞.

The difference bounds in Proposition 3.10 guarantee that uj → u in C(0, T ;L2). Since uj are uniformly
bounded in C(0, T ;Hs), this also implies convergence in C(0, T ;Hσ) for every 0 ≤ σ < s, but not for σ = s.
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It remains to consider the convergence in the strong topology, i.e. in Hs. Rather than trying to compare
the solutions uj and u directly, we will use as a proxy the approximate solutions uh

j , respectively uh. For
these, we will take advantage of the fact that their initial data converge in all Sobolev norms,

uh
0j → uh

0 in Hσ, 0 ≤ σ < ∞.

Hence, according to the preceding discussion, we have convergence of the regular solutions in all Sobolev
norms,

uh
j → uh in C(0, T ;Hσ), 0 ≤ σ < ∞.

To compare the solutions u and uj themselves, we use the triangle inequality,

(6.1) ∥uj − u∥C(0,T ;Hs) ≲ ∥uh
j − uh∥C(0,T ;Hs) + ∥uh − u∥C(0,T ;Hs) + ∥uh

j − uj∥C(0,T ;Hs).

The first term goes to zero as j → ∞ for fixed h, while the second goes to zero as h → ∞, but does not
depend on j. It is the third term which is the problem, and for which we need to gain some smallness
uniformly in j.

However, in the previous section we have learned to estimate such differences using frequency envelopes.

Precisely, let {ck}k≥0, respectively
{︂
cjk

}︂
k≥0

be frequency envelopes for the initial data u0, respectively uj
0 in

Hs. Then, as we saw in the previous section, we can estimate the last two terms above in terms of frequency
envelopes and obtain

(6.2) ∥uj − u∥C(0,T ;Hs) ≲ ∥uh
j − uh∥C(0,T ;Hs) + c≥h + cj≥h.

The important observation is that the convergence u0j → u0 in Hs allows us to choose the frequency
envelopes c, respectively cj so that

cj → c in ℓ2.

This implies that

lim
j→∞

cj≥h = c≥h.

Hence, passing to the limit j → ∞ in the relation (6.1), we obtain

(6.3) lim sup
j→∞

∥uj − u∥C(0,T ;Hs) ≲ c≥h,

and finally letting h → ∞ we obtain

lim
j→∞

∥uj − u∥C(0,T ;Hs) = 0,

as desired.

6.2. Comparison with Kato and Bona-Smith. The more classical approach for continuous dependence
goes back to Kato [16] as well as a variation due to Bona-Smith [5]. We will briefly describe this approach
using our notations and set-up; we caution the reader that the original arguments in these papers are not
self-contained and are instead mixed with the other parts of well-posedness proofs, so it is not exactly easy
to correlate the papers with the description below. In effect our discussion below is more closely based on
the interpretations of Kato’s work provided by Chemin [3] and, even closer, by Tao [26].

This also relies on the use of some sort of approximate solutions uh. However, in this approach one aims
to directly estimate the difference uh − u in Hs in terms of the corresponding initial data. One might at
first hope to directly track the difference ∥uh − u∥C(0,T ;Hs), but this cannot work without knowledge that

the low frequencies of the difference (i.e. below 2h) are better controlled. So the better object to track turns
out to be a norm of the form

(6.4) ∥uh − u∥Hs + 2kh∥uh − u∥Hs−k ,

where we recall that k is the order of our nolinearity. Here the second part can be estimated directly for any
two Hs solutions, see Remark 3.12, so one can think of this as decoupled as a two step process. To better
understand why this works, it is useful to write the equation for the difference w = uh−u in a paradifferential
form

(6.5) ∂tw + TDN(u)w = [F (u)− F (uh)] + TDN(u)−DN(uh)u
h,
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which should essentially be thought of as a perturbation of the linear paradifferential flow, which can be
estimated in all Sobolev spaces. The F difference is tame because F admits Lipschitz bounds in all Sobolev
spaces, so the issue is the last term.

There there is seemingly a loss of k derivatives, but these derivatives are applied to uh, which has higher
regularity bounds, so they yield losses of at most a 2kh factor. But this factor can be absorbed by the lower
frequency paradifferential coefficients given by DN(u)−DN(uh), in view of the 2kh factor in (6.4). Here it
is important that we wrote the equation using TDN(u) rather TDN(uh) on the left, which allows us to use uh

as the argument in the last term on the right.
In Kato’s argument the same principle is used to get Hs bounds not only for the difference uh − u but

also for uh − v for an arbitrary solution v. In Bona-Smith’s, version, on the other hand, one estimates only
uh − u, but the proof is more roundabout in that uh is not only assumed to have regularized data, but also
to solve a regularized equation, thus combining the existence and the continuous dependence arguments.

In our opinion, working with frequency envelopes has definite advantages:

• It provides more accurate information on the solutions.
• It does not require any direct difference bounds in the strong Hs topology.
• By working with a continuous, rather than a discrete family of regularizations one can fully replace
difference estimates by bounds for the linearized equation, which is to be preferred in many cases,
in particular in geometric contexts where the state space is an infinite dimensional manifold.
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