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Abstract— Closing the domain gap between training and

deployment and incorporating multiple sensor modalities are

two challenging yet critical topics for self-driving. Existing work

only focuses on single one of the above topics, overlooking

the simultaneous domain and modality shift which pervasively

exists in real-world scenarios. A model trained with multi-

sensor data collected in Europe may need to run in Asia

with a subset of input sensors available. In this work, we

propose DualCross, a cross-modality cross-domain adaptation

framework to facilitate the learning of a more robust monocular

bird’s-eye-view (BEV) perception model, which transfers the

point cloud knowledge from a LiDAR sensor in one domain

during the training phase to the camera-only testing scenario

in a different domain. This work results in the first open analysis

of cross-domain cross-sensor perception and adaptation for

monocular 3D tasks in the wild. We benchmark our approach

on large-scale datasets under a wide range of domain shifts

and show state-of-the-art results against various baselines. Our

project webpage is at https://yunzeman.github.io/DualCross.

I. INTRODUCTION

In recent years, multimodal 3D perception has shown
outstanding performance and robustness over its single-
modality counterpart, achieving leading results for various
3D perception tasks [12], [23], [27], [30], [35], [38] on large-
scale multi-sensor 3D datasets [1], [13], [33]. Despite the
superiority in information coverage, the introduction of more
sensor modalities also poses additional challenges to the
perception system. On the one hand, generalizing the model
between datasets becomes hard, because each sensor has its
unique properties, such as field-of-view (FoV) for cameras,
density for LiDAR, etc. On the other hand, the operation of
the model is conditioned on the presence and function of
more sensors, making it hard to work on autonomous agents
with less sensor types or under sensor failure scenarios.

More specifically, transferring knowledge among different
data domains is still an open problem for autonomous agents
in the wild. In the self-driving scenario, training the percep-
tion models offline in a source domain with annotation while
deploying the model in a different target domain without
annotation is very common in practice. As a result, a model
has to consider the domain gap between source and target
environments or datasets, which usually involves different
running locations, different sensor specifications, different
illumination and weather conditions, etc.

Meanwhile, in addition to domain shift, modality shift is
another factor which challenges the successful deployment
of models. The widely adopted assumption that all sensors
are available during training, validation, and deployment time
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is not always true in reality. Due to the cost and efficiency
trade-off, or sensor failure scenarios, in many cases we can
have fewer sensors available in the target domain during
testing than what we have in the source domain during
training. A typical scenario is having camera and LiDAR
sensors in the large-scale training phase while only having
cameras for testing, as shown in Figure 1. It is not clear how
to facilitate the camera-only 3D inference with the help of a
LiDAR sensor only in the source domain during training.

The challenges above raise an important question: Can

we achieve robust 3D perception under both domain shift

and sensor modality shift? Existing methods either study
cross-domain scenarios assuming consistent modality [8],
[12], [15], [19], [21], [42], [44], or study cross-modality
scenarios assuming the same domain during training and
validation [4], [6], [9], [11], [17], [18], [41]. However,
simultaneous domain and modality shift poses additional
challenges of large domain discrepancy and exacerbates the
ill-posed nature of 3D inference from monocular information
due to the misaligned sensory data. As we will discuss in
Sec. III-B, our new setting requires a novel methodology in
using LiDAR without increasing the domain discrepancy.

To tackle the above challenges, we propose DualCross,
a cross-modality cross-domain adaptation framework for
bird’s-eye-view (BEV) perception. Our model addresses the
monocular 3D perception task between different domains,
and utilizes additional modalities in the source domain to fa-
cilitate the evaluation performance. Motivated by the fact that
image and BEV frames are bridged with 3D representation,
we first design an efficient backbone to perform 3D depth
estimation followed by a BEV projection. Then, to learn from
point clouds without explicitly taking them as model inputs,
we propose an implicit learning strategy, which distills 3D
knowledge from a LiDAR-Teacher to help the Camera-
Student learn better 3D representation. Finally, in order to
address the visual domain shift, we introduce adversarial
learning on the student to align the features learned from
source and target domains. Supervision from the teacher
and feature discriminators are designed at multiple layers
to ensure an effective knowledge transfer.

By considering the domain gap and effectively leveraging
LiDAR point clouds in the source domain, our proposed
method is able to work reliably in more complicated, uncom-
mon, and even unseen environments. Our model achieves
state-of-the-art performance in four very different domain
shift settings. Extensive ablation studies are conducted to
investigate the contribution of our proposed components, the
robustness under different changes, and other design choices.

https://yunzeman.github.io/DualCross
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Fig. 1: Left & Middle: Existing models assume a fixed sensor or modality during training and testing phases. Right: We introduce a more realistic setting
which considers cross-modality cross-domain shift. Surprisingly, using source-only LiDAR as depth supervision leads to worse performance (6.3 in IoU)
than the image-only model (6.7). Thus, we propose DualCross to reduce the domain discrepancy, achieving state-of-the-art performance (17.0).

The main contributions of this paper are as follows. (1)
We introduce mixed domain and modality mismatch, an over-
looked but realistic problem setting in 3D domain adaptation
in the wild, leading to a robust camera-only 3D model that
works in complicated and dynamic scenarios with minimum
sensors available. (2) We propose a novel LiDAR-Teacher
and Camera-Student knowledge distillation model, which
considerably outperforms state-of-the-art LiDAR supervision
methods. (3) Extensive experiments in challenging domain
shift settings demonstrate the capability of our method in
leveraging source domain point cloud information for accu-
rate monocular 3D perception.

II. RELATED WORK

Multi- and Cross-Modality 3D Perception. Considerable
research has examined leveraging signals from multiple
modalities, especially images and point clouds, for 3D
perception tasks. Early work [20] projects point clouds to
the BEV frame and fuses them with 2D RGB features
to generate proposals and regress bounding boxes. Later
work [43], [46], [22] explores deep fusion between points
and images. Under the umbrella of the cross-modality setting,
2DPASS [41] transfers features learned from images to the
LiDAR. BEVDepth [18] obtains reliable depth estimation
by exploiting camera parameters with image features during
training. More recently, a line of work explores knowledge
distillation from one sensor to another for 3D object detec-
tion [4], [6], [18], [41]. On the contrary, our method explores
a more realistic yet challenging setting, where we use LiDAR
data in one domain (e.g., Boston/Sunny/Daylight) during
training to help the camera-only model during inference in
another domain (e.g., Singapore/Rainy/Night). As a result,
we analyze and improve the actual usefulness of additional
sensors under domain shift settings.

Cross-Domain 3D Perception. While extensive research
has been conducted on domain adaptation for 2D tasks,
the field of domain adaptation for 3D perception in the
real world has received relatively less attention. Some prior
work adapts depth estimation from synthetic to real image
domains [15], [45]. Working on point clouds, PointDAN [31]
designs a multi-scale adaptation model for 3D classification.
For 3D semantic segmentation, SqueezeSeg [39] projects
point clouds to the 2D view, while other work [8], [12],

[16] leverages point clouds and images data together. Recent
work [21], [44] explores cross-domain 3D object detection
from point clouds. SRDAN [44] employs adversarial learning
to align the features between different domains. Although
prior work [12], [19] explores various domain adaptation
techniques for different sensor modalities, these methods
only adopt the same modalities to learn the domain shift
between source and target data. In contrast, our approach
achieves robust 3D perception in a more general scenario,
where the model can perform accurate 3D inference in the
target domain by adapting information encoded in source-
exclusive modalities.

3D Inference in Bird’s-Eye-View Frame. Inferring 3D
scenes from the BEV perspective has recently received a
large amount of interest due to its effectiveness. MonoLay-
out [24] estimates the layout of urban driving scenes from
images in the BEV frame and uses an adversarial loss to
enhance the learning of hidden objects. Another work [2]
proposes to employ graphical representation and temporal
aggregation for better inference in the driving scenarios using
on-board cameras. Recently, using BEV representation to
merge images from multiple camera sensors has become
a popular approach [10], [26]. Following the monocular
feature projection proposed by Orthographic Feature Trans-
form (OFT) [32], Lift-Splat-Shoot [29] disentangles feature
learning and depth inference by learning a depth distribution
over pixels to convert camera image features into BEV.
Unlike the above work performing BEV analysis in settings
with more controlled premises, we are the first to explore
cross-domain and cross-sensor settings, leading to a more
robust and more realistic 3D inference methodology.

III. APPROACH

In this work, we consider the task of learning BEV
representation of scenes with domain shift and modality
mismatch. Specifically, the model will be given annotated Li-
DAR point clouds and camera images in the source domain,
but only unannotated camera images in the target domain.
And the model seeks to achieve highest performance on the
unsupervised target domain. This problem setting is common
and worthwhile, especially considering the existence of many
existing public multi-modality datasets and the rise of many
camera-only vehicle scenarios.
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Fig. 2: Overview of our DualCross framework. DualCross includes three components. (1) LiDAR-Teacher uses voxelized
LiDAR point clouds to transform the image features to BEV frame. It provides essential knowledge on how to guide image
learning given LiDAR information. (2) Camera-Student is supervised by the teacher model as well as the LiDAR ground
truth. (3) Discriminators are used to align features from source and target domains.
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An overview of our method DualCross is illustrated in
Figure 2. DualCross is designed to extract features from
monocular images and project the features into the BEV
frame (Section III-A), using estimated or ground truth 3D
depth information. The model is composed of a LiDAR-
Teacher and a Camera-Student (Section III-B), where the
teacher encodes how to learn better representation given
point clouds, and transfers that knowledge to the camera-
only student using multi-level teacher-student supervision.
Finally, to bridge the domain gap between source and target
domains, we leverage adversarial discriminators at different
feature layers to align the distributions across two domains
in the camera-student model (Section III-C). In addition, we
describe learning objectives and loss designs (Section III-D).

A. Learning BEV from Images

In order to achieve 3D perception under the cross-modality
setting, our first challenge is to unify the image coordinates,
point cloud coordinates, and BEV coordinates into a joint
space. We follow LSS [29] to transform the image features
from the perspective view into the BEV view. Specifically,

we tackle this problem by constructing a 3D voxel represen-
tation of the scene for each input image. We discretize the
depth axis into Nd bins and lift each pixel of the images into
multiple voxels (frustums), where each voxel is represented
by the 3D coordinate of its center location. For a given pixel
px = (h,w) on one of the camera image, it corresponds to
a set of Nd voxels at different depth bins:

Vpx = {vi = M�1[dih, diw, di]
T |i 2 {1, 2, · · · , Nd}}, (1)

where M is the camera matrix and di is the depth of the
i-th depth bin. The feature vector of each voxel vi in Vpx is
the base feature fpx of pixel px scaled by the depth value
↵i. More specifically, fvi2Vpx = ↵i · fpx, where the pixel
feature fpx is extracted by an image encoder. And the depth
value ↵i is obtained either from LiDAR point clouds or by
estimation, in the teacher and the student model, respectively.
The acquirement of ↵i is introduced in Section III-B.

After getting the feature for each of the voxels, we project
the voxels onto the BEV and aggregate the features to get the
BEV feature map. The BEV frame is rasterized into (X,Y )
2D grids, and for each grid, its feature is constructed from
the features of all the 3D voxels projected into it using mean
pooling. This projection allows us to transform an arbitrary
number of camera images into a unified BEV frame. Finally,
we obtain an image-like BEV feature embedding, which is
used to estimate the final representation using a convolutional
neural network (CNN) decoder.

This architecture design bridges the image and LiDAR
modalities through an intermediate 3D voxelized represen-
tation. Hence, we can take LiDAR point clouds as input
into the model to directly guide the BEV projection without
having to change the overall pipeline. This further enables
the distillation of knowledge from the point clouds to images
using a teacher-student model.



B. Cross-Modality Transfer via Teacher-Student Distillation

The co-existence of domain and modality gaps poses
additional challenges to the adaptation task. Although the
LiDAR sensor in the source domain provides 3D knowledge
to the model, it also increases the discrepancy between
the two domains, which hurts the model adaptation (as we
will see in Section IV-D and Table VI). Hence, the unique
difficulty of our work lies in exploiting the LiDAR during
training to guide the camera model for better 3D estimation.
Depth Supervision by Point Clouds. The main advantage
of point clouds over the image modality is the accurate 3D
positional information coming from the depth measurement.
Due to the lack of LiDAR during evaluation, we cannot
use point clouds as direct input of the model. Hence, one
alternative approach to using point clouds is to supervise
the depth estimation in the model. As in Eq. 1, for each
pixel, we calculate the features of its corresponding voxels
by multiplying the pixel feature with a depth value ↵i. We
use another head to predict a depth distribution ↵px =
{↵1,↵2, . . . ,↵Nd} over Nd depth bins for each pixel px.

The ground truth depth supervision for this estimation
task is generated by LiDAR point clouds as follows: When
projected to the image frame, the points corresponding to
one pixel can have three conditions. If the pixel has, (1)

no point inside: the ground truth depth distribution of it is
omitted; (2) only one point inside: the ground truth depth
distribution is a one-hot vector, with value one being in the
voxel that the point lies in; (3) multiple points inside: the
ground truth depth distribution ↵i of this point is calculated
by counting the number of points in each depth bin, and
dividing them by Vpx, the total number of points in ↵px:
↵i =

Number of points in depth bin vi

Total number of points in Vpx
.

Using a distribution-based depth representation effectively
accounts for the ambiguity when objects of different depth
occur in one pixel. This happens at the boundary of objects,
and becomes more severe during feature encoding processing
when images get down-sampled and each pixel represents
larger space. Moreover, a probabilistic depth representation
considers uncertainty during depth estimation, and degener-
ates to pseudo-LiDAR methods [37] if the one-hot constraint
is added.
Learning from LiDAR-Teacher. Despite being intuitive
and straightforward, direct depth supervision is not optimal
for two reasons. First, LiDAR supervision is only on the
intermediate feature layer, providing no supervision on the
second half of the model. Also, while LiDAR provides accu-
rate depth measurement, “depth estimation” is still different
from our overall objective on BEV representation. Motivated
by this, as shown in Figure 2, we propose to use a pretrained
LiDAR oracle model to supervise the image model at the
final BEV feature embedding, such that the supervision of
LiDAR is provided to the whole model and aligns better
with the final objective. We call the model using ground
truth point cloud information “LiDAR-Teacher,” and the
model to be supervised “Camera-Student.” This boils down
to a knowledge distillation problem where the 3D inference

knowledge of the LiDAR-teacher is distilled to the camera-
only student. Note that the classic problem of “better teacher,
worse student” [5], [25], [47] in knowledge distillation due to
capacity mismatch does not exist in this model, because the
LiDAR-Teacher and Camera-Student models in DualCross
are almost identical.

Overall, this teacher-student mechanism allows the camera
model to learn better 3D representation from the point
clouds, leading to better LiDAR supervision at different
stages, while still keeping the model image-centric for
image-only inference.

C. Cross-Domain Adaptation with Adversarial Alignment

Since the BEV annotations and the LiDAR ground truth
are only available in the source data, the model will be
heavily biased to the source distribution during teacher-
student supervision. Hence, we bridge the target and source
domains using adversarial training. Specifically, we place
one discriminator D1 at the BEV decoder CNN blocks, and
another D2 at the image encoder CNN blocks, to align the
features of two domains by optimizing over discriminator
losses. While the final-layer discriminator D1 is constantly
useful to align features learned from the LiDAR-Teacher and
final ground truth, we find that the middle-layer discriminator
D2 is very effective under certain domain gaps where images
have great changes but LiDAR remains robust.

To achieve adversarial learning, given a feature encoder
E and an input sample X , a domain discriminator D is
used to discriminate whether the feature E(X) comes from
the source domain or the target domain. The target and
source domain samples are given the label d = 1 and
d = 0, respectively. And D(E(X)) outputs the probability
of the sample X belonging to the target domain. Hence, the
discriminator loss is formulated by a cross-entropy loss:

Ldis = d logD(E(X)) + (1� d) log(1�D(E(X))). (2)

Moreover, in order to learn domain-invariant features, our
feature encoder E should try to extract features that fool the
discriminator D, while the discriminator D tries to distin-
guish the right domain label of the samples. This adversarial
strategy can be formulated as a “min-max” optimization
problem: LD = minE maxD Ldis. The “min-max” problem
is achieved by a Gradient Reverse Layer (GRL) [7], which
produces reverse gradient from the discriminator D to learn
the domain-invariant encoder E. The loss form is the same
for both D1 and D2.

D. Full Objective and Inference

The overall objective of our model is composed of the
supervision from the BEV ground truth, the LiDAR-Teacher,
and the domain alignment discriminators. Given the output
rasterized BEV representation map y 2 RX⇥Y⇥C , the
ground truth (GT) loss term LGT can be formulated as
a cross-entropy loss between the estimated source domain
BEV map ỹs and the GT label ys:

LGT(ỹ
s,ys) = �

XX

i=1

YX

j=i

CX

k=1

ys

(i,j,k) log ỹ
s

(i,j,k). (3)



TABLE I: DualCross leads to significant improvements under day-to-night domain shift, and also achieves the best results under dry-to-rain domain shift
in IoU. DA and CM denote whether a model considers domain adaptation and cross-modality in design, respectively.

Day ! Night DA CM Vehicle Road Lane
MonoLayout [24] 7 7 5.9 37.7 5.9
OFT [32] 7 7 6.6 40.5 6.0
LSS [29] 7 7 6.7 41.2 7.1
Wide-range Aug. 3 7 10.3 46.0 10.4
Vanilla DA 3 7 11.2 48.8 11.1
Depth-Supv DA 3 3 15.7 50.5 14.2
Input-fusion Teacher 3 3 14.9 48.8 13.1
DualCross (Ours) 3 3 17.0 51.8 16.9

Dry ! Rain DA CM Vehicle Road Lane
MonoLayout [24] 7 7 20.6 68.7 13.1
OFT [32] 7 7 24.1 79.8 16.2
LSS [29] 7 7 27.8 71.0 16.8
Wide-range Aug. 3 7 28.2 71.2 17.2
Vanilla DA 3 7 29.1 70.8 18.3
Depth-Supv DA 3 3 29.6 71.8 19.1
Input-fusion Teacher 3 3 29.5 71.0 18.8
DualCross (Ours) 3 3 29.6 71.9 19.5

TABLE II: DualCross achieves the best performance under city-to-city shift in IoU.

Boston ! Singapore DA CM Vehicle Road Lane
MonoLayout [24] 7 7 14.2 35.9 7.5
OFT [32] 7 7 16.8 37.9 9.6
LSS [29] 7 7 17.6 38.2 10.6
Wide-range Aug. 3 7 17.9 40.5 12.4
Vanilla DA 3 7 13.0 31.4 9.1
Depth-Supv DA 3 3 19.0 42.8 14.9
Input-fusion Teacher 3 3 18.6 42.7 14.1
DualCross (Ours) 3 3 20.5 43.1 15.6

TABLE III: DualCross achieves the best performance under
dataset-to-dataset domain gaps in IoU.

nuScenes ! Lyft DA CM Vehicle
MonoLayout [24] 7 7 11.8
OFT [32] 7 7 16.5
LSS [29] 7 7 19.9
Wide-range Aug. 3 7 21.9
Vanilla DA 3 7 22.5
Depth-Supv DA 3 3 23.4
Input-fusion Teacher 3 3 22.8
DualCross (Ours) 3 3 24.4

The supervision from the LiDAR-Teacher is composed of
a direct depth estimation loss Ldp and a teacher feature
supervision LT. As described in Sec. III-A, given the 3D
depth volume ↵ 2 RH⇥W⇥Nd , the direct depth supervision
term Ldp is formulated as a cross-entropy loss between the
estimated 3D depth distribution volume ↵̃s in the source
domain, and the GT depth volume ↵s calculated from
LiDAR point clouds as described in Sec. III-B:

Ldp(↵̃
s,↵s) = �

HX

i=1

WX

j=i

NdX

k=1

↵s

(i,j,k) log ↵̃
s

(i,j,k). (4)

And for the LiDAR-Teacher feature supervision:
LT(F te,F st) = L2(F te,F st) is an L2 loss, where
F te and F st are the feature maps of teacher and student
models, respectively. Finally, the domain adaptation loss
contains LD1 and LD2 with the form described in Eq. 2.
The final objective is a multi-task optimization problem:

LDualCross = LF + �TLT + �dpLdp + �D1LD1 + �D2LD2 ,
(5)

where �T,�dp,�D1 , and �D2 are weights for the correspond-
ing loss terms. Our model is trained end-to-end using the
loss term in Eq. 5. During inference, target samples are
fed into the Camera-Student model to output the final BEV
representation. More training details are provided in Sec. IV.

IV. EXPERIMENTS

A. Datasets, Domain Settings, and Implementation

We evaluate DualCross with four unique domain shift set-
tings constructed from two large-scale datasets, nuScenes [1]
and Lyft [13], following existing LiDAR-based domain
adaptation work, including SRDAN [44], ST3D [42],
UDA3D [21], and xMUDA [12]. Specifically, for the day-

to-night, city-to-city, and dry-to-rain settings, we use the
sentence in the nuScenes dataset and filter the keywords to
split the dataset into corresponding subsets to create the intra-
class adaptation scenarios. For the dataset-to-dataset setting,
we use the official split of the nuScenes dataset, and the split

provided in ST3D [42] for the Lyft dataset. All adaptation
settings follow the assumption that the source has access
to camera and LiDAR sensors, while the target only has
cameras. We use all six cameras provided by the nuScenes
dataset. We also analyze surprising observations on cross-
modality performance in the ablation study.

Following [29], we use EfficientNet [34] pretrained on
ImageNet as our image encoder backbone. Two heads are ap-
plied to estimate pixel features and pixel-wise depth distribu-
tion from the 8⇥ down-sampled feature map. The 3D feature
maps are projected to the BEV frame using mean pooling.
For the BEV decoder we use ResNet-18 as the backbone,
and upsample the features learned from the first three meta-
layers of ResNet to the final BEV output. The D1 and D2

domain discriminators are applied to the output feature layers
of EfficientNet and ResNet backbones, respectively. We use
a light-weight discriminator architecture, which is composed
of a global averaging pooling layer, followed by two fully-
connected layers, and outputs the domain label. For input, we
resize and crop input images to size 128⇥352. For output, we
consider a 100 meters⇥100 meters range centered at the ego-
vehicle, with the grid size set to be 0.5 meters⇥ 0.5 meters.
The depth bin is set to be 1.0 meter between 4.0 meters and
45.0 meters range. The whole model is trained end-to-end,
with �T = 1.0,�dp = 0.05,�D1 = 0.1, and �D2 = 0.01.
We train DualCross using the Adam [14] optimizer with
learning rate 0.001 and weight decay 1e-7 for 50K steps
for the teacher model, and 200K for the student model. We
use horizontal flipping, random cropping, rotation, and color
jittering augmentation during training. The whole model is
implemented using the PyTorch framework [28].

B. BEV Segmentation Results and Comparisons

Baselines. We compare our method with state-of-the-
art BEV 3D layout perception work MonoLayout [24],
OFT [32], LSS [29], as well as other baseline methods
in domain adaptation and cross-modality learning. Wide-

range Aug. means using a wide range of random scaling
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Fig. 3: Qualitative results in the Day ! Night setting (model is trained with daytime data, and validated with night data). We notice that DualCross
performs significantly better than other baselines for vehicles, drivable roads, and lane marking classes. From left to right: (1) Vanilla adversarial learning;
(2) LiDAR as depth supervision with adversarial learning; (3) our DualCross model; and (4) ground truth. Best viewed in color.

augmentation which potentially includes the target domain
scale. For Vanilla DA, we adapt camera-only DA-Faster [3]
to our BEV perception setting. Depth-Supv DA stands for
depth-supervised domain adaptation. We use source domain
LiDAR as ground truth to supervise the depth estimation
during training, without LiDAR-Teacher supervision (only
Ldp without LT). Input-fusion Teacher is an alternative way
of designing the LiDAR-Teacher, where we directly fuse
point (x, y, z) coordinates into their corresponding image
pixels as additional channels in the teacher model, similar to
Pointpainting [35]. We use DA and CM to denote whether
a model considers domain adaptation and cross-modality
(making use of source-exclusive Lidar data) in design, re-
spectively. Results are reported on vehicle, drivable roads,
and lane classes using intersection-over-union (IoU).

Day-to-Night Adaptation. As shown in Table I on the
left, we observe that our DualCross model achieves the best
performance on all classes. We notice that the improvement
under the Day ! Night setting is exceptionally high. This is
because the initial domain gap between day and night scenar-
ios is very large in the camera modality space. Moreover, the
LiDAR sensor is robust under illumination changes, due to
its active imaging mechanism as opposed to camera’s passive
one. Thus, incorporating LiDAR point cloud information
helps the model to learn a more robust, illumination-invariant
representation from the image inputs.

Dry-to-Rain Adaptation. As shown in Table I on the
right, under this setting we also observe that our DualCross
model achieves the best performance on all classes. We
notice that the improvement under the Dry ! Rain setting
is not as big as the previous setting. This is because the
domain gap between dry and rain scenarios is not big in the
image modality. Hence, baseline methods OFT and LSS are
already able to obtain decent results even without domain

adaptation. Furthermore, rainy weather is known to cause
great domain shift in the LiDAR modality [40]. As a result,
the knowledge learned from source LiDAR suffers from an
unknown domain shift which hinders its usefulness. This can
potentially cancel out the benefit of 3D information learned
from point clouds and explains for the smaller improvement.

Dataset-to-Dataset Adaptation. As shown in Table III,
we also observe that our DualCross model achieves the
best performance in the nuScenes ! Lyft setting. Following
[29], because Lyft does not provide road segment and lane
marking information in the high-definition (HD) map, we
report results on the vehicle class. Compared with base-
lines with and without domain adaptation or cross-modality
learning, our DualCross demonstrates superior performance
in leveraging and adapting LiDAR information.

City-to-City Adaptation. As shown in Table II, we observe
that our DualCross model achieves the best performance
on all classes for two inter-city transfer settings. Without
domain adaptation, baseline approaches MonoLayout, OFT,
and LSS all suffer from performance degradation. Direct
depth supervision and alternative input-fusion teacher models
do not bring as much improvement as DualCross. The
results clearly demonstrate the effectiveness of our method
by distilling and aligning the LiDAR information for cross-
modality 3D BEV perception.

Qualitative Results. As shown in Figure 3, under the Day
! Night domain shift setting, our model achieves signifi-
cantly better monocular 3D perception than other baselines.
We observe that DualCross provides more clearly defined
road boundaries and lane markings. The depth and size of the
vehicles and the road on the right side are also predicted more
accurately. DualCross only misses some vehicles that are
hardly visible in the camera due to occlusion and distance.
Overall, the qualitative results validate the effectiveness of



TABLE IV: DualCross achieves the best performance under simul-
taneous modality and domain shift for the 3D object detection task.
Domain shift is Singapore ! Boston.

Modality-shift + Domain Shift mAP " NDS "
LSS [29] 16.0 20.3
MonoDistill [6] 16.5 21.9
Depth-Supv DA 19.1 23.5
DualCross (Ours) 22.5 26.1

TABLE V: DualCross achieves great performance under only
modality shift for the 3D object detection task. EfficientNet
and ResNet50 are backbones for image feature extraction.

Modality-shift Only mAP " NDS "
Set2Set [36] 33.1 41.0
MonoDistill [6] 34.3 41.2
DualCross-EfficientNet 34.5 41.5
DualCross-ResNet50 35.2 42.4

TABLE VI: Our proposed components all contribute to the final per-
formance. We report results on vehicle class under day-to-night domain
gap in IoU. WA, AD, LS, LT stand for Wide Augmentation, Adversarial
Discriminators, LiDAR Supervision, and LiDAR-Teacher, respectively.

Baseline WA AD LS LT Results diff

3 6.7 0
3 3 6.4 �0.3
3 3 8.9 +2.2
3 3 10.3 +3.6
3 3 3 11.2 +4.5
3 3 3 3 15.7 +9.0
3 3 3 3 3 17.0 +10.3

DualCross in closing the gap between data domains and
leveraging point cloud information for better 3D inference.

C. 3D Detection Results and Comparisons

Baselines. In addition to the BEV segmentation task, we
compare DualCross with existing cross-modality 3D detec-
tion models, MonoDistill [6] and Set2Set [36]. MonoDistill
is designed for the single-camera setting on the KITTI
dataset. We extend it into a multi-camera setting for a
fair comparison. We evaluate with mean Average Precision
(mAP) and Nuscenes Detection Score (NDS) metrics [1].

Modality-Shift Only. As shown in Table V, our model
achieves the best performance. By using ResNet-50, we
can achieve more than 1% improvement in mAP and NDS
metrics. Moreover, our model still runs 42ms per frame at
test time, faster than MonoDistill which runs 80ms per frame.

Modality-Shift + Domain-Shift. As shown in Table IV,
under concurrent modality and domain gaps, DualCross out-
performs previous baselines by a large margin, demonstrating
a more robust and trustworthy model in real-world scenarios.

D. Analysis and Ablation Study

Direct Lidar Supervision Leads to Worse Performance.

It is naturally believed that introducing multiple sensors
in the perception model is bound to increase the model
performance. Surprisingly, experiments shown in Table VI
negate this naive intuition. When we introduce the LiDAR
sensor in the source domain as depth supervision, the result
decreases by 0.3, and we observe constant decreases among
different domain shift settings. As we described in Sec. III-
B, the domain distribution divergence increases after intro-
ducing the sensor-modality shift. As a result, we propose
multiple components in DualCross to account for the visual
and sensor domain shifts. Experiments show that while the
wide augmentation strategy and adversarial discriminator
both achieve better results than the baseline (11.2 vs. 6.7 in
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Fig. 4: Results of DualCross improve as the number of LiDAR scans
increases.

IoU), our LiDAR-Teacher further boosts the result to 17.0
by leveraging effective LiDAR knowledge distillation.
LiDAR Density & Comparison with Oracle Model. As
shown in Figure 4, we validate that our model achieves
higher performance when denser LiDAR is available. This
can be accomplished by grouping continuous scans of Li-
DAR point clouds (from 1 to 5) into a single unit, to have a
denser 3D representation of the scene. We observe that other
cross-modality baselines including Input-Fusion Teacher and
Depth-Supv models cannot effectively leverage the LiDAR
knowledge, even with dense point clouds available. We also
compare our model with the LiDAR oracle model (target
domain also has the LiDAR modality) and find that the gap
between the upper bound result and the No-LiDAR baseline
is significantly reduced. The remaining performance gap is
caused by the unknown LiDAR domain gap which we hope
to further reduce in future work.
Dealing with Mixed Domain Shift. Another common
but under-explored question we observe in the 3D domain
adaption setting is the mixed domain shift problem, where
multiple types of gaps between source and target domains
occur concurrently. For example, in the nuScenes dataset,
the Boston data are collected exclusively during daytime,
whereas the Singapore data encompass both day and night
captures. This leads to a mixture of city-wise and lighting-
wise domain shifts. As shown in Table VII, we find that
directly leveraging domain adaptation in this scenario leads
to worse performance than direct inference, because mixed
domains in the target confuse the discriminator. Hence, we
propose a progressive learning mechanism, where we first
perform adaptation with city-wise data for 100K steps, and
then train the model on the full target domain dataset for
another 150K steps. This effectively alleviates the mixed
domain shift problem, and helps DualCross achieve leading
results than other baselines.



TABLE VII: The proposed progressive learning strategy effectively ad-
dresses the challenge caused by mixed domain gap scenario (Boston-to-
Singapore mixed with the day-to-night) on nuScenes.

Mixed Domain Gap Vehicle Road Lane
Direct Inference 17.6 38.2 10.6
Vanilla DA 13.0 31.4 9.1
Progressive DA 18.8 41.5 13.2
DualCross (Ours) 20.5 43.1 15.6

TABLE VIII: DualCross achieves great perception results with efficient
inference time compared with the baseline methods.

#Params (M) Frame-per-Second (FPS)

OFT [32] 22 25
LSS [29] 14 35
DualCross (Ours) 15 33

Computational Complexity Table VIII summarizes the
number of parameters and inference speed for prior baselines
and our model. Our Lidar-Teacher distillation and multi-
level adversarial learning modules do not affect the inference
efficiency of DualCross, compared with the baselines. Our
total number of parameters is 15M, and our inference time
is 33 Frame-per-Second (FPS) on a V100 GPU, which is on
par with the baseline LSS [29]. The training time for our
model is around 20 hours on 4⇥V100 GPUs.

V. CONCLUSION

In this paper, we propose DualCross to estimate 3D scene
representation in BEV under domain shift and modality
change. To achieve this, we construct a LiDAR-Teacher
and distill knowledge from it into a Camera-Student by
feature supervision. We further propose to align feature space
between the domains using multi-stage adversarial learning.
Results on large-scale datasets with diverse domain gaps
demonstrate the effectiveness of our approach, which marks
a significant step towards robust 3D perception in the wild.
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