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Abstract. This article represents the second installment of a series of papers concerned
with low regularity solutions for the water wave equations in two space dimensions. Our
focus here is on global solutions for small and localized data. Such solutions have been
proved to exist earlier in [15, 7, 10, 12] in much higher regularity. Our goal in this paper is
to improve these results and prove global well-posedness under minimal regularity and decay
assumptions for the initial data. One key ingredient here is represented by the balanced cubic
estimates in our first paper. Another is the nonlinear vector field Sobolev inequalities, an
idea first introduced by the last two authors in the context of the Benjamin-Ono equations
[14].
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1. Introduction

We consider the two dimensional water wave equations with infinite depth, with gravity
but without surface tension. This is governed by the incompressible Euler’s equations with
boundary conditions on the water surface. Under the additional assumption that the flow is
irrotational, the fluid dynamics can be expressed in terms of a one-dimensional evolution of
the water surface coupled with the trace of the velocity potential on the surface.

The choice of the parametrization of the free boundary plays an important role here,
and can be viewed as a form of gauge freedom. Historically there are three such choices
of coordinates; the first two, namely the Eulerian and Lagrangian coordinates, arise in the
broader context of fluid dynamics. The third employs the so-called conformal method, which
is specific to two dimensional irrotational flows; this leads to what we call the holomorphic
coordinates, which play a key role in the present paper.
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Our objective in this series of papers is to improve, streamline, and simplify the analysis
of the two dimensional gravity wave equations. This is a challenging quasilinear, nonlocal,
non-diagonal system. We aim to develop its analysis in multiple ways, including:

(1) prove better, scale invariant energy estimates,
(2) improve the existing results on long time solutions,
(3) refine the study of the dispersive properties and improve the low regularity theory.

The first step of this program was carried out in [3], where we have developed a new class
of estimates, which we called balanced energy estimates, which led to drastic improvements
in the study of the low regularity well-posedness for this problem.

In the present article we carry out the second step of this program, and obtain an enlarged
class of global solutions, with decaying initial data of minimal regularity. In a nutshell, our
result reads as follows:

Theorem 1. Small and localized data leads to global solutions, which exhibit dispersive t−
1
2

uniform decay.

Compared to the prior work of the last two authors [10], [12], in this paper we bring forth
several key improvements:

i) We lower the regularity requirements for the initial data both at low and at high
frequency, to almost optimal levels. In other words, our global well-posedness results
are nearly scale invariant, at almost the same regularity level that would be required
for an equivalent, semilinear, cubic NLS problem.

ii) We use the sharp, cubic balanced energy estimates of [3], as well as the Alazard-
Delort idea in [7] of performing a partial normal form transformation in order to
further simplify and streamline the proof.

iii) At a technical level, we develop in this context the idea of nonlinear paradifferential
vector field Sobolev inequalities, which was first introduced by the last two authors
in the Benjamin-Ono context [14].

1.1. Holomorphic coordinates. It has been known since the work of Zakharov [19] that
under an irrotationality condition, the water wave equations can be viewed as a self contained
system for the water surface together with the trace of the velocity potential on the free
surface. For a two dimensional fluid, this yields a fully nonlinear first order system in one
space dimension.

In addition, one has the freedom of choosing the parametrization of the free surface in a
favourable manner. Classical parametrizations rely on either the Eulerian or the Lagrangian
coordinates. But in the two dimensional case, there is a better choice, that is the holomorphic
(conformal) coordinates, which are based on conformally representing the two dimensional
fluid domain as a half-plane. These coordinates were independently introduced by Wu [18]
and Zakharov & al. [9] in the study of the dynamical problem, though conformal coordinates
of various types had been used before in the study of traveling and solitary waves.

In this article we will use the holomorphic coordinates, but in an alternative1 formulation
developed in the last two authors prior work [10], jointly with Hunter. Denoting by α the
variable on the real line and by α + iβ the complex, conformal coordinates in the lower

1This should be compared with the use of real valued functions in [9], or with a second order evolution
formulation in [18].
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half space, the water wave equations are written as a system for a pair of complex valued
functions (W,Q) on the real line, as follows:

• α → α +W (α) represents the conformal parametrization of the fluid surface, which
is a non-self-intersecting curve but not necessarily a graph.

• α → Q(α) represents the complex velocity potential on the free surface, where the
real part of Q is the real velocity potential and its imaginary part is its harmonic
conjugate, namely the stream function. It is only defined modulo constants.

Here (W,Q) are further restricted to the class of functions that by a slight abuse we call
holomorphic, i.e. which admit holomorphic extensions to the lower half-space, with suitable
decay conditions in depth. In the infinite depth case these are exactly the functions which
are frequency localized to negative frequencies. One significant advantage of this choice is
that this class of functions forms an algebra.

With this choice of variables, following [10], the nonlinear water waves system takes the
form

(1.1)

{︄
Wt + F (1 +Wα) = 0,

Qt + FQα − iW + P [RR] = 0,

F = P

[︃
Qα −Qα

J

]︃
, J = |1 +Wα|2, R =

Qα

1 +Wα

,

where P is the projector to negative frequencies. The factorR above has an intrinsic meaning,
namely it is the complex velocity on the water surface. Also note that J represents the
Jacobian of the conformal change of coordinates. We can also re-express F in terms of Y ,
where the function Y , given by

(1.2) Y :=
W

1 +W
, and W := Wα,

is introduced in order to avoid rational expressions above and in many places in the sequel;
then we have

F = R + P
[︁
RY −RY

]︁
.

This system admits a conserved energy (Hamiltonian)

(1.3) E(W,Q) =

∫︂
1

2
|W |2 + 1

2i
(QQα −QQα)−

1

4
(W

2
Wα +W 2Wα) dα.

We also consider the system for the differentiated good variables (W, R), which are what
we call the diagonal variables

(W, R) :=

(︃
Wα,

Qα

1 +Wα

)︃
.

Differentiating (1.1) yields a self-contained system in (W, R):

(1.4)

⎧⎪⎪⎨⎪⎪⎩
DtW +

(1 +W)Rα

1 +W
= (1 +W)M,

DtR = i

(︃
W − a

1 +W

)︃
,
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which is satisfied in full but is equivalent to its projected version onto the holomorphic class.
Here Dt = ∂t + b∂α plays the role of the material derivative, b is the advection velocity and
is given by

b = P

[︃
R

1 +W

]︃
+ P

[︃
R

1 +W

]︃
,

and 1+ a is the Taylor coefficient, which represents the normal derivative of the pressure on
the free surface, and is given by

(1.5) a := i
(︁
P
[︁
RRα

]︁
− P

[︁
RRα

]︁)︁
.

Finally the auxiliary function M , closely related to the material derivative of a, has the
expression

(1.6) M :=
Rα

1 +W
+

Rα

1 +W
− bα = P [RYα −RαY ] + P [RY α −RαY ].

To complete our description of the equations we also need to add the linearized equations
which are best seen not as an evolution for the linearized variables (w, q) associated to (W,Q),
but rather as an evolution for the good linearized variables

(1.7) (w, r) = A(w, q) = (w, q −Rw).

These equations have the form

(1.8)

⎧⎪⎪⎨⎪⎪⎩
PDtw + P

[︃
1

1 +W
rα

]︃
+ P

[︃
Rα

1 +W
w

]︃
= PG0(w, r),

PDtr − iP

[︃
1 + a

1 +W
w

]︃
= PK0(w, r),

where (G0,K0) represent perturbative terms, see [10].

1.2. Sobolev spaces and local well-posedness. The well-posedness for the water wave
system (1.1) is naturally considered on a scale of Sobolev spaces inspired by the conserved
energy in (1.3). Its quadratic part corresponds to the Hilbert space H with norm

∥(w, r)∥2H = ∥w∥2L2 + ∥r∥2
Ḣ

1
2
.

For higher regularity we use the scale of Sobolev spaces Hs, which we recall from [10] and
[3], endowed with the norm

∥(w, r)∥Hs := ∥⟨D⟩s(w, r)∥
L2×Ḣ

1
2
,

where s ∈ R.
Since many of the estimates in both this paper and its predecessor [3] are scale invariant,

to describe them it is very useful to also have homogeneous versions of the above spaces,
namely the spaces Ḣs

endowed with the norm

∥(w, r)∥Ḣs := ∥|D|s(w, r)∥
L2×Ḣ

1
2
.

We caution the reader that, in order to streamline the exposition here, our notation for the
energy spaces differs slightly from the notation used in [10].

For the local well-posedness problem, it suffices to work with the differentiated system
(1.4). For this we have the following result:
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Theorem 2 ([3]). The differentiated water wave system (1.4) is locally well-posed in Hs for
s ≥ 3

4
.

For reference one should compare from below with scaling which corresponds to s0 = 1
2
.

This result represents the current best result, following a succession of several other results.
This started with the work of Alazard-Burq-Zuily [5], who proved energy estimates and
well-posedness roughly for s = 1 + δ with δ > 0. Using the holomorphic setting and further
structural properties of the equations, the energy estimates were improved by the last two
authors together with Hunter [10] to the case δ = 0. This is an important threshold as it is
where the Lipschitz property for the velocity is lost. Further improvements were obtained in
subsequent work of Alazard-Burq-Zuily [4, 6], who proved and used appropriate Strichartz
estimates for this system. Their result in 2-d yields local well-posedness in for δ = −1/24.
This was followed by the results of the first author, who was able to further improve this
first to δ = −1/10 in [1] and then to δ = −1/8 in [2], and finally to the result above.
A family of energy estimates developed by the authors in [3], which we call balanced energy

estimates, played the key role in the proof of this result. The same estimates play an essential
role in the present paper, as they are part of what allows us to reach the optimal regularity
threshold. They are described in detail in Section 3.

1.3. Global solutions and the main result. In order to state our main result, we intro-
duce appropriate weighted norms which are based on the scaling symmetry of the problem.
Precisely, the equations (1.1) are invariant with respect to the scaling law

(W (t, α), Q(t, α)) → (λ−2W (λt, λ2α), λ−3Q(λt, λ2α)).

The generator of this symmetry is the scaling operator

S(W,Q) = ((S − 2)W, (S − 3)Q),

where we define the scaling vector field by

S = t∂t + 2α∂α.

Writing

(1.9) (w, r) = AS(W,Q),

where A represents the diagonalization operator

(1.10) A(w, q) := (w, q−Rw), R =
Qα

1 +Wα

,

and σ > 11/4, we define the weighted energy norm

(1.11) ∥(W,Q)(t)∥WH♯ = ∥(W,Q)(t)∥
Ḣ

1
4
+ ∥(W, R)(t)∥Ḣσ−1 + ∥(w, r)(t)∥

Ḣ
1
4
.

We remark that at time t = 0 this simply becomes

(1.12) ∥(W,Q)(0)∥WH♯ ≈ ∥(W,Q)(0)∥
Ḣ

1
4
+ ∥(W, R)(0)∥Ḣσ−1 + ∥α(W, R)(0)∥

Ḣ
1
4
.

In order to track the uniform, dispersive decay of the solutions, we will also use a pointwise
control norm, namely

∥(W, R)(t)∥X = ∥|D|−
1
2W∥L∞ + ∥R∥L∞ + ∥W∥

Ḃ
1
4
∞,2

+ ∥R∥
Ḃ

3
4
∞,2

,
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where the above homogeneous Besov norms are defined as

∥u∥2
Ḃ

s
∞,2

=
∑︂
k∈Z

22ks∥Pku∥2L∞

with Pk denoting the standard spatial Littlewood-Paley projectors at dyadic frequency 2k.
Given these definitions, our main result is as follows:

Theorem 3. Assume that the initial data for the water wave system (1.1) satisfies

(1.13) ∥(W,Q)(0)∥WH♯ ≤ ϵ ≪ 1.

Then the solution (W,Q) is global in time, and satisfies the global energy bounds

(1.14) ∥(W,Q)(t)∥WH♯ ≤ ϵ⟨t⟩cϵ2

with a universal constant c, as well as the global pointwise bounds

(1.15) ∥(W, R)(t)∥X ≲ ϵ⟨t⟩−
1
2 .

To place this result into context, one should start with Wu’s almost global result [17],
which was based on a mix of conformal and Lagrangian coordinates. Her work was fur-
ther developed by Ionescu-Pusateri [15] to a global result. Independently, Alazard-Delort
[7] obtained a different proof of the global result, based on a new idea which they called
paradiagonalization, which combines a partial normal form transformation with a microlocal
diagonalization of the remaining system, which is done at the paradifferential level. Both
of these results required extensive arguments, as well as very high regularity for the initial
data.

Shortly afterward, the last two authors’ work [10], [12], the first also joint with Hunter,
brought a new perspective and a new proof of the global result for this problem, with shorter,
simpler arguments at far lower regularity, which corresponds to H6 with the notations above.
These advances were primarily due to two new ideas, implemented in the context of holo-
morphic coordinates:

i) The modified energy method, which asserts that, in quasilinear problems, it is more
efficient to construct normal form inspired modified energies which are accurate to
quartic order, rather than trying to directly apply a normal form transformation.

ii) The wave packet testing, which is an efficient way to capture asymptotic equations
in a modified scattering scenario.

Another key idea in [10] was that the main estimate, and the bulk of the analysis, should
be carried out at the level of the linearized equations rather than on the full equations. This
contributed to both strengthen the results and to streamline the arguments.

The aim of the present paper is to take advantage of further gains in understanding the
best ideas and methods that can be applied to this class of problems, in order to obtain a
near optimal result. Compared to [10], [12], there are four such improvements:

i) In terms of energy estimates, we are able to replace the cubic energy estimates of [10]
with sharper ones, which we call balanced energy estimates. These estimates, recently
proved by the authors in [3], are still cubic, akin to [10], but have a better balance of
regularity in the control norms, which allows us to lower the required data regularity
in the result. Notably, these estimates hold both at the level of the full equation and
at the level of the linearized equation.
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ii) In terms of normal form analysis, we borrow an idea from Alazard-Delort [7], which
is to “prepare” the problem with a partial normal form transformation. This al-
lows us to ultimately reduce a good portion of the analysis to a more favourable,
paradifferential setting, without losing any regularity in the process.

iii) In order to convert vector field energy estimates to pointwise bounds, we use an idea
inspired from the last two authors’ work [14] on the Benjamin-Ono equation, and
prove the pointwise bounds in a nonlinear, paradifferential setting, rather than in a
linear setting as in [12]. This is important because the reduction to the linear setting
inherently loses derivatives.

iv) The wave packet testing, which uses the same principle as in [12], is now also applied
in the paradifferential setting rather than in a more NLS-like scenario, as in [12]. This
creates additional difficulties, but ultimately does not affect the asymptotic equation.

Our refined analysis in this article allows us not only to relax the initial data regularity at
high frequency to the nearly optimal level Ḣσ

with σ > 11/4, but also to relax the initial data

regularity at low frequency to Ḣ
1
4 , which in particular allows for initial data with infinite

energy. An improvement of this type has been previously obtained by Wang [16], but only

to Ḣ
1
5 .

1.4. On optimality. Our goal here is to heuristically explain why our result is nearly
optimal, by comparing it with its sharp counterpart for the cubic NLS problem.

We begin by recalling the optimal result for cubic NLS,

iut −∆u = ±u|u|2, u(0) = u0.

Small and localized data for this problem leads to global solutions. A good starting point
here for instance is the the result of the last two authors in [11], which asserts that an
appropriate smallness condition is

∥u0∥L2 + ∥xu0∥L2 ≪ 1.

This is not scale invariant, but by scaling one can replace it with a scale invariant counterpart

(1.16) ∥u0∥L2∥xu0∥L2 ≪ 1,

which roughly corresponds to

x
1
2u0 ∈ L2.

On the other hand, for the water wave problem, our smallness assumption for the initial
data reads

∥(W, R)∥Ḣσ−1 + ∥(W,Q)∥
Ḣ

1
4
+ ∥α(W, R)∥

Ḣ
1
4
≪ 1.

Consider the limiting case σ = 11
4
. Then by scaling one can replace this smallness condition

with

(1.17) ∥(W, R)∥Ḣσ−1(∥(W,Q)∥
Ḣ

1
4
+ ∥α(W, R)∥

Ḣ
1
4
) ≪ 1.

Here the last two norms were kept together, as they have the same scaling and are in effect
related via a Hardy type inequality at the linear level.

We will argue that, in a suitable interpretation, the two smallness relations (1.16) and
(1.17) are essentially equivalent in a frequency localized setting. To see why this is so one
should think in terms of NLS approximation results for water waves, for which we refer the
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reader to [13] and references therein, and also [8]. In a nutshell, these results assert that
water waves are well approximated by the (focusing) cubic NLS in well chosen regimes as
follows:

• The frequency of the solutions is well localized near a given frequency ξ0, around
which the water waves linear dispersion relation τ = ±

√︁
|ξ| is well approximated by

its quadratic approximation.
• The water wave to NLS connection is given via a normal form transformation, which
eliminates quadratic interactions and leaves only cubic interactions, as in the NLS
case.

For water waves, after diagonalization and normal form analysis we have a cubic nonlin-
earity, which for a diagonal variable

v = W̃ + i|D|
1
2 Q̃

has roughly the form

(1.18) ivt − |D|
1
2v = |D|

5
2 (v|v|2).

Here we neglect the exact placement of derivatives, only counting the total number, as this
approximation is valid anyway only near a fixed frequency. At this level, our smallness
assumption (1.17) becomes

(1.19) ∥v(0)∥Ḣσ∥αvα(0)∥
Ḣ

1
4
≪ 1.

To relate this problem with the cubic NLS, we consider solutions v at a fixed frequency
λ. For the dispersion relation, we approximate our relation with a quadratic one, neglecting
the constant and the linear part (as in Galilean invariance). At frequency λ we have

∂2

∂ξ2
|ξ|

1
2 ≈ λ− 3

2 .

Then our reduced equation (1.18) should be compared with the NLS type problem

ivt − λ− 3
2∆v = λ

5
2v|v|2.

To eliminate the scaling parameters without changing the v frequency λ we substitute

v(t, x) = λ−2u(λ− 3
2 t, x).

Now u solves the cubic NLS.
It remains to compare the smallness assumptions. At frequency λ, the smallness condition

(1.17) for v reads

∥λ
11
4 v(0)∥L2∥λ

5
4xv(0)∥L2 ≪ 1,

or equivalently

∥v(0)∥L2∥αv(0)∥L2 ≪ λ−4.

Translated to u, we have arrived exactly at (1.16).
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2. An overview of the proof

By our prior results in [10], [3], the water wave system (1.1) expressed in holomorphic
coordinates is locally well-posed in the space

(W,Q) ∈ Ḣ
1
4 , (W, R) ∈ Ḣσ−1

.

The objective of the proof is to use a continuity argument to extend these local solutions to
global in time solutions, by simultaneously tracking the Sobolev WH♯ norm and the uniform
X norm of the solutions.

Our energy estimates are based on [3], where we construct cubic energy functionals equiv-
alent to ∥(W, R)∥Ḣs for all s ≥ 0. Unfortunately, in [3] there is no cubic energy estimate at
the level of ∥(W,Q)∥

Ḣ
1
4
, so we need to do this here. Our remedy is to use instead the cubic

Ḣ
1
4 energy estimates proved in [3] for the linearized equation. To make such an argument

possible, we will work with a one parameter family of solutions instead of a single solution.
Precisely, for h ∈ [0, 1], we consider the family of initial data

(W h
0 , Q

h
0) = h(W0, Q0)

and the corresponding solutions (W h, Qh), and we will simultaneously track the energy and
the pointwise size for the entire family of solutions. To avoid cumbersome notations, we will
omit the index h for the rest of the paper. The h dependence will be important, and indeed,
critically used in a single place in the paper, namely in the proof of Proposition 3.1.

In order for us to be able to provide a modular proof, it is convenient to make in the
beginning the following bootstrap assumption in a time interval [0, T ],

(2.1) ∥(W, R)(t)∥X ≤ Cϵ⟨t⟩−1/2, |t| ≤ T.

This will be assumed to hold uniformly for h ∈ [0, 1]. Then the main steps of our argument
are as follows:

1. Energy estimates. Using the bootstrap assumption, as well as the balanced energy
estimates of [3] (recalled here in Theorems 4 and 5) we obtain the energy estimates with a
slight growth

(2.2) ∥(W,Q)(t)∥WH♯ ≲ ϵ⟨t⟩Cϵ2 .

Here, the notation ≲ indicates a universal implicit constant, which in particular does not
depend on C in (2.1). This is done in Section 3.

2. Normal form reduction. In Section 4, we apply a partial normal form reduction, whose
primary goal is to eliminate the balanced quadratic interactions from the equations. Using
a partial normal form transformation, the variables (W,Q) are replaced by normal form
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alternates (W̃ , Q̃), for which we obtain an equation with paradifferential quadratic terms
and full cubic terms, modulo quartic error terms; see Proposition 4.4.

We re-express the bounds (2.1) and (2.2) in a paradifferential fashion in terms of (W̃ , Q̃),

(2.3) ∥(W̃α, Q̃α)(t)∥X ≈ ∥(W, R)(t)∥X ≲ Cϵ⟨t⟩−1/2, |t| ≤ T,

respectively

(2.4) ∥(W̃ , Q̃)(t)∥WH̃ ≲ ∥(W,Q)(t)∥WH♯ ≲ ϵ⟨t⟩Cϵ2 .

Here the nonlinear WH♯ energy functional is replaced by a linear counterpart WH̃, defined
later in (4.8). This step is carried out in Section 4. At the conclusion of this step, the
problem has been reduced to the study of the evolution of the normal form variables (W̃ , Q̃),
for which we need to improve the counterpart of the bootstrap assumption (2.1), and show
that

(2.5) ∥(W̃α, Q̃α)(t)∥X ≲ ϵ⟨t⟩−1/2, |t| ≤ T.

3. Nonlinear vector field Sobolev inequalities. The goal in Section 5 is to derive a pre-
liminary pointwise bound for the normal form variables (W̃ , Q̃) starting from the weighted
Sobolev bound WH̃ in (2.4). Precisely, under the same bootstrap bound (2.4) we show that

(2.6) ∥(W̃α, Q̃α)(t)∥X♯ ≲ ∥(W̃ , Q̃)(t)∥WH̃.

Here the X♯ norm, defined later in (5.14), is a microlocal improvement of the X norm, which
provides an additional frequency gain away from waves of frequency 1 which propagate with
unit speed. Precisely, the X♯ norm is stronger than the X norm in two ways:

• It has additional gains away from the frequency 1.
• It has additional gains away from the hyperbolic region.

One could think of this akin to Sobolev embeddings, with the key caveat that the norm
WH̃ is not a classical, elliptic norm, and instead has a “hyperbolic” component in a certain
subset of the phase space.

We interpret the estimate (2.6) as a linear paradifferential estimate, which generalizes
in a nonperturbative fashion a corresponding linear vector field Sobolev bound in [10]. We
remark that the idea of replacing linear bounds with more robust (though also more difficult
to prove) nonlinear vector field Sobolev bounds was first introduced by the last two authors
in the Benjamin-Ono context in [14].

4. Pointwise bounds via wave packet testing. In this final step in Section 6, we use the
method of wave packet testing (see [11], [12]) to propagate sharp pointwise bounds along
rays, in order to prove the desired pointwise bound (2.5) and close the argument. By virtue of
the X♯ bound, this is needed only in a time dependent range of frequencies around frequency
1.

In a nutshell, the idea is to use well-chosen wave packets in order to define a good as-
ymptotic profile γ(t, v) which describes the leading order evolution of the solution at infinity
along rays x = vt, and then to show that γ is an approximate solution to an appropriate
asymptotic equation.
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3. The energy estimates

Our goal here is to recall first the energy estimates of [10] and [3], and then to use them
to prove the bound (2.2), which contains the global energy bounds for our time dependent
weighted norm WH♯.

The energy estimates for the solutions in both [10] and [3] are described in terms of the
(time dependent) uniform control norms. The two control norms in [10], denoted by A and
B, and redenoted by A0 and A1/2 in [3], are

(3.1) A0 = A := ∥W∥L∞ + ∥Y ∥L∞ + ∥|D|
1
2R∥L∞∩B0

∞,2
,

respectively

(3.2) A 1
2
= B := ∥|D|

1
2W∥BMO + ∥Rα∥BMO.

By contrast, in [3] the leading role was played by an intermediate control norm interpolating
between A0 and A 1

2
,

(3.3) A 1
4
:= ∥W∥

Ḃ
1
4
∞,2

+ ∥R∥
Ḃ

3
4
∞,2

.

Here the subscript of A represents the difference in terms of derivatives between our control
norm and scaling. In particular As corresponds to and is controlled by the homogeneous

Ḣ
1
2
+s

norm of (W, R), and A0 is a scale invariant quantity. Concerning A 1
4
, we note the

following inequality,

(3.4) ∥|D|
1
4W∥BMO + ∥|D|

3
4R∥BMO ≲ A 1

4
.

In addition to the pointwise scale invariant norm measured by A, we will also need a
secondary stronger scale invariant Sobolev control norm A♯ defined by

(3.5) A♯ := ∥D
1
4W∥L4 + ∥D

3
4R∥L4 .

In [3] this is used to control implicit constants in some of the energy estimates.
We now recall from [3] the balanced cubic energy estimates. We begin with the full

differentiated system (1.4):

Theorem 4. For each s ≥ 0 there exists an energy functional Es associated to the differen-
tiated equation (1.4) with the following two properties:

(i) Energy equivalence if A ≪ 1:

(3.6) Es(W, R) ≈ ∥(W, R)∥2Ḣs ,

(ii) Balanced cubic energy bound:

(3.7)
d

dt
Es(W, R) ≲A A2

1
4
∥(W, R)∥2Ḣs .

Here the notation ≲A indicates that the implicit constant is allowed to depend on A; this
has no impact here, as A will be shown to stay small for all solutions we work with. We
continue with the bounds for the linearized system (1.8), respectively:

Theorem 5. Assume A ≲ 1 and A 1
4
∈ L2. Then the linearized equation (1.8) is well-posed

in Ḣ
1
4 . Furthermore, there exists an energy functional E

1
4
lin(w, r) so that we have

11



a) Norm equivalence:

E
1
4
lin(w, r) ≈A♯ ∥(w, r)∥2

Ḣ
1
4
,

b) Energy estimates:

d

dt
E

1
4
lin(w, r) ≲A♯ A2

1
4
∥(w, r)∥2

Ḣ
1
4
.

In the present work, we use both theorems above combined with the pointwise bootstrap
assumption (2.1) in order to establish the energy estimate (1.14).

Theorem 6. Assume that in a time interval [−T, T ] we have a solution (W,Q) to (1.1) with
small energy

∥(W,Q)(0)∥WH♯ ≤ ϵ ≪ 1,

and satisfying the pointwise bootstrap estimate (2.1). Then we have the energy estimate

(3.8) ∥(W,Q)(t)∥WH♯ ≲ ϵ⟨t⟩C1ϵ2 , t ∈ [−T, T ]

for some universal C1 ≫ C2.

Proof. a) For the Ḣσ−1
bound for (W, R) we use the energy estimates in Theorem 4 with

s = σ − 1. The same energy estimates can be applied with s = 0, which yields the bound

∥(W, R)(t)∥H0 ≲ ϵ⟨t⟩C1ϵ2 .

Interpolating these energy estimates with the pointwise bootstrap bound (2.1), using suitably
chosen intermediate norms in both cases, this gives a bound for the A♯ control norm, e.g. by
writing

A♯ ≲ (A∥(W,R)∥
Ḣ

1
2
)
1
2 ≲ C

1
2 ϵ⟨t⟩C1ϵ2− 1

4 .

For small enough ϵ this yields in particular the uniform in time smallness

(3.9) A♯ ≪ 1.

This will be needed in parts (b), (c) below in order to control the implicit constants in the
energy estimates for the linearized equation.

b) For the energy bounds in WH♯ on (w, r) = AS(W,Q), it suffices to use the balanced
cubic energy estimates for the linearized equations in Theorem 5. Using the Gronwall in-
equality, the pointwise bootstrap assumption (2.1), together with (3.9), we have

∥(w, r)(t)∥Ḣ1/4 ≲ e
∫︁ t
0 A2

1/4
ds∥(w, r)(0)∥Ḣ1/4 ≲ e

∫︁ t
0 C2ϵ2⟨s⟩−1 ds∥(w, r)(0)∥Ḣ1/4 ≲ ϵeC

2ϵ2 log t.

c) The energy bounds in Ḣ
1
4 do not follow from Theorem 4, so we need to prove them

here. We will show that

Proposition 3.1. Assume the bootstrap bound (2.1) holds. Then we have the estimate

(3.10) ∥(W,Q)(t)∥
Ḣ

1
4
≲ ⟨t⟩Cϵ2∥(W,Q)(0)∥

Ḣ
1
4
.
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Proof. This is the only place in the article where we use the fact that we work with a one
parameter family of solutions depending on the parameter h ∈ [0, 1]. We will denote

(w, q) =
d

dh
(W,Q), r = q −Rw.

Then for each h, (w, q) solves the linearized equation around (W,Q), and in particular we
can apply the energy estimates in Theorem 5, which, in view of our bootstrap assumption
(2.1), yield the estimate

(3.11) ∥(w, r)(t)∥
Ḣ

1
4
≲ ⟨t⟩Cϵ2∥(w, r)(0)∥

Ḣ
1
4
, t ∈ [0, T ], h ∈ [0, 1].

Our task is now to first estimate the initial data (w, r)(0), and show that

(3.12) ∥(w, r)(0)∥
Ḣ

1
4
≲A ∥(W0, Q0)∥Ḣ 1

4
.

Secondly, we want the reverse estimate at times t ∈ [0, T ],

(3.13) sup
h∈[0,1]

∥(W,Q)(t)∥
Ḣ

1
4
≲A sup

h∈[0,1]
∥(w, r)∥

Ḣ
1
4
.

Together with (3.11), these two bounds imply the conclusion of the proposition.

Proof of (3.12). We have

(w, r)(0) = (W0, Q0 −R0W0).

Hence the only nontrivial expression to estimate is R0W0, for which we use Coifman-Meyer
type estimates to write

∥R0W0∥
Ḣ

3
4
≲ ∥W0∥L4∥|D|

3
4R0∥L4 + ∥R0∥L3∥|D|

3
4W0∥L6 ,

where the first term accounts for the high-low interactions, the second for the low-high
interactions, and the balanced interactions can go either way.

The first term is estimated directly using a Sobolev embedding,

∥W0∥L4∥|D|
3
4R0∥L4 ≲ ∥W0∥

Ḣ
1
4
∥|D|

3
4R0∥L4 ≲ A♯∥(W0, Q0)∥Ḣ 1

4
.

For the second term we use interpolation instead,

∥R0∥L3 ≲ ∥R0∥
2
3

Ḣ
− 1

4
∥|D|

1
2R0∥

1
3
BMO ≲ ∥R0∥

2
3

Ḣ
− 1

4
∥|D|

3
4R0∥

1
3

L4 ,

respectively

∥|D|
3
4W0∥L6 ≲ ∥W∥

1
3

H
1
4
̇ ∥∂αW∥

2
3
BMO ≲ ∥W∥

1
3

H
1
4
̇ ∥|D|

1
4∂αW∥

2
3

L4 .

Combining the two and assuming the equivalence (to be proved shortly)

(3.14) ∥R∥
Ḣ

− 1
4
≈A,A♯ ∥Qα∥

Ḣ
− 1

4
,

we obtain
∥R0W0∥

Ḣ
3
4
≲ A♯∥(W0, Q0)∥Ḣ 1

4
,

which suffices.

Proof of (3.14). We have the relations R = (1− Y )Qα and Qα = (1 +Wα)R, where

∥Wα∥W 1
4 ,4∩L∞ ≲ A+ A♯ ≪ 1,
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and, by the algebra property for the space W
1
4
,4 ∩ L∞,

∥Y ∥
W

1
4 ,4∩L∞ ≲ A+ A♯ ≪ 1.

Hence, using also duality, it remains to show that we have a bound of the form

∥Y f∥
Ḣ

1
4
≲ ∥Y ∥

W
1
4 ,4∩L∞∥f∥

Ḣ
1
4
.

But this is a standard multiplicative estimate, which is left for the reader.

Proof of (3.13). There is nothing to do for W , since it is the antiderivative of w,

W (h) =

∫︂ h

0

w(h1) dh1.

It remains to consider Q, where we write

Q(h) =

∫︂ h

0

r(h1) + (Rw)(h1) dh1.

The first term is straightforward, but we still need to estimate the second, where there is an
apparent loss of derivatives. To rectify this we replace Q by Q − TRW , which is akin to a
good variable. Computing

d

dh
R = (qα − wαR)(1− Y ) = rα(1− Y ) + wRα(1− Y )

we see that

(Q− TRW )(h) =

∫︂ h

0

r + TwR +Π(w,R)− Trα(1−Y )+wRα(1−Y )W dh1.

The second term on the left plays a perturbative role, in view of the bound

∥TRW∥
Ḣ

3
4
≲A A♯∥Q∥

Ḣ
3
4
≪ ∥Q∥

Ḣ
3
4
,

where R is related to Qα via (3.14).

Hence it remains to estimate the nonlinear terms under the integral in Ḣ
3
4 . For the first

two we have a Coifman-Meyer type bound

∥TwR∥
Ḣ

3
4
+ ∥Π(w,R)∥

Ḣ
3
4
≲ A♯∥w∥

Ḣ
1
4
.

This leaves us with the last one. There, all frequencies in the factors of the para-coefficient
are negative so must be smaller in size than the frequency of W . Hence we can bound the
full expression as

∥Trα(1−Y )+wRα(1−Y )W∥
Ḣ

3
4
≲ ∥|D|

1
4Wα∥L4∥|D|−

1
2 (rα(1− Y ) + wRα(1− Y ))∥L4)

≲ A♯(∥|D|
1
2 r∥L4∥1− Y ∥L∞ + ∥w∥L4∥|D|

1
2R∥L∞∥1− Y ∥L∞)

≲A A♯∥(w, r)∥
Ḣ

1
4
.

Here, in estimating the parafactor rα(1 − Y ) + wRα(1 − Y ) we took advantage of the fact

that all factors are holomorphic, so the |D|− 1
2 operator always acts at the highest frequency.

This concludes the proof of (3.13) and thus the proof of the proposition. □

Finally, Proposition 3.1 completes the proof of Theorem 6.
□
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4. The paradifferential normal form

We begin by recalling from [10] the classical normal form variables,

(4.1)

{︄
W̃ = W − P [2ℜW ·Wα],

Q̃ = Q− P [2ℜW ·R],

which solve an equation of the form

(4.2)

{︄
W̃ t + Q̃α = G̃,

Q̃t − iW̃ = K̃,

with sources (G̃, K̃) which contain only cubic and higher order terms.
We also recall the linear scaling operator

S̃0(W̃ , Q̃) := (2α∂αW̃ − t∂αQ̃, 2α∂αQ̃+ itW̃ ),

which was also used in [10] as the main vector field at the level of the normal form variables.
Using (4.2), this can be expressed in terms of the scaling vector field S as follows:

(4.3) S̃0(W̃ , Q̃) = (SW̃ , SQ̃)− t(G̃, K̃).

In this paper, we will instead use a paradifferential substitute of the normal form (4.1),
defining

(4.4)

{︄
W̃ = W − TWαW − Π(Wα, 2ℜW ),

Q̃ = Q− TRW − Π(R, 2ℜW ),

where here and throughout, we let both paradifferential operators T and Π include an implicit
projection P , so that T = PT and Π = PΠ. This somewhat unusual convention is motivated
by the fact that our flow evolves in spaces of holomorphic functions.

This can no longer be seen as a full normal form transformation, but, instead, only as a
partial normal form. This idea was introduced by Alazard-Delort in [7], in the context of
the Eulerian formulation of the equations.

Here and throughout, we fix a self-adjoint quantization for the paraproduct operator T
viewed as a pseudodifferential operator. For instance, we may use the Weyl quantization, or
simply the average

1

2
(T + T ∗).

In the following sections, we will use several classical multilinear estimates for T and Π. We
refer the reader to Appendix B in [10] and Section 2 in [3] for such estimates.

Our objectives in this section are as follows:

(i) To transfer the Hs bounds from (W,Q) to (W̃ , Q̃):

Proposition 4.1. Assume (2.1). Then we have

(4.5) ∥(W̃α, Q̃α)∥Ḣσ−1 ≈ ∥(W, R)∥Ḣσ−1

as well as

(4.6) ∥(W̃ , Q̃)∥
Ḣ

1
4
≈ ∥(W,Q)∥

Ḣ
1
4
.
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We also prove the similar bound associated to the scaling vector field S:

Proposition 4.2. Assume (2.1). Then we have

(4.7) ∥(SW̃ , SQ̃)∥
Ḣ

1
4
≲ ∥(w, r)∥

Ḣ
1
4
+ ∥(W,Q)∥

Ḣ
1
4
,

with (w, r) as in (1.9).

Given the two propositions above, it is natural to define the linear energy functional of
(W̃ , Q̃) as

(4.8) ∥(W̃ , Q̃)∥2WH̃ = ∥(W̃ , Q̃)∥2
Ḣ

1
4∩Ḣσ

+ ∥(SW̃ , SQ̃)∥2
Ḣ

1
4
.

Then, as a consequence of the last two propositions, it follows that the energy bound (2.2)
for the original variables (W,Q) implies the corresponding bound (2.4) for the normal form
variables (W̃ , Q̃).

(ii) To allow the transfer of the pointwise bounds between (W,Q) and (W̃ , Q̃):

Proposition 4.3. Assume (2.1). Then

(4.9) ∥(W̃α −W, Q̃α −R)∥X ≲ ϵ⟨t⟩−1/2∥(W, R)∥X .
On one hand, this bound allows us to transfer the bootstrap assumption to (W̃ , Q̃), i.e.

show that (2.1) implies (2.3).
On the other hand, it shows that it suffices to improve the bootstrap condition for (W̃ , Q̃),

i.e. prove (2.5); this in turn implies a similar improvement for (2.1).

(iii) To compute the paradifferential equation (4.2) for (W̃ , Q̃), which is written in the
form

(4.10)

{︄
W̃ t + Q̃α + T2ℜW̃α

Q̃α − T2ℜQ̃α
W̃α = G̃,

Q̃t − iW̃ − T2ℜQ̃α
Q̃α = K̃,

with a good description of the source terms (G̃, K̃). Precisely, we identify the leading order
cubic terms in (G̃, K̃), while proving improved decay estimates for the remaining quartic
terms:

Proposition 4.4. Assume that (2.1) and (2.2) hold. Then (W̃ , Q̃) solve an equation of the
form (4.10), where the source terms (G̃, K̃) satisfy the bound

(4.11) ∥(G̃, K̃)∥
Ḣ

1
4
≲A0 ∥(W, R)∥2X∥(W̃ , Q̃)∥

Ḣ
1
4∩Ḣσ .

Furthermore, (G̃, K̃) can be split into

(G̃, K̃) = (G̃
(3)
, K̃

(3)
) + (G̃

(4+)
, K̃

(4+)
),

where (G̃
(3)
, K̃

(3)
) are explicit cubic expressions in (W̃ , Q̃) given by (4.15) which satisfy the

bound

(4.12) ∥(G̃(3)
, K̃

(3)
)∥

Ḣ
1
4
≲A0 ∥(W, R)∥2X∥(W̃ , Q̃)∥

Ḣ
1
4 ∩Ḣσ ,

while (G̃
(4+)

, K̃
(4+)

) are quartic and higher order expressions which satisfy the better bound

(4.13) ∥(G̃(4+)
, K̃

(4+)
)∥

Ḣ
1
4
≲ ∥(W, R)∥3X∥(W̃ , Q̃)∥

Ḣ
1
4∩Ḣσ .
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We remark that, in view of the equations (4.10), it is natural to replace the linear scaling

operator S̃0 used in [10] via (4.3) with a nonlinear, paradifferential counterpart

S̃(W̃ , Q̃) := (2α∂αW̃ − t∂αQ̃+ t(T2ℜW̃α
Q̃α − T2ℜQ̃α

W̃α), 2α∂αQ̃+ itW̃ − tT2ℜQ̃α
Q̃α),

so that we have

(4.14) S̃(W̃ , Q̃) = (SW̃ , SQ̃)− t(G̃, K̃).

This system of equations for (W̃ , Q̃) will play a key role in the next section.

We record the explicit cubic expressions for (G̃
(3)
, K̃

(3)
) below. Here we have partitioned

the terms of G̃
(3)

into three components:

• G̃
(3)

1 corresponds to the perturbative cubic terms that arise from the time differenti-
ation ∂tW̃ ,

• G̃
(3)

2 corresponds to additional cubic terms that arise after cancellations with Q̃α,

• G̃
(3)

3 corresponds to cubic terms that arise from rewriting the remaining quadratic
expressions in terms of the normal form variables.

The partition of K̃
(3)

is similar. We remark that these decompositions are consistent with
the computations later in this section, but not so much with the resonant/nonresonant/null
decomposition in Section 5; for this reason, in Section 5 we reorganize them in a more useful
way.

It is convenient to denote the quadratic component of F , rewritten in terms of the normal
form variables (W̃α, Q̃α), as follows:

F̃
(2)

= P
[︂
Q̃αW̃α − Q̃αW̃α

]︂
.
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Then we have

(4.15)

G̃
(3)

= G̃
(3)

1 + G̃
(3)

2 + G̃
(3)

3 ,

G̃
(3)

1 = TW̃α
(Q̃αW̃α) + T(Q̃αW̃α)α

W̃ +Π(W̃α, 2ℜ[Q̃αW̃α]) + Π((Q̃αW̃α)α, 2ℜW̃ ),

G̃
(3)

2 = −W̃αF̃
(2)

+ T
F̃

(2)
α
W̃ +Π(∂αF̃

(2)
, 2ℜW ) + Π(F̃

(2)
,Wα) + Π(W̃α, F̃

(2)

)

− Π(W̃
2

α, Q̃α) + Π(Q̃α, W̃
2

α)− T
W̃

2

α

Q̃α − T
W̃α

F̃
(2)

+ T
Q̃α

W̃
2

α,

G̃
(3)

3 = T2ℜ(TW̃α
W̃+Π(W̃α,2ℜW̃ ))α

Q̃α

+ T2ℜW̃α
(−Q̃αW̃α + F̃

(2)
) + T2ℜW̃α

(TQ̃α
W̃ +Π(Q̃α, 2ℜW̃ ))α

+ T2ℜ(Q̃αW̃α−(TQ̃α
W̃+Π(Q̃α,2ℜW̃ ))α)

W̃α − T2ℜQ̃α
(TW̃α

W̃ +Π(W̃α, 2ℜW̃ ))α,

K̃
(3)

= K̃
(3)

1 + K̃
(3)

2 + K̃
(3)

3 ,

K̃
(3)

1 = T
( 1
2
Q̃

2
α+P [|Q̃α|2])α

W̃ + TQ̃α
(TW̃α

Q̃α +Π(W̃α, Q̃α))

+ Π((
1

2
Q̃

2

α + P [|Q̃α|2])α, 2ℜW̃ ) + Π(Q̃α, 2ℜ[Q̃αW̃α])

− Π(W̃αQ̃α, Q̃α) + Π(Q̃α, F̃
(2)

)− TQ̃αW̃α
Q̃α,

K̃
(3)

2 = iT
W̃

2
α
W̃ + iΠ(W̃

2

α, 2ℜW̃ )− T
P
[︂
Q̃αW̃α−Q̃αW̃α

]︂Q̃α,

K̃
(3)

3 = −T2ℜ(TQ̃α
W̃+Π(Q̃α,2ℜW̃ ))α

Q̃α − T2ℜQ̃α
(TQ̃α

W̃ +Π(Q̃α, 2ℜW̃ ))α

+ T2ℜ(Q̃αW̃α)
Q̃α + T

Q̃α
(Q̃αW̃α) + TQ̃α

TQ̃α
W̃α.

4.1. The paradifferential equation. We begin by computing the cubic and higher order
perturbative source terms (G̃, K̃) for the paradifferential normal form variables (4.4) above,
simultaneously identifying the paradifferential quadratic potentials that we will collect on
the left hand side in the equation (4.10). First we compute the time derivative,

∂tW̃ = Wt − ∂tTWαW − ∂tΠ(Wα, 2ℜW )

= −F (1 +Wα)

+ TWα(F (1 +Wα)) + T(F (1+Wα))αW

+Π(Wα, 2ℜ[F (1 +Wα)]) + Π((F (1 +Wα))α, 2ℜW ).

We collect the cubic terms below in G̃1:

∂tW̃ = −F (1 +Wα) + TWαF + TFαW +Π(Wα, 2ℜF ) + Π(Fα, 2ℜW ) + G̃1

where

(4.16) G̃1 = TWα(FWα) + T(FWα)αW +Π(Wα, 2ℜ[FWα]) + Π((FWα)α, 2ℜW ).
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On the other hand, we have

∂αQ̃ = Qα − ∂αTRW − ∂αΠ(R, 2ℜW )

= R(1 +Wα)− ∂αTRW − ∂αΠ(R, 2ℜW ),

so that

∂tW̃ + ∂αQ̃ = −F (1 +Wα) + TWαF + TFαW +Π(Wα, 2ℜF ) + Π(Fα, 2ℜW ) + G̃1

+R(1 +Wα)− ∂αTRW − ∂αΠ(R, 2ℜW )

= T2ℜWαF − T2ℜRWα + G̃1 + G̃2,

where G̃2 contains only cubic and higher order terms,

(4.17)

G̃2 = (R− F )Wα + T(F−R)αW +Π((F −R)α, 2ℜW ) + Π(F −R,Wα)

+ Π(Y −Wα, R) + P [Π(Wα, F )− Π(R, Y )]

+ (TYR− TWα
F ) + (TRWα − TRY ).

Lastly, we exchange the variables in the quadratic potentials for their normal form coun-
terparts (W̃ , Q̃):

∂tW̃ + ∂αQ̃ = T2ℜW̃α
Q̃α − T2ℜQ̃α

W̃α + G̃1 + G̃2 + G̃3 =: T2ℜW̃α
Q̃α − T2ℜQ̃α

W̃α + G̃,

where G̃3 contains the cubic and higher terms in the difference,

(4.18) G̃3 = T2ℜWαF − T2ℜW̃α
Q̃α + T2ℜQ̃α

W̃α − T2ℜRWα.

For the second equation, we have

∂tQ̃ = Qt − ∂tTRW − ∂tΠ(R, 2ℜW )

= iW − FQα − P [|R|2]
+ TbRα−i(1+a)Y+iaW + TR[F (1 +Wα)]

+ Π(bRα − i(1 + a)Y + ia, 2ℜW ) + Π(R, 2ℜ[F (1 +Wα)]).

We collect the cubic terms below in K̃1:

∂tQ̃ = iW − TFQα − TRR− iTYW + TRTFWα − iΠ(Y, 2ℜW ) + K̃1,

where

(4.19)

K̃1 = TbRα−iaY+iaW + TR(TWαF +Π(Wα, F ))

+ Π(bRα − iaY + ia, 2ℜW ) + Π(R, 2ℜ[FWα])

+ [Π(R, 2ℜF )− Π(F,Qα)− Π(R,R)] + TR−QαF.

As a result, we have

∂tQ̃− iW̃ = iW − TFQα − TRR− iTYW + TRTFWα − iΠ(Y, 2ℜW ) + K̃1

− i(W − TWαW − Π(Wα, 2ℜW ))

= −TRR− TR(Qα − TFWα) + K̃1 + K̃2,

where

(4.20) K̃2 = i(TWαW − TYW ) + iΠ(Wα − Y, 2ℜW ) + TR−FQα.
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Lastly, we exchange the variables on the right hand side for their normal form counterparts
(W̃ , Q̃):

∂tQ̃− iW̃ = −T2ℜQ̃α
Q̃α + K̃1 + K̃2 + K̃3 := K̃,

where

(4.21) K̃3 = T2ℜQ̃α
Q̃α − TRR− TR(Qα − TFWα).

We conclude

(4.22)

{︄
∂tW̃ + ∂αQ̃− T2ℜW̃α

Q̃α + T2ℜQ̃α
W̃α = G̃,

∂tQ̃− iW̃ + T2ℜQ̃α
Q̃α = K̃.

4.2. Energy bounds on the normal form. Here we prove Proposition 4.1, transferring
the energy estimates from (W,Q) to the normal form variables (W̃ , Q̃), together with Propo-
sition 4.2, which is concerned with estimates on (SW̃ , SQ̃).

Proof. For W̃ , we estimate the quadratic corrections to W . We have

∥TWαW +Π(Wα, 2ℜW )∥Ḣσ ≲ ∥Wα∥L∞∥Wα∥Ḣσ−1

so that using (2.1) suffices. The Ḣ
1
4 estimate is similar.

For Q̃, we first write

Q̃α = R +RWα − ∂α(TRW +Π(R, 2ℜW ))

= R + TWαR +Π(R,Wα)− TRαW − ∂αΠ(R, 2ℜW ).

We estimate the quadratic terms. First we have, using both (3.8) and (2.1),

∥TWαR +Π(R,Wα)− Π(R, 2ℜWα)∥
Ḣ

σ− 1
2
≲ ∥Wα∥L∞∥R∥

Ḣ
σ− 1

2
≲ ∥(W, R)∥X∥(W,Q)∥WH♯ .

Similarly, we have

∥TRαW +Π(Rα, 2ℜW )∥
Ḣ

σ− 1
2
≲ ∥|D|1/2R∥L∞∥W∥Ḣσ ≲ ∥(W, R)∥X∥(W,Q)∥WH♯ .

For the Ḣ
1
4 bound, we directly estimate

∥TRW +Π(R, 2ℜW )∥
Ḣ

3
4
≲ ∥|D|−1/4R∥L2∥Wα∥L∞ ≲ ∥(W,Q)∥WH♯∥(W, R)∥X ,

where at the second step we have used (3.14).

It remains to show the bounds for (SW̃ , SQ̃). Writing

(w, r) = AS(W,Q) = ((S − 2)W, (S − 3)Q−R(S − 2)W ),

we have

SW̃ = w− (TwαW + TWαw+Π(wα, 2ℜW ) + Π(Wα, 2ℜw)

− T̃WαW − P Π̃(Wα, 2ℜW ))

+ 2W − (T2WαW + TWα2W +Π(2Wα, 2ℜW ) + Π(Wα, 4ℜW )),
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where the T̃ and Π̃ arise from commutators with α,

T̃WαW = 2(T(αWα)αW + TWααWα)− 2α(TWααW + TWαWα),

Π̃(Wα, 2ℜW ) = 2(Π((αWα)α, 2ℜW ) + Π(Wα, 2ℜ(αWα)))

− 2α(Π(Wαα, 2ℜW ) + Π(Wα, 2ℜWα)).

Then it is straightforward to estimate each term on the right hand side in Ḣ
1/4

, combining
(3.8) and (2.1) as before. We remark that we gain a derivative in the commutator, so both
of these terms are estimated in a scale invariant fashion by

∥T̃WαW∥
Ḣ

1
4
+ ∥Π̃(Wα, 2ℜW )∥

Ḣ
1
4
≲ ∥Wα∥L∞∥W∥

Ḣ
1
4
.

For SQ̃, we write

(4.23)

SQ̃ = SQ− (TSRW + TRw+Π(SR, 2ℜW ) + Π(R, 2ℜw)− T̃RW − P Π̃(R, 2ℜW ))

− (TR2W +Π(R, 4ℜW ))

= r+ TwR− (TSRW +Π(SR, 2ℜW ) + Π(R,w)− T̃RW − P Π̃(R, 2ℜW ))

− (TR2W +Π(R, 4ℜW )) + 3Q− 2RW.

We estimate the unbalanced terms on the right hand side of (4.23), as the corresponding
balanced terms are similar. First, we have by Sobolev embeddings,

∥TwR∥
Ḣ

3/4 ≲ ∥w∥L4∥|D|3/4R∥L4 ≲A♯ ∥w∥
Ḣ

1/4 .

Using (3.14), we also have

∥TRW∥
Ḣ

3/4 ≲ ∥|D|−1/4R∥L2∥Wα∥L∞ ≲A♯ ∥Q∥
Ḣ

3/4 .

Next, we estimate the last two terms on the right hand side. The estimate for Q is
immediate. For RW , TRW and Π(R,W ) may be estimated as before, and we have

∥TWR∥
Ḣ

3/4 ≲ ∥W∥L4∥|D|3/4R∥L4 ≲A♯ ∥W∥
Ḣ

1/4 .

To estimate TSRW , we use the identity

(S − 1)R =
rα +Rαw

1 +Wα

.

Consider the contribution T(1−Y )rαW from rα. The cases of three unequal frequencies may
be estimated as follows:

∥TT1−Y rαW∥
Ḣ

3/4 + ∥TTrαYW∥
Ḣ

3/4 ≲ (1 + ∥Wα∥L∞)∥r∥
Ḣ

3/4∥Wα∥L∞ ≲A ∥r∥
Ḣ

3/4 .

Since Y and rα are both holomorphic, there is no frequency cancellation in the balanced case
Π(Y, rα), and so this case may be treated in the same way.

For the contribution from Rαw, we have T(1−Y )RαwW . We consider the cubic term; the
quartic term is similar, measuring Y ∈ L∞ in all cases. We have

∥TTRαwW∥
Ḣ

3/4 ≲ ∥|D|1/2R∥L∞∥w∥
Ḣ

1/4∥Wα∥L∞ ≲A ∥w∥
Ḣ

1/4 ,

∥TTwRαW∥
Ḣ

3/4 ≲ ∥w∥L4∥|D|1/2R∥L∞∥|D|5/4W∥L4 ≲A♯ ∥w∥
Ḣ

1/4 .

As with the rα contribution, the balanced frequency case has no cancellation and may be
treated as either of these two cases.
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□

4.3. Pointwise bounds on the normal form. Here we prove Proposition 4.3, transferring
pointwise estimates from (W̃ , Q̃) to the original variables (W,Q).

Proof. Recall our objective is to show that

∥(W̃α −W, Q̃α −R)∥X ≲ ϵ⟨t⟩−1/2∥(W, R)∥X .

For the W̃ bound, we first consider the unbalanced paraproduct quadratic terms. For the
high frequency estimate, we have using (2.1),

∥∂αTWαW∥
Ḃ

1
4
∞,2

≲ ∥Wα∥L∞∥W∥
Ḃ

1
4
∞,2

≲ ϵ⟨t⟩−1/2∥(W, R)∥X

so it suffices to consider the low frequency L∞ estimate with W≤1. In this case we may gain
derivatives from the low frequency Wα in the paraproduct. For instance, we may use the
estimate

∥|D|−1/2∂αTWαW≤1∥L∞ ≲ ∥|D|3/4W∥L∞

∑︂
λ≤1

∥|D|3/4Wλ∥L∞

≲ ∥|D|3/4W∥L∞∥|D|1/2W∥L∞ ≲ ϵ⟨t⟩−1/2∥(W, R)∥X .

Next, we estimate the balanced quadratic corrections in W̃ . Here, we likewise consider
the high and low frequencies separately. For the high frequencies,

∥∂αΠ(Wα,ℜW )≥1∥
Ḃ

1
4
∞,2

≲ ∥|D|1/8Wα∥L∞∥W∥
Ḃ

1
4
∞,2

≲ ϵ⟨t⟩−1/2∥(W, R)∥X .

For the low frequency estimate, we have room as before to rebalance derivatives from the
first instance of Wα. Here, note that the summation permitted by the rebalancing likewise
allows for the estimate of the implicit projection P in our notation for Π. Precisely,

∥|D|−1/2∂αΠ(Wα,ℜW )≤1∥L∞ ≲
∑︂
λ≤1

∥|D|−1/2∂αΠ(Wα,ℜW )λ∥L∞

≲ ∥|D|3/4W∥L∞∥|D|1/2W∥L∞ ≲ ϵ⟨t⟩−1/2∥(W, R)∥X .

For Q̃α, we have

Q̃α −R = TWαR +Π(Wα, R)− TRαW − ∂αΠ(R, 2ℜW ).

The estimates for the quadratic errors are similar to before: We consider the high and low
frequency estimates separately, and observe that the balance of derivatives is favorable for
each term so that we have room to rebalance as necessary. We present here the analysis for
the unbalanced paraproduct terms. Considering first the high frequency estimate, we have

∥TWαR∥
Ḃ

3
4
∞,2

≲ ∥Wα∥L∞∥R∥
Ḃ

3
4
∞,2

≲ ϵ⟨t⟩−1/2∥(W, R)∥X ,

∥TRαW∥
Ḃ

3
4
∞,2

≲ ∥|D|1/2R∥L∞∥Wα∥
Ḃ

1
4
∞,2

≲ ϵ⟨t⟩−1/2∥(W, R)∥X .
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For the low frequency L∞ estimate, we have

∥TWαR≤1∥L∞ ≲ ∥|D|3/4W∥L∞

∑︂
λ≤1

∥|D|1/4Rλ∥L∞

≲ ∥|D|3/4W∥L∞∥R∥L∞ ≲ ϵ⟨t⟩−1/2∥(W, R)∥X ,

∥TRαW≤1∥L∞ ≲ ∥|D|1/4R∥L∞

∑︂
λ≤1

∥|D|3/4Wλ∥L∞

≲ ∥|D|1/4R∥L∞∥|D|1/2W∥L∞ ≲ ϵ⟨t⟩−1/2∥(W, R)∥X ,

□

4.4. Bounds on the source term. Next, we estimate the cubic and higher source terms
(G̃, K̃) in the equation (4.10), and thus prove Proposition 4.4.

Proof. To estimate G̃, we observe that all the terms in G̃i, i = 1, 2, 3 (see (4.15)) are cubic and
higher order expressions with variables (Wα, R) or their respective normal form counterparts
(W̃α, Q̃α), and also possibly Y instead of Wα, within the following set of rules:

(i) R or its equivalent Q̃α appears exactly once.
(ii) Wα or its equivalents Y, W̃α appears at least twice.

Similarly, after extracting the cubic terms G̃
(3)

as a trilinear expression in G̃
(3)
(Q̃α, W̃α, W̃α),

the remaining quartic and higher order terms share a similar description, but with (ii)
replaced by

(ii)’ Wα or its equivalents Y, W̃α appears at least three times.

In terms of estimates, these equivalent sets of variables are interchangeable by Propositions
4.1 and 4.3. To bound the cubic terms, we may rebalance the derivatives such that the
lowest frequency variable is estimated by

∥(W̃ , Q̃)∥
Ḣ

1
4
≈A0 ∥(Wα, R)∥

Ḣ− 3
4
,

while the remaining two variables are controlled by A2
1
4

. To bound the quartic and higher

terms, we argue in the same fashion, with the adjustment that the two highest frequency
factors are controlled by A2

1
4

, while the intermediate frequencies are controlled by A0.

To estimate K̃, the discussion is similar but slightly more complex. As we will see below,
its cubic terms may be placed into three cases:

(i) cubic terms with W̃α, W̃α, W̃ where W̃ is in the place of the highest frequency,
(ii) cubic terms with Q̃α, Q̃α, W̃α where a Q̃α is in the place of the highest frequency,
(iii) cubic terms with Q̃α, Q̃αα, W̃ where W̃ is in the place of the highest frequency.

We allow as above for substitutions with equivalent variables W̃α ∼ Wα ∼ Y respectively
Q̃α ∼ R. Then to classify the quartic and higher order terms, we obtain contributions
similar to the three above, but with an additional Wα factor which is at or below the highest
frequency as described in (i)-(iii). In addition to this, we obtain one more term, namely

(iv) a quartic term with R,R,Wα,Wα and highest frequency Wα.
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This categorization is immediate for the terms of K̃1 and K̃2. For K̃3, write

K̃3 = T2ℜRQ̃α − TRR− TR(Qα − TFWα) + T2ℜ(Q̃α−R)Q̃α

= T2ℜR(Q− TRW − Π(R, 2ℜW ))α − TRR− TR(Qα − TFWα)

+ T2ℜ(Y Qα−(TRW+Π(R,2ℜW ))α)Q̃α

= TR[TFWα − (TRW )α]− T2ℜR(Π(R, 2ℜW ))α + TR[RWα − (TRW )α]

+ T2ℜ(Y Qα−(TRW+Π(R,2ℜW ))α)Q̃α

= TR[TF−RWα − TRαW ]− T2ℜR(Π(R, 2ℜW ))α + TR[TWαR +Π(Wα, R)− TRαW ]

+ T2ℜ(Y Qα−(TRW+Π(R,2ℜW ))α)Q̃α.

The first term on the right hand side is quartic, recalling that

R− F = P [RY −RY ].

In terms of estimates, as with G̃, in all of the cubic cases (i)-(iii) we may rebalance
derivatives such that the lowest frequency variable is estimated by

∥(W̃ , Q̃)∥
Ḣ

1
4
,

while the remaining two variables are controlled by A2
1
4

. For the corresponding quartic terms

we add A0 bounds for the additional Wα terms. On the other hand, for the remaining quartic

term in (iv) we use Wα ∈ Ḣ
3/4

for the highest frequency Wα:

∥TRTP [RY−RY ]Wα∥Ḣ3/4 ≲A0 ∥R∥L∞∥R∥L∞∥Wα∥L∞∥Wα∥Ḣ3/4 .

Next, we identify the leading order cubic source terms (G̃
(3)
, K̃

(3)
) in (G̃, K̃), with respect

to the normal form variables (W̃ , Q̃).

First, we identify the cubic terms in G̃. Using the identities

(4.24)

F = Qα −QαY + P
[︁
RY −RY

]︁
,

W = W̃ + TWαW +Π(Wα, 2ℜW ),

Q = Q̃+ TRW +Π(R, 2ℜW ).

The first term of G̃1 may be written

(4.25) TWα(FWα) = TW̃α
(Q̃αW̃α) + g,

where g consists of quartic terms with variables R,Wα,Wα,Wα, possibly interchanged with
their normal form counterparts. By a similar re-expression of the remaining terms of G̃1, we
may write

G̃1 = TW̃α
(Q̃αW̃α) + T(Q̃αW̃α)α

W̃ +Π(W̃α, 2ℜ[Q̃αW̃α]) + Π((Q̃αW̃α)α, 2ℜW̃ ) + G̃
(4+)

1 .
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From the last two lines of G̃2, we observe that the quadratic components cancel,

Π(Y −Wα, R) + P [Π(Wα, F )− Π(R, Y )] + (TYR− TWα
F ) + (TRWα − TRY )

= −Π(WαY ,R) + P [Π(Wα, P [RY −RY ]) + Π(R,WαY )]

− TWαY
R− TWα

(P [RY −RY ]) + TRWαY

so that

G̃2 = −W̃αP
[︂
Q̃αW̃α − Q̃αW̃α

]︂
+ T

P
[︂
Q̃αW̃α−Q̃αW̃α

]︂
α

W̃

+Π(P
[︂
Q̃αW̃α − Q̃αW̃α

]︂
α
, 2ℜW ) + Π(P

[︂
Q̃αW̃α − Q̃αW̃α

]︂
,Wα)

− Π(W̃
2

α, Q̃α) + P [Π(W̃α, P [Q̃αW̃α − Q̃αW̃α]) + Π(Q̃α, W̃
2

α)]

− T
W̃

2

α

Q̃α − T
W̃α

(P [Q̃αW̃α − Q̃αW̃α]) + T
Q̃α

W̃
2

α + G̃
(4+)

2 .

For G̃3, we likewise observe that the quadratic components cancel,

G̃3 = T2ℜ(TWαW+Π(Wα,2ℜW ))αQα

+ T2ℜWα(−QαY + P
[︁
RY −RY

]︁
) + T2ℜW̃α

(TRW +Π(R, 2ℜW ))α

+ T2ℜ(RWα−(TRW+Π(R,2ℜW ))α)W̃α − T2ℜR(TWαW +Π(Wα, 2ℜW ))α,

so that

G̃3 = T2ℜ(TW̃α
W̃+Π(W̃α,2ℜW̃ ))α

Q̃α

+ T2ℜW̃α
(−Q̃αW̃α + P

[︂
Q̃αW̃α − Q̃αW̃α

]︂
) + T2ℜW̃α

(TQ̃α
W̃ +Π(Q̃α, 2ℜW̃ ))α

+ T2ℜ(Q̃αW̃α−(TQ̃α
W̃+Π(Q̃α,2ℜW̃ ))α)

W̃α − T2ℜQ̃α
(TW̃α

W̃ +Π(W̃α, 2ℜW̃ ))α + G̃
(4+)

3 .

Next, we identify the cubic terms in K̃. From the last line of K̃1, we first observe the
quadratic cancellations,

[Π(R, 2ℜF )− Π(F,Qα)− Π(R,R)] + TR−QαF

= −Π(Y Qα, F ) + Π(R,P
[︁
RY −RY

]︁
)− TQαY F

so that

K̃1 = T
2(ℜQ̃α)Q̃αα+2iℑP [Q̃αQ̃αα]

W̃ + TQ̃α
(TW̃α

Q̃α +Π(W̃α, Q̃α))

+ Π(2(ℜQ̃α)Q̃αα + 2iℑP [Q̃αQ̃αα], 2ℜW̃ ) + Π(Q̃α, 2ℜ[Q̃αW̃α])

− Π(W̃αQ̃α, Q̃α) + Π(Q̃α, P
[︂
Q̃αW̃α − Q̃αW̃α

]︂
)− TQ̃αW̃α

Q̃α + K̃
(4+)

1 .

For K̃2, the quadratic cancellations are straightforward from the definition of Y and we
obtain

K̃2 = iT
W̃

2
α
W̃ + iΠ(W̃

2

α, 2ℜW̃ )− T
P
[︂
Q̃αW̃α−Q̃αW̃α

]︂Q̃α + K̃
(4+)

2 .
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For K̃3, we have the quadratic cancellations

K̃3 = T2ℜQ̃α
Q̃α − TRR− TR(Qα − TFWα)

= −T2ℜ(TRW+Π(R,2ℜW ))αQ̃α − T2ℜQα(TRW +Π(R, 2ℜW ))α

+ T2ℜ(QαY )Qα + TR(QαY ) + TRTFWα,

and hence

K̃3 = −T2ℜ(TQ̃α
W̃+Π(Q̃α,2ℜW̃ ))α

Q̃α − T2ℜQ̃α
(TQ̃α

W̃ +Π(Q̃α, 2ℜW̃ ))α

+ T2ℜ(Q̃αW̃α)
Q̃α + T

Q̃α
(Q̃αW̃α) + TQ̃α

TQ̃α
W̃α + K̃

(4+)

3 .

□

5. The pointwise estimates

So far, we have used the pointwise bootstrap assumption (2.1) in order to derive the

energy estimates (2.2) with tCϵ2 loss for (W,Q), which we then transferred to normal form

variables (W̃ , Q̃), see (2.4), with a similar tCϵ2 loss. The remaining objective is to obtain an
improvement of the bootstrap assumption (2.1), which has in turn been reduced to proving
its counterpart for the normal form variables, namely the bound (2.5). All the work in the
last two sections of the paper happens at the level of the normal form variables (W̃ , Q̃).

Our primary objective in this section is to consider (W̃ , Q̃) at fixed time, and to convert
the energy estimates (2.4) into pointwise bounds, via vector field Sobolev type inequalities.

This will in particular yield the pointwise bound

(5.1) ∥(W̃α, Q̃α)∥X ≲ ϵt−
1
2
+Cϵ2 .

However, this does not suffice in order to prove (2.5) because of the tCϵ2 loss. For this reason,
we will instead obtain a sharper version of (5.1), where the loss is replaced with a gain for
most components of (W̃ , Q̃). To describe this gain, we will produce an elliptic/hyperbolic
decomposition

(5.2) (W̃ , Q̃) = (W̃ , Q̃)ell + (W̃ , Q̃)hyp.

Here the elliptic component contains a nearly full range of frequencies, but satisfies stronger,
elliptic bounds, and in particular has better decay,

(5.3) ∥(W̃α, Q̃α)ell∥X ≲ ϵt−
1
2
−δ, δ > 0,

which suffices for (2.5).
The hyperbolic component, on the other hand, is frequency localized on a scale which

depends on the velocity v = α/t. While retaining the tCϵ2 loss, it has another redeeming
feature, namely a gain of min{|v|−b, |v|b} away from velocity |v| ≈ 1, with a universal small

b. This will defeat the tCϵ2 loss outside a small region of the form

(5.4) Ωδ = {t−δ ≲ |v| ≲ tδ}, δ ≪ 1.

That will leave us, at the conclusion of this section, with the remaining task of improving
the pointwise bounds for (W̃ , Q̃)hyp within the above region Ωδ. This can no longer be done
via a fixed time analysis, and instead has to be accomplished dynamically. That will be the
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objective of the last section of the paper, where we use our wave packet testing method to
capture a good asymptotic parameter γ(t, v) and its associated asymptotic equation.

5.1. A fixed time system for (W̃ , Q̃). We recall from (4.14) that we have

S̃(W̃ , Q̃) = S(W̃ , Q̃)− t(G̃, K̃),

where the nonlinear paradifferential vector field S̃ is given by

S̃(W̃ , Q̃) = (2α∂αW̃ − t∂αQ̃+ t(T2ℜW̃α
Q̃α − T2ℜQ̃α

W̃α), 2α∂αQ̃+ itW̃ − tT2ℜQ̃α
Q̃α).

Thus we can think of (W̃ , Q̃) at fixed time as the solutions to a system governed by the

operator S̃,

(5.5)

{︄
2α∂αW̃ − t∂αQ̃+ t(T2ℜW̃α

Q̃α − T2ℜQ̃α
W̃α) = G,

2α∂αQ̃+ itW̃ − tT2ℜQ̃α
Q̃α = K,

where, by Proposition 4.1 and Proposition 4.4, we control L2 type norms as follows:

(5.6) ∥(W̃ , Q̃)∥
Ḣ

1
4∩Ḣσ + ∥(G,K)∥

Ḣ
1
4
≲ ϵtCϵ2 .

At first we will regard this as a linear system for (W̃ , Q̃), where the paradifferential coef-

ficients are decoupled from the main variables, and are instead assumed to have t−
1
2 decay

in the uniform X norm,

(5.7) ∥(W̃α, Q̃α)∥X ≲ Cϵt−
1
2 .

The pointwise bounds we will prove for solutions to this system hold irrespective of the origin
of W̃ and Q̃. To emphasize this, we will more generally consider any solution (w, q) to the

system S̃(w, q) = (g, k) or in expanded form

(5.8)

{︄
2αwα − tqα + t(T2ℜW̃α

qα − T2ℜQ̃α
wα) = g,

2αqα + itw − tT2ℜQ̃α
qα = k.

In a nutshell, our goal will be to obtain pointwise bounds for (w, q) in terms of Sobolev
bounds for (w, q), respectively (g, k). A simplified version of our main estimate is as follows:

Proposition 5.1. Assume that (W̃ , Q̃) satisfy the bootstrap bound (5.7). Then the following
pointwise bound holds for solutions (w, q) to (5.8):

(5.9) ∥(wα, qα)∥X ≲ t−
1
2

(︂
∥(w, q)∥

Ḣ
1
4∩Ḣσ + ∥(g, k)∥

Ḣ
1
4

)︂
.

However, such a bound does not suffice for our purposes due to the tCϵ2 loss in (5.6), so
in the next subsection we perform a finer analysis, where we replace the X norm above with
a stronger norm, which we call X♯.
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5.2. The elliptic-hyperbolic decomposition and the X♯ norm. To better understand
the system (5.8) we begin with a heuristic discussion. The starting point is to consider a
dyadic decomposition for α. In a fixed dyadic region α ≈ α0, the system (5.8) is microlocally
elliptic unless the frequency ξ is comparable to

ξ0 =
t2

α2
0

,

in which case the system is microlocally hyperbolic. Thus in this region we distinguish
between

• Elliptic low frequencies, |ξ| ≪ ξ0,
• Hyperbolic intermediate frequencies, |ξ| ≈ ξ0,
• Elliptic high frequencies, |ξ| ≫ ξ0.

The above phase space decomposition applies for a range of α0, but not for all. We separate
two extreme cases:

a) Very low α, namely

α ≪ αlo := t
3
4 .

This corresponds to ξ0 ≫ t
1
2 and to |v| ≪ vlo := t−

1
4 . In this range we simply separate

frequencies into low and high relative to the frequency ξlo = t
1
2 :

• Elliptic low frequencies, |ξ| ≪ ξlo,
• High frequencies, |ξ| ≳ ξ0

where, in the high frequency region, the Ḣ
1
4 regularity of the source terms in (5.8) is super-

seded by the Ḣσ
bound for (w, q).

b) Very high α, namely

α ≫ αhi := t2.

This corresponds to ξ0 ≪ t−2 and to v ≫ vhi := t. In this range we again separate frequencies
into low and high:

• Low frequencies, |ξ| ≲ ξhi,
• Elliptic high frequencies, |ξ| ≫ ξhi

where, in the low frequency region, the Ḣ
1
4 regularity of the source terms in (5.8) is super-

seded by the Ḣ
1
4 bound for (w, q).

Corresponding to the above decomposition of the phase space, we consider an associated
decomposition of (w, q). Our strategy will be to localize spatially first, and then in frequency.
Some care is required at the level of the spatial localization. At low frequency we have

w ∈ Ḣ
1
4 , which is a localizable norm. On the other hand, at low frequency q ∈ Ḣ

3
4 , which

is not a localizable norm; in particular q is only defined modulo constants. Hence, rather
than localizing q it is better to localize qα. Thus, given a bump function χ, we define the
associated localization operator, which we denote by χ, as follows:

χ(w, q) = (w1, q1) iff w1 = χw, q1,α = χqα.
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We now use these localization operators to define the X♯ norm via a full decomposition
of (w, q). We begin with the spatial decomposition,

(5.10) (w, q) = χ≪αlo
(w, q) + χ≫αhi

(w, q) +
∑︂

αlo≲α0≲αhi

χα0(w, q).

Then the summand in the last term is further decomposed in frequency,

(5.11) χα0(w, q) = P≪ξ0χα0(w, q) + Pξ0χα0(w, q) + P≫ξ0χα0(w, q),

into an elliptic low frequency component, a hyperbolic component and an elliptic high fre-
quency component. We note that these truncations do not preserve the spatial localizations;
however the ensuing tails are smooth and rapidly decreasing away from the original support,
and do not have any effect on the arguments that follow.

For later use, we employ these truncations in order to define a decomposition of (w, q)
into an elliptic and a hyperbolic part,

(5.12) (w, q) = (well, qell) + (whyp, qhyp),

where the hyperbolic part is defined as

(5.13) (whyp, qhyp) =
∑︂

αlo≲α0≲αhi

Pξ0χα0(w, q).

As hinted earlier, to measure the size of (w, q) we will not simply use the X norm; instead
we introduce a stronger norm X♯ which we now define. Based on the decomposition above,
we set:

(5.14) ∥(w, q)∥X♯ = ∥χ≪αlo
(w, q)∥X♯

lo
+ ∥χ≫αhi

(w, q)∥X♯
hi
+ sup

αlo≲α0≲αhi

∥χα0(w, q)∥X♯
α0
,

where the first two of the component norms are as follows:

(5.15) ∥(w, q)∥X♯
lo
:= t

1
2∥(w, q)∥

Ḣ
3
4
,

(5.16) ∥(w, q)∥X♯
hi
:= t

3
2∥(wα, qα)∥Ḣ 1

4
.

For the last component we distinguish between the case ξ0 < 1 (which corresponds to
α0 > t) and ξ0 > 1 (which corresponds to α0 < t). In the first case, we set

(5.17) ∥(w, q)∥X♯
α0

:= t
1
2 ξ

− 1
2

0 ∥P>ξ0(w, q)α∥Ḣ 1
4
+ t

1
2∥P<ξ0(w, q)α∥Ḣ− 1

4
+ ξ−a

0 ∥Pξ0(w, q)∥X0 ,

while in the second case we define

(5.18) ∥(w, q)∥X♯
α0

:= t
1
2 ξ

− 1
2

0 ∥P>ξ0(w, q)α∥Ḣ 1
4
+ t

1
2∥P<ξ0(w, q)α∥Ḣ− 1

4
+ ξb0∥Pξ0(w, q)∥X0 ,

where

a =
5

4
, b =

1

4
(σ − 11

4
).

Here the X0 norm, used above as a reference norm, corresponds exactly to A1/4,

∥(w, q)∥X0 = ∥wα∥
Ḃ

1
4
∞,2

+ ∥qα∥
Ḃ

3
4
∞,2

.

If α0 < t, which corresponds to ξ0 > 1, then in the hyperbolic region the X0 norm controls
the full X norm, and so it suffices to have a small gain b > 0. On the other hand if α0 > t,

29



which corresponds to ξ0 < 1, then the X0 norm no longer controls the full X norm at
frequency ξ0, so we need a gain a > 3

4
for the X norm; we actually get 5

4
.

The elliptic portion in our decomposition will play a perturbative role in our analysis. For
this reason, it is convenient to separately define a norm X♯

ell in order to measure it. Precisely,
we set

(5.19) ∥(w, q)∥X♯
ell

= ∥χ≪αlo
(w, q)∥X♯

lo
+ ∥χ≫αhi

(w, q)∥X♯
hi
+ sup

αlo≲α0≲αhi

∥χα0(w, q)∥X♯
α0,ell

,

where

(5.20) ∥(w, q)∥X♯
α0,ell

= t
1
2 ξ

− 1
2

0 ∥(w, q)α∥Ḣ 1
4
+ t

1
2∥(w, q)α∥Ḣ− 1

4
.

5.3. Bounds for the linear system (5.8). The main objective here is to use the X♯ norm
in order to state and prove an enhanced form of Proposition 5.1:

Proposition 5.2. Assume that (W̃ , Q̃) satisfy the bootstrap bound (5.7). Then the following
bound holds for solutions (w, q) to (5.8):

(5.21) ∥(w, q)∥X♯ ≲ t−
1
2

(︂
∥(w, q)∥

Ḣ
1
4 ∩Ḣσ + ∥(g, k)∥

Ḣ
1
4

)︂
.

Proof of Proposition 5.2. In the constant coefficient case, in the absence of the paradifferen-
tial quadratic terms, the bound (5.21) essentially follows from [10]. The argument in [10]
begins with a frequency localization, and then identifies spatially the elliptic and hyperbolic
regions. In our case such an argument is no longer possible because the frequency localiza-
tion no longer commutes with S̃, i.e. the commutator of Littlewood-Paley projectors with
the paradifferential terms is not perturbative (does not have enough time decay). But what
we can do instead is change the order of the two steps, i.e. first localize spatially in dyadic
regions and then identify the elliptic and hyperbolic frequency ranges.

Step 1: Localization. To localize spatially we consider a unit bump function χ which
selects a dyadic spatial range α ≈ α0 with αlo ≲ α0 ≲ αhi. Then |χ′| ≲ α−1

0 . We replace
(w, q) by (w1, q1) = χ(w, q), and seek to get a good equation for (w1, q1). We begin with

α∂αw1 = χα∂αw + αχ′w,

which is acceptable since multiplication by χ or αχ′ preserves Ḣ
1
4 . Similarly, by duality, it

also preserves Ḣ
− 1

4 so the qα truncation is also acceptable.
Next we consider the commutator of χ with the paraproducts. For these we need the

following

Lemma 5.3. Assume that the pointwise bound (5.7) holds. Then we have the commutator
bounds

(5.22) ∥[χ, TQ̃α
]wα∥

Ḣ
1
4
≲ t−1∥w∥

Ḣ
1
4
,

(5.23) ∥[χ, TQ̃α
]qα∥

Ḣ
3
4
≲ t−1∥q∥

Ḣ
3
4
,

(5.24) ∥[χ, TW̃α
]qα∥

Ḣ
1
4
≲ t−1∥q∥

Ḣ
3
4
.
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Proof. We start with (5.22). Since χ is essentially localized at frequencies ≲ α−1
0 , we first

eliminate the low frequencies in w, namely those below α−1
0 . Their contribution is estimated

directly, without using the commutator structure:

∥[χ, TQ̃α
]P<α−1

0
wα∥L2 ≲ ∥Q̃α∥L∞∥P<α−1

0
wα∥L2 ≲ α

− 3
4

0 ∥Q̃α∥L∞∥w∥
Ḣ

1
4
≲ t−

1
2α

− 3
4

0 ∥w∥
Ḣ

1
4
.

Each additional derivative contributes an α−1
0 factor, so we get

∥[χ, TQ̃α
]P<α−1

0
wα∥

Ḣ
1
4
≲ t−

1
2α−1

0 ∥w∥
Ḣ

1
4
,

which suffices since α0 ≳ αlo = t
3
4 .

Next we replace χ by Tχ. Suppose w is localized at frequency µ > α−1
0 . Then we estimate

∥P≳µχ∥L∞ ≲ (µα0)
−N ,

and then repeat the computation above to obtain

∥[χ− Tχ, TQ̃α
]Pµwα∥

Ḣ
1
4
≲ t−

1
2α−1

0 (µα0)
−N∥w∥

Ḣ
1
4
.

Finally we consider the paraproduct commutator [Tχ, TQ̃α
], where the input and output

frequencies are equal and equal to µ > α−1
0 . This vanishes if either χ or Q̃α are constant, so

it is natural to think of it as a bilinear form in their derivatives χα respectively Q̃αα. Indeed,
we can write the commutator in the form

[Tχ, TQ̃α
]Pµwα = µ−1Lllh(χα, Q̃αα, Pµw)

where Lllh stands for a translation invariant trilinear form with uniformly integrable kernel
and lower frequencies in the first two entries. Hence we have the L2 bound

∥[Tχ, TQ̃α
]Pµwα∥

Ḣ
1
4
≲ ∥χα∥L∞∥Q̃α∥L∞∥Pµw∥

Ḣ
1
4
≲ t−

1
2α−1

0 ∥Pµw∥
Ḣ

1
4
,

which suffices, exactly as above.
This concludes the proof of (5.22). The proof of (5.23) is identical.
Finally we consider (5.24), where we carry out the same steps. For the very low frequencies

we have

∥[χ, TW̃α
]P<α−1

0
qα∥

Ḣ
1
4
≲ α−1

0 ∥D
1
2W∥L∞∥q∥

Ḣ
3
4
≲ α−1

0 t−
1
2∥q∥

Ḣ
3
4
,

for the high χ frequencies we gain extra (µα0)
−N factors, and the paraproduct commutator

is the same as above. □

To summarize, we have reduced the problem to three localized settings, i.e. where (w, qα)
are localized in one of the following three regions:

(1) Low α, |α| ≪ αlo = t
3
4 , where it suffices to prove a low frequency elliptic bound.

(2) High α, |α| ≫ αhi = t2 where it suffices to prove a high frequency elliptic bound.

(3) Intermediate dyadic α, α ≈ α0, with t
3
4 ≲ α0 ≲ t2. Here we will do a full elliptic-

hyperbolic decomposition.

We consider each of these three cases in turn.

Step 2: The low α region, |α| ≪ αlo. Here for the high frequencies |ξ| ≳ ξlo = t
1
2 , we

simply use the Ḣσ
bound.
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The same Ḣσ
bound allows us to treat perturbatively the input of the high frequencies to

the equation (5.8),

∥S̃P≥ξlo(w, q)∥Ḣ 1
4
≲ ∥(w, q)∥Ḣσ .

Here we use the bound on the size of α within the support of (w, q). The frequency projector

P≥ξlo does not have a localized kernel, but it decays rapidly on the t
1
2 scale, so it only

generates O(t−N) errors.
Thus we are left with an equation of the form (5.8) for the low frequency component

(wlo, qlo) = P≪ξlo(w, q)
L[(wlo, qlo)] = (glo, klo),

where the localization is again retained up to negligible tails.
We rewrite this system as{︄

tqlo,α = 2αwlo,α + t(T2ℜW̃α
qlo,α − T2ℜQ̃α

wlo,α)− glo

itwlo = −2αqlo,α + tT2ℜQ̃α
qlo,α + klo,

with source terms (glo, klo) satisfying the same bounds as (g, k). Here we directly obtain the
elliptic bound

∥(qlo,α, wlo)∥Ḣ 1
4
≲ t−1∥(glo, klo)∥Ḣ 1

4
,

simply by treating all the terms we have moved to the right in a perturbative manner, using
both the frequency and the spatial2 localization. This in turn can be rewritten as

∥(wlo, qlo)∥Ḣ 3
4
≲ t−1∥(glo, klo)∥Ḣ 1

4
≲ t−1

(︂
∥(w, q)∥

Ḣ
1
4 ∩Ḣσ + ∥(g, k)∥

Ḣ
1
4

)︂
,

as needed for the X♯
lo norm.

Step 3: The high α region, |α| ≫ αhi. Here we apply the same strategy as in the
previous case, but reversing the role of high and low frequencies. Precisely, for frequencies

below ξhi = t−2 we only retain the starting Ḣ
1
4 bound for (w, q). This suffices in order to

place the contribution of the low frequencies into the source term in (5.8),

∥S̃P≲ξhi(w, q)∥Ḣ 1
4
≲ ∥(w, q)∥

Ḣ
1
4
.

We note that here the left hand side cannot be estimated directly due to the large α factors.
Instead, we need to commute S̃ and P≲ξhi. Thus, we obtain a system of the same form (5.8)
for the high frequencies (whi, qhi) = P≫ξhi(w, q). We rewrite this system in the form{︄

2αwhi,α = tqhi,α − t(T2ℜW̃α
qhi,α − T2ℜQ̃α

whi,α) + ghi

2αqhi,α = −itwhi + tT2ℜQ̃α
qhi,α + khi.

On the left we use the localization to |α| > αhi = t2 to estimate from below

t2∥(whi,α, qhi,α)∥Ḣ 1
4
≲ ∥(αwhi,α, αqhi,α)∥Ḣ 1

4
+ ∥(w, q)∥

Ḣ
1
4
.

Using this bound allows us to estimate perturbatively all the terms we have moved to the
right, and thus obtain the elliptic bound

∥(whi,α, qhi,α)∥Ḣ 1
4
≲ t−2

(︂
∥(w, q)∥

Ḣ
1
4∩Ḣσ + ∥(g, k)∥

Ḣ
1
4

)︂
,

2up to negligible tails
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as needed for the X♯
hi norm.

Step 4: The intermediate α region, αlo ≲ α0 ≲ αhi. Here we assume that (w, qα)
are localized in the dyadic region |α| ≈ α0. The difficulty we have in this region is that the
potentials are nonperturbative, at least in the hyperbolic region. To address this difficulty,
we first use perturbative analysis to estimate (w, q) in the elliptic region.

Step 4(a): The elliptic analysis. This has two components:

i) High frequency, ξ ≫ ξ0. Here the leading component is α∂α, therefore we would like to
prove the bound

(5.25) ∥P≫ξ0(w, q)∥Ḣ 5
4
≲

1

α0

=
1

t
|ξ0|

1
2 .

With j > 0 we apply the projector P≥2jξ0 respectively in the equations (5.8), and commute
to obtain an equation for (wj, qj) = P≥2jξ0(w, q). We obtain

(5.26)

{︄
2αwj,α − tqj,α + t(T2ℜW̃α

qj,α − T2ℜQ̃α
wj,α) = gj

2αqj,α + itwj − tT2ℜQ̃α
qj,α = kj,

with source terms{︄
gj = P≥2jξ0g + t([P≥2jξ0 , T2ℜW̃α

]qj,α − [P≥2jξ0 , T2ℜQ̃α
]wj,α)

kj = P≥2jξ0k + t[P≥2jξ0 , T2ℜQ̃α
]wj,α.

We estimate the source terms in Ḣ
1
4 , using (5.7), as follows:

∥(gj, kj)∥Ḣ 1
4
≲ ∥(g, k)∥

Ḣ
1
4
+ tξ

− 1
2

0 (∥D
1
2 Q̃α∥L∞ + ∥W̃∥L∞)∥(wj−1,α, qj−1,α)∥Ḣ 1

4

≲ ∥(g, k)∥
Ḣ

1
4
+ t

1
2 ξ

1
2
0 ∥(wj−1,α, qj−1,α)∥Ḣ 1

4
,

where (wj−1, qj−1) arise due to the fact that the commutators have a slightly larger frequency
support.

Then we consider the system (5.26), where we observe that all but the first terms in each
of the equation can be treated perturbatively at frequencies ≫ ξ0. Hence we obtain the
bound

∥(wj,α, qj,α)∥Ḣ 1
4
≲ α−1

0 ∥(gj, kj)∥Ḣ 1
4
≲ t−1ξ

1
2
0 ∥(g, k)∥Ḣ 1

4
+ t−

1
2∥(wj−1,α, qj−1,α)∥Ḣ 1

4
).

Reiterating this bound several times, we are eventually able to use our a-priori bound on
(w, q) to conclude that for some large fixed j (e.g. j = 5) we obtain

∥(wj,α, qj,α)∥Ḣ 1
4
≲ t−1ξ

1
2
0

(︂
∥(w, q)∥

Ḣ
1
4∩Ḣσ + ∥(g, k)∥

Ḣ
1
4

)︂
,

thus proving (5.25).

ii) Low frequency, ξ ≪ ξ0. Here the leading component is the linear t component, therefore
we would like to show that

(5.27) ∥P≪ξ0(w, q)∥Ḣ 3
4
≲

1

t

(︂
∥(w, q)∥

Ḣ
1
4 ∩Ḣσ + ∥(g, k)∥

Ḣ
1
4

)︂
.

The argument is identical to the one in case (i) above, so the details are omitted.
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(iii) Once we have the bounds in the elliptic region, we can truncate in frequency to the
hyperbolic region ξ ≈ ξ0, using the elliptic bounds to estimate the truncation errors in the
system (5.8). Thus we will assume from here on that both (w, q) are localized at frequency
ξ0. This localization will destroy the spatial localization, but we will neglect this in the
analysis that follows since the generated tails are of size t−N and rapidly decreasing.

Step 4(b): The hyperbolic analysis. Here, as discussed in (iii) above, we assume that
(w, q) are frequency localized at dyadic frequency ξ0, spatially localized in the dyadic region
|α| ≈ α0, and the right hand side in the equation satisfies the same bounds as in the theorem.
It suffices to prove the desired pointwise bound for w, as qα can then be obtained directly
from either of the equations in (5.8).

Our next step is to eliminate qα from the two equations. To do this we use the paraproduct
product and commutator formulas from our previous paper [3, Lemmas 2.4, 2.5]. This gives

(5.28) (4α2 − 8αtTℜQ̃α
+ 4t2T(ℜQ̃α)

2)wα + it2(1− T2ℜW̃α
)w = 2αg1,

where g1 is given by

2αg1 = 2(α− tTℜQ̃α
)g + t(1− 2TℜW̃α

)k + t2(Lwα +Mqα),

with

L = 4(TℜQ̃α
TℜQ̃α

− T(ℜQ̃α)
2), M = [T2ℜW̃α

, T2ℜQ̃α
].

We can show that g1 and g are essentially equivalent:

Lemma 5.4. The function g1 satisfies the same bounds as g,

(5.29) ∥g1∥Ḣ 1
4
≲

(︂
∥(w, q)∥

Ḣ
1
4∩Ḣσ + ∥(g, k)∥

Ḣ
1
4

)︂
.

Proof. Here it is easiest to use a result from [3], precisely Lemma 2.5 there. Applied with
γ1 = γ2 =

3
4
and using our bootstrap bound (5.7) it yields

∥LPξ0∥L2→L2 ≲ ξ
− 3

2
0 ∥D

3
4 Q̃α∥2BMO ≲

1

t
ξ
− 3

2
0 A2

1/4.

This is exactly as needed since in our case the argument of L is spatially localized in the
region α ≈ α0, so the output has a similar localization modulo tails which decrease rapidly
on the ξ−1

0 scale.
For M we also use [3, Lemma 2.5] but now with γ1 = 1

4
and γ2 = 3

4
, where the former

corresponds to W̃α and the latter to Q̃α. We obtain

∥LPξ0∥L2→L2 ≲ ξ
− 3

2
0 ∥D

1
4 W̃α∥BMO∥D

3
4 Q̃α∥BMO ≲

1

t
ξ−1
0 A2

1/4,

which again suffices. □

Consider now (5.28), which we rewrite in a shorter form

(5.30) (1− TV1)wα + i
t2

α2

(1− TV2)w = (2α)−1g1,

where the potentials V1 and V2 are given by

V1 = −2t

α
ℜQ̃α +

t2

α2
(ℜQ̃α)

2, V2 = 2ℜWα.
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We carry out another reduction, which is to eliminate the paracoefficient of wα. This is
achieved by applying the operator 1 + T V1

1−V1

in (5.30). Using again paraproduct calculus

exactly as in the above lemma, (5.30) is rewritten as

(5.31) wα + i
t2

α2
w − iξ0TVw = 2α−1g2,

where g2 satisfies the same bound as g1 and V is given by

V =
t2

α2
ξ−1
0

V2 − V1

1− V1

.

Here we pulled out the ξ0 factor because in the region of interest |α| ≈ α0 we have
t2

α2 ξ
−1
0 ≈ 1.

The contributions of V outside a size α0 neighbourhood of this region have size O(t−N) and
can be harmlessly discarded.

In view of (5.7), in the above region the potential V is real valued and has the following
properties:

i) small size,

∥V ∥L∞ ≪ ξ
1
2
0 t

− 1
2 ≲ t−

1
4 ,

ii) smaller gradient

∥P<ξ0Vα∥L∞ ≪ t−
1
2 ξ

3
4
0 .

For solutions to the equation (5.31) we seek to prove a uniform bound of the form

(5.32) ∥w∥L∞ ≲ c(ξ0)t
− 1

2 ξ
− 5

4
0 (∥w∥

Ḣ
11
4
+ ∥w∥

Ḣ
1
4
+ ∥g2∥

Ḣ
1
4
),

where the ξ
− 5

4
0 factor corresponds to the A 1

4
norm while c(ξ0) denotes any additional gain,

as required by the X♯
α0

norm.
Here we distinguish two cases depending on the size of ξ0.

Case 1: ξ0 > 1. Then we will establish a bound based on the Ḣ
11
4 norm for w, and will

instead show that

(5.33) ∥w∥L∞ ≲ t−
1
2 ξ

− 5
4

0 ∥w∥
1
2

Ḣ
11
4
∥g2∥

1
2

Ḣ
1
4
.

Since w is localized at frequency ξ0, replacing the Ḣ
11
4 norm with Ḣ

σ
with σ > 11

4
yields

a gain of c(ξ0) = ξ
1
2
( 11

4
−σ)

0 in (5.32), which exactly corresponds to our choice of b in the X♯

norm.
Taking into account the localization at frequency ξ0, we can replace the Sobolev norms by

L2 norms in (5.33), and rewrite it as

∥w∥L∞ ≲ t−
1
2 ξ

− 5
4

0 (ξ
11
4
0 ∥w∥L2)

1
2 (tξ

− 1
4

0 ∥α−1g2∥L2)
1
2 ,

or equivalently, as a bound for solutions to (5.31), as

(5.34) ∥w∥L∞ ≲ ∥w∥
1
2

L2∥α−1g2∥
1
2

L2 .

We postpone the proof of this bound in order to discuss the second case.
35



Case 2: ξ0 < 1. Then we will establish a bound based on the Ḣ
1
4 norm for w, and will

show that

(5.35) ∥w∥L∞ ≲ t−
1
2∥w∥

1
2

Ḣ
1
4
∥g2∥

1
2

Ḣ
1
4
.

This corresponds to choosing c(ξ0) = ξ
5
4
0 in (5.32), which in turn corresponds to our choice

of a in the X♯ norm. Taking into account the localization at frequency ξ0, and the spatial
localization at |α| ≈ α0, this bound also reduces to (5.34).

It remains to prove the bound (5.34) for solutions to (5.31). Here the paradifferential
coefficients are nonperturbative. Part of the difficulty is also the fact that these coefficients
are in paradifferential form. If that were not the case, then we could simply take advantage
of the critical fact that they are real, calculate

∂α|w|2 = 2ℜw · 1

2α
g2,

and integrate to get

∥w∥2L∞ ≲ ∥w∥L2∥α−1g2∥L2 ,

as needed.
To prove (5.34), we discard the spatial localization and restate the result in a simpler

form:

Lemma 5.5. Suppose that the function u ∈ L2 is localized at frequency ξ0 and solves the
equation

(5.36) uα + iTw
V u = f,

where the potential V is real and satisfies

(5.37) V ≈ ξ0

and

(5.38) ∥∇V ∥L∞ ≲ M ≪ ξ20 .

Then we have the pointwise bound

(5.39) ∥u∥2L∞ ≲ ∥u∥L2∥f∥L2 .

Proof. For a suitable smooth, bounded and nondecreasing function χ we multiply the equa-
tion by χu and integrate by parts. We get

1

2

∫︂
χ′|u|2 dα = t−1ℜ

∫︂
χuf dα + ℜ

∫︂
i[Tw

V , χ]u · u dα.

To insure that the term on the left nonnegative we choose χ increasing from 0 to 1 in an
interval I of a fixed length r, and constant elsewhere. Here r is chosen above the uncertainty
principle threshold r > ξ−1

0 . Then we have

|χ′| ≲ r−1,

and χ′ is further supported in I. Then the commutator has L2 size

∥[Tw
V , χ]Pξ0∥L2→L2 ≲ ξ−2

0 ∥P<ξ0Vα∥L∞∥χ′∥L∞ ≲ ξ−2
0 Mr−1.
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Further, we observe that the commutator is essentially localized in 2I, modulo rapidly de-
creasing tails on the ξ−1

0 scale. We can account for the rapidly decreasing tails using translates
of the interval I, which has size at least ξ−1

0 . Then we arrive at the estimate

∥[Tw
V , χ]Pξ0u∥L2 ≲ ξ−2

0 Mr−1 sup
c∈R

∥u∥L2(I+c)

Hence from the previous integral identity we obtain

r−1∥u∥2L2(I) ≲ ∥u∥L2∥f∥L2 + ξ−2
0 Mr−1 sup

c∈R
∥u∥2L2(I+c),

But we can also apply this bound with I replaced by translates of I. This yields

r−1 sup
c∈R

∥u∥2L2(I+c) ≲ ∥u∥L2∥f∥L2 + ξ−2
0 Mr−1 sup

c∈R
∥u∥2L2(I+c).

Since Mξ−1
0 ≪ 1, we can absorb the second term on the right on the left, to obtain

r−1 sup
c∈R

∥u∥2L2(I+c) ≲ ∥u∥L2∥f∥L2 .

Using the frequency localization of u as well as the bound r > ξ−1
0 , this yields a similar

bound for the derivative of u, namely

r−1 sup
c∈R

∥uα∥2L2(I+c) ≲ ξ0∥u∥L2∥f∥L2 .

One may obtain L∞ bounds for u in any interval I + c from L2 bounds for u and uα in the
same interval,

∥u∥2L∞(I+c) ≲ r−1∥u∥2L2(I+c) + r∥uα∥2L2(I+c).

Then we arrive at
sup
c∈R

∥u∥2L∞(I+c) ≲ (1 + r2ξ20)∥u∥L2∥f∥L2 .

Choosing r as small as possible,
r ≈ ξ−1

0 ,

we finally obtain
∥u∥2L∞ ≲ ∥u∥L2∥f∥L2 ,

as desired, concluding the proof of the lemma. □

Once we have the above Lemma, we can apply it to prove (5.34), which in turn concludes
the proof of the proposition. □

To complete our discussion of theX♯ bounds we need to compare them with theX bounds.
This is best carried out in terms of the elliptic-hyperbolic decomposition (5.12).

We begin with the hyperbolic part, for which we have that its X size is controlled by the
full X♯ norm, with an additional gain away from unit velocity. To quantify this gain we use
the region Ωδ defined in (5.4), and denote by χΩδ a bump function which selects the region
Ωδ and is smooth at both ends on the appropriate dyadic α scale. Then we have:

Proposition 5.6. We have the bounds

(5.40) ∥(w, q)hyp,α∥X ≲ ∥(w, q)∥X♯ ,

respectively

(5.41) ∥(1− χΩδ)(w, q)hyp,α∥X ≲ t−bδ∥(w, q)∥X♯ .
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Proof. For the hyperbolic part we use the decomposition in (5.13), which we recall here:

(whyp, qhyp) =
∑︂

αlo≲α0≲αhi

Pξ0χα0(w, q).

We now distinguish between small and large velocities:

a) Small velocities: αlo < α0 ≲ t. This corresponds to dyadic velocities v0 = α0/t in the
range

αlo

t
= vlo < v0 ≲ 1,

and to frequencies ξ0 = v−2
0 ≳ 1.

In this case, we use the X♯ norm component given by the last term in (5.18). Since ξ0 ≳ 1,
at frequency ξ0 the X norm agrees with the X0 norm, so we obtain

(5.42) ∥Pξ0χα0(w, q)∥X ≲ ξ−b
0 ∥(w, q)∥X♯ = v2b0 ∥(w, q)∥X♯ .

This suffices directly for (5.40), while in (5.41) we capture the extra gain due to the truncation
to the range v0 < t−δ.

b) Large velocities: t ≲ α0 < αhi. This corresponds to dyadic velocities v0 in the range

1 ≲ v0 < vhi =
αhi

t
,

and to frequencies ξ0 = v−2
0 ≲ 1.

Now we use instead the X♯ norm component given by the last term in (5.18). Since ξ0 ≲ 1,

at frequency ξ0 the X norm is ξ
− 3

4
0 times the X0 norm, so we obtain

(5.43) ∥Pξ0χα0(w, q)∥X ≲ ξ
a− 3

4
0 ∥(w, q)∥X♯ = v

−2(a− 3
4
)

0 ∥(w, q)∥X♯ .

This suffices directly for (5.40), while in (5.41) we capture the extra gain due to the truncation
to the range v0 > tδ. □

Next we consider the elliptic part of (w, q), where we have a simpler objective, namely to
show that it satisfies better bounds both in the energy sense and in the pointwise sense.

Proposition 5.7. Let (w, q) be a pair of functions satisfying

(5.44) t
1
2∥(w, q)∥X♯

ell
+ ∥(w, q)∥

Ḣ
1
4 ∩Ḣσ ≤ 1.

Then we have the energy bound

(5.45) ∥(wα, qα)∥Ḣ− 1
4
≲ t−1,

as well as the uniform bound

(5.46) ∥(w, q)α∥X ≲ t−b.

Proof. For (w, q) we consider the decomposition (5.10), and prove the desired bound sepa-
rately for each frequency. The L2 estimate (5.45) is trivial; we have only added it in the
proposition for easy reference. For the uniform bound (5.46), on the other hand, we need to
appropriately apply Bernstein’s inequality.

a) The low α component,
(wlo, qlo) = χ≪αlo

(w, q).
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Here by by (5.44) and by the definition of the X♯ norm, see (5.15), we control

t∥(wlo, qlo)∥Ḣ 3
4
+ ∥(wlo, qlo)∥Ḣ 1

4∩Ḣσ ≲ 1.

Then we can bound uniformly the dyadic pieces of (wlo, qlo) using Bernstein’s inequality as

follows, neglecting the Ḣ
1
4 norm:

∥Pµ(wlo, |D|
1
2 qlo)∥L∞ ≲ min{µ−σ+ 1

2 , t−1µ− 1
4},

where the first component is smaller if µ > ξlo = t
1
2 .

Hence, for the high frequency part of the X norm (i.e. at frequencies ≥ 1) we have

∥P≥1(|D|
5
4wlo, |D|

7
4 qlo)∥2B0

∞,2
≲

∑︂
µ≥1

min{µ−σ+ 7
4 , t−1µ}2 = t−1−2δlo , δlo =

σ − 11
4

2(σ − 3
4
)

as needed. The bound for the low frequency part of the X norm is similar but better.

b) The intermediate α component. Here we fix a dyadic region |α| ≈ α0 ∈ [αlo, αhi] and
consider the component

(wmid, qmid) = χα0(w, q),

which is in turn decomposed into low frequencies (< ξ0) and high frequencies (> ξ0):

b)(i). Low frequencies, ξ < ξ0. Here by the second term in (5.20) along with the Ḣσ

bound in (5.44), we have

t∥P<ξ0(wmid, qmid)∥Ḣ 3
4
+ ∥P<ξ0(wmid, qmid)∥Ḣσ ≲ 1

We split into dyadic frequency regions µ < ξ0, and use Bernstein’s inequality to estimate

∥Pµ(wmid, |D|
1
2 qmid)∥L∞ ≲ min{t−1µ− 1

4 , µ−σ+ 1
2}∥(wmid, qmid)∥X♯

hi
.

Neglecting the σ component, after dyadic µ summation this implies

∥P<ξ0(|D|
1
2wmid, |D|qmid)∥L∞ ≲ t−1ξ

1
4
0 = t−1|v0|−

1
2 .

Since ξ0 < ξlo = t
1
2 , this suffices for the low frequency part of the X norm, and completes

the argument if ξ0 < 1, i.e. if v0 > 1.
However, if ξ0 > 1 then we also need to consider the high frequency part of the X norm,

where we can no longer neglect the σ term. Hence we write instead

∥P<ξ0(|D|
5
4wmid, |D|

7
4 qmid)∥2B0

∞,2
≲

∑︂
µ<ξ0

min{t−1µ, µ−σ+ 7
4}2.

We neglect the µ range and bound this by the maximum of the right hand side summand,

∥P<ξ0(|D|
5
4wmid, |D|

7
4 qmid)∥2B0

∞,2
≲ t−1−2δlo

with δlo exactly as in case (a).

b)(ii). High frequencies, ξ > ξ0. Here we use instead the first term in (5.20); then we have

tξ
− 1

2
0 ∥P>ξ0(wmid, qmid)∥Ḣ 5

4
+ ∥P<ξ0(wmid, qmid)∥Ḣσ ≲ 1.

Then we use Bernstein’s inequality to estimate for µ > ξ0

∥Pµ(wmid, |D|
1
2 qmid)∥L∞ ≲ min{t−1ξ

1
2
0 µ

− 3
4 , µ−σ+ 1

2}.
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Neglecting the σ component, after dyadic µ summation this implies

∥P>ξ0(|D|
1
2wmid, |D|qmid)∥L∞ ≲ t−1ξ

1
4
0 = t−1|v|−

1
2 ,

which, as before in case (b)(i), suffices for the low frequency part of the X norm. For the
high frequency part of the X norm we again can no longer neglect the σ term, so we write
instead

∥P>ξ0(|D|
5
4wmid, |D|

7
4 qmid)∥2B0

2,∞
≲

∑︂
µ>ξ0

min{t−1ξ
1
2
0 µ

1
2 , µ−σ+ 7

4}2.

Replacing ξ0 by µ we arrive exactly at the same computation as in case (b)(i), in which the
µ range was neglected.

c) The high α component,
(whi, qhi) = χ≫αhi

(w, q).

Here we combine the expression in (5.16) with the second term in (5.44) to obtain

t2∥(whi, qhi)∥Ḣ 5
4
+ ∥(w, q)∥

Ḣ
1
4∩Ḣσ ≲ 1.

Then, using Bernstein’s inequality we have:

∥Pµ(whi, |D|
1
2 qhi)∥L∞ ≲ min{µ

1
4 , µ−σ+ 1

2 , t−2µ− 3
4}∥(whi, qhi)∥X♯

hi
.

For the low frequency part of the X norm we neglect the σ component to get

∥(|D|
1
2whi, |D|qhi)∥L∞ ≲

∑︂
µ

min{µ
3
4 , t−2µ− 1

4} = t−
3
2 ,

better than needed.
The estimate for the high frequency part of the X norm is similar,

∥(|D|
5
4whi, |D|

7
4 qhi)∥2B0

∞,2
≲

∑︂
µ

min{µ
3
2 , µ−σ+ 7

4 , t−2µ
1
2}2 ≲ t−

8
3 ,

as needed. Here we have instead neglected the first term, and replaced σ by 11
4
. □

5.4. Back to the normal form variables. We now return to (W̃ , Q̃), and we apply the
results of the previous subsection to them, both directly and in terms of the corresponding
elliptic-hyperbolic decomposition (5.12).

Corollary 5.8. Assume that (W,Q) satisfy the bootstrap bound (2.1). Then the following
pointwise bound holds:

(5.47) ∥(W̃α, Q̃α)∥X♯ ≲ t−
1
2

(︂
∥(W̃ , Q̃)∥

Ḣ
1
4∩Ḣσ + ∥S̃(W̃ , Q̃)∥

Ḣ
1
4

)︂
.

In particular, if (5.6) holds then

(5.48) ∥(W̃ , Q̃)∥X♯ ≲ ϵt−
1
2
+Cϵ.

Furthermore, its hyperbolic an elliptic components satisfy bounds as follows:

(5.49) ∥(1− χΩδ)(W̃ , Q̃)hyp∥X ≲ ϵt−
1
2
−bδ+Cϵ2 ,

respectively elliptic L2 and L∞ bounds

(5.50) ∥(W̃ ell, Q̃ell)∥X♯
ell

≲ ϵ2t−
1
2
+Cϵ2 ,
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(5.51) ∥(W̃ ell,α, Q̃ell,α)∥Ḣ− 1
4
≲ ϵ2t−1+Cϵ2 ,

and

(5.52) ∥(W̃ ell,α, Q̃ell,α)∥X ≲ ϵ2t−
1
2
−b/2+Cϵ2 .

The reason we care about the better bounds for the elliptic part is that its contribution
to the analysis of the normal form equation (4.10) is mostly perturbative. This is fully the

case for the cubic source terms (G̃
(3)
, K̃

(3)
), but also to some extent for the paradifferential

quadratic terms. Indeed, an interesting observation is that in all paradifferential interactions
in the original system (5.5) for (W̃ , Q̃), at least one of the two inputs has to be in the elliptic
region. Precisely, we have

Proposition 5.9. a) Denote by (G̃
(3)

ell , K̃
(3)

ell ) any expression with one elliptic entry, i.e. of
the form

G̃
(3)
(W̃ ell,α, W̃α, Q̃α), G̃

(3)
(W̃α, W̃α, Q̃ell,α),

and similarly for K̃
(3)

ell . Then we have

(5.53) ∥(G̃(3)

ell , K̃
(3)

ell )∥Ḣ 1
4
≲ (∥(W̃ ell, Q̃ell)∥X♯

ell
+ t−

1
2∥(W̃ ell, Q̃ell)∥Ḣ 1

4∩Ḣ
11
4
)∥(W̃ , Q̃)∥2X .

b) For the paradifferential term we have the improved bound

(5.54) ∥(TℜW̃α
Q̃α − TℜQ̃α

W̃α, TℜQ̃α
Q̃α)∥Ḣ 1

4
≲ ϵ2t−

5
4
+2Cϵ2 .

Proof. a) For the elliptic entry we use only the translation invariant part of the X♯
ell norm,

i.e.
∥(W̃ ell, Q̃ell)∥Ḣ 3

4
≲ t−

1
2∥(W̃ ell, Q̃ell)∥X♯

ell
.

Interpolating the Ḣ
3
4 norm with the Ḣ

1
4 ∩ Ḣ

11
4 norm we obtain

∥(W̃ ell,α, Q̃ell,α)∥Ḣs ≲ t−
1
2∥(W̃ ell, Q̃ell)∥Ḣ 1

4∩Ḣ
11
4
+ ∥(W̃ ell, Q̃ell)∥X♯

ell
, −1

2
≤ s ≤ 3

4
.

It remains to show that

(5.55) ∥(G̃(3)

ell , K̃
(3)

ell )∥Ḣ 1
4
≲ ∥(W̃ ell, Q̃ell)∥Ḣ 1

2∩Ḣ
7
4
∥(W̃ , Q̃)∥2X .

We consider the following three cases:

i) The elliptic variable is the lowest frequency. Beginning with G̃
(3)
, we have following

three prototypical terms in G̃
(3)
,

TTQ̃α
W̃α

W̃α, TTW̃α
Q̃α

W̃α TTW̃α
W̃α

Q̃α,

noting that the cases when two of the frequencies are matched are entirely similar to these.
For the first of these cases, we estimate

∥TTQ̃α
W̃α

W̃α∥
Ḣ

1
4
≲ ∥Q̃α∥L2∥W̃α∥L∞∥D

1
4 W̃α∥BMO,

as needed. For the second of these cases, we estimate

∥TTW̃α
Q̃α

W̃α∥
Ḣ

1
4
≲ ∥W̃α∥L2∥Q̃α∥L∞∥D

1
4 W̃α∥BMO,
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and likewise the third,

∥TTW̃α
W̃α

Q̃α∥
Ḣ

1
4
≲ ∥W̃α∥L2∥W̃α∥L∞∥D

1
4 Q̃α∥L∞ .

All terms of G̃
(3)

are similar to one of these cases, or may have an additional derivative
falling on the elliptic variable. This last situation is estimated in the same way as one of the
above cases, since we are free to rebalance the derivative.

We continue with K̃
(3)
. Here we have four prototypical terms,

TTQ̃α
W̃α

Q̃α, TTW̃α
Q̃α

Q̃α, TTW̃α
W̃α

W̃ , T∂αTQ̃α
Q̃α

W̃ ,

observing that terms of the form TTQ̃α
Q̃α

W̃α cancel. The analysis of the first two terms is

analogous to the first two terms discussed for G̃
(3)
. For the third term,

∥TTW̃α
W̃α

W̃∥
Ḣ

3
4
≲ ∥W̃α∥L2∥W̃α∥L∞∥|D|3/4W̃∥L∞

suffices, and for the last term,

∥T∂αTQ̃α
Q̃α

W̃∥
Ḣ

3
4
≲ ∥Q̃α∥L2∥|D|

1
2 Q̃α∥L∞∥W̃α∥

B
1
4
∞,2

.

ii) The elliptic variable is the middle frequency. The analysis in this case is similar to the
analysis in the first case, except we measure in each case the middle frequency term in L2.

iii) The elliptic variable is the highest frequency. For G̃
(3)
, we directly measure the two

lower frequency variables in X. For instance,

∥TTW̃α
Q̃α

W̃α∥
Ḣ

1
4
≲ ∥W̃α∥L∞∥Q̃α∥L∞∥W̃α∥

Ḣ
1
4
.

The analysis of K̃
(3)

is similar. For instance (using here the boundedness of ∂αP ),

∥TP [|Q̃α|2]αW̃∥
Ḣ

1
4
≲ ∥Q̃α∥L∞∥Q̃α∥L∞∥W̃α∥

Ḣ
1
4
.

b) We use the elliptic-hyperbolic decomposition of (W̃ , Q̃), noting that the above ex-
pressions only allow for low-high interactions, therefore the hyperbolic × hyperbolic case is
forbidden. We separately consider each of the three remaining cases:

i) The elliptic-hyperbolic case. We consider a dyadic region |α| ≈ α0, and the corre-
sponding localized components of (W̃ ell, Q̃ell), respectively (W̃ hyp, Q̃hyp). There we need to
estimate the quadratic terms:

∥T2ℜQ̃α
W̃α,ξ0∥

Ḣ
1
4
≲ ξ

1
4
0 ∥Q̃α,<ξ0∥L4∥W̃α,ξ0∥L4 ≲ t−

1
2∥Q̃∥X♯

ell
∥W̃α∥

1
2
X∥W̃∥

1
2

Ḣ
5
4
≲ ϵ2t−

5
4
+2Cϵ,

which suffices.
The bound for TℜQ̃α

Q̃α is identical. Finally,

∥TℜW̃α
Q̃α∥

Ḣ
1
4
≲ ξ

1
4
0 ∥W̃α,<ξ0∥L2∥Q̃α,ξ0∥L∞ ≲ t−

1
2∥W̃∥X♯

ell
∥Q̃α∥X ≲ ϵ2t−

3
2
+2Cϵ.
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ii) The hyperbolic-elliptic case. After localizing the high frequency factor at a frequency
µ > ξ0, here we need to bound the dyadic ξ0 - µ interactions as follows:

∥ℜQ̃α,ξ0W̃α,µ∥
Ḣ

1
4
≲ ∥Q̃α,ξ0∥L∞∥W̃α,µ∥

Ḣ
1
4
≲ t−

1
2∥Q̃α∥X∥W̃∥X♯

ell
,

which suffices. The bound for TℜQ̃α
Q̃α is again identical. Finally,

∥TℜW̃α,ξ0
Q̃α,µ∥

Ḣ
1
4
≲ ∥W̃α,ξ0∥L∞∥Q̃α,µ∥

Ḣ
1
4
≲ t−

1
2∥W̃∥X∥Q̃∥X♯

ell
.

iii) The elliptic-elliptic case. Here on one hand there are more subcases, but on the other

hand the gains are also larger, and one only needs to use the X♯
ell norm and Bernstein’s

inequality. This case is left for the reader.
□

The second part of the previous proposition allows us to reiterate, ultimately eliminating
the paradifferential terms from the system (5.5):

Proposition 5.10. The functions (W̃ , Q̃) also are solutions for a system of the form

(5.56)

{︄
2α∂αW̃ − t∂αQ̃ = G,

2α∂αQ̃+ itW̃ = K,

where we control

(5.57) ∥(W̃ , Q̃)∥
Ḣ

1
4∩Ḣσ + ∥(G,K)∥

Ḣ
1
4
≲ ϵtCϵ2 .

Proof. We know that (W̃ , Q̃) solve the system (5.5), and satisfy (5.6). Then the estimate
(5.57) follows directly from and (5.54). □

As a corollary of the last Proposition, it follows that similar bounds apply to the compo-
nents of the hyperbolic part given by (5.13):

Corollary 5.11. The summands in (5.13) applied to (W̃ hyp, Q̃hyp) satisfy the bounds:

(5.58) ∥Pξ0χα0(W̃ , Q̃)∥
Ḣ

1
4∩Ḣσ ≲ ϵtCϵ,

and solve an equation of the form (5.56) with source terms (Gα0 , Kα0) with

(5.59) ∥(Gα0 , Kα0)∥Ḣ 1
4
≲ ϵtCϵ.

This can be seen by applying the results of Section 5.3 to (W̃ , Q̃) as in Proposition 5.10.
This is of course an overkill, as the analysis simplifies considerably when the paradifferential
coefficients vanish, and one could also essentially cite the results of [12].

6. Wave packets and long time pointwise bounds

The goal of this section is to close the circle of ideas in this paper, i.e to use the bootstrap
assumption and the energy estimates, along with the vector field Sobolev bounds in the
previous section, in order to derive the long time pointwise bound (2.5) on the solutions
at the level of the normal form variables. This is accomplished by studying an appropriate
asymptotic equation, which is captured using the method of testing by wave packets developed
earlier by the last two authors, see [11], [12]. The main result of this section is
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Proposition 6.1. Assume that the normal form variables (W̃ , Q̃) satisfy the pointwise boot-
strap bounds (2.3) as well as the energy bounds (2.4). Then they satisfy (2.5).

As a starting point for the proof of this proposition we recall the properties that we
have available for (W̃ , Q̃). First of all, (W̃ , Q̃) solves the system (4.10) with the a cubic

nonlinearity (G̃
(3)
, K̃

(3)
) given by (4.15), and a source term (G̃

(4+)
, K̃

(4+)
) satisfying the

bound

(6.1) ∥(G̃(4+)
, K̃

(4+)
)∥

Ḣ
1
4
≲ ϵϵ4⟨t⟩C1ϵ2− 3

2 .

For (W̃ , Q̃) we recall the energy estimates from Proposition 5.10:

(6.2) ∥(W̃ , Q̃)∥
Ḣσ∩Ḣ

1
4
≲ ϵ⟨t⟩2Cϵ.

and

(6.3) ∥(2α∂αW̃ − t∂αQ̃, 2α∂αQ̃+ itW̃ )∥
Ḣ

1
4
≲ ϵ⟨t⟩2Cϵ.

Given this starting point, our objective is to show that we have the pointwise bound

(6.4) ∥(W̃α, Q̃α)∥X ≲ ϵ⟨t⟩−
1
2 .

For (W̃ , Q̃) we take advantage of the analysis in the previous section, where (W̃ , Q̃) are
decomposed into an elliptic and hyperbolic parts

(W̃ , Q̃) = (W̃ , Q̃)ell + (W̃ , Q̃)hyp.

For the elliptic part we can use the bounds (5.52) from Corollary 5.8 to conclude that

∥(W̃α, Q̃α)ell∥X ≲ ϵ2⟨t⟩−
1
2
− b

2
+Cϵ2 ,

which suffices for ϵ small enough. Hence it remains to prove that (6.4) holds for the hyperbolic
part

(6.5) ∥(W̃α, Q̃α)hyp∥X ≲ ϵ⟨t⟩−
1
2 .

On the other hand for the hyperbolic part we have the pointwise bounds from Corollary 5.8:

(6.6) ∥(W̃α, Q̃α)hyp∥X♯ ≲ ϵt−
1
2
+Cϵ2 ,

which are not good enough because of the tCϵ2 loss. However, the X♯ norm includes an
additional gain away from dyadic velocity 1, which is captured by the bound (5.49) which
we recall here

(6.7) ∥(1− χΩδ)(W̃ , Q̃)hyp∥X ≲ ϵt−
1
2
−bδ+Cϵ2 .

This gives enough decay outside the region Ωδ defined in (5.4). Hence it remains to obtain
a bound inside Ωδ, and show that

(6.8) ∥χΩδ(W̃ , Q̃)hyp∥X ≲ ϵt−
1
2 .

In order to establish the global pointwise decay estimates (6.5) in Ωδ we use the method of
testing by wave packets, first introduced in paper [11] in the context of the one dimensional
cubic NLS equation, and then used in the water waves context in [12] and other subsequent
works. The construction of the wave packets is identical with the one we have used [12], but
for convenience we recall it here. This method, as emphasized in all our results, requires
localization of the initial data.
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The premise of the wave packet testing is that, at leading order, nonlinear waves travel
in a linear fashion along a ray which is connected to their spatial frequency via the linear
Hamilton flow. We take the ray to be {α = vt}, and we refer to v as the velocity; the
associated frequency will be denoted by ξv = v−2. Our goal is to establish decay for the pair
(W̃ , Q̃) along this ray by testing it with a wave packet evolving along the ray. The wave
packet testing will only see a certain frequency of (W̃ , Q̃) along the ray, namely ξv; but this
will suffice for our uniform decay bounds.

In our context here, by a wave packet we mean an appropriately localized approximate
solution, i.e. with O(1/t) errors, of the linear system

(6.9)

{︃
Wt +Qα = 0

Qt − iW = 0.

We recall some key facts about how one should envision a wave packet. The dispersion
relation τ = ±

√︁
|ξ| gives that a ray with velocity v is associated with waves which have

spatial frequency

ξv = − 1

4v2
= − t2

4α2
.

This is associated with the phase function

ϕ(t, α) =
t2

4α
,

which can also be seen as a solution to the appropriate eikonal equation, and is exactly the
phase of the fundamental solution, as predicted by the stationary phase method.

Then our wave packets will be combinations of functions of the

u(t, α) = v−
3
2χ

(︃
α− vt

t
1
2v

3
2

)︃
eiϕ(t,α),

where χ is a smooth compactly supported bump function with integral one

(6.10)

∫︂
χ(y) dy = 1.

Our packets are localized around the ray {α = vt} on the scale δα = t
1
2v

3
2 . This exact choice

of scale is determined by the phase function ϕ. Precisely, the quadratic expansion of ϕ near
α = vt reads

ϕ(t, α) = ϕ(t, vt) + (α− vt)ϕα(t, vt) +O(t−1v−3(α− vt)2),

and our scale δα represents exactly the scale on which ϕ is well approximated by its lineariza-
tion. We further remark that there is a threshold v ≈ t above which ϕ is essentially zero,
and the above considerations are no longer relevant. By contrast, the above phase blows up
at α = 0. In order to avoid proximity to either of these extreme scenarios, we confine our
analysis to a region of the form

(6.11) Ω0 :=
{︂
t−

1
100 ≤ |v| ≤ t

1
100

}︂
,

which contains the smaller region Ωδ. These powers of t in the definition of Ω0 are chosen
rather arbitrary; they need to be universal small enough constants.
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Under this assumption, the function u is strongly localized at frequency ξv. For later use,
we record here some ways to express this localization. We recall here some of the results in
[10], and [12] that we will rely on without further adjustments.

Lemma 6.2. a) Let u be defined as above. Then its Fourier transform and that of ∂vu have
the form

(6.12) û(ξ) = t
1
2χ1

(︃
ξ + (4v2)−1

t−
1
2v−

3
2

)︃
e−it

√
|ξ|, ∂vû(ξ) = tv−

3
2χ2

(︃
ξ + (4v2)−1

t−
1
2v−

3
2

)︃
e−it

√
|ξ|,

where χ1 and χ2 are Schwartz functions so that in addition,

(6.13)

∫︂
χi(ξ) dξ = 1 +O(v

1
2 t−

1
2 ), i = 1, 2.

b) For s ≥ 0, λv = (4v2)−1 and Pλv the associated dyadic frequency projector we have

(6.14) Pλv(|D|s − (4v2)−s)u(α, t) = (4v2)−st−
1
2v

1
2χ3

(︃
α− vt

t
1
2v

3
2

)︃
eiϕ(t,α),

where χ3 is also a Schwartz function.

Our use of the method of testing by wave packets proceeds in a similar fashion as in
[12]. The linear correlation between our unknowns (W̃ , Q̃) makes it easier to chose one wave
packet for one of the variables, and then match it for the second variable. As our linear
system (6.9) is simple enough, it suffices to first choose the Q̃ component and then use the
second of the two linear equations in (6.9) to match W̃ ,

(w,q) = (−iv∂tu, vu),

where w and q are the wave packets associated to W̃ , and Q̃ respectively.
Then we have

(6.15) w =
1

2
u+

(︃
vt− α

2α
χ

(︃
α− vt

t
1
2v

3
2

)︃
+

i(vt+ α)

2t
3
2v

1
2

χ′
(︃
α− vt

t
1
2v

3
2

)︃)︃
v−

3
2 eiϕ(t,α).

The second term above is better by a v
1
2 t−

1
2 factor, so it will play a negligible role in most

of our analysis. However, it is crucial in improving the error in the first linear equation in
(6.9), which is given by

(6.16) g := ∂tw + ∂αq = v(∂α − i∂2
t )u.

Indeed, computing the error in (6.16) we obtain
(6.17)

(∂α − i∂2
t )u =

eiϕ

v
3
2

∂α

[︃
(α− vt)

2α
χ− i

(α + vt)2

4v
3
2 t

5
2

χ′
]︃
+

eiϕ

v
3
2

[︃
(α− vt)

2α2
χ− i

(α− vt)

4v
3
2 t

5
2

χ′
]︃
.

The leading term is the first one, which, as expected, has size t−1 times the size of w; the
presence of ∂α endows it with a critical structural property which we will take advantage of
later on. The second term is better by another t

1
2 factor, and will only play a perturbative

role in the sequel.
The reader is cautioned that one should not think about the above wave packets as a

global approximate solution for the linear system. Instead, as in [11] and as in [12], our
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test packets (w,q) are good approximate solutions for the linear system associated to our
problem only on the dyadic time scale δt ≤ t.
The outcome of testing the normal form solutions to the water wave system with the wave

packet (w,q) is the scalar complex valued function γ(t, v), defined by

γ(t, v) = ⟨(W̃ , Q̃), (w,q)⟩Ḣ0 ,

which we will use as a good measure of the size of (W̃ , Q̃) along our chosen ray. Here it
is important that we use the complex pairing in the inner product. Note that here we are

following [12] and using the original energy space Ḣ0
, and not the fractional Sobolev space

Ḣ
1
4 .
While the above asymptotic profile γ is defined everywhere, we will only use it in the region

Ω0 in (6.11). This is because we already have sufficient decay outside this region, indeed
outside the smaller region Ωδ. Furthermore, we will see that γ primarily carries information
about the hyperbolic part of (W̃ , Q̃), but this is all that is needed.

Now we have two tasks. Firstly, we need to show that γ is a good representation of the
pointwise size of (W̃ , Q̃)hyp and their derivatives:

Proposition 6.3. Assume that (6.2) and (6.3) hold. Then in Ω0 we have the following
bounds for γ:

(6.18) ∥v−
1
2γ∥L2

v
+ ∥v

1
2∂vγ∥L2

v
+ ∥γ∥L∞ ≲ ϵtCϵ2 , v ≳ 1,

(6.19) ∥v−2σγ∥L2
v
+ ∥v

1
2∂vγ∥L2

v
+ ∥v

1
4
−σγ∥L∞ ≲ ϵtCϵ2 , v ≲ 1,

as well as the approximation bounds for (W̃ , Q̃)hyp and their derivatives:

(|D|sW̃ , |D|s+
1
2 Q̃)hyp(t, vt) = |ξv|st−

1
2 eiϕ(t,vt)γ(t, v)(1, sgn v) + errs,(6.20)

where

∥v2s−1errs∥L2
v
≲ ϵt−1, ∥v2s−

1
4errs∥L∞ ≲ ϵt−

3
4 .(6.21)

Compared to the work in [12], here we do not limit the range for s because we are only
comparing the profile γ with (W̃ , Q̃)hyp, and not with the full pair (W̃ , Q̃). Also [12] contains

similar relations between the Fourier transforms of (W̃ , Q̃) and γ, which for brevity we omit
here.

Secondly, we need to show that γ stays bounded, which we do by establishing a differential
equation for it:

Proposition 6.4. Assume that (6.2), (6.3), (6.6) and (6.1) hold. Then within the set Ω0

the function γ solves an asymptotic ordinary differential equation of the form

(6.22) γ̇ =
i

2t(2v)5
γ|γ|2 + e,

where e satisfies the L2 and L∞ bounds

(6.23) ∥v
19
8 e∥L∞ ≲ ϵ2t−

9
8
+Cϵ2 ,

(6.24) ∥v−
1
2 e∥L2

v
≲ ϵ2t−

5
4 tCϵ2 .
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We now use the two propositions to conclude the proof of (6.8). By virtue of (6.20) and
(6.21), in order to prove (6.8) it suffices to establish its analogue for γ, namely

(6.25) |γ(t, v)| ≲ ϵmin
{︂
v1

−
, v

5
2

+
}︂

in Ωδ.

Here by 1−, respectively 5
2

+
we denote universal constants slightly smaller than 1, respectively

slightly larger than 5/2; these are needed in order to insure dyadic frequency summation in
the Besov norms in the definition of the X norm.

On the other hand, from (6.18) and (6.19) we directly obtain

(6.26) |γ(t, v)| ≲ ϵmin
{︂
1, vσ−

1
4

}︂
tCϵ2 in Ω0.

Our goal now is to use the ode (6.22) in order to transition from (6.26) to (6.25) along
rays α = vt. We consider three cases for v:

(i) Suppose first that v ≈ 1, i.e., |α| ≈ t. Then we initially have

|γ(t)| ≲ ϵ, t ≈ 1.

Integrating (6.22) we conclude that

|γ(t)| ≲ ϵ, t ≥ 1,

and then (6.25) follows.
(ii) Assume now that v ≪ 1, i.e., |α| ≪ t. Then, as t increases, the ray α = vt enters Ω0

at some point t0 with v ≈ t
− 1

100
0 . Then by (6.26) we obtain

|γ(t0, v)| ≲ ϵvσ−
1
4 tCϵ2 ≲ ϵv

5
2

+

.

We use this to initialize γ. For larger t we use (6.22) to conclude that

|γ(t)| ≲ ϵv
5
2

+

+

∫︂ ∞

t0

ϵs−
9
8
+C2ϵ2v−

19
8 ds ≈ ϵv

5
2

+

+ ϵt
− 1

8
+Cϵ2

0 v−
19
8 ≲ ϵv

5
2

+

, t > t0.

Then (6.25) follows.
(iii) Finally, consider the case v ≫ 1, i.e., |α| ≫ t. Again, as t increases, the ray α = vt

enters Ω0 at some point t0 with v ≈ t
1

100
0 , therefore by (6.26) we obtain

|γ(t0, v)| ≲ ϵtCϵ2

0 ≲ ϵv1
−
.

We use this to initialize γ. For larger t we use (6.22) to conclude that

|γ(t)| ≲ ϵv1
−
+

∫︂ ∞

t0

ϵs−
9
8
+Cϵ2v−

19
8 ds ≈ ϵv1

−
+ ϵt

− 1
8
+C2ϵ2

0 v−
19
8 ≲ ϵv1

−
, t > t0.

Then (6.25) again follows.

We remark that a more precise conclusion of the above analysis is the fact that as t → ∞,
the asymptotic profile γ(t, v) is well approximated by solutions to the exact asymptotic
equation,

γ(t, v) = γ∞(v)eic(v) ln t|γ∞(v)|2 + errγ,

where the error errγ decays to 0 in both weighted L2 and in weighted L∞ norms. This leads
to a good asymptotic representation of the solutions (W,Q) in terms of its scattering data
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represented by γ∞. We do not pursue this here, but instead we refer the reader to the similar
analysis already carried out in [12].

The remainder of the paper is devoted to the proof of the two propositions above.

6.1. Approximation errors. Here we prove Proposition 6.3. In what follows in this subsec-
tion, the analysis happens all at fixed time, based on the elliptic/hyperbolic decomposition
of (tW, Q̃) in the previous section. We first recall the decomposition of (W̃ , Q̃) from the
previous section into localized components

(W̃ , Q̃) =
∑︂
α0

χα0(W̃ , Q̃),

which we only need in the region Ω0. Because the bump functions χα0 have essentially
disjoint supports, it suffices to consider a single one of them, which is supported in the
region α ≈ α0, and corresponds to velocities v ≈ v0 = α0/t. The hyperbolic frequencies
associated with this component are comparable to ξ0 = v−2

0 . On the other hand, because
of the spatial localization, such a component will interact with our wave packet only if the
velocity of the wave packet is also comparable with v0. Hence, the wave packet is also
essentially supported at frequencies comparable to ξ0.

For this component we consider the decomposition of the pair (W̃ , Q̃) into elliptic and
hyperbolic parts

χα0(W̃ , Q̃) = (W̃α0,ell, Q̃α0,ell) + (W̃α0,hyp, Q̃α0,hyp),

where

(W̃α0,ell, Q̃α0,ell) = (1− Pξ0)χα0(W̃ , Q̃), (W̃α0,hyp, Q̃α0,hyp) = Pξ0χα0(W̃ , Q̃).

At this point we observe that the elliptic part is frequency separated from our wave packet
so its contribution to γ is of size O(t−N), with N large, and thus negligible. We conclude
that

γ(t, v) = ⟨(W̃ hyp, Q̃hyp), (w,q)⟩Ḣ0 +O(t−N).

So from here on we focus on the hyperbolic component only, which is fully localized in
frequency, at dyadic frequency ξ0.

Borrowing an idea from [12], we symmetrize the problem by introducing the normalized
variables

(w, r) = (W̃α0,hyp, |D|
1
2 Q̃α0,hyp),

which satisfy the bounds

∥(w, r)∥
Ḣ

1
4 ∩Ḣσ ≤ ϵtC

2ϵ2 , ∥(2α∂αw − it|D|
1
2 r, 2α∂αr − it|D|

1
2w)∥

Ḣ
1
4
α

≲ ϵtC
2ϵ2 ,

or equivalently, using the frequency localization at ξ0 ≈ v−2,

∥(w, r)∥L2 ≤ ϵtC
2ϵ2 min

{︂
v

1
2 , v2σ

}︂
, ∥(2α∂αw − it|D|

1
2 r, 2α∂αr − it|D|

1
2w)∥L2

α
≲ ϵtC

2ϵ2v
1
2 .

Then we rewrite γ in terms of these variables as

γ =

∫︂
ww + rD

1
2q dα.
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Here, following [12], we discard acceptable errors, and redefine γ as

(6.27) γ(t, v) =
1

2

∫︂
(w ± r)u dα.

Then Proposition 6.3 is a consequence of the following Lemma:

Lemma 6.5. Let γ be defined as in (6.27) in the region Ω0, where (w, r) are holomorphic
functions, localized at frequency ξ0, which satisfy

(6.28) ∥(w, r)∥L2 ≤ min
{︂
v

1
2 , v2σ

}︂
, ∥(2α∂αw − it|D|

1
2 r, 2α∂αr − it|D|

1
2w)∥L2

α
≲ v

1
2 .

Then γ satisfies the bounds

(6.29) ∥v−
1
2 (1 + v−2)σ−

1
4γ∥L2

v
+ ∥v

1
2∂vγ∥L2

v
≲ 1, |γ| ≲ (1 + v−2)−(σ

2
− 1

8
).

Moreover, the following error bounds for γ also hold:

|D|s(w, r)(t, vt) = |ξv|st−
1
2 eiϕ(t,vt)γ(t, v)(1, sgn v) + errs,(6.30)

where

∥errs∥L2
v
≲ v1−2s

0 t−1, ∥errs∥L∞ ≲ v
1
4
−2s

0 t−
3
4 , 0 ≤ s.(6.31)

Proof. The proof is similar with the argument in [12], but simpler. The reason for this is
that the pair of functions (w, r) are already frequency localized in the hyperbolic region. In
order to fix signs, we first need to differentiate between the two symmetric cases v0 > 0 and
v0 < 0. Without any restriction in generality we take v0 > 0. We express everything in
terms of w− r and y = w+ r. Then w− r does not contribute to γ, but it contributes to the
error. In addition, subtracting the two components in the second term in (6.28) we obtain

∥(2α|D|+ t|D|
1
2 )(w − r)∥L2 ≲ v

1
2
0 .

The operator above is elliptic in {α ≈ v0t}, therefore we obtain

∥w − r∥L2 ≲ t−1v
1
2
0 ξ

− 1
2

0 = t−1v
3
2
0 .

Thus, we can directly bound its contribution |D|s(w− r) to the error term in L2 and in L∞

by Bernstein’s inequality. We note that the exponents will not match with (6.31); instead,
here we obtain a gain, which is akin to the similar gain for the elliptic component of (W̃ , Q̃).
We now consider the contribution of y, noting that γ is already expressed in terms of y.

To reduce the problem to an estimate for y we need one last step. Combining again the two
components in the second term in (6.28) we obtain

∥|D|
1
2 (4α2∂α + it2)(w, r)∥L2

α
≲ tv

1
2
0 ,

which yields the same bound for y. In view of frequency localization at frequency ≈ ξ0 we
conclude that

(6.32) ∥Ly∥L2
α
≲ v

− 1
2

0 t−1, L = ∂α +
it2

4α2
.

On the other hand, from the first relation in (6.28) we obtain

(6.33) ∥y∥L2
α
≲ v

1
2 (1 + v−2

0 )
1
4
−σ.

From here on we will work only with the function y.
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Following [12] we rewrite the bounds on y in terms of the auxiliary function u := e−iϕy,

which satisfies ∂αu = e−iϕ(∂α + it2

4α2 )y. Then for u we have

(6.34) ∥∂αu∥L2
α
≲ v

− 1
2

0 t−1, ∥u∥L2
α
≲ v

1
2
0 (1 + v−2

0 )
1
4
−σ.

Combining these bounds we get by interpolation

∥u∥L∞ ≲ t−
1
2 (1 + v−2

0 )
1
8
−σ

2 ,

which also is transferred back to y,

(6.35) ∥y∥L∞ ≲ t−
1
2 (1 + v−2

0 )
1
8
−σ

2 .

The bounds (6.33) and (6.35) lead directly to L2 and L∞ bounds for γ,

(6.36) ∥γ∥L2
v
≲ v

1
2
0 (1 + v−2

0 )
1
4
−σ, ∥γ∥L∞ ≲ (1 + v−2

0 )
1
8
−σ

2 .

To estimate ∂vγ = ⟨y, ∂vu⟩L2 we write ∂vu in the form

∂vu = −v−
3
2 eiϕ

(︃
t∂αχ

(︃
α− vt

t
1
2v

3
2

)︃
+

3

2

α− vt

t
1
2v

5
2

χ′
(︃
α− vt

t
1
2v

3
2

)︃)︃
,

and compute using integration by parts

∂vγ =

∫︂
v−

3
2 t∂αu(t, α)χ

(︃
α− vt

t
1
2v

3
2

)︃
dα−

∫︂
v−

3
2u(t, α)

3

2

α− vt

t
1
2v

5
2

χ′
(︃
α− vt

t
1
2v

3
2

)︃
dα.

Now we can bound the two integrals using (6.34) to obtain

∥∂vγ∥L2
v
≲ v

− 1
2

0 ,

which, together to (6.36), concludes the proof of (6.29).
It remains to estimate the L2 and L∞ norms of the error in (6.21). We begin with the

case s = 0, were we bound the the difference

err = y(t, vt)− t−
1
2 eiϕ(t,vt)⟨y,u⟩L2

in both L2
v and L∞ in terms of ∥y∥L2

α
and ∥Ly∥L2

α
, exactly as in [12]

(6.37) ∥err∥L∞ ≲ v
3
4
0 t

1
4∥Ly∥L2

α
, ∥err∥L2

v
≲ v

3
2
0 ∥Ly∥L2

α
.

This is exactly what we need for (6.21) in the case s = 0. Due to the frequency localization
for y, adding extra derivatives simply adds factors of ξs0 = v−2s

0 to the bound.

6.2. The asymptotic equation for γ. Here we track the evolution of γ(t, v) and prove
Proposition 6.4. The computation is based on the energy conservation relation for the linear
system (6.9). If both (W̃ , Q̃) and (w,q) were solutions to the homogeneous linear system
(6.9), then we would get γ̇ = 0. As it is, γ̇ depends on the source terms in the linear equation
(6.9) applied to (W̃ , Q̃), respectively (w,q). The source term in the (w,q) equation is (g, 0)
with g given by (6.16). The source term in the similar (W̃ , Q̃) equation comes from (4.10).
Thus we obtain the relation

(6.38) γ̇(t) =

∫︂ (︂
G̃− T2ℜW̃α

Q̃α + T2ℜQ̃α
W̃α

)︂
w + W̃g + i

(︂
K̃ + T2ℜQ̃α

Q̃α

)︂
α
q dα.

We successively consider all terms on the right. With the exception of a single term, namely
the resonant part of G̃, see below, all contributions will be placed into the error term σ.
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We need to estimate at fixed time the terms in γ̇ in the region Ω0. The wavepacket
components are localized on the scale t

1
2v

3
2 around the ray α = vt. Therefore we can

harmlessly regard (W̃ , Q̃) as being also localized in the corresponding dyadic region α ≈ vt.
To estimate the error terms it is convenient to begin with a lemma that captures the main

computations that lead to the error bound:

Lemma 6.6. Let f be supported in a dyadic region v ≈ v0 and

(6.39) θ(v) :=

∫︂
f(α)u(α) dα.

Then the following bounds hold

(6.40) ∥θ∥L2
v
≲ ∥f∥L2

α
,

respectively

(6.41) ∥θ∥L∞
v
≲ t

1
2

(︂
t
1
2v

3
2

)︂− 1
p ∥f∥Lp

α
.

The result does not depend on the choice of the bump function χ in the definition of u.

Proof. Here we only use the size of the function u which is a bump function on the scale
t
1
2v

3
2 with norms

∥u∥L1
α
≲ t

1
2 , ∥u∥L∞

α
≲ v−

3
2 .

Then the bounds are obtained akin to Young’s inequality with the minor difference that
the integral defining θ is not an exact convolution, but can be bounded by one (in absolute
value). □

A. The contribution of g. This is

I1 = v−
3
2

∫︂
W̃e−iϕ

(︃
∂α

[︃
(α− vt)

2α
χ− i

(α + vt)2

4v
3
2 t

5
2

χ′
]︃
+

[︃
(α− vt)

2α2
χ− i

(α− vt)

4v
3
2 t

5
2

χ′
]︃)︃

dα.

We use (6.20) and (5.2) to replace W̃ in terms of γ

W̃ − t−
1
2 eiϕγ(t, v) = W̃ ell +

(︂
W̃ hyp − t−

1
2 eiϕγ(t, v)

)︂
.

The elliptic part W̃ ell is mismatched with g in frequency, so its contribution is O(t−N). The
contribution of the second term above is directly estimated in both L2 and L∞ via (6.21).
The contribution of γ, on the other hand, is written using integration by parts as

Ĩ1 := v−
3
2 t−

1
2

∫︂
−γα

[︃
(α− vt)

2α
χ− i

(α + vt)2

4v
3
2 t

5
2

χ′
]︃
+ γ

[︃
(α− vt)

2α2
χ− i

(α− vt)

4v
3
2 t

5
2

χ′
]︃
dα.

Now we can easily bound the two terms using (6.18), (6.19) and Lemma 6.6 to obtain

∥Ĩ1∥L2
v
≲ t−1v

1
2∥γα∥L2

α
+ t−2v−

1
2∥γ∥L2

α
≲ t−

3
2 ϵtCϵ2 ,

respectively

∥Ĩ1∥L∞
v
≲ t−1v

1
2 t

1
4v−

3
4∥γα∥L2

α
+ t−2v−

1
2 t

1
2∥γ∥L∞

α

≲ t−
5
4v−

3
4 ϵtCϵ2 + t−

3
2v−

1
2 ϵtCϵ2

≲ t−
5
4v−

3
4 ϵtCϵ2 .
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Here, at the last step, we used that we are in the region Ω0, given by (6.11).

B. The contribution of the paradifferential source terms. This is given by

I2 :=

∫︂ (︂
−T2ℜW̃α

Q̃α + T2ℜQ̃α
W̃α

)︂
w + i

(︂
T2ℜQ̃α

Q̃α

)︂
α
q dα.

As before, the goal is to estimate I2 in L2
v and L∞

v . For the L2
v bound it suffices to use the

estimate in (5.54), with the observations that up to rapidly decaying tails only the frequencies
of size ξ0 will contribute. Combining this observation with Lemma (6.6), we have

∥I2∥L2
v
≲ ξ

− 1
4

0

⃦⃦⃦(︂
−T2ℜW̃α

Q̃α + T2ℜQ̃α
W̃α, T2ℜQ̃α

Q̃α

)︂⃦⃦⃦
Ḣ

1
4
v

≲ v
1
2
0 ϵ

2t−
5
4 tCϵ2 .

Unfortunately (5.54) is no longer sufficient to estimate the L∞
v bound of I2, so we need a

more refined analysis.
The three terms in I2 are mostly similar, with the first one being a little bit better in

terms of the time decay. We will discuss the second one in detail, and the third one will be
identical with the second one. Hence in what follows we seek to estimate

I2,2 :=

∫︂
T2ℜQ̃α

W̃αw dα.

We start with a simple observation, namely that w is localized at frequency ξ0 which means
that the only nontrivial contribution arises from the component W̃α which is also localized
at frequency ξ0. This in turn implies that for Q̃α we only use frequencies ≪ ξ0. Thus we can
replace W̃α by W̃ hyp,α, and Q̃α is replaced by Q̃ell,α, to write

I2,2 =

∫︂
T2ℜQ̃ell,α

W̃ hyp,αw dα +O(t−N).

The advantage of working with the low frequency elliptic component of Q̃ is that it satisfies
a better L2 type bound which is part of the X♯ bound in Corollary 5.8. Precisely we have

(6.42) ∥Q̃ell,α∥
Ḣ

1
4
≲ ϵt−1tCϵ2 ,

which is the only bound we will need for the paradifferential coefficient. Using Bernstein
inequality this also gives the pointwise bound

(6.43) ∥Q̃ell,α∥L∞ ≲ ϵv
− 1

2
0 t−1tCϵ2 .

This is better than the t−
1
2 decay in the hyperbolic region, but still not enough.

The next step is to use the W̃ hyp,α representation in (6.20) which gives

W̃ hyp,α ≈ t−
1
2 ξ0Pξ0

[︁
γeiϕ

]︁
+ err1,

where err1 satisfies the pointwise bound

|err1| ≲ ϵt−
3
4v

− 7
4

0 .

The contribution of err1 to I2,2 is estimated via Lemma 6.6 to obtain

I2,2 = t−
1
2 ξ0

∫︂
T2ℜQ̃ell,α

Pξ0

[︁
γeiϕ

]︁
w dα +O(ϵ2t−

5
4v

− 9
4

0 t2Cϵ2).
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Our next simplification is to freeze γ to its values at the center of the packet, which we
denote by γ0. Within the support of the packet the difference can be estimated by Hölder’s
inequality and (6.18)-(6.19)

|γ − γ0| ≲
∫︂
|v−v0|≲t−

1
2 v

3
2
0

|∂vγ| dv ≲ t−
1
4v

3
4
0 ∥∂vγ∥L2

v
≲ ϵtCϵ2t−

1
4v

1
4
0 .

Estimating directly the corresponding error, and using the expression of w, we arrive at

I2,2 = v−
3
2 t−

1
2 ξ0γ0

∫︂
T2ℜQ̃ell,α

Pξ0

[︁
eiϕ

]︁
χe−iϕ dα +O(ϵ2t−

5
4v

− 9
4

0 t2Cϵ2),

where we can easily drop the projector Pξ0 because the exponential is already frequency
localized around the same frequency ξ0. It remains to bound the following integral in L∞

I ′2,2 = v−
3
2 t−

1
2 ξ0γ0

∫︂
[T2ℜQ̃ell,α

eiϕ]χe−iϕ dα.

We decompose Q̃ell in low and high frequencies in comparison to the ξ0 frequency:

Q̃ell := Q̃
low

ell + Q̃
high

ell ,

where the truncation threshold comes from the wave-packet frequency scale:

Q̃
low

ell := (Q̃ell)<v−
3
2 t−

1
2
, Q̃

high

ell := (Q̃ell)≥v−
3
2 t−

1
2
.

Same notation will apply to a similar decomposition in frequencies for Q̃ell,α.

It is easier to first estimate the contribution of lower frequencies in Q̃ell

I ′2,2 = v−
3
2 t−

1
2 ξ0γ0

∫︂
[T

2ℜ(Q̃
low
ell,α)

eiϕ]χe−iϕ dα.

which we bound directly as follows using Lemma (6.6)

∥I ′2,2∥L∞
α
≲ ξ0γ0∥T2ℜ(Q̃

low
ell,α)

eiϕ∥L∞
α
≲ ξ0γ0∥Q̃

low

ell,α∥L∞
α
≲ ϵv−2t2Cϵ2∥Q̃low

ell,α∥L∞
α
.

We bound the last term separately by means of Bernstein’s inequality and (5.51) to get

∥Q̃low

ell,α∥L∞
α
≲ v−

3
8 t−

1
8∥Q̃low

ell,α∥
Ḣ

1
4
α

≲ ϵv−
3
8 t−

9
8 tCϵ2 .

The final estimate is the contribution of the high frequencies of Q̃ to L∞
α bound. It involves

the L operator defined in (6.32). We begin by observing the representation

T
Q̃

high
ell,α

= [∂α, TQ̃
high
ell

]

= [L, T
Q̃

high
ell

]−
[︃
i
t2

α2
, T

Q̃
high
ell

]︃
.

We now estimate separately the two contributions. For the first one we integrate by parts

I ′2,3 = v−
3
2 t−

1
2 ξ0γ0

∫︂
[L, T

Q̃
high
ell

]eiϕχe−iϕ dα = v−
3
2 t−

1
2 ξ0γ0

∫︂
T
Q̃

high
ell

[eiϕ]χαe
−iϕ dα.

Here we used

Leiϕ = 0, L∗e−iϕ = 0,
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where L∗ is the adjoint operator. We have

∥I ′2,3∥L∞
α
≲ ξ0γ0v

− 3
2 t−

1
2∥T

2ℜ(Q̃
high
ell )

eiϕ∥L∞
α
∥χα∥L1

≲ v−
3
2 t−

1
2 ξ0γ0∥Q̃

high

ell ∥L∞
α

≲ ϵv−
3
2 t−

1
2v−2v

9
8 t

3
8
+2Cϵ2∥Q̃ell,α∥

Ḣ
1
4
α

≲ ϵ2v−
19
8 t−

9
8
+2Cϵ2 .

The last integral is

I ′2,4 = v−
3
2 t−

1
2 ξ0γ0

∫︂ [︃
i
t2

α2
, T

Q̃
high
ell

]︃
eiϕχe−iϕ dα.

Thus,using Lemma 2.5 from [3] we get

∥I ′2,4∥L∞
α
≲ ξ0γ0

⃦⃦⃦⃦[︃
i
t2

α2
, T

Q̃
high
ell

]︃
eiϕ

⃦⃦⃦⃦
L∞
α

∥v−
3
2 t−

1
2χ∥L1

≲ ξ−1
0 γ0∥t2α−3∥L∞

α
∥Q̃high

ell,α∥L∞
α

≲ ϵv−1t−1+2Cϵ2∥Q̃high

ell,α∥L∞
α

≲ ϵ2v−1t−
13
8
+2Cϵ2 .

Adding up all contributions we conclude that in the region Ω0 we have the bound

∥I2∥L∞
v
≲ ϵ2v−

19
8 t−

9
8
+2Cϵ2 .

C. The contribution of G̃ and K̃. For this we consider in more detail the structure
of G̃ and K̃. We will successively peel off favorable terms until we are left only with the
leading resonant part. We decompose them into cubic and higher terms,

G̃ = G̃
(3)

+ G̃
(4+)

, K̃ = K̃
(3)

+ K̃
(4+)

.

To start with we decompose them into quartic and higher order terms.

C1. Quartic and higher order terms. We denote their contribution by

I3 :=

∫︂
G̃

(4+)
w + iK̃

(4+)

α q dα.

In view of (4.13) and Lemma (6.6), we can estimate the contribution of the quartic and
higher terms in L∞,

∥I3∥L∞ ≲ t
1
2 t−

1
4v−

3
4 ξ

− 1
4

0 ∥(w,q)∥
Ḣ

1
4
≲ ϵ4v−

1
4 t−

5
4
+3C2ϵ2 ,

which suffices in Ω0. The L2 bound is similar, using again (4.13) and Lemma (6.6).

C2. Cubic terms. It remains to consider the contributions arising from the cubic terms,
which can be viewed as translations invariant trilinear forms

G̃
(3)

= G̃
(3)
(W̃α, W̃α, Q̃α), K̃

(3)
= K̃

(3)
(W̃α, Q̃α, Q̃α).
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These trilinear expressions include also the complex conjugates. Here, we first peel off some

perturbative terms by substituting in (G̃
(3)
, K̃

(3)
) the following sequence of transformations

(W̃α, Q̃α) → (W̃ hyp,α, Q̃hpy,α) → iξvPξ0 [γt
− 1

2 eiϕ(1, |ξv|−
1
2 sgn v)],

where we denote the final outcome by

(6.44) iξvPξ0 [γt
− 1

2 eiϕ(1, |ξv|−
1
2 sgn v)] =: (W̃

0

α, Q̃
0

α).

To control the errors we need to estimate the difference

(G̃
(3),0

ell , K̃
(3),0

ell ):=(G̃
(3)
(W̃α, W̃α, Q̃α),K̃

(3)
(W̃α, Q̃α, Q̃α))−(G̃

(3)
(W̃

0

α, W̃
0

α, Q̃
0

α),K̃
(3)
(W̃

0

α, Q̃
0

α, Q̃
0

α)).

For this transition we have the unlocalized elliptic difference bounds

(6.45) ∥(W̃α, Q̃α)− (W̃
0

α, Q̃
0

α)∥X♯
ell

≲ ϵtCϵ2− 1
2 ,

which are a consequence of (5.50), (6.20), (6.21).

Then we can estimate (G̃
(3),0

ell , K̃
(3),0

ell ) using (5.53) to obtain

∥(G̃(3),0

ell , K̃
(3),0

ell )∥
Ḣ

1
4
≲ ϵ4t−

3
2 tCϵ2 .

This allows us to conclude the bound as in the case of the quartic bound.
Now we consider one last transition from

(W̃
0

α, Q̃
0

α) = iξvPξ0 [γt
− 1

2 eiϕ(1, |ξv|−
1
2 sgn v)] → iξ0γ0t

− 1
2 eiϕ(1, |ξ0|−

1
2 sgn v) := (W̃

1

α, Q̃
1

α),

where we emphasize that (W̃
1
, Q̃

1
) depend also on the wavepacket parameters ξ0 and v0.

Now we need to estimate the difference

(G̃
(3),1

ell , K̃
(3),1

ell ):=(G̃
(3)
(W̃

0

α, W̃
0

α, Q̃
0

α),K̃
(3)
(W̃

0

α, Q̃
0

α, Q̃
0

α))−(G̃
(3)
(W̃

1

α, W̃
1

α, Q̃
1

α),K̃
(3)
(W̃

1

α, Q̃
1

α, Q̃
1

α)).

Here it is important that these differences are only needed within the support of the wave

packet (w,q). There the leading contribution comes from the difference between (W̃
0
, Q̃

0
)

and (W̃
1
, Q̃

1
), within a slightly larger region of comparable size

{︂
|α− vt| ≤ cv

3
2 t

1
2

}︂
, with c

a large positive constant.
This difference can be estimated by Hölder’s inequality as follows

∥γ − γ0∥L2 ≲ t
1
2v

3
2∥γα∥L2 ≲ ϵtCϵ2v ∥γ − γ0∥L∞ ≲ (t

1
2v

3
2 )

1
2∥γα∥L2 ≲ ϵtCϵ2v

1
4 t−

1
4

where at the last step we have used the bound for ∂vγ in (6.18), (6.19). Using these bounds,

the contribution of (G̃
(3),1

ell , K̃
(3),1

ell ) can be estimated as in the quartic case.

We are now left with the task of estimating the contribution to γ̇ of the cubic expressions

(G̃
(3)
(W̃

1

α, W̃
1

α, Q̃
1

α), K̃
(3)
(W̃

1

α, Q̃
1

α, Q̃
1

α)). To achieve this, we need to consider the structure
of the cubic terms.

Following [10], we have the following classification of the terms in (G̃
(3)
, K̃

(3)
):

A. Nonresonant trilinear terms: these are either (A1) terms with no complex conjugates,
or (A2) terms with two complex conjugates.
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B. Resonant trilinear terms: terms with exactly one conjugation. For such terms one
may further define a notion of principal symbol, which is the leading coefficient in the
expression obtained by substituting the factors in the trilinear form by the expressions
in (6.20) 3 Thus one can isolate a linear subspace of resonant terms for which this
symbol vanishes, which we call null terms. Hence on the full class of resonant trilinear
terms we can further define an equivalence relation, modulo null terms.

Based on this, we reorganize G̃
(3)

in resonant, nonresonant and null terms:

(6.46)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G̃
(3)

r := Π((Q̃αW̃α)α, W̃ ) + Π(Q̃α, W̃
2

α)

G̃
(3)

nr := TW̃α
(Q̃αW̃α) + T(Q̃αW̃α)α

W̃ +Π(W̃α, 2ℜ[Q̃αW̃α]) + Π(Q̃αW̃α)α, W̃ )

+ T2ℜ(TW̃α
W̃+Π(W̃α,W̃ ))α

Q̃α − T2ℜW̃α
(Q̃αW̃α)

+ T2ℜW̃α
(TQ̃α

W̃ +Π(Q̃α, 2ℜW̃ ))α + T2ℜ(Q̃αW̃α−(TQ̃α
W̃+Π(Q̃α,W̃ ))α)

W̃α

− T2ℜQ̃α
(TW̃α

W̃ +Π(W̃α, 2ℜW̃ ))α − Π(W̃
2

α, Q̃α)

− T
W̃

2

α

Q̃α − T
W̃α

(F̃
(2)
) + T

Q̃α
W̃

2

α

G̃
(3)

null := T
F̃

(2)
α
W̃ − W̃αF̃

(2)
+Π(F̃

(2)

α ), 2ℜW ) + Π(F̃
(2)
,Wα) + T2ℜW̃α

F̃
(2)

+ T
2ℜ(Π(W̃α,W̃ ))α

Q̃α + T
2ℜ(Π(Q̃α,W̃ )α)

W̃α +Π(W̃α, F̃
(2)

).

We do the same for K̃
(3)
:

(6.47)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K̃
(3)

r := 0

K̃
(3)

nr := iT
W̃

2
α
W̃ − T2ℜ(TQ̃α

W̃+Π(Q̃α,W̃ ))α
Q̃α

− T2ℜQ̃α
(TQ̃α

W̃ +Π(Q̃α, 2ℜW̃ ))α + T2ℜ(Q̃αW̃α)
Q̃α + T

Q̃α
(Q̃αW̃α)

+ TQ̃α
TQ̃α

W̃α + TQ̃αQ̃αα
W̃ + TQ̃α

(TW̃α
Q̃α +Π(W̃α, Q̃α))

+ Π(Q̃α, 2ℜ[Q̃αW̃α])− Π(W̃αQ̃α, Q̃α)− TQ̃αW̃α
Q̃α

K̃
(3)

null := −T
2ℜ(Π(Q̃α,W̃ ))α

Q̃α − T
F̃

(2)Q̃α +Π(Q̃α, F̃
(2)

) + TP [|Q̃α|2]αW̃

+ 2Π(ℜW, Q̃αQ̃αα + iW̃
2

α) + 2Π(ℜW,∂αP [|Q̃α|2])

In these expressions we will substitute (W̃α, Q̃α) by (W̃
1

α, Q̃
1

α).
We will place all cubic contributions into the error term e, except for the contribution of

the resonant part G̃
(3)

r .
We note that for the most part the exact form of the expressions above is irrelevant. The

only significant matter is the coefficient of the terms in G̃
(3)

r , which needs to be real4.

3Which corresponds to all three frequencies being equal.
4A similar constraint would be required of the coefficients in K̃

(3)

r , if they were nonzero.
57



We also remark that the leading projection in all terms can be harmlessly discarded, since
it can be moved onto the wave packets, which decay rapidly at positive frequencies,

∥(w,q)− P (w,q)∥HN ≲ t−N .

C2(a) The contribution of the null terms. This is given by G̃
(3)

null(γ) and K̃
(3)

null(γ):

G̃
(3)

null(γ) :=

∫︂
R
G̃

(3)

null(W̃
1

α, Q̃
1

α)w dα K̃
(3)

null(γ) := −i

∫︂
R
K̃

(3)

null(W̃
1

α, Q̃
1

α)qα dα.

Here we simply note that G̃
(3)

null(γ) = 0 and K̃
(3)

null(γ) = 0, so after the previous step there is
nothing left to do. We remark that cancellation actually occurs at the bilinear level for the
“null expressions” of type

W̃αQ̃α − W̃αQ̃α, (|Q̃α|2)α, Q̃αQ̃αα + iW̃
2

α.

C2(b) The contribution of the nonresonant terms. This is given by G̃
(3)

nr (γ) and

K̃
(3)

nr (γ):

G̃
(3)

nr (γ) :=

∫︂
R
G̃

(3)

nr (W̃
1

α, Q̃
1

α)w dα, K̃
(3)

nr (γ) := −i

∫︂
R
K̃

(3)

nr (W̃
1

α, Q̃
1

α)qα dα.

Here it is important that we integrate against w and q, as that fixes the frequency of the
output at ξ = − 1

4v2
. On the other hand the nonresonant trilinear expression will be concen-

trated at frequency 3ξ if no complex conjugate occur, respectively at frequency −ξ if two
conjugates occur. Thus, because of this mismatched the frequencies the only contributions
here arise due to rapidly decaying tails,

(G̃
(3)

nr (γ), K̃
(3)

nr (γ)) = O(t−N).

C2(c) The contribution of the resonant term. This is given by G̃
(3)

r (γ)

G̃
(3)

r (γ) :=

∫︂
R
G̃

(3)

r (W̃
1

α, Q̃
1

α)w dα.

Given the expression above we have

G̃
(3)

r (γ) :=

∫︂
R

[︃
Π((Q̃

1

αW̃
1

α)α, W̃
1

) + Π(Q̃
1

α, (W̃
1

α)
2)

]︃
w dα.

Replacing P by I−P or Π by I−Π yields nonresonant terms with have size O(t−N). Hence,
we obtain

G̃
(3)

r (γ) =

∫︂
R

[︃
(Q̃

1

αW̃
1

α)αW̃
1

+ Q̃
1

α(W̃
1

α)
2

]︃
w dα +O(t−N).

Substituting (W̃
1

α, Q̃
1

α) from (6.44) we obtain the integral

G̃
(3)

r (γ) = γ(t, α/t)|γ(t, α/t)|2
∫︂

i

t
3
2

(︃
t

2α

)︃5

e−iϕw dα.

58



Here e−iϕw has the form

e−iϕw =
1

2
v−

3
2χ

(︃
α− vt

t
1
2v

3
2

)︃
+ v−1t−

1
2 χ̃

(︃
α− vt

t
1
2v

3
2

)︃
with Schwartz functions χ and χ̃ so that

∫︁
χ = 1. Thus we obtain

G̃
(3)

r (γ) =
i

2t
(2v)−5γ(t, v)|γ(t, v)|2 +O(t−

3
2 ),

as needed.
□
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