
Ntuple Wizard: an application to access large scale open data from LHCb

Ntuple Wizard: an application to access large-scale open data

from LHCb

Christine A. Aidala1, Chris Burr2, Marco Cattaneo2, Dillon S. Fitzgerald1*, Adam
Morris2,3, Sebastian Neubert3 and Donijor Tropmann2,4

1*Department of Physics, University of Michigan, 450 Church St, Ann Arbor, 48109,
Michigan, USA.

2European Organization for Nuclear Research (CERN), Geneva, Switzerland.
3Universität Bonn – Helmholtz-Institut für Strahlen und Kernphysik, Bonn, Germany.

4RWTH Aachen University, Aachen, Germany.

*Corresponding author(s). E-mail(s): dillfitz@umich.edu;

Abstract

Making the large data sets collected at the Large Hadron Collider (LHC) accessible to the
world is a considerable challenge because of both the complexity and the volume of data.
This paper presents the Ntuple Wizard, an application that leverages the existing comput-
ing infrastructure available to the LHCb collaboration in order to enable third-party users
to request specific data. An intuitive web interface allows the discovery of accessible data
sets and guides the user through the process of specifying a configuration-based request.
The application allows for fine-grained control of the level of access granted to the public.

Keywords: Open Data, Open Access, LHCb, LHC, CERN, HEP, Outreach

1 Introduction

In an increasingly diverse research landscape,
management and curation of public data are
becoming critical components of transdisciplinary
science. Keys to the realization of an open research
ecosystem that adds scientific value have been
identified in the FAIR principles of scientific data
management and stewardship [1]. Making data
Findable, Accessible, Interoperable, and Reusable,
however, requires a considerable amount of tooling
and infrastructure.

A common problem, which is acute for data
in high-energy physics but increasingly an issue
in other fields as well, is the sheer size of data

sets stored in custom file formats. For large-
scale experimental facilities, such as the LHC at
the European Organization for Nuclear Research
(CERN), the data sets are so large that even
access by the directly involved scientists has to
be centrally managed. As an example, the LHCb
data collected in the years 2011-12, corresponding
to ∼ 3 fb−1 of proton-proton collisions amount to
a volume of 900 TB. This volume only refers to
the already preprocessed data available to mem-
bers of the collaboration and scheduled for release
to the public. For the purpose of processing these
data, extensive computing infrastructure has been
set up by the countries participating in this type
of research [2]. Replicating such an infrastructure
to allow the public to handle the data would not

1

ar
X

iv
:2

30
2.

14
23

5v
1

 [h
ep

-e
x]

 2
8

Fe
b

20
23

Ntuple Wizard: an application to access large scale open data from LHCb

2 The LHCb Ntuple Wizard

only require dedicated expert knowledge, but it
would also duplicate existing facilities. On the
other hand, any individual research conducted on
a typical LHC data set will often only make use of
a tiny portion of the full data, filtered and selected
according to the requirements of the respective
research question. It is therefore natural to pro-
vide the public with FAIR access to those highly
selective subsamples.

In the following, an application is presented
that exposes a data query service to allow the pub-
lic to request sub-samples of data collected and
published by the LHCb experiment. The samples
are delivered as ROOT Ntuples [3] a data format
that requires no special LHCb-specific software
to read and for which converters to other stan-
dard file formats exist. We call the application the
Ntuple Wizard.

The application interface guides users with
basic knowledge in particle physics through the
process of discovering the available data and for-
mulating a useful query. The queries can be
processed by the existing data production infras-
tructure, and results will be delivered through
the CERN Open Data Portal [4]. By splitting
the data request into the construction of a data
query and subsequent processing of the query on
the internal infrastructure, the LHCb collabora-
tion retains fine-grained control over access to
the data. Crucially this system protects the com-
pute infrastructure from attacks by malicious code
injection.

1.1 Accessible open data

In 2020, the LHC experiments at CERN adopted
a new Open Data Policy [5], the scope of which
expanded in 2022 to an Open Science Policy [6].
These documents define the commitments of
CERN to make the data collected at the LHC, at
several levels of complexity, publicly available [7]:

Level 1 Published results — this can include
tables and figures but also preprocessed Ntuples
or binned and unbinned fit likelihood functions.
Level 2 Outreach and education — usually in the
form of highly preprocessed Ntuples.
Level 3 Reconstructed data — these data have
been preprocessed to derive physics objects, such
as charged particle candidates, photons, or parti-
cle jets. Reconstructed data may or may not be

corrected for detector effects, such as efficiency
and resolution.
Level 4 Raw data – the basic quantities recorded
by the experimental instruments.

Both Level 1 and 2 data are considered to
be highly processed, abstracted, and manageable
using commonly available computers. Level 4 raw
data will not be made available due to practical
reasons concerning data size but also detector-
specific information needed for the interpretation
of these data. This leaves Level 3 data as the most
versatile and basic data set which will be publicly
accessible.

All LHC experiments have long and intricate
data reconstruction pipelines, which yield sev-
eral intermediate output data formats. During a
pipeline, the raw data are converted to physical
objects such as charged particle trajectories, jets,
and vertices. Furthermore, the raw data are clas-
sified and filtered to obtain samples enriched in
interesting signatures.

Figure 1 shows an overview of the data pro-
cessing pipeline in LHCb as it has been used
during LHC data-taking Runs 1 and 2 (2011–
18). The various steps of the pipeline are outlined
further in the LHCb computing technical design
reports [8, 9]. Level 3 data have been defined as the
output of the stripping step. The stripping consists
of a large number of selection algorithms called
lines, which are designed to filter the data and sort
events into several collections, which are called
streams. Streams are defined according to common
physics signatures and aim to collect selections
with significant overlaps into a common set of
files, to reduce duplication of the data. The LHCb
data organization is discussed in more detail in
Appendix A, including a list of streams available
in Runs 1 and 2.

The stripping selections are based on the con-
cept of physics candidates. A candidate refers
to a set of data matching a particular physics
signature. In most cases, this signature will be
a particular particle decay, such as for exam-
ple B+ → D̄0π+ with the subsequent decay
D̄0 → K+π−, where B,D,K, and π mesons are
the lightest hadrons containing b, c, s, and u/d
quarks respectively. Such cascading decays are
represented as tree-like data structures, where the
nodes represent (intermediate) particles and the
edges indicate a parent-child relationship in the

Ntuple Wizard: an application to access large scale open data from LHCb

The LHCb Ntuple Wizard 3

Fig. 1 LHCb data flow in Runs 1 and 2. The output of the stripping step will be made public through the CERN Open
Data Portal [4].

decay. These data structures are referred to as
decay trees. The root particle of the decay tree (the
B+ in our example) is called its head. Stripping
selections attempt to find sets of physics objects
in the reconstructed LHCb data, which match the
desired decay tree and any additional criteria that
might be applied to distinguish the intended sig-
nal process from background. Typical selection
criteria include kinematic variables, vertex and
track reconstruction qualities, and particle iden-
tification variables. Some stripping lines rely on
multivariate classifiers to combine several observ-
ables into a single powerful selection criterion. The
output of this procedure is collections of decay
candidates specified by their particular decay trees
in a custom LHCb-specific data format.

It is important to note that candidates are
distinct from the concept of events in the LHCb
data processing. An event is defined during the
data acquisition and refers to a particular time
window in which collisions can occur. Several
proton-proton collisions can happen during this
time window, and in principle, it can happen
that several candidates for a particular decay are
identified for a single collision. In such cases, rel-
evant quantities (related to vertex reconstruction
and flight distances) can be computed for every
primary vertex (e.g. collision point) in the event.

In order to convert these data into a
framework-independent format a useful concept is
the aforementioned Ntuples. The idea of a Ntuple
is simple: each candidate is described by a tuple of
variables, i.e. physical observables of interest mea-
sured on the particular candidate, or referring to
the global event in which the candidate was found.
A data set consists of N such tuples, much like

a simple CSV file. Ntuples are saved in ROOT
files [3] and only basic data types are allowed for
the variables. As a small complication in some
instances, the variables can actually be arrays of
basic data types. In such cases, the Ntuple Wiz-
ard provides the necessary documentation for the
interpretation.

1.2 Principle of Ntuple creation and
the Ntuple Wizard

Both the stripping as well as the Ntuple-making
step in Fig. 1 are handled by DaVinci [8–10], an
LHCb application for event selection and data
analysis using the Gaudi framework [8, 9, 11].
DaVinci is configured via Python scripts and used
to process entire data sets with batch processing.
Both the Python configuration as well as the batch
production system are intentionally hidden from
users of the Ntuple Wizard for security reasons.

The DaVinci application provides access to a
number of algorithms that can be combined in
sequence for event selection and processing. In
order to produce a Ntuple the user has to spec-
ify which variables should appear in the output
data. This Ntuple configuration is handled by an
algorithm named DecayTreeTuple, in which vari-
ables are registered through the use of so-called
TupleTools and LoKi functors. A large collection
of those tools and functors are available for the
user to choose from. In general, a TupleTool will
add a set of variables to the Ntuple, while a
LoKi functor usually computes a single number.
The LoKi::Hybrid::TupleTool can be used to write
the output of functors into the tuple. Functors
can be combined with standard arithmetic and

Ntuple Wizard: an application to access large scale open data from LHCb

4 The LHCb Ntuple Wizard

logic operations, providing a flexible and pow-
erful system to compute derived quantities. A
list of important available tools is presented in
Appendix B.

Figure 2 shows an overview of the Ntuple Wiz-
ard architecture, the core functionality of which is
the configuration of DaVinci. The metadata and
documentation describing the available data, pre-
selections, as well as available selection operations
are generated from the original provenance traces
of the data and the stripping selection code. The
web interface presents this metadata and docu-
mentation to the user in a pedagogical way that
facilitates data discovery and formulation of the
query. The query to the data has two principal
parts: Data set discovery and Ntuple configura-
tion. First, the application allows the user to select
from the available predefined stripping selections,
data-taking periods, and conditions. In the sec-
ond step, the user defines what quantities should
be computed and written to the output Ntu-
ple. Standard tools for the computation of typical
quantities, such as kinematic variables, particle
identification (PID) variables, etc., are available.
The query formulated by the user is stored in a set
of configuration files. These files can be converted
into a Python configuration compatible with the
internal LHCb Analysis Productions system [12].
This conversion and the final submission of the
query to the compute infrastructure are handled
through an LHCb Analysis Productions manager.

1.3 Security considerations

Accepting arbitrary external code to run on the
LHCb computing resources has obvious unaccept-
able security risks. Therefore, the Ntuple Wizard
is designed to generate the configuration in a pure
data-structure format. As shown in Figure 2, the
configuration of the query is captured in YAML
files, which can be downloaded and submitted
to an LHCb Analysis Productions manager for
further processing.

2 Metadata and
documentation acquisition

In order to facilitate the core functionality of
the Ntuple Wizard — namely data set discov-
ery (Sec. 4) and algorithm configuration (Sec. 5),
metadata and documentation from several sources

are required. In particular, the application needs
to know what types of decays can be queried
and what tools are available to compute derived
quantities of interest about these candidates.

Since these metadata are unchanging, and pro-
viding direct access to the various sources requires
authentication and introduces more points of fail-
ure, the metadata are collated and served as static
files over HTTP. No additional access to the LHCb
code or database is needed by the Ntuple Wizard
once it has been deployed.

The sources of metadata can be grouped into
two coarse categories: the LHCb software stack
and the LHCb database. Metadata are acquired
from the LHCb software stack in two ways. The
first is from the Gaudi Python interface; particu-
larly under the DaVinci application environment.
Metadata about the configuration interface of each
TupleTool are extracted from DaVinci. Details of
the stripping lines, including the chain of selection
algorithms that define them, are extracted from
the DaVinci versions used in the corresponding
stripping campaigns.

The process of building decay candidates in
a stripping line often involves a combination of
many algorithms from the LHCb selection frame-
work, which combine particles, impose selection
requirements, perform PID substitution, and build
final-state particle candidates from trajectories of
charged particles and calorimeter clusters. The
algorithms can be related to each other through
their input and output locations. The full list of
decays (including all sub-decays) must be inferred
by traversing the ‘dependency tree’ of the selec-
tion algorithms. This is performed using custom
code during metadata acquisition.

The second, more indirect way is from the
LHCb Doxygen pages, which themselves are gen-
erated from the source code of the LHCb software
stack. The latest Doxygen pages for Run 1 or Run
2 DaVinci versions are used to extract the docu-
mentation for each TupleTool and LoKi functor.
A campaign to improve the Doxygen documen-
tation at its source was undertaken during the
development of the Ntuple Wizard.

The LHCb database provides metadata about
the centrally managed data sets, which is nec-
essary to configure the Ntupling productions as
explained above. In order not to duplicate effort,

Ntuple Wizard: an application to access large scale open data from LHCb

The LHCb Ntuple Wizard 5

LHCbDIRAC
(submission handled
by LHCb responsible)

NTuple Wizard

Web interface Config files for
Analysis Productions

Metadata generated
during deployment

LHCb stack

Stripping/Turbo
line info

TupleTool
documentation

LoKi functor
documentation

Bookkeeping Dataset info

Parsers

Analysis
Productions

on Grid

NTuples on
Open Data

portal

LHCb data

Dataset and
selection
discovery

Configure
ntupling

algorithms

info.yml

MyNTuple.yml

AnotherNTuple.yml

Fig. 2 Architecture of the Ntuple Wizard.

a common code base is employed to extract meta-
data from the LHCb database for both the Ntuple
Wizard and the CERN Open Data Portal.

3 User interface

The user interface consists of a sequence of dia-
logues that guide the user through the config-
uration steps. This is designed as a client-side
dynamic web page that reads metadata acquired
at deployment time to serve as static files (see
Sec. 2).

Since users of LHCb open data do not, in gen-
eral, have access to the same support network
of experienced users and developers enjoyed by
LHCb collaboration members, a key design ele-
ment of the Wizard is to provide the necessary
documentation for a novice user to complete each
step of the configuration process.

The existing documentation of DaVinci [8–10]
is fragmented across several sources (Twiki [13],
the Starterkit [14], Doxygen [15] and the source
code itself), so where possible, the Wizard pulls
text from each of these disparate sources and ren-
ders it in the relevant context within the user
interface.

There are two main steps to formulate a query
using the Ntuple Wizard: Dataset discovery and
Ntuple configuration. These steps are explained in
the following.

4 Dataset discovery and
production configuration

The available data contain a wide range of strip-
ping selections, data-taking periods, and running
conditions. The Production configuration dia-
logue of the Ntuple Wizard guides the user
through the selection of the desired subsets. The
interface allows the selection of several decays
to be processed simultaneously as part of one
query. For each decay, a separate Ntuple will be
produced.

4.1 Discovering available candidate
decays

In the Decay search dialogue, the Ntuple Wizard
presents a list of all decays selected by the strip-
ping, accompanied by decay descriptors in LoKi
and LaTeX formats, information about which
stripping lines build them, as well as ‘tags’ that
can be used to filter different types of decays.
Decays are searchable through various filters,
including the identity or properties of the parent
particle and decay products, whether the candi-
dates are built by a specific stripping line, and
the aforementioned tags. An example of the decay
search is shown in Figure 3. The selected can-
didate of interest is highlighted in blue, and the
collection was narrowed down from the list of all
possible decays by using the filters and tags at the
top of the page. The ‘none of’ option of the tags
drop-down menu is chosen by default, indicating
that decays with the displayed tags are hidden

Ntuple Wizard: an application to access large scale open data from LHCb

6 The LHCb Ntuple Wizard

from the list of selectable decays. The tags ‘charge-
violating‘ and ‘undefined-unstable‘ corresponding
to decays that violate charge conservation and
that contain unstable particles without defined
decays respectively are hidden by default. If the
user wishes to instead isolate decays that meet the
criteria of a given tag, a different option can be
selected from the ‘tags’ drop-down menu. It is pos-
sible to select several decays for further processing
at this stage.

4.2 Stripping line and data set
selection

Once a decay is selected by the user, all cor-
responding stripping lines and data sets from
the various running periods are listed, and the
desired combination(s) can be selected. The case
can arise where the same stripping line shows
up in multiple stripping versions within the same
dataset (stream, running year, and magnet polar-
ity). These are rendered as separate options in the
dataset selection drop-down menu of the Ntuple
Wizard. For a given decay, it is recommended to
choose only one dataset for each magnet polarity
within a given running year, and to use the most
recent stripping version in the case of duplicates.
The data organization of LHCb is elaborated on
in Appendix A, including a table of running years,
as well as corresponding collision energies and
stripping versions.

Links to documentation about each stripping
line including selection algorithms that went into
building the decay candidates are displayed to
the user to guide them in choosing the most
suitable stripping line and data stream for their
physics interest. Figure 4 shows an example of
the production configuration page, where an avail-
able stripping line and data set have been chosen
from lists of all possibilities corresponding to the
selected decay channel. The blue question mark
button contains links to the aforementioned strip-
ping documentation. At this point, the query is
specified up to deciding what information to write
into the Ntuple.

5 Ntuple configuration

The DecayTreeTuple configuration dialogue
is designed to guide the user through customiza-
tion of the quantities written to the Ntuple for

the selected candidates. For each decay, a separate
DecayTreeTuple has to be configured. Care should
be taken to name the Ntuples appropriately. The
Ntuple Wizard requires a unique name for each
Ntuple.

Selected decay trees are visually represented as
graphs, where each physics object (e.g. particle) is
represented by a node as shown in the screenshots
in Figure 5. The user can interact with this graph
by selecting one or multiple nodes at a time and
determining which TupleTools will be added to
each node, which in turn determines which quan-
tities are saved to the Ntuple. A list is rendered
on screen depending on the selected node(s), each
element of which corresponds to a selected Tuple-
Tool, with buttons for configuring and removing
the tool. The TupleTool configuration interface
includes links to relevant documentation about
the tool, including lists of quantities written by
the tool where available. Each node in the graph
comes with the standard set of TupleTools for
LHCb analyses, but more will often be needed
depending on the particular physics interests of
the user. Furthermore, any added tool will come
with the standard configuration, which can be
further modified if the user desires. A custom
set of standard LoKi variables and functions of
these variables can also be saved to the Ntuple
for each node, using the Loki::Hybrid::TupleTool.
Appendix B contains a brief description of the
standard set of TupleTools included with each
node on the graph, as well as other useful Tuple-
Tools for physics analysis. Figure 5 shows an
example of the configurable graph corresponding
to the selected candidate shown in Figures 3 and 4,
as well as a list of TupleTools corresponding to
the entire decay candidate (top), and particular
nodes selected on the graph (bottom). It can be
seen from the figure that nodes can also be selected
through the categories shown below the graph
and that TupleTools can be added, removed, or
configured for each node or grouping of nodes.

Figure 6 shows an example of the user interface
for configuring TupleTools, with the particular
example showing TupleToolTISTOS, which saves
trigger information to the Ntuple. It can be seen at
the bottom how relevant information is provided.

Ntuple Wizard: an application to access large scale open data from LHCb

The LHCb Ntuple Wizard 7

Fig. 3 Example of the decay candidate search function of the Ntuple Wizard.

Fig. 4 Example of the data set selection and production configuration step of the Ntuple Wizard.

5.1 Configuration output

Figure 7 shows an example of the output YAML
file used to configure the DecayTreeTuple algo-
rithm that was populated via configurations cap-
tured in Figs. 5 – 6, where the tools, groups

and branches keys are shown specifying which
TupleTools and therefore which information will
be saved to the Ntuple. The top-level key tools

contains a list of TupleTool configurations, from
which the parsing functions create and configure
TupleTool algorithms attached to the DecayTree-
Tuple itself, which will thus write either particle-
level information about the decay or event-level

information, depending on the class of the Tuple-
Tool. The keys branches and groups themselves
contain lists of dictionaries whose keys specify par-
ticles and have their own tools lists which are
used similarly to attach TupleTool algorithms to
the specified particle(s) in the decay tree. Note
that groups differs from branches in that it
specifies multiple particles to be looped over and
have identically configured TupleTool algorithms
attached.

Ntuple Wizard: an application to access large scale open data from LHCb

8 The LHCb Ntuple Wizard

Fig. 5 Example of an interactive graph used to configure DecayTreeTuple, with selected TupleTools displayed for both the
entire candidate (top) and selected nodes (bottom).

Ntuple Wizard: an application to access large scale open data from LHCb

The LHCb Ntuple Wizard 9

Fig. 6 Example of the configuration interface of a TupleTool within the Ntuple Wizard, (in particular, TupleToolTISTOS
for saving trigger information), including links to relevant documentation at the bottom of the modal.

Ntuple Wizard: an application to access large scale open data from LHCb

10 The LHCb Ntuple Wizard

Fig. 7 Output of Btree.yaml, the data file used to configure the DecayTreeTuple algorithm.

inputs:

- /Event/BhadronCompleteEvent/Phys/B2D0PiD2HHBeauty2CharmLine/

Particles

descriptorTemplate: ${Bplus}[B+ -> ${D_0}(D~0 -> ${Kplus}K+ ${piminus}pi
-)${piplus}pi+]CC

tools:

- TupleToolKinematic:

ExtraName: ’’

Verbose: false

MaxPV: 100

Transporter: ParticleTransporter:PUBLIC

- TupleToolPid:

ExtraName: ’’

Verbose: false

MaxPV: 100

- TupleToolANNPID:

ExtraName: ’’

Verbose: false

MaxPV: 100

ANNPIDTunes:

- MC12TuneV2

- MC12TuneV3

- MC12TuneV4

- MC15TuneV1

PIDTypes:

- Electron

- Muon

- Pion

- Kaon

- Proton

- Ghost

- TupleToolGeometry:

ExtraName: ’’

Verbose: false

MaxPV: 100

RefitPVs: false

PVReFitter: LoKi:: PVReFitter:PUBLIC

FillMultiPV: false

- TupleToolEventInfo:

ExtraName: ’’

Verbose: false

MaxPV: 100

branches:

Bplus:

particle: B+

tools: []

Ntuple Wizard: an application to access large scale open data from LHCb

The LHCb Ntuple Wizard 11

D_0:

particle: D~0

tools: []

Kplus:

particle: K+

tools: []

piminus:

particle: pi-

tools: []

piplus:

particle: pi+

tools: []

groups:

Kplus ,piminus:

particles:

- K+

- pi -

tools:

- TupleToolTISTOS:

ExtraName: ’’

Verbose: false

MaxPV: 100

VerboseL0: false

VerboseHlt1: false

VerboseHlt2: false

VerboseStripping: false

FillL0: true

FillHlt1: true

FillHlt2: true

FillStripping: false

TriggerList: []

Hlt1TriggerTisTosName: Hlt1TriggerTisTos

Hlt2TriggerTisTosName: Hlt2TriggerTisTos

L0TriggerTisTosName: L0TriggerTisTos

PIDList: []

TopParticleOnly: false

Hlt1Phys: >-

Hlt1(?!ODIN)(?!L0)(?! Lumi)(?! Tell1)(?!MB)(?! NZS)(?! Velo)(?!

BeamGas)(?! Incident).* Decision

Hlt2Phys: >-

Hlt2(?! Forward)(?! DebugEvent)(?! Express)(?! Lumi)(?!

Transparent)(?! PassThrough).* Decision

TIS: true

TOS: true

TUS: false

TPS: false

name: DecayTreeTuple/Btree

Ntuple Wizard: an application to access large scale open data from LHCb

12 The LHCb Ntuple Wizard

5.2 Future developments

It is planned to extend the current functionality of
the Ntuple Wizard by including the ability to cre-
ate custom candidates from standard collections
of LHCb particles. Another important planned
addition is the ability to configure custom jet
reconstruction. Ideally, support will be included
for the full set of algorithms available in DaVinci
for data analysis and event/candidate selection as
resources allow.

As of Run 3, which started in 2022, the major-
ity of the filtering and preselection of the data will
be done in real time within the LHCb high-level
trigger (HLT). In this architecture, the data will
be fully reconstructed online and the final pres-
election algorithms will run in the HLT. Offline
preselections will be feasible for a subset of the
events. In both cases the output will have the same
level of abstraction as the output of the stripping,
allowing for a relatively simple adaptation of the
Ntuple Wizard once the Run 3 data are made
public.

6 Request submission and
execution

Once the candidate(s) of interest, data set(s), and
information to be saved in the Ntuple(s) are spec-
ified, and a name and email address have been
provided for the production, a ZIP format file
containing all relevant output files for the data
query can be downloaded (as shown in Figure 8)
and submitted to an LHCb Analysis Productions
manager.

Requests for Ntuple creation are handled
using the Analysis Productions package. The files
describing a new request are committed to a
repository hosted on the CERN GitLab [16], and
a merge request is created once they are ready
for review. The Continuous Integration feature
of GitLab is used to submit test productions
to LHCbDIRAC [8, 9], which automatically pro-
cesses a small fraction of the data when the remote
repository is updated.

Once the request is submitted, it is handled by
the LHCbDIRAC production system. A produc-
tion defines how a dataset is to be processed, and
LHCbDIRAC will launch and manage computing
jobs until the dataset is fully processed. Produc-
tions are defined in ‘steps’ that specify which

application to run and which configuration files to
read, and may be chained together such that the
output of the first step is the input to the second,
etc. The info.yaml file produced by the Ntuple
Wizard defines one production per dataset, each
consisting of a single DaVinci step.

Within the production jobs, DaVinci is config-
ured by functions defined in an external Python
module according to the YAML files produced by
the Ntuple Wizard. The data structure configured
in Section 5 and displayed in Figure 7 is traversed,
and the configurable properties of the DecayTree-
Tuple algorithm are assigned the corresponding
values.

After the Analysis Production jobs are com-
plete, the produced Ntuples will be delivered to
the CERN Open Data Portal for retrieval.

7 Summary

Providing public access to the large data sets
at the LHC is a significant technical challenge,
but it is becoming increasingly important for
the longevity of high-energy physics in order to
optimize acquired knowledge from the collected
data. The volume and complexity of the data col-
lected at LHCb make providing direct access to
reconstructed (Level 3) data suitable for physics
research difficult, motivating the design of the
Ntuple Wizard, where users can submit queries
to obtain skimmed data samples (Ntuples) of
the reconstructed data suitable for their physics
interests. The Ntuple Wizard is a web-based appli-
cation that intuitively guides the user through
specifying a query, from discovering a data set
from a physics candidate (e.g. decay) of interest,
to configuring the information to be saved in the
output Ntuple. The output of the Ntuple Wizard
is a pure data structure (YAML) format, which
is to be submitted to an LHCb Analysis Produc-
tions manager so it can be parsed internally to
provide the necessary Python scripts needed to
configure the DaVinci application. The Ntuples
will ultimately be delivered to the CERN Open
Data Portal for retrieval.

Ntuple Wizard: an application to access large scale open data from LHCb

The LHCb Ntuple Wizard 13

Fig. 8 Example of downloading the output files of the Ntuple Wizard after the query is fully specified.

Appendices

A LHCb Data Organization

Table 1 shows a list of running years, includ-
ing corresponding collision energies and stripping
versions available in the Ntuple Wizard.

Table 1 Table of running years, including collision
energy (

√
s) and relevant stripping versions available in

the Ntuple Wizard.

Running Year
√
s (TeV) Stripping Versions

Run 1
2011 7 s21r1, s21r1p1, s21r1p2
2012 8 s21, s21r0p1, s21r0p2

Run 2
2015 13 s24r2
2016 13 s28r2, s28r2p1
2017 13 s29r2, s29r2p1, s29r2p2
2018 13 s34, s34r0p1, s34r0p2

LHCb data streams come in two formats, Data
Summary Tape (DST) files, which contain the
full event information, and micro Data Summary
Tape (MDST) files, which only contain the physics
objects directly matched in at least one stripping
selection. In MDST streams, the rest of the infor-
mation in the events, apart from a few global event
properties, is discarded. Table 2 shows a list of
streams from Run 1 and Run 2, with the DST vs
MDST format indicated in the stream name.

Table 2 Table of data streams from Runs 1 and 2
available through the Ntuple Wizard.

Stream
BHADRON.MDST

BHADRONCOMPLETEEVENT.DST
CALIBRATION.DST

CHARM.MDST
CHARMCOMPLETEEVENT.DST

CHARMTOBESWUM.DST
DIMUON.DST

EW.DST
LEPTONIC.MDST

MINIBIAS.DST
PID.MDST

RADIATIVE.DST
SEMILEPTONIC.DST

B List of useful TupleTools

B.1 Default TupleTools

A set of TupleTools is included by default for all
Ntuple configuration files produced by the Ntu-
ple Wizard. Tools can be removed by the user if
desired, but are standard tools used in LHCb anal-
yses, and are recommended to keep for physics
analyses. Given the flexible data structure of the
Ntuple, it is easy to produce a reduced data struc-
ture with a subset of variables at a later stage in
data processing, while still maintaining the full set
of variables in the original Ntuple.

• TupleToolANNPID — A tool used to add
artificial neural network particle identification
information about the physics candidate to the
Ntuple.

• TupleToolEventInfo — A tool used to add event
and run information to the Ntuple.

Ntuple Wizard: an application to access large scale open data from LHCb

14 The LHCb Ntuple Wizard

• TupleToolGeometry — A tool used to add infor-
mation about physics candidate geometry and
event geometry to the Ntuple.

• TupleToolKinematic — A tool used to add kine-
matic information about the physics candidate
to the Ntuple.

• TupleToolPid — A tool used to add parti-
cle identification information about the physics
candidate to the Ntuple, with additional infor-
mation than that in TupleToolANNPID, includ-
ing information about which PID detector sub-
systems were used in the probability calcula-
tions.

B.2 Other useful TupleTools

• TupleToolTISTOS — A tool that saves the
trigger TIS/TOS (Trigger independent of Sig-
nal/Trigger on Signal) decisions for each parti-
cle to the Ntuple.

• LoKi::Hybrid::TupleTool — A tool that allows
the user to add LoKi variables or expressions of
these variables known as LoKi functors to the
Ntuple.

Acknowledgements

We thank our colleagues at LHCb for providing
the necessary data and software, and within the
Data Processing & Analysis (DPA) project for
their incredibly valuable discussions. We addition-
ally would like to thank Jose Marco Arias for
systematic testing of the web interface. All authors
acknowledge support from CERN. In addition,
C.A.A. and D.S.F. acknowledge support from the
National Science Foundation under Award Num-
ber 2012926, and A.M. and S.N. acknowledge
support from the DFG Grant NE 2185/1-1.

References

[1] M. D. Wilkinson et al. The FAIR Guiding
Principles for scientific data management and
stewardship. Scientific Data, 3(1):160018,
March 2016.

[2] I. Bird et al. Update of the Computing
Models of the WLCG and the LHC Experi-
ments. (CERN-LHCC-2014-014, LCG-TDR-
002), Apr 2014.

[3] I. Antcheva et al. ROOT: A C++ framework
for petabyte data storage, statistical analysis
and visualization. Comput. Phys. Commun.,
180:2499–2512, 2009.

[4] CERN Open Data Portal. https://opendata.
cern.ch/.

[5] CERN Open Data Policy for the LHC Exper-
iments. (CERN-OPEN-2020-013), Nov 2020.
https://cds.cern.ch/record/2745133.

[6] CERN Open Science Policy. (CERN-OPEN-
2022-013), 2022. https://cds.cern.ch/record/
2835057.

[7] Z. Akopov et al. Status Report of the
DPHEP Study Group: Towards a Global
Effort for Sustainable Data Preservation
in High Energy Physics. (DPHEP-
2012-001, FERMILAB-PUB-12-878-PPD,
arXiv:1205.4667), May 2012.

[8] The LHCb Collaboration. LHCb computing:
Technical Design Report. (CERN-LHCC-
2005-019; LHCb-TDR-11), 2005. http://cds.
cern.ch/record/835156.

[9] The LHCb Collaboration. Upgrade Software
and Computing. (CERN-LHCC-2018-007,
LHCB-TDR-017), 2018. https://cds.cern.ch/
record/2310827.

[10] DaVinci. https://lhcbdoc.web.cern.ch/
lhcbdoc/davinci/.

[11] Gaudi Project. https://gaudi.web.cern.ch/
gaudi/.

[12] M. Ferrillo. New generation offline software
for the LHCb upgrade I. 2022. https://cds.
cern.ch/record/2806414.

[13] LHCb Twiki. https://twiki.cern.ch/twiki/
bin/view/LHCb/.

[14] LHCb Starterkit. https://lhcb.github.io/
starterkit-lessons/index.html.

[15] LHCb Doxygen. https://lhcb.web.cern.ch/
computing/Support/Doxygen/doxygen.htm.

[16] GitLab. https://gitlab.cern.ch/.

https://opendata.cern.ch/
https://opendata.cern.ch/
https://cds.cern.ch/record/2745133
https://cds.cern.ch/record/2835057
https://cds.cern.ch/record/2835057
http://cds.cern.ch/record/835156
http://cds.cern.ch/record/835156
https://cds.cern.ch/record/2310827
https://cds.cern.ch/record/2310827
https://lhcbdoc.web.cern.ch/lhcbdoc/davinci/
https://lhcbdoc.web.cern.ch/lhcbdoc/davinci/
https://gaudi.web.cern.ch/gaudi/
https://gaudi.web.cern.ch/gaudi/
https://cds.cern.ch/record/2806414
https://cds.cern.ch/record/2806414
https://twiki.cern.ch/twiki/bin/view/LHCb/
https://twiki.cern.ch/twiki/bin/view/LHCb/
https://lhcb.github.io/starterkit-lessons/index.html
https://lhcb.github.io/starterkit-lessons/index.html
https://lhcb.web.cern.ch/computing/Support/Doxygen/doxygen.htm
https://lhcb.web.cern.ch/computing/Support/Doxygen/doxygen.htm
https://gitlab.cern.ch/

	Introduction
	Accessible open data
	Principle of Ntuple creation and the Ntuple Wizard
	Security considerations

	Metadata and documentation acquisition
	User interface
	Dataset discovery and production configuration
	Discovering available candidate decays
	Stripping line and data set selection

	Ntuple configuration
	Configuration output
	Future developments

	Request submission and execution
	Summary
	LHCb Data Organization
	List of useful TupleTools
	Default TupleTools
	Other useful TupleTools

