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Point Pattern Estimators for Multi-Beam Lidar Scans
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Abstract— In this work, point pattern estimators are used to
analyze the distribution of measurements from a multi-beam
Lidar on a pitching platform. Multi-beam Lidars have high
resolution in the horizontal plane, but poor vertical resolution.
Placing the Lidar on a pitching base improves this resolution,
but causes the distribution of measurements to be highly irregu-
lar. In this work, these measurement distributions are treated as
point patterns and three estimators are used to quantify how
measurements are spaced, which has implications in robotic
detection of objects using Lidar sensors. These estimators are
used to demonstrate how a pitching trajectory for the platform
can be chosen to improve multiple performance criteria, such as
increasing the likelihood of detection of an object, or adjusting
how closely measurements should be spaced.

I. INTRODUCTION

In this work, three point pattern estimators from the field
of point pattern analysis (PPA) are used to study scans
from a pitching multi-beam Lidar (MBL). MBLs typically
have high resolution in the horizontal plane, but relatively
worse resolution along the vertical axis. This problem can be
overcome by placing the Lidar on a pitching platform, which
adds an extra degree of freedom to the sensor. The choice
of the pitching trajectory and the trajectory parameters can
improve the vertical resolution. However, the resulting scan
distributions, while repeatable, are not uniformly distributed
within the field of view. The distributions of measurements
from the rotating MBL (RMBL) are treated as point patterns
to quantify the scan performance. Three functions from
the field of PPA [1], [2], [3] are introduced and applied
to simulated RMBL scans employing different scanning
trajectories to understand what phenomenon each function
quantifies. A design example is presented that demonstrates
how these estimators can be used to select a desirable
scanning trajectory to improve the scan’s resolution.

Lidar sensors measure distance by emitting pulsed laser
light, detecting the reflected particles, and then converting
the time of flight of the particles into a distance. Lidar
has a long history [4] but has recently gained popularity
in robotics, especially unmanned and autonomous vehicles
[51, [6], [7], which has led to an increase in the availability
and performance of the sensors. Of particular note is their
recent use in self-driving cars, where MBL sensors are
used to segment and classify the road surface, curbs, other
cars, pedestrians, and various other objects [8], [9], [10],
[11]. Current Lidar technology allows for sensors that can
capture 3-dimensional distance data inherently by rotating
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an array of emitters/detectors which are mounted at distinct
angles from the horizontal plane. Each emitter/detector can
be sampled at very high frequencies (10s of kHz), but
there are limitations on how closely the sensing elements
can be placed. As a result, MBLs commonly have high
resolution in the horizontal plane (limited by sampling rate),
but relatively worse resolution along the vertical axis (limited
by sensor element placement). This limitation can result in
poor detection or classification performance of the system.
Placing an MBL on a rotating platform can improve the
vertical resolution [12], [13], but the trajectory for the added
degree of freedom must be chosen carefully to provide a
desirable sampling of the environment.

While MBL typically have fixed, evenly-spaced sampling
patterns, pitching the MBL causes the measurements to be
irregularly distributed, and thus RMBL scans can be complex
to analyze, limiting a deeper understanding of sampling
behaviors, such as resolution. Similar scan patterns were
studied when rotating single-beam Lidar (RSBL) configu-
rations were common [14], [15], but that analysis has not
been extended to RMBL sensors. Methods to quantify RSBL
resolution, such as counting the number of times the beam
paths intersect [15], are typically trajectory dependant and
don't scale well to RMBL. Methods from other fields, such
as the use of Voronoi tessellation to measure spatial
resolution in high-speed scanning probe microscopy [16], can
be used, but are very computationally expensive for RMBL
scans which have tens of thousands to hundreds of thousands
of samples. One work of note is from Morales et al., which
used Ripley’s K function, a metric from the field of PPA,
to analyze the homogeneity of RMBL scans [12]. In that
work, Ripley’s K function was used a goodness-of-fit test
to determine whether their RMBL scans could be modeled
as a homogeneous Poisson point process (HPPP), which has
desirable key properties for scanning.

Point pattern analysis traditionally uses a collection of
functions as goodness-of-fit tests, as in [12], to determine
whether a point pattern is a result of some underlying
process (e.g., Poisson). However, in this work some of these
functions are instead employed and modified to quantify and
analyze how measurements in the scan are distributed. These
functions are used to provide both numerical evaluation
and physical understanding of RMBL scans taken by any
arbitrary trajectory. Note that, while this work focuses on
RMBL systems, these estimators may have relevance in
applications such as scanning fiber endoscopes, scanning
probe microscopy, or other applications involving an actuated
sensing mechanism with a single or multiple point sensor.
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(b)

Fig. 1: a) The experimental pitching multi-beam Lidar plat-
form. b) Relevant geometry of the platform.

II. PROBLEM FORMULATION

In this section, the RMBL system used by the authors is
presented, two pitching trajectories for the RMBL are shown,
and notation used in the remainder of the paper is provided.

A. Rotating MBL Platform

The experimental pitching RMBL used in this work is
shown in Figure la. A Velodyne VLP-16 Lidar is situated
on a cradle capable of £90° pitching motion. While the
VLP-16 is not the highest resolution Lidar available, it is
certainly one of the most affordable commercially available
MBLs (and the work in this paper can easily be applied to
other MBL sensors). The VLP-16 features 16 beams evenly
spaced over a £15° vertical field of view (FOV), providing
2° vertical resolution. The array of beams is spun at 20Hz,
and each beam is sampled 900 times per revolution, resulting
in 0.4° horizontal resolution. The cradle is driven by a DC
motor, and potentiometer and encoder data are fused to
provide the cradle angle. Control of the motor is performed
using an Arduino Due, and a Jetson TK1 controls trajectory
parameters, aggregates point clouds, and provides real time
data visualization. The software on both the Arduino Due and
the Jetson TK1 are developed using the Robotics Operating
System (ROS) middleware.

The geometry of the RMBL configuration is shown in
Figure 1b. The array of beams in the Lidar spin with angle
0; about the Z body-fixed axis. Each beam has a unique
inclination angle 6; above the XY -plane and returns a
distance measurement d (if there is an object within the range
of the Lidar). The DC motor pitches the cradle with angle
60,, about the y-axis. An offset height h exists between the
cradle’s axis of rotation and the Lidar’s sensor origin XY Z,
so 0, imparts both rotation and translation of the XY Z-
frame.

Points from the Lidar are received with spherical coordi-
nates (d, 0;,0;) in the XY Z-frame and are transformed into
Cartesian coordinates in the fixed zyz-frame:
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(1)
(2)
d, = dcos#; cost;sinf, + dsinb; cos0, + hcosb,. (3)

d, = dcosb; cosO;cosb, —dsinb; sinf,, — hsinb,,

dy = dcos0;sinb,

When the beams are facing towards the front or back of the
FOV 6, ~ 0,~ =+, changes in the pitching angle 6,, result
in large changes in the orientation of the beams. However,
when the beams are facing towards the side of the FOV
0 ~ +m/2, changes in the pitching angle result in small
changes in the orientation of the beam. As a result, scans
from the RMBL tend to be more clustered along the y—axis,
and more dispersed along the x—axis.

For modeling and analysis in this work, RMBL scans
are simulated for scanning the surface S of a hollow unit
sphere centered at the xyz origin. Investigation of the scan
on the unit sphere allows for analysis of the distribution
as a result of the chosen trajectory without dependency on
the Lidar’s environment. Measurement points are converted
from Cartesian coordinates in the zyz-frame into spherical
coordinates in the xyz-frame with latitude ¢, azimuth (or
longitude) 6, and radius r:

¢ = atan2(d., m)» “4)
0 = atan2(d,, d,,), ®)
r=1. (©6)

Because the radius measurement » = 1 is the same for all
measurements, it can be ignored for the analysis, allowing
the problem to be collapsed from 3- to 2-dimensions. The
analysis of how the scan would interpret an object of a given
size and distance is performed by projecting the object onto
the unit sphere.

B. RMBL Trajectories

Perhaps the most common scan pattern for a pitching Lidar
is the raster scan pattern. Traditionally a raster scan pattern
involves the collection of measurements along a number of
parallel line paths. Each of the lines is dubbed a “raster line”
n,, and the scan period T, increases proportionally with
increasing n,..

The MBL used in this work continuously performs a 360°
rotation of the beams at f; = 20H z:

0,(t) = m — (27 fit mod 27). (7)

Due to this constant spinning motion, a raster-like trajectory
can be accomplished by pitching the Lidar after each com-
plete rotation of the beams. The rotating platform is moved
in a stair-step pattern with trajectory:

Lfit]

M_l’
ny

n
—cZ>1,
np

0, (t) A+24A (8)
where n; is the number of beams in the MBL, 2A is the
peak-to-peak amplitude of the scan, |z] is the floor of z,

and the total period of the scan in seconds is 7, = %=L

ny fi°
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Hence, the cradle is moved in equal intervals to perform a

raster-style scan (henceforth, referred to as a “raster scan”).
Another trajectory used in this work is a Lissajous-like

trajectory. A classical Lissajous scan involves rotating both

axes of a dual-axis sensor with sinusoidal trajectories. In this

work, the rotation of the lasers él is fixed (as stated before),

and the pitching cradle undergoes a triangular trajectory:

2A 2t

T, (t 2{Tn 2J>(_1) LEAE )

The triangular trajectory is chosen as it provides a more uni-
form distribution of points along the vertical axis, as opposed
to a sinusoidal trajectory which biases points towards the top
and bottom of the trajectory. This trajectory is “Lissajous-
like” because, while it is not a traditional Lissajous trajectory,
the behavior and analysis are similar.

The raster and Lissajous-like trajectories each have their
own relative strengths and weaknesses [13]. However, the
relative merits are not relevant to the scope of this work,
and thus are not discussed here.

T, 1

On(t)

C. Notation

In order to present the metrics used, the relevant notation
is presented in this section, which is borrowed from spatial
statistics [3] . Define X as a finite point process with a set
of measurement locations x = {1, ..., x,, } from the RMBL
on the unit sphere S? such that z; € S?, with each point z;
consisting of a latitude ¢; and longitude angle 6;. Note that
this point pattern possibly contains redundant measurements.

The intersection of a plane in R® and the sphere S? is
called a great circle if the plane passes through the sphere’s
origin. The geodesic distance d(u,v) between two points u
and v on S? is the shortest path along the great circle which
passes through both points. The geodesic distance from any
point u € S? to a set B € S? is defined as d(u, B)
inf{d(u,v) : v € B}.

The indicator function 1(y) is used in this work, which
is a function that returns 1 if the condition y is true, and 0
otherwise.

III. POINT PATTERN ESTIMATORS

Summary functions, or functions applying to the entire
region of the unit sphere, can be used to estimate the
properties of the underlying point process from the RMBL
X. Specifically, three estimators are used in this work:

o Ripley’s K function, which estimates the number of
measurements in an area (or the density of measure-
ments),
the nearest neighbor function (G, which estimates the
distance to a measurement’s nearest neighboring mea-
surement in the scan,
the empty-space function F', which estimates the dis-
tance to the nearest measurement for a random location
on the surface S2.

All three estimators are functions of r, which in the context
of the unit sphere is a geodesic distance (as opposed to
typically using r as a radius for planar analysis).
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To demonstrate the three estimators, three simulated scans,
which are shown in Figure 2, are presented:

o A single, stationary scan of the MBL A = 0°, T}, =

0.05s,

o A pitching raster scan, A = 75°, T;, = 0.3s,

o A pitching Lissajous-like scan, A = 15°, T;, = 0.15s.
The stationary scan demonstrates the high horizontal resolu-
tion but the relatively worse vertical resolution of the MBL
sensor (with no pitching motion). The raster scan is chosen to
provide a scan with full coverage of the unit sphere but with
approximately the same resolution as that of the stationary
scan (the “step” sizes for the raster scan are 30°, the same
as the vertical FOV of the sensor). The Lissajous-like scan
is chosen to demonstrate a scan with a smaller FOV (than
the raster), but with improved vertical resolution.

A. Ripley’s K Function

Ripley’s K function K '(r) calculates the average number
of points in the set x that fall within the range r of a typical
point of x:

K(r) = @ > Y M) <) a0
S

where n(x) is the number of points in the set x and
0 < r < m. When operating on the unit sphere, K (r) is
the average number of points that fall in a spherical cap
with geodesic distance r from its apex at a point in X to
the edge of the cap. This can, for example, be used to
estimate how many measurements the RMBL will yield for
an object by projecting that object onto the unit sphere and
finding an appropriate size r that encompasses that object’s
projection. Scans with larger values of K (r) will return more
measurements of an object with cap size r (compared to
smaller values of K (r)).

Figure 3 displays the values of K (r) for the three scans
shown in Figure 2, and also provides bars for +1 standard
deviation in the number of measurements for each evaluated
radius r. The raster scan, which has the largest total number
of samples, has larger values of K (r), and thus would
return more measurements of an object on average than
the Lissajous-like or stationary scans. All three scans have
relatively large standard deviations, as the scans are not
uniformly distributed, and thus the number of measurements
vary greatly until the entire sphere is measured at = 180°.
Of note is that the values of the standard deviation decrease
near 7 ~ 90°. This is because the RMBL scans tend to be
nearly symmetric about some vertical plane, so caps spanning
half of the sphere have approximately the same number of
measurements as a cap drawn opposite it on the sphere.

B. Nearest Neighbor Function

The nearest neighbor function C‘(r) calculates the per-
centage of points in the set x whose distance to their nearest
neighboring measurements are less than or equal to r:

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on August 21,2023 at 11:47:36 UTC from IEEE Xplore. Restrictions apply.



y (m) y (m)

(a) Stationary MBL scan

X (m)

(b) Raster RMBL scan

x (m)

y (m)
(c) Lissajous-like RMBL scan

X (m)

Fig. 2: Point clouds of simulated scans of a unit sphere by a) a stationary scan from the VLP-16 MBL, b) an RMBL raster
scan with A = 75°, T,, = 0.3s, and ¢) an RMBL Lissajous-like scan with A = 15°, T;, = 0.15s.
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Fig. 3: Values of Ripley’s K function K (r) for three simu-
lated RMBL scans, with 1 standard deviation in the number
of neighboring measurements for each evaluated radius 7.
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with 0 < r < . In other words, G‘(r) is the cumulative
distribution function of nearest neighbor distances. This can
loosely be used as a way to look at the “resolution” of
the scan by analyzing how close measurements are to one
another. Larger values of G‘(r) for a given value of r
indicates that more samples have nearest neighbors within
that distance, and hence are closer to each other (than for a
smaller value of G(r)).

Figure 4a shows the values of G(r) for the three scans
presented in the previous section. The stationary scan G (r)
is a step function with the step at » = 360/900 = 0.4° which
is the MBL’s horizontal resolution. The raster and Lissajous-
like scans have some measurements that are closer together,
which mostly occur toward the sides of the scan where
they are clustered together. However, more than half the
measurements still have nearest neighbors about 0.4° away.
To provide a better understanding of how the pitching motion
has improved the vertical resolution, a “ring-blind” variant
of the nearest neighbor function is introduced. In this variant
éring("’), neighbors from the same beam of the Lidar from
the same 360° rotation of the beams (e.g., measurements
from the same ‘“ring” as one would see in the stationary
scan) are ignored.
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Figure 4b presents G’rmg(r) for the three scans presented
earlier. The stationary scan now yields a step function at r =
2° which is the vertical resolution of the MBL. There is now
more information about the distribution of measurements for
the raster and Lissajous-like scans. The Lissajous-like scan
has closer neighbors than the raster scan for the majority
of its points. This is due to the Lissajous-like scan having
better coverage of its FOV, while the raster scan effectively
takes multiple stationary scans with different FOVs that only
overlap at the sides of the scan. However, both pitching scans
still have relatively large steps at » = 2° due to areas at the
edge of the scan’s FOV where there are no overlapping beam
paths, resulting in nearest neighbors from the beams directly
above or below a given measurement.

C. Empty Space Function

The empty space function F(r) calculates the amount of
“empty space”, or the amount of the unit sphere that isn’t
covered by the set of measurements. In this work, F(r) is
calculated by simulating m evaluation points y uniformly
distributed over the unit sphere and then calculating the
percentage of evaluation points whose minimum distance to
the set is less than 7:

Fr) = - 3" 1(d(yx) < ),

yEY

12)

with 0 < r < 7. In other words, this function is the cumula-
tive distribution function of how many evaluation points have
nearest neighboring measurements within a geodesic distance
r, and represents the empty space in the scan provided y
adequately samples the unit sphere. A function 13‘(7") that
rises quickly to 1 indicates that random sample points have
small distances r to measurements in the scan, and hence
there is less “empty space” in the scan (compared to smaller
values of F'(r)). F(r) provides a method to estimate the
likelihood of a particular scan’s ability to detect objects in a
region of interest. The larger the values of F'(r), the higher
the probability of detection, as the higher the likelihood the
object is closer to (at least one sample in) the scan.

Figure 5 shows the empty space function F(r) for the
three scans presented earlier. The raster scan has much
greater values of F(r), and thus far less empty space, be-
cause it spans the entire sphere, while the Lissajous-like and
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Fig. 4: a) The nearest neighbor function G(r) for the
stationary, raster, and Lissajous-like (Liss-like) scans. b) The
ring-blind variant of the nearest neighbor function Grmg (r)
for the same scans.
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Fig. 5: The empty space function F'(r) for the stationary,
raster, and Lissajous-like scans.

stationary scans have significantly more empty space because
they do not cover large sections of the top and bottom of the
sphere. The Lissajous-like scan is also observed to have less
empty space than the stationary scan. This is because it has a
slightly larger FOV (causing the constant offset for r» > 1°),
and because it has more points closer together within its FOV
(causing the larger jump at r < 1°).

D. Local Point Pattern Estimation

While the results shown in this section so far have been
for PPA estimators applied over the entire unit sphere, each
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Fig. 6: Empty space function F (r) in the cross-section
—15° <6 < 15°,—15° < ¢ < 15° for a series of Lissajous-
like scans.

function can also be evaluated for subsets of the set x
occurring in a region of the unit sphere . When evaluating
these local estimators on a region W, they are prone to edge
effect distortions [3], which were not present in the summary
estimates because the full unit sphere has no edges. These
edge effect biases occur because points near the edge of the
region will have fewer valid neighbors (some neighbors will
not be in W). In this work, a simple and commonly-used
method of edge correction called the border method is used
[3]. Border-corrected, local calculations of the estimators in
this paper are denoted with the subscript 5, e.g., Kp(r).

IV. DESIGN EXAMPLE: IMPROVING DETECTION
PERFORMANCE

The estimators presented in Section III can be used to help
select a scan with desirable performance. As an example,
this section seeks to identify a high-frequency scan that has
the best chance of detecting an object of random size and
distance in the region of interest in front of the RMBL
—15° < 0§ < 15°, —15° < ¢ < 15° . Lissajous-like
scans with amplitudes A = {5°,15°,25°} and periods of
T, = {0.25,0.25s,0.3s} are simulated, and then the border-
corrected empty space function for the region of interest
is calculated. The results for F(T) are shown in Figure 6.
Interestingly, there do not appear to be distinct relationships
between the value of F'(r') and the scan amplitude or period.
For example, the 5°, 4H z scan has smaller values of F(T)
than the 5°, 5H z scan, despite having a larger period, which
is contrary to an initial expectation of scans with larger
periods having less empty space.

The scan with the largest area under the curve for F(r)
should have the best detection performance, as it has the least
empty space in the region of interest. Accordingly, the 5°,
3.33H z scan is selected as the “best” performing scan, and
the 5°, 4H z scan is selected as the “worst” performing scan.
To demonstrate this, experimental RMBL scans of the space
shown in Figure 7a are presented in Figures 7b-d using the
same region of interest as in the prior paragraph. The “best”
scan, shown in Figure 7b, is well distributed across the space,
and should observe any sufficiently sized object that doesn’t
fall between the very close point spacings. However, in the
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Fig. 7: Cross-sections of the front of point clouds from experimental Lissajous-like scans with A = 5° and periods of a)

3.33Hz,b) 4Hz, and ¢) bH z.

“worst” scan, shown in Figure 7c, the pitching trajectory
causes multiple rotations of the beams to almost overlap,
leaving large un-scanned spaces between the paths of the
beams. The 5°, 5Hz scan is also shown in Figure 7d to
demonstrate the aforementioned observation that there is not
a distinct trend with respect to F(r) as a function of the
period: the 5Hz scan has less empty space than the 4Hz
scan despite having fewer total samples.

V. CONCLUSIONS

In this paper, a pitching multi-beam Lidar was presented
to overcome the vertical resolution limitation in stationary
multi-beam Lidar, and two pitching trajectories were dis-
cussed. Three estimators from the field of point pattern
analysis were presented to study the distribution of mea-
surements from this pitching multi-beam Lidar. These three
estimators were applied to various simulated scans, both
over the entirety of the unit sphere as well as bounded
sub-sections of the sphere, and the findings were linked to
observations in experimental scans with the same trajectory
parameters.

Each of the three presented estimators has particular
relevance to robotics and unmanned vehicle applications.
The Ripley’s K function allows for estimation of how many
measurements will be returned by a scan for an object of
known shape, size, and distance, which has possible useful-
ness in classification tasks. The nearest neighbor function can
be used to estimate how close a neighboring measurement
should be, which could aid in segmentation tasks. Finally, the
empty space function determines the amount of un-sampled
space in the field of view, which has obvious relevance to
detection tasks.

While the presented estimators have potential use in both
Lidar and other fields, it is very important to note that each
metric describes very particular and specific behavior. For
example, if using the nearest-neighbor function alone, it is
possible that a scan which causes G(r) to quickly climb
to G(r) = 1 may not desirably sample the space. In the
worst case, a scan that causes that behavior in the nearest-
neighbor function would have every point at approximately
the same location. While this provides favorable values of
G (r), it does not provide an adequate sampling of the space
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in most cases. Thus, it is important to employ multiple
metrics collaboratively.
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