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Abstract— In this work, point pattern estimators are used to
analyze the distribution of measurements from a multi-beam
Lidar on a pitching platform. Multi-beam Lidars have high
resolution in the horizontal plane, but poor vertical resolution.
Placing the Lidar on a pitching base improves this resolution,
but causes the distribution of measurements to be highly irregu-
lar. In this work, these measurement distributions are treated as
point patterns and three estimators are used to quantify how
measurements are spaced, which has implications in robotic
detection of objects using Lidar sensors. These estimators are
used to demonstrate how a pitching trajectory for the platform
can be chosen to improve multiple performance criteria, such as
increasing the likelihood of detection of an object, or adjusting
how closely measurements should be spaced.

I. INTRODUCTION

In this work, three point pattern estimators from the field

of point pattern analysis (PPA) are used to study scans

from a pitching multi-beam Lidar (MBL). MBLs typically

have high resolution in the horizontal plane, but relatively

worse resolution along the vertical axis. This problem can be

overcome by placing the Lidar on a pitching platform, which

adds an extra degree of freedom to the sensor. The choice

of the pitching trajectory and the trajectory parameters can

improve the vertical resolution. However, the resulting scan

distributions, while repeatable, are not uniformly distributed

within the field of view. The distributions of measurements

from the rotating MBL (RMBL) are treated as point patterns

to quantify the scan performance. Three functions from

the field of PPA [1], [2], [3] are introduced and applied

to simulated RMBL scans employing different scanning

trajectories to understand what phenomenon each function

quantifies. A design example is presented that demonstrates

how these estimators can be used to select a desirable

scanning trajectory to improve the scan’s resolution.

Lidar sensors measure distance by emitting pulsed laser

light, detecting the reflected particles, and then converting

the time of flight of the particles into a distance. Lidar

has a long history [4] but has recently gained popularity

in robotics, especially unmanned and autonomous vehicles

[5], [6], [7], which has led to an increase in the availability

and performance of the sensors. Of particular note is their

recent use in self-driving cars, where MBL sensors are

used to segment and classify the road surface, curbs, other

cars, pedestrians, and various other objects [8], [9], [10],

[11]. Current Lidar technology allows for sensors that can

capture 3-dimensional distance data inherently by rotating
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an array of emitters/detectors which are mounted at distinct

angles from the horizontal plane. Each emitter/detector can

be sampled at very high frequencies (10s of kHz), but

there are limitations on how closely the sensing elements

can be placed. As a result, MBLs commonly have high

resolution in the horizontal plane (limited by sampling rate),

but relatively worse resolution along the vertical axis (limited

by sensor element placement). This limitation can result in

poor detection or classification performance of the system.

Placing an MBL on a rotating platform can improve the

vertical resolution [12], [13], but the trajectory for the added

degree of freedom must be chosen carefully to provide a

desirable sampling of the environment.

While MBL typically have fixed, evenly-spaced sampling

patterns, pitching the MBL causes the measurements to be

irregularly distributed, and thus RMBL scans can be complex

to analyze, limiting a deeper understanding of sampling

behaviors, such as resolution. Similar scan patterns were

studied when rotating single-beam Lidar (RSBL) configu-

rations were common [14], [15], but that analysis has not

been extended to RMBL sensors. Methods to quantify RSBL

resolution, such as counting the number of times the beam

paths intersect [15],

. Methods from other fields, such

as the use of Voronoi tessellation to measure spatial

resolution in high-speed scanning probe microscopy [16], can

be used, but are very computationally expensive for RMBL

scans which have tens of thousands to hundreds of thousands

of samples. One work of note is from Morales et al., which

used Ripley’s K function, a metric from the field of PPA,

to analyze the homogeneity of RMBL scans [12]. In that

work, Ripley’s K function was used a goodness-of-fit test

to determine whether their RMBL scans could be modeled

as a homogeneous Poisson point process (HPPP), which has

desirable key properties for scanning.

Point pattern analysis traditionally uses a collection of

functions as goodness-of-fit tests, as in [12], to determine

whether a point pattern is a result of some underlying

process (e.g., Poisson). However, in this work some of these

functions are instead employed and modified to quantify and

analyze how measurements in the scan are distributed. These

functions are used to provide both numerical evaluation

and physical understanding of RMBL scans taken by any

arbitrary trajectory. Note that, while this work focuses on

RMBL systems, these estimators may have relevance in

applications such as scanning fiber endoscopes, scanning

probe microscopy, or other applications involving an actuated

sensing mechanism with a single or multiple point sensor.
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Fig. 1: a) The experimental pitching multi-beam Lidar plat-

form. b) Relevant geometry of the platform.

II. PROBLEM FORMULATION

In this section, the RMBL system used by the authors is

presented, two pitching trajectories for the RMBL are shown,

and notation used in the remainder of the paper is provided.

A. Rotating MBL Platform

The experimental pitching RMBL used in this work is

shown in Figure 1a. A Velodyne VLP-16 Lidar is situated

on a cradle capable of ±90◦ pitching motion. While the

VLP-16 is not the highest resolution Lidar available, it is

certainly one of the most affordable commercially available

MBLs (and the work in this paper can easily be applied to

other MBL sensors). The VLP-16 features 16 beams evenly

spaced over a ±15◦ vertical field of view (FOV), providing

2◦ vertical resolution. The array of beams is spun at 20Hz,

and each beam is sampled 900 times per revolution, resulting

in 0.4◦ horizontal resolution. The cradle is driven by a DC

motor, and potentiometer and encoder data are fused to

provide the cradle angle. Control of the motor is performed

using an Arduino Due, and a Jetson TK1 controls trajectory

parameters, aggregates point clouds, and provides real time

data visualization. The software on both the Arduino Due and

the Jetson TK1 are developed using the Robotics Operating

System (ROS) middleware.

The geometry of the RMBL configuration is shown in

Figure 1b. The array of beams in the Lidar spin with angle

θl about the Z body-fixed axis. Each beam has a unique

inclination angle θi above the XY -plane and returns a

distance measurement d (if there is an object within the range

of the Lidar). The DC motor pitches the cradle with angle

θn about the y-axis. An offset height h exists between the

cradle’s axis of rotation and the Lidar’s sensor origin XY Z,

so θn imparts both rotation and translation of the XY Z-

frame.

Points from the Lidar are received with spherical coordi-

nates (d, θi, θl) in the XY Z-frame and are transformed into

Cartesian coordinates in the fixed xyz-frame:

dx = d cos θi cos θl cos θn − d sin θi sin θn − h sin θn, (1)

dy = d cos θi sin θl, (2)

dz = d cos θi cos θl sin θn + d sin θi cos θn + h cos θn. (3)

When the beams are facing towards the front or back of the

FOV θl ≈ 0,≈ ±π, changes in the pitching angle θn result

in large changes in the orientation of the beams. However,

when the beams are facing towards the side of the FOV

θ ≈ ±π/2, changes in the pitching angle result in small

changes in the orientation of the beam. As a result, scans

from the RMBL tend to be more clustered along the y−axis,

and more dispersed along the x−axis.

For modeling and analysis in this work, RMBL scans

are simulated for scanning the surface S
2 of a hollow unit

sphere centered at the xyz origin. Investigation of the scan

on the unit sphere allows for analysis of the distribution

as a result of the chosen trajectory without dependency on

the Lidar’s environment. Measurement points are converted

from Cartesian coordinates in the xyz-frame into spherical

coordinates in the xyz-frame with latitude φ, azimuth (or

longitude) θ, and radius r:

φ = atan2(dz,
√

d2x + d2y), (4)

θ = atan2(dy, dx), (5)

r = 1. (6)

Because the radius measurement r = 1 is the same for all

measurements, it can be ignored for the analysis, allowing

the problem to be collapsed from 3- to 2-dimensions. The

analysis of how the scan would interpret an object of a given

size and distance is performed by projecting the object onto

the unit sphere.

B. RMBL Trajectories

Perhaps the most common scan pattern for a pitching Lidar

is the raster scan pattern. Traditionally a raster scan pattern

involves the collection of measurements along a number of

parallel line paths. Each of the lines is dubbed a “raster line”

nr, and the scan period Tn increases proportionally with

increasing nr.

The MBL used in this work continuously performs a 360◦

rotation of the beams at fl = 20Hz:

θl(t) = π − (2πflt mod 2π). (7)

Due to this constant spinning motion, a raster-like trajectory

can be accomplished by pitching the Lidar after each com-

plete rotation of the beams. The rotating platform is moved

in a stair-step pattern with trajectory:

θn(t) = −A+ 2A
�flt�
nr

nb
− 1

,
nr

nb
∈ Z > 1, (8)

where nb is the number of beams in the MBL, 2A is the

peak-to-peak amplitude of the scan, �x� is the floor of x,

and the total period of the scan in seconds is Tn = nr

nb

1
fl

.
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Hence, the cradle is moved in equal intervals to perform a

raster-style scan (henceforth, referred to as a “raster scan”).
Another trajectory used in this work is a Lissajous-like

trajectory. A classical Lissajous scan involves rotating both

axes of a dual-axis sensor with sinusoidal trajectories. In this

work, the rotation of the lasers θ̇l is fixed (as stated before),

and the pitching cradle undergoes a triangular trajectory:

θn(t) =
2A

Tn

(
t− Tn

2

⌊ 2t

Tn
+

1

2

⌋)
(−1)�

2t
Tn

+ 1
2 �. (9)

The triangular trajectory is chosen as it provides a more uni-

form distribution of points along the vertical axis, as opposed

to a sinusoidal trajectory which biases points towards the top

and bottom of the trajectory. This trajectory is “Lissajous-

like” because, while it is not a traditional Lissajous trajectory,

the behavior and analysis are similar.
The raster and Lissajous-like trajectories each have their

own relative strengths and weaknesses [13]. However, the

relative merits are not relevant to the scope of this work,

and thus are not discussed here.

C. Notation
In order to present the metrics used, the relevant notation

is presented in this section, which is borrowed from spatial

statistics [3] . Define X as a finite point process with a set

of measurement locations x = {x1, ..., xn} from the RMBL

on the unit sphere S
2 such that xj ∈ S

2, with each point xj

consisting of a latitude φj and longitude angle θj . Note that

this point pattern possibly contains redundant measurements.
The intersection of a plane in R

3 and the sphere S
2 is

called a great circle if the plane passes through the sphere’s

origin. The geodesic distance d(u, v) between two points u
and v on S

2 is the shortest path along the great circle which

passes through both points. The geodesic distance from any

point u ∈ S
2 to a set B ∈ S

2 is defined as d(u,B) =
inf{d(u, v) : v ∈ B}.

The indicator function 1(y) is used in this work, which

is a function that returns 1 if the condition y is true, and 0
otherwise.

III. POINT PATTERN ESTIMATORS

Summary functions, or functions applying to the entire

region of the unit sphere, can be used to estimate the

properties of the underlying point process from the RMBL

X. Specifically, three estimators are used in this work:

• Ripley’s K function, which estimates the number of

measurements in an area (or the density of measure-

ments),

• the nearest neighbor function G, which estimates the

distance to a measurement’s nearest neighboring mea-

surement in the scan,

• the empty-space function F , which estimates the dis-

tance to the nearest measurement for a random location

on the surface S
2.

All three estimators are functions of r, which in the context

of the unit sphere is a geodesic distance (as opposed to

typically using r as a radius for planar analysis).

To demonstrate the three estimators, three simulated scans,

which are shown in Figure 2, are presented:

• A single, stationary scan of the MBL A = 0◦, Tn =
0.05s,

• A pitching raster scan, A = 75◦, Tn = 0.3s,

• A pitching Lissajous-like scan, A = 15◦, Tn = 0.15s.

The stationary scan demonstrates the high horizontal resolu-

tion but the relatively worse vertical resolution of the MBL

sensor (with no pitching motion). The raster scan is chosen to

provide a scan with full coverage of the unit sphere but with

approximately the same resolution as that of the stationary

scan (the “step” sizes for the raster scan are 30◦, the same

as the vertical FOV of the sensor). The Lissajous-like scan

is chosen to demonstrate a scan with a smaller FOV (than

the raster), but with improved vertical resolution.

A. Ripley’s K Function

Ripley’s K function K̂(r) calculates the average number

of points in the set x that fall within the range r of a typical

point of x:

K̂(r) =
1

n(x)

∑
x∈x

∑
x′∈x
x′ �=x

1{d(x, x′) ≤ r}, (10)

where n(x) is the number of points in the set x and

0 ≤ r ≤ π. When operating on the unit sphere, K̂(r) is

the average number of points that fall in a spherical cap

with geodesic distance r from its apex at a point in x to

the edge of the cap. This can, for example, be used to

estimate how many measurements the RMBL will yield for

an object by projecting that object onto the unit sphere and

finding an appropriate size r that encompasses that object’s

projection. Scans with larger values of K̂(r) will return more

measurements of an object with cap size r (compared to

smaller values of K̂(r)).

Figure 3 displays the values of K̂(r) for the three scans

shown in Figure 2, and also provides bars for ±1 standard

deviation in the number of measurements for each evaluated

radius r. The raster scan, which has the largest total number

of samples, has larger values of K̂(r), and thus would

return more measurements of an object on average than

the Lissajous-like or stationary scans. All three scans have

relatively large standard deviations, as the scans are not

uniformly distributed, and thus the number of measurements

vary greatly until the entire sphere is measured at r = 180◦.

Of note is that the values of the standard deviation decrease

near r ≈ 90◦. This is because the RMBL scans tend to be

nearly symmetric about some vertical plane, so caps spanning

half of the sphere have approximately the same number of

measurements as a cap drawn opposite it on the sphere.

B. Nearest Neighbor Function

The nearest neighbor function Ĝ(r) calculates the per-

centage of points in the set x whose distance to their nearest

neighboring measurements are less than or equal to r:
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(a) Stationary MBL scan (b) Raster RMBL scan (c) Lissajous-like RMBL scan

Fig. 2: Point clouds of simulated scans of a unit sphere by a) a stationary scan from the VLP-16 MBL, b) an RMBL raster

scan with A = 75◦, Tn = 0.3s, and c) an RMBL Lissajous-like scan with A = 15◦, Tn = 0.15s.

Fig. 3: Values of Ripley’s K function K̂(r) for three simu-

lated RMBL scans, with ±1 standard deviation in the number

of neighboring measurements for each evaluated radius r.

Ĝ(r) =
1

n(x)

∑
x∈x

1{d(x,x\x) ≤ r}, (11)

with 0 ≤ r ≤ π. In other words, Ĝ(r) is the cumulative

distribution function of nearest neighbor distances. This can

loosely be used as a way to look at the “resolution” of

the scan by analyzing how close measurements are to one

another. Larger values of Ĝ(r) for a given value of r
indicates that more samples have nearest neighbors within

that distance, and hence are closer to each other (than for a

smaller value of Ĝ(r)).

Figure 4a shows the values of Ĝ(r) for the three scans

presented in the previous section. The stationary scan Ĝ(r)
is a step function with the step at r = 360/900 = 0.4◦ which

is the MBL’s horizontal resolution. The raster and Lissajous-

like scans have some measurements that are closer together,

which mostly occur toward the sides of the scan where

they are clustered together. However, more than half the

measurements still have nearest neighbors about 0.4◦ away.

To provide a better understanding of how the pitching motion

has improved the vertical resolution, a “ring-blind” variant

of the nearest neighbor function is introduced. In this variant

Ĝring(r), neighbors from the same beam of the Lidar from

the same 360◦ rotation of the beams (e.g., measurements

from the same “ring” as one would see in the stationary

scan) are ignored.

Figure 4b presents Ĝring(r) for the three scans presented

earlier. The stationary scan now yields a step function at r =
2◦ which is the vertical resolution of the MBL. There is now

more information about the distribution of measurements for

the raster and Lissajous-like scans. The Lissajous-like scan

has closer neighbors than the raster scan for the majority

of its points. This is due to the Lissajous-like scan having

better coverage of its FOV, while the raster scan effectively

takes multiple stationary scans with different FOVs that only

overlap at the sides of the scan. However, both pitching scans

still have relatively large steps at r = 2◦ due to areas at the

edge of the scan’s FOV where there are no overlapping beam

paths, resulting in nearest neighbors from the beams directly

above or below a given measurement.

C. Empty Space Function

The empty space function F̂ (r) calculates the amount of

“empty space”, or the amount of the unit sphere that isn’t

covered by the set of measurements. In this work, F̂ (r) is

calculated by simulating m evaluation points y uniformly

distributed over the unit sphere and then calculating the

percentage of evaluation points whose minimum distance to

the set is less than r:

F̂ (r) =
1

m

∑
y∈y

1(d(y,x) ≤ r), (12)

with 0 ≤ r ≤ π. In other words, this function is the cumula-

tive distribution function of how many evaluation points have

nearest neighboring measurements within a geodesic distance

r, and represents the empty space in the scan provided y

adequately samples the unit sphere. A function F̂ (r) that

rises quickly to 1 indicates that random sample points have

small distances r to measurements in the scan, and hence

there is less “empty space” in the scan (compared to smaller

values of F̂ (r)). F̂ (r) provides a method to estimate the

likelihood of a particular scan’s ability to detect objects in a

region of interest. The larger the values of F̂ (r), the higher

the probability of detection, as the higher the likelihood the

object is closer to (at least one sample in) the scan.

Figure 5 shows the empty space function F̂ (r) for the

three scans presented earlier. The raster scan has much

greater values of F̂ (r), and thus far less empty space, be-

cause it spans the entire sphere, while the Lissajous-like and
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(a) Ĝ(r) for different RMBL scans

(b) Ĝring(r) for different RMBL scans

Fig. 4: a) The nearest neighbor function Ĝ(r) for the

stationary, raster, and Lissajous-like (Liss-like) scans. b) The

ring-blind variant of the nearest neighbor function Ĝring(r)
for the same scans.

Fig. 5: The empty space function F̂ (r) for the stationary,

raster, and Lissajous-like scans.

stationary scans have significantly more empty space because

they do not cover large sections of the top and bottom of the

sphere. The Lissajous-like scan is also observed to have less

empty space than the stationary scan. This is because it has a

slightly larger FOV (causing the constant offset for r > 1◦),

and because it has more points closer together within its FOV

(causing the larger jump at r ≤ 1◦).

D. Local Point Pattern Estimation

While the results shown in this section so far have been

for PPA estimators applied over the entire unit sphere, each

Fig. 6: Empty space function F̂ (r) in the cross-section

−15◦ ≤ θ ≤ 15◦,−15◦ ≤ φ ≤ 15◦ for a series of Lissajous-

like scans.

function can also be evaluated for subsets of the set x
occurring in a region of the unit sphere W . When evaluating

these local estimators on a region W , they are prone to edge

effect distortions [3], which were not present in the summary

estimates because the full unit sphere has no edges. These

edge effect biases occur because points near the edge of the

region will have fewer valid neighbors (some neighbors will

not be in W ). In this work, a simple and commonly-used

method of edge correction called the border method is used

[3]. Border-corrected, local calculations of the estimators in

this paper are denoted with the subscript b, e.g., K̂b(r).

IV. DESIGN EXAMPLE: IMPROVING DETECTION

PERFORMANCE

The estimators presented in Section III can be used to help

select a scan with desirable performance. As an example,

this section seeks to identify a high-frequency scan that has

the best chance of detecting an object of random size and

distance in the region of interest in front of the RMBL

−15◦ ≤ θ ≤ 15◦, −15◦ ≤ φ ≤ 15◦ . Lissajous-like

scans with amplitudes A = {5◦, 15◦, 25◦} and periods of

Tn = {0.2s, 0.25s, 0.3s} are simulated, and then the border-

corrected empty space function for the region of interest

is calculated. The results for F̂ (r) are shown in Figure 6.

Interestingly, there do not appear to be distinct relationships

between the value of F̂ (r) and the scan amplitude or period.

For example, the 5◦, 4Hz scan has smaller values of F̂ (r)
than the 5◦, 5Hz scan, despite having a larger period, which

is contrary to an initial expectation of scans with larger

periods having less empty space.

The scan with the largest area under the curve for F̂ (r)
should have the best detection performance, as it has the least

empty space in the region of interest. Accordingly, the 5◦,

3.33Hz scan is selected as the “best” performing scan, and

the 5◦, 4Hz scan is selected as the “worst” performing scan.

To demonstrate this, experimental RMBL scans of the space

shown in Figure 7a are presented in Figures 7b-d using the

same region of interest as in the prior paragraph. The “best”

scan, shown in Figure 7b, is well distributed across the space,

and should observe any sufficiently sized object that doesn’t

fall between the very close point spacings. However, in the
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(a) Color image of space to be
sampled (b) Lissajous-like Scan with Tn =

0.3s
(c) Lissajous-like Scan with Tn =
0.25s

(d) Lissajous-like Scan with Tn =
0.2s

Fig. 7: Cross-sections of the front of point clouds from experimental Lissajous-like scans with A = 5◦ and periods of a)

3.33Hz, b) 4Hz, and c) 5Hz.

“worst” scan, shown in Figure 7c, the pitching trajectory

causes multiple rotations of the beams to almost overlap,

leaving large un-scanned spaces between the paths of the

beams. The 5◦, 5Hz scan is also shown in Figure 7d to

demonstrate the aforementioned observation that there is not

a distinct trend with respect to F̂ (r) as a function of the

period: the 5Hz scan has less empty space than the 4Hz
scan despite having fewer total samples.

V. CONCLUSIONS

In this paper, a pitching multi-beam Lidar was presented

to overcome the vertical resolution limitation in stationary

multi-beam Lidar, and two pitching trajectories were dis-

cussed. Three estimators from the field of point pattern

analysis were presented to study the distribution of mea-

surements from this pitching multi-beam Lidar. These three

estimators were applied to various simulated scans, both

over the entirety of the unit sphere as well as bounded

sub-sections of the sphere, and the findings were linked to

observations in experimental scans with the same trajectory

parameters.

Each of the three presented estimators has particular

relevance to robotics and unmanned vehicle applications.

The Ripley’s K function allows for estimation of how many

measurements will be returned by a scan for an object of

known shape, size, and distance, which has possible useful-

ness in classification tasks. The nearest neighbor function can

be used to estimate how close a neighboring measurement

should be, which could aid in segmentation tasks. Finally, the

empty space function determines the amount of un-sampled

space in the field of view, which has obvious relevance to

detection tasks.

While the presented estimators have potential use in both

Lidar and other fields, it is very important to note that each

metric describes very particular and specific behavior. For

example, if using the nearest-neighbor function alone, it is

possible that a scan which causes Ĝ(r) to quickly climb

to Ĝ(r) = 1 may not desirably sample the space. In the

worst case, a scan that causes that behavior in the nearest-

neighbor function would have every point at approximately

the same location. While this provides favorable values of

Ĝ(r), it does not provide an adequate sampling of the space

in most cases. Thus, it is important to employ multiple

metrics collaboratively.
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