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ABSTRACT
With the rapid acceleration of transportation electri�cation, public
charging stations are becoming vital infrastructure in smart sus-
tainable cities to provide on-demand electric vehicle (EV) charging
services. Asmore consumers seek to utilize public charging services,
the pricing and scheduling of such services will become vital, com-
plementary tools to mediate competition for charging resources.
However, determining the right prices to charge is di�cult due to
the online nature of EV arrivals. This paper studies a joint pricing
and scheduling problem for the operator of EV charging networks
with limited charging capacity and time-varying energy costs. Upon
receiving a charging request, the operator o�ers a price, and the EV
decides whether to accept the o�er based on its own value and the
posted price. The operator then schedules the real-time charging
process to satisfy the charging request if the EV admits the o�er.
We propose an online pricing algorithm that can determine the
posted price and EV charging schedule to maximize social welfare,
i.e., the total value of EVs minus the energy cost of charging sta-
tions. Theoretically, we prove the devised algorithm can achieve
an order-optimal competitive ratio under the competitive analysis
framework. Practically, we show the empirical performance of our
algorithm outperforms other benchmark algorithms in experiments
using real EV charging data.
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1 INTRODUCTION
Electric vehicles (EVs) have long promised to make transportation
systems more e�cient and sustainable [1]. Bloomberg predicts that
by 2040, more than half of the new car sales will be EVs, accounting
for 5% of total electricity usage [23]. According to the New York
Times [11], California has already set a 2035 deadline for all new
cars sold in California to be powered by electricity or hydrogen and
be free of greenhouse gas emissions. This rule requires automakers
to increase the building of zero-emission vehicles. The percentage
of new electric and plug-in hybrid vehicles sales will be 35% in
2026, go up to 68% in 2030, and reach 100% in 2035. This predicted
EV popularity follows a similarly rapid growth in the number of
public charging stations. For example, the city of Los Angeles has
4,689 public charging stations and has added 1,185 new charging
stations since mid-June 2022. ChargePoint, the world’s largest EV
charging network, plans to build out 2.5 million public charging
ports by 2025 [18]. Despite the growing number of charging sta-
tions, however, each individual station has a fairly limited charging
capacity that may not be enough to serve the growing demand for
EV vehicles. The scale of this growth then raises a fundamental chal-
lenge: how should EV charging networks manage the ever-increasing
demands for their services?

Answering this question naturally raises dynamic pricing as a
solution. To regulate their users’ demands, charging platforms may
wish to charge users more when demand is high relative to their lim-
ited capacity and vice versa when demand is low. The advantages
of dynamic pricing over static pricing (i.e., users are charged with
the same price independent of user demand and station capacity)
have been extensively discussed in theoretical studies [3, 8, 10]. In
practice, ChargePoint is already piloting such dynamic pricing [2].
Dynamic pricing allows these platforms to adjust their charging de-
mands to match available resources, i.e., the transformers’ capacity,
while carefully scheduling which users receive resources at which
time can further improve revenue and e�ciency. Yet despite con-
siderable prior work on both pricing and scheduling problems for

72

https://doi.org/10.1145/3575813.3576878
https://doi.org/10.1145/3575813.3576878
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3575813.3576878&domain=pdf&date_stamp=2023-06-16


e-Energy ’23, June 20–23, 2023, Orlando, FL, USA R. Bostandoost, B. Sun, C. Joe-Wong, and M. Hajiesmaili

Table 1: Comparison of previous works and ours in terms of multiple criteria

Integral/Fractional Scheduling Reusable Resource Resource Cost Optimality of CRs

Zhou et al. [38] Integral No No No Yes
Zheng et al. [37] Fractional Yes Yes Yes N/A
Sun et al. [29] Fractional Yes Yes No Yes

Zhang et al. [34] Integral Yes Yes No No
Tan et al. [30] Integral No Yes Yes No
Sun et al. [28] Integral No Yes No Yes
This Work Integral Yes Yes Yes Yes

adaptive EV charging networks [21, 35, 36], there is still little rigor-
ous theoretical understanding of how they can be jointly optimized
to improve social welfare and ensure platform pro�tability.

Optimizing these prices for charging, however, requires resolv-
ing uncertainty challenges of the future charging demand in the
network. Moreover, the possibility of adaptive EV charging sched-
uling provides a new design space for further optimization. For
example, the users may park their EVs at a charging platform while
at work, and the vehicle can be charged at any time before the user
leaves work. Thus, the EV’s impact on the platform, and the price it
should be charged, will depend on how congested the platform is at
any time before it leaves. However, users would generally wish to
know the prices and their guaranteed charging amounts upon their
arrival in order to eliminate payment uncertainty (e.g., as o�ered
by ridesharing services [25]), at which time future information on
platform congestion is unknown.

In this paper, we tackle the problem of joint pricing and schedul-
ing for EV charging from the perspective of a charging operator
who manages a charging station. Our goal is to develop pricing
algorithms for admitting EV users to the charging network and
scheduling their charging rates such that their energy demand is
fully satis�ed during their window of availability, i.e., the time in-
terval for which the EV is present at the charging station. A major
challenge in the above pricing and scheduling problem is the uncer-
tainty of the environment in terms of future EV charging demand.
EVs arrive at the charging station in an online manner, and their
availability windows might be di�erent.

1.1 Contributions
In this paper, we formulate the joint problem of dynamic pricing
and scheduling for EV charging in a station with multiple charging
ports and limited capacity. In this scenario, some EVs with di�erent
private values for getting charged, energy demands, and availability
windows arrive in an online manner, and the objective is to max-
imize the social welfare by o�ering a charging price with proper
scheduling, given the capacity limit of the station.

We develop online algorithms for the above joint pricing and
scheduling problem. Upon the arrival of a charging request from
an EV, the algorithm calculates a charging schedule for the EV and
posts a corresponding total charging price for the EV. The posted
price is determined as a function of the current utilization of the
charging station. The pricing function is designed by solving a
di�erential equation induced by an online primal-dual approach.
The calculation of the price is based on the charging request of the

EV, e.g., energy demand, the availability windows; the utilization
of the station, and the time-vary energy cost of the station. The EV
compares the posted price from the station, and if the price is less
than its private value, i.e., the value that the EV is willing to pay, it
accepts the o�er and joins the station.

We then analyze the robustness of the proposed online algo-
rithms using the competitive ratio (CR), a well-established perfor-
mance metric for online algorithms. Our analysis in Theorem 3.1
shows that the competitive ratio of the proposed algorithm is
$ (ln\ ), where\ = *⇡max/(⇡min (! � ?max)),* and ! are themax-
imum and minimum private values of per-unit energy requested
by the EVs, ⇡max and ⇡min are the maximum and minimum avail-
ability window of EVs, and ?max is the maximum energy cost. By
establishing a connection between the problem of interest in this
paper and two classical online problems in the prior literature, we
then derive a lower bound of ⌦(ln(*⇡max/!⇡min)) for the com-
petitive ratio of any algorithm for the joint pricing and scheduling
problem. This lower bound result shows that the competitive ratio
of the proposed algorithm is order-optimal.

Last, we use the Caltech EV ACN-Data dataset [19] on over 700
EV charging sessions over 90 days to evaluate the performance of
the proposed algorithm and compare it with the prior EV pricing
and scheduling algorithms and baselines. The experimental results
show that the empirical CR of the proposed algorithm is less than
2 in 80% of the experiments on average, which is much better than
our theoretical bounds. Also, this empirical result shows that our
algorithm outperforms other comparison algorithms substantially;
the empirical CRs of others are less than 2 in only 65%, 25%, and
20% of the experiments on average.

The rest of the paper is organized as follows. Section 2 introduces
the o�ine and online formulation of the joint pricing and schedul-
ing problem. The proposed online solution algorithm and our main
theoretical performance bounds are presented in Section 3. Then
Section 4 provides proofs of the key theorems in Section 3. Section 5
validates the numerical performance of our proposed algorithm
using real data. Finally, we discuss related work in Section 6 and
conclude the paper in Section 7.

1.2 The Signi�cance of the Theoretical Results
We note that although we present our joint pricing and scheduling
algorithms in the context of EV charging, the underlying optimiza-
tion problem is of independent interest and could be applicable
to scenarios beyond EV charging. More speci�cally, the problem
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of interest in this paper is an extension of the basic online knap-
sack problem and captures reusable resources with time-varying
resource costs. Consider an online scenario where some items with
di�erent values and demands arrive one by one over time and stay
in the system for a limited duration. Upon the arrival of a new item,
an online decision maker should decide whether or not to admit
the item given its value and demand, the limited capacity of the
knapsack, and the time-varying cost of using the knapsack. Further,
if the decision is to admit the item, what is the scheduling policy to
fully satisfy the demand for the admitted item?

The online knapsack problem and its variants have been exten-
sively studied in the literature [28–30, 34, 37, 38]. Nearly all online
algorithms in this stream of works are based on a similar idea that
estimates the price of admitting one item using a function of the
knapsack utilization and admits the item if the item value is larger
than the estimated price. The key to these algorithms lies in how to
design the pricing function to guarantee the best possible CR. We
review the literature in Section 6 extensively and in what follows
we highlight the di�erences and signi�cance of our results with
the most relevant works.

The basic version of the online knapsack problemwithout reusable
resources and resource cost was �rst studied in [38], and an online
algorithm was designed to achieve the optimal CR. In the general
setting, this stream of works can be distinguished based on three
criteria: (i) fractional or integral admission decision, i.e., whether
each item can be fractionally admitted or not; (ii) scheduling, i.e.,
whether the demand of the item is �xed or can be �exibly deter-
mined over time; and (iii) resource cost, i.e., whether using the
knapsack incurs a cost. In terms of the signi�cance of the result, the
ultimate goal is to achieve online algorithms that are (order)-optimal,
where optimality refers to an online algorithm with the best pos-
sible CR either exactly or order-wise. In Table 1, we compare the
most related works based on these criteria.

This paper designs an order-optimal online algorithm for the
most general integral setting. Compared to the other two works
with optimal CRs (i.e., [29] and [28]), this work makes additional
technical contributions in design and analysis of the algorithm in
the general setting. In particular, we extend the analysis of the
fractional admission in [29] to integral admission by considering
two classes of problem instances and analyzing their corresponding
worst-case CRs using di�erent approaches (see Sections 4.2 and 4.3).
We extend the �xed demand setting in [28] to include scheduling
setting by formulating an auxiliary cost minimization (see prob-
lem (2)) for scheduling decisions and analyzing the CR by an online
primal-dual approach. Further, our primal-dual analysis results in
a natural design of the pricing function, which is in contrast to the
ad-hoc design in [28]. In addition, this paper takes into account
the resource cost, which adds an extra dimension in the algorithm
analysis.

2 PROBLEM STATEMENT
We consider an online pricing and scheduling problem for EV charg-
ing management. A set N := {1, . . . ,# } of EVs sequentially arrive
over a time horizon T := {1, . . . ,) }. A system operator manages a
charging station with multiple chargers and a �xed overall charging
rate capacity ⇠ , and faces a time-varying electricity price {?C }C 2T .

Note that we assume that there are su�cient chargers in the station
to admit all EVs; however, the per-slot aggregate charging rate of
all chargers in the charging station is limited to capacity ⇠ . Upon
arrival, each EV = proposes a request W= := {0=,3=, ⇢=,'=}, where
0= and 3= denote the arrival and departure time of EV =, ⇢= is the
energy demand, and '= is the rate limit of charging power in one
time slot. For the charging request W= , EV = has a private value E=
(i.e., willingness-to-pay), which is unknown to the operator.

After receiving the request W= , the operator posts a price b= for
serving EV =. Then EV = itself decides to pay b= for charging if
and only if EV = has a positive utility surplus, i.e., E= � b= � 0;
otherwise, EV = will leave the system without charging and seek
for alternative refueling opportunities.

If EV = decides to join the station, the operator collects pay-
ment b= and schedules its charging ~= := {~=C }C 2T= , where T= :=
{0=,0= +1, . . . ,3= �1} is the set of time slots when EV = is available
and ~=C is the delivered energy in slot C . The charging schedule
incurs energy cost

Õ
C 2T= ?C~=C . For a quick reference, notations

are summarized in Table 2.
O�line social welfare maximization problem. Let G= 2 {0, 1}
indicate whether EV = decides to charge at the station. The utility
surplus of all EVs is

Õ
=2N(E= � b=)G= and the surplus of the charg-

ing station operator is
Õ
=2N(b= � Õ

C 2T= ?C~=C )G= . Our objective
is to maximize the social welfare of all EVs and the operator [27, 37].
De�ne an instance I := {{W= ; E=}=2N} as a sequence of the EV
charging requests and the corresponding values. Given I from
the start, the o�ine social welfare maximization problem can be
formulated as follows.

max
G=,~=C

’
=2N

E=G= �
’
C 2T

?C
’
=2NC

~=C

s.t.
’
C 2T=

~=C � ⇢=G=, 8= 2 N , (1a)

’
=2NC

~=C  ⇠, 8C 2 T , (1b)

0  ~=C  '=G=, 8= 2 N , C 2 T=, (1c)
G= 2 {0, 1}, 8= 2 N , (1d)

where NC denotes the set of EVs that are available at time C . Prob-
lem (1) captures multiple constraints. Constraint (1a) requires the
charging station to fully charge the EV = up to its demand if it ac-
cepts the charging o�er (G= = 1). Constraint (1b) says the aggregate
of scheduled energy for EVs that are available at each slot C must
be smaller than the station capacity. Constraint (1c) requires the
scheduled energy in each slot C is less than the EV’s rate limit.
Online problem. We consider an online version of the social wel-
fare maximization problem (1). Upon the arrival of each EV =, the
operator must immediately decide the posted price b= only based
on the past and current EV requests, and without knowing the
future EV requests. In this paper, we consider the electricity price
{?C }C 2T is known to the charging station operator from the start,
e.g., from predetermined time-of-use prices or estimated electricity
prices based on historical data. The electricity price and charging
station capacity ⇠ are de�ned as �xed setup information of the
system. Let OPT(I) and ALG(I) denote the social welfare achieved
by the optimal o�ine problem and an online algorithm under in-
stance I, respectively. An online algorithm is called c-competitive
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Table 2: Summary of Notations

Name Description

N The set of all EVs, indexed by =
) Number of time slots
T The set of time slots, i.e., T 2 {1, 2, ..,) }, indexed by C
⇠ The capacity of the charging station
?C Electricity price at time C
0= Arrival time of EV =
3= Departure time of EV =
⇢= Energy demand of EV =
'= Rate limit of charging power in one time slot for EV =
E= Valuation of EV = for receiving its demand
T= Set of time slots that EV = is available at the station
~=C The amount of energy that is being delivered to EV = at time C
G= Indicator variable which indicates whether EV = has decided to be charged at the station or not

if OPT(I)/ALG(I)  c holds for all instances, where c � 1 is called
the competitive ratio (CR). We aim to design an online algorithm
with a CR that is as small as possible.
Assumptions. We make following assumptions through the paper.

A��������� 1 (I������������ ��������). The rate limit of indi-
vidual EV charging rate is much smaller than the charging capacity
of the station, i.e., '= ⌧ ⇠,8= 2 N .

Practically, a charging station can charge tens of EVs simulta-
neously; therefore, its capacity is much larger than the charging
rate of each EV. This assumption is also common in the literature
with competitive analysis, e.g., [16, 29]. Additionally, assumption 1
allows us to focus on the nature of our problem with mathematical
convenience.

Next, we de�ne the value density of EV = as its value on per-unit
energy, i.e., E=/⇢= , which is the payment amount that each EV is
willing to pay per unit of energy.

A��������� 2 (B������ ����� �������). The value densities
of EVs are bounded, i.e., E=

⇢=
2 [!,* ],8= 2 N , where ! and* are the

lower and upper bounds for the value density.

In our algorithm design and analysis, we assume that ! and* are
known in advance, e.g., from user surveys or historical behavior.

A��������� 3 (B������ ������������). The available window
of EV charging is bounded, i.e., 3= � 0= 2 [⇡min,⇡max],8= 2 N .

In practice, it is reasonable to have a lower bound for the EV
available window since the EV cannot stay less than a minimum du-
ration needed to get charged up to their demand given the charging
rate limit. Also, each EV’s availability time typically has an upper
bound that is imposed by the station to ensure there are enough
chargers available for newly arriving EVs.

A��������� 4 (B������ ����������� P����). The electricity
price {?C }C 2T is bounded, i.e., 0  ?C  ?max  !,8C 2 T .

We assume the value density is greater than the maximum elec-
tricity price, i.e., E=/⇢= > ?max,8= 2 N . Thus, EVs can be charged
at the stations with non-negative utility surplus.

Algorithm 1 Online Posted-Pricing Algorithm (OPA(q))
1: Inputs: setup information {⇠, {?C }C 2T}, pricing function q =

{qC (·)}C 2T ;
2: Initialization: capacity utilizationF (0)

C = 0,8C 2 T ;
3: while a new EV = arrives with {0=,3=, ⇢=,'=} do
4: solve a candidate charging schedule {~̂=C }C 2T= from

min
~=C �0

’
C 2T=

π F (=�1)
C +~=C

F (=�1)
C

qC (D)3D (2a)

s.t.
’

C 2T=
~=C � ⇢=, ( ˆ̀=) (2b)

~=C  '=,8C 2 T= . (f̂=C ) (2c)

5: set the posted price b= =
Õ
C 2T= qC

⇣
F (=�1)
C + ~̂=C

⌘
~̂=C ;

6: if EV = accepts the charging then
7: set Ĝ= = 1 and charge EV = by {~̂=C }C 2T= ;
8: else
9: set Ĝ= = 0, ~̂=C = 0,8C 2 T= ;
10: end if

11: update utilizationF (=)
C =

(
F (=�1)
C + ~̂=C C 2 T=

F (=�1)
C C 2 T \ T=

12: end while

3 ALGORITHM AND RESULTS
In this section, we propose an online posted-pricing algorithm (OPA)
that can jointly determine the posted price and the corresponding
charging schedule in EV charging networks.

3.1 An Online Posted-Pricing Algorithm
When a new EV = arrives, OPA(q) uses a predetermined pricing
function q to estimate the charging cost of the EV and determines a
candidate charging schedule {~̂=C }C 2T= by solving a (pseudo) cost-
minimization problem (2). In this problem, qC (D)3D estimates the
(pseudo) cost of charging 3D unit of energy when the utilization of
the station is D in time slot C . Then the objective of the problem (2)
is to minimize the total (pseudo) cost of satisfying the EV’s request.
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Then algorithm (1) sets the posted price as the total estimated cost
of charging EV =, i.e., b= =

Õ
C 2T= qC (F

(=�1)
C + ~̂=C )~̂=C , where

F (=�1)
C is the charging station’s utilization in slot C when a new

EV = arrives. If EV =’s value is no smaller than the posted price,
the o�er will be accepted, and the station charges the EV based on
the candidate schedule. Finally, the charging station’s utilization is
updated and used for estimating the charging cost for the next EV.

The performance of OPA(q) is determined by the pricing function.
In this paper, we consider the pricing function in the following
form:

qC (F) =
8>>><
>>>:

!, F 2 [0, V)
i (F), F 2 [V,⇠]
+1, F 2 (⇠, +1)

,8C 2 T . (3)

This function consists of three segments. The �rst �at segment
(F 2 [0, V)) is set to the lower bound of EVs’ value density. Then
if EV = is among the �rst few EVs that come to the station, it
will receive a posted price ⇢=!, which the lowest possible price,
and thus will accept the o�er. This design ensures that the station
can at least admit some EVs to secure certain pro�ts. The second
segment i (F) is a non-decreasing function to realize an intuitive
idea that the station becomes more selective to admit EVs as its
utilization increases. The last segment sets the price to1 when the
utilization exceeds the capacity. In this way, any charging schedule
that exceeds the capacity constraint leads to an in�nitely large
posted price (which can be set to a cap price in practice), preventing
capacity violations.

3.2 Main Results
Let CR(q) denote the CR of OPA with pricing function q . In this
section, we present the main theoretical results of this paper, which
show how to design the pricing functionq such that OPA can achieve
the order-optimal CR for the joint pricing and scheduling problem.

T������ 3.1. Under Assumptions 1-4, when the parameter sat-
is�es (* /!) (⇡max/⇡min) � 2 and the pricing function is given by
q⇤ = {q⇤C (·)}C 2T , where for all C 2 T ,

qC (F) =
8>>><
>>>:

!, F 2 [0,⇠/U)
!�?C
4 4

U
⇠ F + ?C , F 2 [⇠/U,⇠]

+1, F 2 (⇠, +1)
, (4)

with U = 1 + 2 ln(\ ) and \ = *⇡max/⇡min

!�?max , then the competitive ratio
of OPA is CR(q⇤) = $ (ln(\ )).

This theorem provides the design of the pricing function for
OPA and the corresponding CR. Note that the technical assumption
(* /!) (⇡max/⇡min) � 2 states that multiplication of the value and
duration �uctuation ratios should be larger than 2. We postpone
the proof of Theorem 3.1 to Section 4.

T������ 3.2. There is no online algorithm that can achieve a
competitive ratio smaller than ⌦(ln(\ )) for our problem.

P����. To prove this result, we consider two special cases of our
problem. First, the basic online knapsack problem [38] is a special
case of our problemwith no energy price, setting the departure time
of each EV = to ) , the demand of () � 0=)'= , which correspond to

'= charging demand in each slot. De�ne d = *
! as the �uctuation

ratio, and the lower bound of online knapsack is ⌦(ln(d)) [38].
Secondly, with the special case of homogeneous values, i.e.,

E= = E, 8=, no energy cost, i.e., ?C = 0, 8C , and di�erent duration
of EVs, our problem degenerates to the online interval scheduling
problem [15]. Let X = ⇡max/⇡min be the duration ratio. It is known
that the lower bound on the competitive ratio for any online algo-
rithm for the online interval scheduling is ⌦(ln(X)) [15]. Now, with
two special cases of the online knapsack problem and the online
interval scheduling, the lower bound of any online algorithms for
problem (1) is

CR(OPA) � max{⌦(ln(X)),⌦(ln(d))} � 1
2
⌦(ln(X)) + 1

2
⌦(ln(d))

� 1
2
⌦(ln(Xd)) = ⌦(ln(\ )),

where \ = *⇡max/⇡min

!�?max and with ?max = 0, we have \ = Xd . ⇤

Theorem 3.2 gives a lower bound of the CR for the joint pricing
and scheduling problem. Combining Theorem 3.1 and Theorem 3.2
concludes that our proposed OPA can achieve an order-optimal CR.

4 COMPETITIVE ANALYSIS
This section presents the proof of Theorem 3.1, and simultaneously
shows how to design the threshold function q⇤ for OPA to achieve
the order-optimal CR.

4.1 Roadmap for the Proof
Recall that in OPA, the pricing function becomes in�nitely large
once the utilization exceeds the capacity of the charging station, i.e.,
qC (F (=�1)

C +~̂=C ) = +1,8C 2 T ,= 2 N ifF (=�1)
C +~̂=C > ⇠ . Thus, if

any EV’s charging candidate schedule exceeds the station capacity,
OPA sets the posted price to +1 to reject this request. However, the
discontinuity of the pricing function, qC (F) : R+ ! R+ atF = ⇠ ,
results in di�culties in the competitive analysis since the cost min-
imization problem (2) may not be a convex problem, prohibiting us
from directly applying existing approaches (e.g., primal-dual based
analysis). Thus, we divide the analysis of OPA into two cases. Let  
denote the set of instances that satisfy Assumptions 1-4 and divide
 into two disjoint subsets  1 and  2.  1 includes the instances,
under which OPA does not output a candidate schedule that violates
the capacity. Then the utilization of the charging station under  1

is away from the capacity ⇠ and hence we call  1 capacity-free
instances.  2 =  \  1 is then called capacity-limited instances
because there exists at least one time slot when the capacity can be
violated by one candidate schedule.

In the proof of Theorem 3.1, we �rst analyze the CR of OPA(q⇤)
under capacity-free instances  1 in Section 4.2. In this case, the
cost minimization problem (2) is a convex problem and we analyze
the CR of OPA based on online primal-dual (OPD) framework [9, 30].
In fact, we can provide a constructive proof, which not only proves
CR, but also shows how to design the pricing function q⇤.

L���� 4.1. Given pricing function q⇤ in Equation (4), the CR
of OPA(q⇤) under capacity-free instances  1 is OPT(I)

ALG(I)  U = 1 +
2 ln(\ ),8I 2  1.
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Given the pricing function q⇤ obtained in the capacity-free case,
we then analyze the CR of OPA(q⇤) under the capacity-limited in-
stances  2. Since we cannot rely on the convexity of the problem (2)
in this case, we derive the CR by �guring out the worst-case in-
stances in di�erent scenarios and �nally obtain the following upper
bound for the CR.

L���� 4.2. Given pricing functionq⇤ in Equation (4), the competi-
tive ratio of OPA(q⇤) under capacity-limited instances  2 is OPT(I)

ALG(I) 
3max

n
2
p
4, \U

exp(U/2�1)
o
= 3

p
4 max {2, 1 + 2 ln\ } ,8I 2  2.

Combining Lemma 4.1 and Lemma 4.2 gives

CR(U⇤)  max
I2 1[ 2

OPT(I)
ALG(I)

= max
⇢
U, 6

p
4,

3\U
exp(U/2 � 1)

�
= $ (ln\ ),

which completes the proof of Theorem 3.1.

4.2 Proof of Lemma 4.1
Based on OPD, we can derive the following technical lemma that
provides a su�cient condition on the pricing function to ensure
the competitiveness of OPA.

L���� 4.3. Under capacity-free instances, OPA(q) isU-competitive
if the pricing function q = {qC }C 2T is given by, for all C 2 T ,

qC (F) =
(
!, F 2 [0, V),
iC (F), F 2 [V,⇠],

(5)

where V � ⇠/U is a utilization threshold, and iC is a non-decreasing
function that satis�es:(

UiC (F) �⇠i0C (F) � U?C ,F 2 [V,⇠]
iC (V) = !,iC (⇠) � *⇡max

⇡min
. (6)

Based on Lemma 4.3, we can design the pricing function q that
satis�es the di�erential equation (6) and minimize the competitive
ratio U . To do so, we bind all inequalities in (6) and solve this
boundary value problem. Then we can obtain that V = ⇠/U and
the pricing function q⇤ is given by equation (4), which proves
Lemma 4.1. In what follows, we prove the technical Lemma 4.3
based on OPD.

Consider the relaxed primal problem (1) as follows

max
G=�0,~=C �0

’
=2N

E=G= �
’
C 2T

?C
’
=2NC

~=C (7a)

s.t.
’
C 2T=

~=C � ⇢=G=, 8= 2 N , (`=) (7b)

’
=2NC

~=C  ⇠, 8C 2 T , (_C ) (7c)

~=C  '=G=, 8= 2 N , C 2 T=, (f=C ) (7d)
G=  1, 8= 2 N , ([=), (7e)

where we relax the binary variable G= 2 {0, 1} to be continuous, i.e.,
G= 2 [0, 1], and - := {`=}=2N , , := {_C }C 2T , 2 := {f=C }=2N,C 2T= ,
( := {[=}=2N are the Lagrange multipliers associated with the

corresponding constraints. The dual of the problem (7) is:

min
-,,,2 ,(�0

’
C 2T

_C⇠ +
’
=2N

[= (8a)

s.t. E= � `=⇢= +
’
C 2T=

f=C'= � [=  0,8= 2 N , (8b)

`= � _C � ?C � f=C  0,8= 2 N , C 2 T= . (8c)

The key idea of the OPD approach is to construct a feasible dual
solution based on the online solution produced by an online al-
gorithm, and then build the upper bound of the o�ine optimum
using the feasible dual objective based on weak duality. Given an
arrival instance I, we denote the online solution by -̂ := (x̂, ~̂)
and the constructed dual variable by ⇤̄ := (-̄, ,̄, 2̄ , (̄). Also let %=
and ⇡= denote the objective values of the primal problem (7) and
dual problem (8) after the =-th EV is processed, respectively. Then
the OPD can be summarized as the following proposition.

P���������� 4.1 (P���������� 3.1 [30]). An online algorithm is
U-competitive if the following conditions hold:

(i) -̂ and ⇤̄ are feasible solutions of the primal problem (7) and the
dual problem (8), respectively;

(ii) There exists an index : 2 N such that the following su�cient
inequality holds:

• (initial inequality) %: � 1
U⇡: ,

• (incremental inequality) %= � %=�1 � 1
U (⇡= � ⇡=�1),8= =

: + 1, . . . ,# .

Next we prove Lemma 4.3 based on Proposition 4.1.
Constructing feasible solutions. Given the feasible primal so-
lution -̂ := (x̂, ~̂) produced by OPA(q), we construct the dual solu-
tions ⇤̄ := (-̄, ,̄, 2̄ , (̄) as follows:

_̄C = [qC (F (# )
C ) � ?C ] · I{F (# )

C � V},8C 2 T , (9a)

¯̀= = ˆ̀= = max
C 2T= :~̂=C>0

qC (F (=)
C ), (9b)

f̄=C = f̂=C = [ ˆ̀= � qC (F (=)
C )] · I{~̂=C > 0}, (9c)

[̄= =

(
E= � ¯̀=⇢= + Õ

C 2T= f̄=C'=, Ĝ= = 1,
0, Ĝ= = 0,

(9d)

where ˆ̀= and {f̂=C }C 2T= are the optimal dual variable of the cost
minimization problem (2), andF (=)

C is the utilization of the charging
station at slot C after processing EV =.

L���� 4.4. The constructed dual variables in Equation (9) are
feasible for the problem (8).

P����. It can be easily checked that all constructed dual vari-
ables are non-negative. We aim to show the constructed dual vari-
ables satisfy dual constraints (8b) and (8c). Since the cost minimiza-
tion problem (2) is convex under the capacity-free instances, by
checking its KKT conditions, we have the equations as follows:

qC (F (=)
C ) � ˆ̀= + f̂=C � Ŵ=C = 0, 8C 2 T= (10a)

ˆ̀=⇢= � ˆ̀=
’
C 2T=

~̂=C = 0 (10b)

f̂=C ~̂=C � f̂=C'= = 0, 8C 2 T= (10c)
Ŵ=C ~̂=C = 0,8C 2 T=, (10d)
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where the last equation is from the constraint ~=C � 0 and Ŵ=C is
the corresponding dual variable.

By multiplying ~̂=C on both sides of Equation (10a), summing
over T= , and substituting equations (10b)-(10d), we can �nally have’

C 2T=
~̂=CqC (F (=)

C ) = ˆ̀C⇢= �
’
C 2T=

f̂=C'= . (11)

Note that the constructed dual variables ¯̀= and f̄=C in Equations (9b)
and (9c) are exactly the same as ˆ̀= and f̂=C . Then we can check the
dual constraints (8b).When Ĝ= = 1, we have E=� ¯̀=⇢=+

Õ
C 2T= f̄=C'=�

[̄= = 0.When Ĝ= = 0, we have [̄= = 0 and E= <
Õ
C 2T= ~̂=CqC (F

(=)
C ) =

¯̀C⇢= � Õ
C 2T= f̄=C'= . Thus, ⇤̄ satis�es constraint (8b).

Next, we check the dual constraint (8c).
When ~̂=C > 0, we have f̄=C = ¯̀= � qC (F (=)

C ). Thus, ¯̀= � _̄C �
?C � f̄=C = ¯̀= � qC (F (=)

C ) � f̄=C = 0. When ~̂=C = 0, ¯̀= < qC (F (=)
C )

and f̄=C = 0. This gives ¯̀= � _̄C � ?C � f̄=C = ¯̀= � qC (F (=)
C ) < 0.

Thus, ⇤̄ satis�es constraint (8c) and this completes the proof. ⇤

Guaranteeing the su�cient inequality: We aim to �nd a set
of pricing functions q and the corresponding CR U such that the
su�cient inequality holds.

We �rst show there exists : 2 N such that the initial inequality
holds. Let : be the index of the �rst EV, after processing which
the station utilization reaches V in at least one slot. Under the
in�nitesimal scheduling assumption 1, we can assume there exists
a set of time slots T̄: ✓ T: such thatF (: )

C = V,8C 2 T̄: andF (: )
C <

V,8C 2 T \ T̄: . Note that the �rst : EVs are all admitted since the
posted price b= =

Õ
C 2T= ~̂=CqC (F

(=)
C ) = !⇢=  E=,8= 2 [:]. Then

we can have

%: =
’

=2 [: ]
E= �

’
=2 [: ]

’
C 2T=

?C ~̂=C , (12a)

=
’

=2 [: ]
[[̄= +

’
C 2T=

~̂=CqC (F (=)
C )] �

’
=2 [: ]

’
C 2T=

?C ~̂=C (12b)

=
’

=2 [: ]
[̄= +

’
C 2T

(! � ?C )
’

=2 [: ]
~̂=C (12c)

�
’

=2 [: ]
[̄= +

’
C 2 T̄:

(! � ?C )V (12d)

� 1
U

’
=2 [: ]

[̄= +
’
C 2 T̄:

(! � ?C )
⇠

U
=

1
U
⇡: , (12e)

where (12b) is obtained by substituting the de�nition of [̄ and
Equation (11), (12c) holds sinceF (: )

C  V,8C 2 T , and (12e) holds
since V � ⇠/U . Thus, given the su�cient condition in Lemma 4.3,
the initial inequality holds.

The increments of primal and dual objectives can be cast as

%= � %=�1 = E= �
’
C 2T=

?C ~̂=C ,

⇡= � ⇡=�1 =
’
C 2T=

⇠ (qC (F (=)
C ) � qC (F (=�1)

C )) + [̄,

where we use qC (F (# )
C ) = Õ

=2N [qC (F (=)
C ) � qC (F (=�1)

C )]. When
Ĝ= = 0, we have %=�%=�1 = ⇡=�⇡=�1 = 0 and thus the incremental
inequality holds. When Ĝ= = 1, we can show that the incremental

inequality holds if the pricing function and the competitive ratio U
satisfy the su�cient condition (6) in Lemma 4.3. To see this, note

⇡= � ⇡=�1

=
’
C 2T=

⇠ (qC (F (=)
C ) � qC (F (=�1)

C )) + E= � ¯̀=⇢= +
’
C 2T=

f̄=C'=

=
’
C 2T=

⇠ (qC (F (=)
C ) � qC (F (=�1)

C )) + E= �
’
C 2T=

~̂=CqC (F (=)
C )

(13a)

=
’
C 2T=

h
⇠ (qC (F (=)

C ) � qC (F (=�1)
C )) � ~̂=CqC (F (=)

C )
i
+ E= (13b)


’
C 2T=

~̂=C
h
⇠q 0C (F

(=)
C ) � qC (F (=)

C )
i
+ E= (13c)


’
C 2T=

~̂=C
h
(U � 1)qC (F (=)

C ) � U?C
i
+ E= (13d)

 (U � 1)E= � U
’
C 2T=

~̂=C?C + E= = U (%= � %=�1), (13e)

where we substitute equation (11) to obtain (13a), use the inequality
qC (F (=)

C ) � qC (F (=�1)
C )  ~̂=Cq 0C (F

(=)
C ) based on assumption 1

in (13c), apply the su�cient condition (6) in (13d), and use inequality
E= � Õ

C 2T= ~̂=CqC (F
(=)
C ) (since Ĝ= = 1 in OPA(q)) in (13e).

Therefore, OPA(q) is U-competitive if the su�cient condition (6)
holds in Lemma 4.3. This completes the proof.

4.3 Proof of Lemma 4.2
Let I be an instance under the capacity-limited cases  2 and
{F (# )

C }C 2T be the �nal utilization of all time slots after OPA runs
for all EVs in I. Assume the time horizon) is long and is an integer
multiple of⇡max. We divide the time horizon into� = ) /⇡max par-
titions. We de�ne T⌘ := {C 2 T : (⌘� 1)⇡max + 1  C  ⌘⇡max} as
the set of time slots in the ⌘-th time partition, and T̂⌘ = T⌘[T⌘+1.
I⌘ is the sub-instance of I which includes EVs whose arrival times
are in T⌘ . Furthermore, we de�ne Ĩ⌘ as a 3-partition sub-instance
Ĩ⌘ = I⌘�1 [ I⌘ [ I⌘+1,⌘ 2 [� ], where I0 = I�+1 = 0. The
competitive ratio of OPA under instance I is:

CR(q⇤) = OPT(I)
ALG(I) =

Õ
⌘2 [� ] OPT(I⌘)Õ
⌘2 [� ] ALG(I⌘)

(14)

=
3
Õ
⌘2 [� ] OPT(I⌘)

ALG(I1) + Õ
⌘2 [� ] ALG(Ĩ⌘) + ALG(I� )

 3 max
⌘2 [� ]

OPT(I⌘)
ALG(Ĩ⌘)

.

Therefore, for calculating CR,we need to calculatemax⌘2 [� ]
OPT(I⌘ )
ALG( Ĩ⌘ )

.

P���������� 4.2. The total surplus of EVs that arrive in Ĩ⌘ and
accept the posted prices from OPA(q⇤) is lower bounded by

ALG(Ĩ⌘) � 1
U

’
C 2 T̂⌘

qC (F (# )
C )⇠ . (15)
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P����. We have’
C 2 T̂⌘

qC (F (# )
C )⇠ =

’
C 2 T̂⌘

’
=2I

⇠ [qC (F (=)
C ) � qC (F (=�1)

C )] (16)

=
’
C 2 T̂⌘

’
=2 Ĩ⌘ :C 2T=

⇠ [qC (F (=)
C ) � qC (F (=�1)

C )]


’
=2 Ĩ⌘

’
C 2T=

⇠ [qC (F (=)
C ) � qC (F (=�1)

C )],

where T= is the availability window of EV =. The second equality
holds because the maximum duration of each EV is ⇡max; hence,
the EVs that can stay in T̂⌘ must be from Ĩ⌘ . The last inequality
holds since the EVs in Ĩ⌘ can stay up to partition ⌘ + 2.

We de�ne �ALG= = (E= � Õ
C 2T= ?C~=C )Ĝ= as the surplus incre-

ment of OPA(q⇤) after EV = is processed. Next we aim to show
’
C 2T=

⇠ [qC (F (=)
C ) � qC (F (=�1)

C )]  U�ALG= . (17)

Case(i). When EV = rejects the o�er, both sides of (17) are zero;
thus, it stands correct.
Case(ii). When EV = is admitted, we have F (=)

C = F (=�1)
C + ~̂=C .

Because the pricing function (4) has three segments; thus, we have
three scenarios based on which segmentF (=)

C andF (=�1)
C lie in.

Case(iia): whenF (=)
C � V andF (=�1)

C � V , we have
’
C 2T=

⇠ [qC (F (=)
C ) � qC (F (=�1)

C )] (18a)

= ⇠
’
C 2T=

⌧ exp(F (=)
C U/⇠) [1 � exp(�~̂=CU/⇠)] (18b)

 ⇠
’
C 2T=

⌧ exp(F (=)
C U/⇠)~̂=CU/⇠ (18c)

= U
’
C 2T=

~̂=C [⌧ exp(F (=)
C U/⇠) + ?C ] � U

’
C 2T=

?C ~̂=C (18d)

= U [
’
C 2T=

~̂=CqC (F (=)
C ) �

’
C 2T=

?C ~̂=C ] (18e)

 U [E= �
’
C 2T=

?C ~̂=C ]]  U�ALG=, (18f)

where⌧ := !�?C
4 , Equation (18b) is obtained by substituting pricing

function to (4), and Inequality (18f) holds because when EV= admits
the o�er, we have E= � Õ

C 2T= ~̂=CqC (F
(=�1)
C ) .

Case(iib): whenF (=)
C > V andF (=�1)

C < V , we have
’
C 2T=

⇠ [qC (F (=)
C ) � qC (F (=�1)

C )] (19a)

= ⇠
’
C 2T=

[qC (F (=)
C ) � !] (19b)

 ⇠
’
C 2T=

[qC (F (=)
C ) � (⌧ exp(F (=�1)

C U/⇠) + ?C )] (19c)

= ⇠
’
C 2T=

⌧ exp(F (=)
C U/⇠) [1 � exp(�~̂=CU/⇠)], (19d)

where Inequality (19c) holds by noting that ⌧ exp(F (=�1)
C U/⇠) +

?C  qC (F (=�1)
C ) = !. Then, we can continue the proof in the same

procedure from Inequality (18c) to (18f).
Case(iic): when F (=)

C < V and F (=�1)
C < V , we have qC (F (=)

C ) =
qC (F (=)

C ) = ! and thus
Õ
C 2T= ⇠ [qC (F

(=)
C ) � qC (F (=�1)

C )] = 0 
U�ALG= . Therefore, in all cases, Inequality (17) stands correct, and
by combining inequalities (16) and (17), we have Inequality (15). ⇤

To calculate the upper bound of the competitive ratio under
capacity-limited instances  2, we aim to lower bound the objective
value of OPA(q⇤) and upper bound o�ine optimum. In Figure 1, we
depict an instance that can lead to the least possible utilization in
 2. In this instance, there are two groups of EVs that follow three
rules: (a) group 1 leaves the charging station at time slot C 0 and
group 2 arrives at the charging station at time slot C 0; (b) each EV in
each group is available at the charging station for ⇡min slots; and
(c) the energy demand of each EV equals ⇡min'= , which means
each EV must be charged up to its rate limit in each time slot during
its available window. We de�ne :1 (:2) as the �nal utilization from
group 1 (group 2) and :1 and :2 can be visualized by the heights of
the red and blue rectangles in Figure 1.

Before we proceed, we note that the scheduling part of the pro-
posed algorithm as a solution to problem (2) is a water-�lling solu-
tion, which can be shown as

~̂=C = min
nh
q�1
C ( ˆ̀=) �F (=�1)

C

i+
,'=

o
, (20)

where ˆ̀= can be determined by solving
Õ
C 2T= ~̂=C = ⇢= . Thus, the

per-slot charging rate scheduling starts with the least utilized slot
and �lls it up to either the water level or charging rate. The same
process then will be applied to the next least utilized slot until the
charging demand is satis�ed. This water-�lling solution is derived
based on the KKT condition (10). Consider the following three cases:
(i) if qC (F (=)

C ) > ˆ̀= , we have Ŵ=C > f̂=C � 0 and this gives ~̂=C = 0
from the complementary slackness; (ii) if qC (F (=)

C ) < ˆ̀= , we have
f̂=C > Ŵ=C � 0, and thus ~̂=C = '= ; (iii) if qC (F (=)

C ) = ˆ̀= , we have
~̂=C = q�1

C ( ˆ̀=) � F (=�1)
C . Combining these three cases gives the

water-�lling solution (20), and the determination of ˆ̀= is based on
Equation (10b).

In the following, we can argue that the �nal utilization obtained
by OPA(q⇤) under any capacity-limited instance is no less than that
depicted in Figure 1. First, there exists at least one time slot (C 0
in Figure 1) whose utilization is at its full capacity based on the
de�nition of the capacity-limited instance. To ensure the utilization
of the overlapping slot reaches the capacity, each EV cannot have
�exibility to shift its charging demand over time (each EV has ⇡min
slots of available window and A=⇡min energy demand in Figure 1)
since otherwise the water-�lling solution leads to higher utilization
for the slots excluding C 0.

We de�nek (F) as

k (F) =
(
!, F 2 [0,⇠/U)
!�?max

4 4
U
⇠ F + ?max, F 2 [⇠/U,⇠]

,

and it can be easily veri�ed that

k (F)  q⇤C (F), 8C 2 T̂⌘,F 2 [0,⇠] . (21)
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EV Group 1Arrival Time of
Group 1 EVs }

  Partition  h - 1 Partition h Partition  h + 1  Partition  h + 2

EV Group 2

Arrival Time of
Group 2 EVs

}

Figure 1: Illustration of the worst-case �nal utilization.

Based on Proposition 4.2 and Inequality (21), we have:

ALG(Ĩ⌘) � ⇠

U
[(⇡min � 1)k (:1) + (⇡min � 1)k (:2) +k (⇠)] . (22)

According to Jensen’s inequality and convexity of the pricing func-
tion, we additionally have k (:1) + k (:2) � k (⇠2 ) + k (⇠2 ) when
:1 + :2 = ⇠ . Because our pricing function (4) is a two segment
function, we have two cases:
Case(i): if U  2, then we have :1 = :2 = ⇠

2  V = ⇠
U and

ALG(Ĩ⌘) �⇠
U
[(2⇡min � 2)! +k (⇠)] (23a)

� 2⇡min!⇠

U
(23b)

� 2⇡min⇠ (! � ?max)
U

, (23c)

where Inequality (23a) stands correct because k (:1) = k (:2) =
!. Inequality (23b) is correct since (* /!) (⇡max/⇡min) � 2, and
k (⇠) � *⇡max/⇡min so we have:k (⇠) � 2!.

Case(ii): if U > 2, then :1 = :2 = ⇠
2 > V = ⇠

U , and

ALG(Ĩ⌘) �⇠
U

 
(2⇡min � 2) ( ! � ?max

4
) exp(U

2
) (24a)

+( ! � ?max

4
) exp(U)

!

�⇠
U

 
2⇡min ( ! � ?max

4
) exp(U

2
)
!
, (24b)

Inequality (24b) also stands because when U � 2, we have

( ! � ?max

4
) exp(U) > 2( ! � ?max

4
) exp(U

2
).

The upper bound of o�ine optimum is OPT(I⌘)  2⇡max⇠* ,
which is the maximum value the o�ine algorithm could achieve
in 2⇡max time slots, and the competitive ratio is as follows. When
U  2, according to Inequality (23), we have

OPT(I⌘)
ALG(Ĩ⌘)

 ⇡max*U

⇡min (! � ?max)
 2\ = 2

p
4,

where we apply U = 1 + 2 ln(\ ) = 2.

When U > 2, according to Inequality (24) we have

OPT(I⌘)
ALG(Ĩ⌘)

 ⇡max*U

⇡min ( !�?
max

4 ) exp( U2 )
=

\U

exp(U/2 � 1) .

Combining the above two cases gives

OPT(I⌘)
ALG(Ĩ⌘)

 max
⇢
2
p
4,

\U

exp(U/2 � 1)

�
.

Therefore, according to Inequality (14), we have

OPT(I)
ALG(I)  3 max

⌘2 [� ]
OPT(I⌘)
ALG(Ĩ⌘)

 3max
⇢
2
p
4,

\U

exp(U/2 � 1)

�
.

This completes the proof.

5 EXPERIMENTAL RESULTS
In this section, we report the experimental results using EV charging
data traces. The goal is to evaluate the performance of the proposed
algorithms as compared to alternatives and investigate the impact
of the parameters on the performance of the algorithms.

5.1 Experimental Setup
Dataset. We use the Caltech ACN dataset [19], which includes
more than 50K EV charging sessions from more than 50 charging
stations. The dataset includes the arrival and departure time, the
charging demand, and the charging rate for each EV.
Parameter settings and metrics. To capture the scenario of lim-
ited capacity, we consider a charging station with an aggregate
capacity smaller than the total charging demand of EVs. We con-
duct a 1-day trial using 90 consecutive days in which we generate
20 trials randomly and calculate the average of the 20 pro�t ratios
for each day. Each EV = has a di�erent valuation (E=) in each trial
in a day, making 90 ⇥ 20 = 1800 trials in total. The ACN dataset
does not include the private value (E=) for EVs; hence, we follow
the approach in [33] to estimate the value for EVs by modeling the
distribution of historical arrivals. Each EV’s value is a randomized
function of the availability window, which means the higher the
window, the higher the EV’s value. As the counterpart of the com-
petitive ratio in the empirical setting, we use empirical pro�t ratio
as the performance metric, which is the ratio of the pro�t gained
by the optimal solution to the o�ine problem.
Comparison algorithms. We compare our algorithm OPA with
three other online algorithms: (1) A Utility-Based Online Algorithm
(UBOA), where the admission control is simply based on a �rst-come-
�rst-served policy. For the scheduling, UBOA adapts a water-�lling
policy and starts with the slots with lower utilization up to either
the capacity or EV charging rate. (2) Price Based Online Algorithm
(PBOA), where the admission policy is �rst-come �rst-served, but the
scheduling is a water-�lling approach based on the time-varying
unit energy cost of each time slot, i.e., the scheduler starts with the
time slot with lowest unit energy cost. (iii) Online Mechanism with
Myopic Price (OMMP) [27]: The online algorithm proposed in [27],
which calculates the charging schedule by solving a cost minimiza-
tion based on the per-slot energy price. This per-slot energy price is
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(a) High congestion (b) Medium congestion (c) Low congestion

Figure 2: Variation of the pro�t ratio in di�erent congestion scenarios.

(a) Capacity variation (b) Value density �uctuation (c) Duration variation (d) ?max variation

Figure 3: Impact of parameters.

a quadratic pricing function that we are utilizing to evaluate the al-
gorithm’s performance. The original maximization problem of ours
(1) and [27] are quite similar; therefore, we modify the cost function
in [27] into a linear one to compare the pro�t ratio fairly. Therefore,
OMMP is an online algorithm that uses a pricing function based on
the linear cost function to solve a cost minimization problem to
calculate the candidate charging schedule and the corresponding
marginal price for each unit of energy according to the pricing
function. Then OMMP decides to admit EV = if its surplus (value -
total scheduled energy price) is positive.

5.2 Experimental Results
Comparison results. In this experiment, we compare the perfor-
mance of di�erent algorithms in three di�erent congestion levels:
low, medium, and high, where the capacity in the station is ap-
proximately up to 60%, 30%, and 15% of the aggregate EV demand,
respectively. Figure 2 depicts the cumulative distribution function
(CDF) for empirical pro�t ratios of 1800 trials of experiments for all
four algorithms in low, medium, and high congestion. The results
show that in all congestion settings, OPA outperforms the alterna-
tives, and the lower the congestion is, the better the OPA result
gets as compared to other algorithms. A notable observation is that
nearly 90%, 80%, and 70% of the OPA’s pro�t ratios are less than
2 in low, medium, and high congestion scenarios, while these are
substantially lower for all three alternative algorithms.
The impact of parameters. In this experiment, we evaluate the
impact of variation of the parameters on the empirical pro�t ratios.

In particular, we vary the charging station capacity, �uctuation ra-
tio (d = * /!), duration ratio (X = ⇡max/⇡min), and the maximum
electricity price (?max). Figure 3(a) demonstrates that the empirical
pro�t ratio decreased as the capacity increased. This observation
makes sense since with more capacity, there is more room for EV
admission and is aligned with the observation in three di�erent
congestion regimes in Figure 2. Figure 3(b) shows that the �uctu-
ation ratio has a direct relation to the pro�t ratio, and the higher
the �uctuation ratio, the higher the competitive ratio, which also
approves the fact that in OPA and OMMP the theoretical competi-
tive ratio increases logarithmically with d . Figure 3(c) shows when
X increases, there is a slight increase in the pro�t ratios of OPA
and OMMP; however, pro�t ratios of UBOA and PBOA increase drasti-
cally. This observation is due to the fact that di�erent from UBOA

and PBOA, both OPA and OMMP take into account the duration of each
EV request in their algorithmic decision making. Finally, Figure 3(d)
shows that as the ?max increases, there’s a slight increase in the
pro�t ratio of OPA, but the slope of the increase is much smaller
than those of OMMP and PBOA. The pro�t ratio of UBOA does not
change because it is independent of electricity prices.

6 RELATEDWORKS
EV charging management has become a central topic of transporta-
tion electri�cation in recent decades. The problem is to decide
where to charge, when to charge, and what rate to charge given the
pro�le of EV requests (e.g., energy demand, departure time, etc.).
There exists a large body of literature that schedules EV charging
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in o�ine settings [17, 22]. This paper focuses on the online setting
where EVs arrive one by one and one must decide the scheduling of
each EV upon its arrival without knowing the future information.
In online EV charging, one stream of works studies how to charge
EVs under unknown future electricity prices [7, 12–14, 21, 24, 32].
In [12], the goal is to minimize the EV charging cost considering
real-time pricing. Furthermore, in [7, 13, 14, 24, 32], the focus is
on EV charging scheduling under forecasting the future real-time
prices or based on stochastic information of the real-time prices.
The authors in [21] study a multi-objective optimization to balance
best the cost of charging and dissatisfaction of the EVs. Di�erent
from these works, we focus on EV charging for a group of online
arriving EVs from a theoretical approach of competitive analysis.

The online EV charging problem allocates limited charging ca-
pacity to a group of EVs under a capacity limit where it is impossible
to admit all requests EVs and satisfy their requests. Therefore, there
exist two strategies for designing online algorithms. The �rst type
of strategy provides no guarantees on the received energy of EVs
and makes best e�orts to maximize the social welfare (utility of
all EVs minus charging cost) [20, 29, 37]. Although [37] works on
maximizing social welfare, they do not guarantee to fully charge
each admitted EV. The work in [20] has the charging station’s charg-
ing capacity constraint. But, it does not also guarantee to charge
the admitted EV up to its charging demand. In [29], the authors
propose an algorithm to maximize social welfare considering the
charging capacity. However, in [29], energy cost is not considered
and they only try to maximize social welfare regardless of trying to
minimize the cost EVs pay to the charging station. Our work is also
more challenging than [29] because we guarantee that if an EV is
admitted, it will be fully charged to its demand; however, in [29]
the EV could be partially charged based on how much the charging
station is crowded and its power capacity constraint.

The second stream makes two decisions for each EV: admission
control (whether to accept the EV for charging) and scheduling (how
to charge the EV if it is admitted). This stream of work provides
guaranteed service for all admitted EVs [4–6, 26, 27, 31]. Our work
lies in this stream of works. In [4], the authors propose an algorithm
to maximize the social welfare considering the charging capacity
with on-arrival commitment, which guarantees a charging amount
upon arrival of each EV; however, they only consider the sum of
all EVs’ utilities, disregard the electricity cost, and only guarantee
to charge the EV more than a fraction of its demand, not to charge
up to its full demand. In [26], whenever an agent is selected, their
mechanism pre-commits to charging the vehicle by its reported
departure time but maintains �exibility about when the charging
takes place and at what rate. The online mechanism in [26] does
not have the on-arrival commitment and commits to charge the EV
at least to a fraction of its demand in arbitrary time after its arrival.

In terms of considering the resource cost, our work is most rele-
vant to [27] because it considers the charging cost and also guar-
antees to charge an EV up to its demand if it is admitted. In [27],
the authors propose a cost function and design a pricing function
heuristically and then analyze its competitive ratio. The derivation
of the pricing function in our work is based on the well-established
online primal-dual framework and solving partial di�erential equa-
tions. This approach leads to a smaller competitive ratio and better
empirical pro�t ratio compared to [27]. Last, [31] also guarantees

to charge of admitted EVs up to their demand and its objective func-
tion is minimizing the total energy cost, but ignores the capacity
constraints of EV charging stations.

7 CONCLUSION
In this paper, we developed a competitive algorithm for joint pricing
and scheduling of EV charging where EVs arrive at the station in an
online manner. Our theoretical results are of independent interest
since they provide the �rst order-optimal algorithm for the integral
version of the online knapsack problem with reusable resources
and time-varying resource costs. Using real data traces, we demon-
strated the proposed algorithms outperform prior alternatives.

An interesting future direction is to extend the results into the
multi-station setting, where the EVs submit their charging requests
to multiple stations simultaneously, and the system operator should
determine whether or not to accept the request and, if so, when
(scheduling) and where (station assignment) to charge the vehicle.
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