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Abstract

The accuracy of simulation-based forecasting in chaotic systems is heavily de-
pendent on high-quality estimates of the system state at the time the forecast is
initialized. Data assimilation methods are used to infer these initial conditions by
systematically combining noisy, incomplete observations and numerical models of
system dynamics to produce effective estimation schemes. We introduce amortized
assimilation, a framework for learning to assimilate in dynamical systems from
sequences of noisy observations with no need for ground truth data. We motivate
the framework by extending powerful results from self-supervised denoising to the
dynamical systems setting through the use of differentiable simulation. Experimen-
tal results across several benchmark systems highlight the improved effectiveness
of our approach over widely-used data assimilation methods.

1 Introduction

Forecasting in the geosciences is an initial value problem of enormous practical significance. In high
value domains like numerical weather prediction [1], climate modeling [2], atmospheric chemistry
[3], seismology [4], and others [5–7], forecasts are produced by estimating the current state of the
dynamical system of interest and integrating that state forward in time using numerical models based
on the discretization of differential equations. These numerical models are derived from physical
principles and possess desirable extrapolation and convergence properties. Yet despite the efficacy of
these models and the vast amount of compute power used in generating these forecasts, obtaining
highly accurate predictions is non-trivial. Discretization introduces numerical errors and it is often
too computationally expensive to directly simulate the system of interest at the resolution necessary
to capture all relevant features.

Further complicating matters in geoscience applications is that many systems of interest are chaotic,
meaning that small errors in the initial condition estimates can lead to significant forecasting errors
over relatively small time frame [8]. This can be problematic when the initial condition for a forecast
is current state of the Earth, a large-scale actively evolving system that cannot be directly controlled.
Modern numerical weather prediction (NWP) models utilize hundreds of millions of state variables
scattered over a three-dimensional discretization of the Earth’s atmosphere [9]. To perfectly initialize
a simulation, one would need to know the true value of all of these state variables simultaneously.
This data is simply not available. In reality, what is available are noisy, partial measurements scattered
non-uniformly in time and space.

The inverse problem of estimating the true state of a dynamical system from imperfect observations
is the target of our work and of the broader field known as data assimilation. Data assimilation
techniques produce state estimates by systematically combining noisy observations with the numerical
model [10, 9]. The data assimilation problem differs from other state estimation problems in that the
numerical model acts both as an evolution equation and as a mechanism for transporting information
from regions where observations are dense to regions where observations are sparse [11]. Thus for
accurate estimates of the full system state, it is important to utilize both the model and observations.
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3.2 Self-Supervised Assimilation

The major obstacle to training an assimilation model is the lack of ground truth data. In this section,
we derive theoretical motivation for the self-supervised training procedure that lies at the heart of
amortized assimilation. Recent work in image denoising has shown that self-supervised methods
are a promising alternative to denoising methods with explicit noise models. Lehtinen et al. [27]
initially demonstrated the ability to denoise images without clean ground truth images by using
multiple noise samples. Batson and Royer [17] expanded this idea to the more general J -invariance
framework which exploits independence assumptions between noise in different partitions of the state
vector to derive a valuable decomposition of the denoising loss. Techniques developed using this
approach have exhibited comparable performance to explicitly supervised denoising across multiple
applications [28–30]. In our work, we extend this approach to the dynamical systems setting using
differentiable simulation. As we do not need the full generality of the J -invariance framework to
derive our results, we begin by restricting Proposition 1 from Batson and Royer [17] to our setting.
Lemma 1 (Noise2Self – Restricted). Suppose concatenated noisy observation vector y = [yk; yk+1]
is an unbiased estimator of concatenated state vector x = [xk; xk+1] and that the noise in yk is
independent from the noise in yk+1. Now let z = f(y) = [zk; zk+1]. If f is a function such that zk+1

does not depend on the value of yk+1 then:

Ey‖f(y)k+1 − yk+1‖
2= Ey[‖f(y)k+1 − xk+1‖

2+‖yk+1 − xk+1‖
2] (6)

While the proof of this lemma can be found in the supplementary materials (C.1), the main takeaway
is that if we are able to define a search space for our denoising function such that all f in the space
have the stated independence property, then the expected self-supervised denoising loss can be
decomposed into the expected supervised loss and the noise variance. As the noise variance term is
irreducible, this decomposition implies that minimizing the expected self-supervised loss is equivalent
to minimizing the expected supervised loss.

Moving back over to data assimilation, our ultimate goal is to train a neural network to act as our
denoising agent. Letting fθ denote a neural network parameterized by weights θ, we can formalize
the objective that we’d actually like to minimize as the supervised analysis loss:
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This supervised loss reflects that our goal is to produce the best initial condition estimates at the
start of a forecast window. Unfortunately, xk is unknown so this objective cannot be used to train a
denoising model. In the amortized assimilation framework, we instead minimize what we call the
self-supervised forecast loss:
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The self-supervised approach (Figure 4) has the obvious advantage that it uses readily available noisy
observations as the training target. However, we can also show that it is theoretically well-motivated
under Lemma 1. Differentiable simulation acts as a bridge between our denoised estimate and future
observations which are assumed to have independently sampled noise under the generative model
described in Section 2. While Lemma 1 is stated in terms of one step ahead forecasting, similar to
prior work [31], we observe significantly improved performance by unrolling the procedure over
multiple steps.

The power of this approach lies in the fact that the forecast objective can actually be used to bound
the analysis objective so that minimizing the forecast objective is equivalent to minimmizing an upper
bound on the analysis objective. To show this, apart from the previously specified generative model
assumptions, we rely on two additional assumptions:
Assumption 1 (Uniqueness of Initial Value Problem (IVP) Solution). The autonomous system
evolution equation x′(t) = g(x(t)) is deterministic and L-Lipschitz continuous in x thus admitting a
unique solution to the initial value problem under the Picard-Lindelöf theorem [32].

Assumption 2 (Unbiased Observation Operators). For all observation operators Hk, the observation
yk is an unbiased estimator of some subset of xk, ie. if xS

k is the restriction of xk to some subset of

features S then E[yk | xS
k ] = xS

k .
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We set F = 10, G = 10, γ = 1, α = 1, and use 36 spatial points. Experiments using this system are
also partially observed with every fourth spatial coordinate being observed at one time. The system is
integrated using RK-4 with steps of length .05 and partial observations every two steps. 4D-Var was
excluded in this comparison as performance on prior experiments did not justify further examination.

Results As we can see in Figure 7, the AmEnF models match or outperform the competitive
methods with more significant improvements coming at smaller ensemble sizes and higher noise
levels which are associated with stronger nonlinear effects [60]. The only system in which the AmEnF
does not notably outperform the comparison models is the KS equation. This is interesting as our
theoretical results rely on assumptions about ODEs while the KS equation is a PDE. Furthermore,
the bound we derived has a time component and the KS experiments occur at the largest time scales.
Nonetheless, despite these potential theoretical snags, the AmEnF model near matches the the top
performing models in accuracy while exhibiting stronger stability under repeated experiments.

6 Discussion and Conclusion

Limitations Despite the successful numerical results, the method is not without challenges. The
largest consideration is related to scaling. First, while the use of differentiable simulation allowed our
method to outperform competitive methods, the availability of adjoints in numerical forecasting is not
certain. Forecasts in domains like NWP often use legacy code where adjoints need to be maintained
by hand. We expect this to change over time, but this will limit the adoption of similar approaches in
the near future. Assuming the presence of adjoints, training cost is also a concern as it requires the
repeated simulation of the dynamical systems. However, numerical models tend to change slowly
and applications like NWP are among the largest users of compute in the world [1] with assimilation
cycles occurring multiple times per day, thus we expect the amortization to pay off over time.

Conclusion We theoretically and experimentally motivate the use of a self-supervised approach
for learning to assimilate in chaotic dynamical systems. This approach uses a hybrid deep learning-
numerical simulation architecture which outperforms or matches several standard data assimilation
methods across several numerical experiments. The performance gains are especially profound at
low ensemble sizes, which could enable higher resolution, more accurate simulation for assimilation
problems leading to stronger predictions for high value problems like numerical weather prediction
in the future.
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