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Abstract

The accuracy of simulation-based forecasting in chaotic systems is heavily de-
pendent on high-quality estimates of the system state at the time the forecast is
initialized. Data assimilation methods are used to infer these initial conditions by
systematically combining noisy, incomplete observations and numerical models of
system dynamics to produce effective estimation schemes. We introduce amortized
assimilation, a framework for learning to assimilate in dynamical systems from
sequences of noisy observations with no need for ground truth data. We motivate
the framework by extending powerful results from self-supervised denoising to the
dynamical systems setting through the use of differentiable simulation. Experimen-
tal results across several benchmark systems highlight the improved effectiveness
of our approach over widely-used data assimilation methods.

1 Introduction

Forecasting in the geosciences is an initial value problem of enormous practical significance. In high
value domains like numerical weather prediction [1], climate modeling [2], atmospheric chemistry
[3], seismology [4], and others [5—7], forecasts are produced by estimating the current state of the
dynamical system of interest and integrating that state forward in time using numerical models based
on the discretization of differential equations. These numerical models are derived from physical
principles and possess desirable extrapolation and convergence properties. Yet despite the efficacy of
these models and the vast amount of compute power used in generating these forecasts, obtaining
highly accurate predictions is non-trivial. Discretization introduces numerical errors and it is often
too computationally expensive to directly simulate the system of interest at the resolution necessary
to capture all relevant features.

Further complicating matters in geoscience applications is that many systems of interest are chaotic,
meaning that small errors in the initial condition estimates can lead to significant forecasting errors
over relatively small time frame [8]. This can be problematic when the initial condition for a forecast
is current state of the Earth, a large-scale actively evolving system that cannot be directly controlled.
Modern numerical weather prediction (NWP) models utilize hundreds of millions of state variables
scattered over a three-dimensional discretization of the Earth’s atmosphere [9]. To perfectly initialize
a simulation, one would need to know the true value of all of these state variables simultaneously.
This data is simply not available. In reality, what is available are noisy, partial measurements scattered
non-uniformly in time and space.

The inverse problem of estimating the true state of a dynamical system from imperfect observations
is the target of our work and of the broader field known as data assimilation. Data assimilation
techniques produce state estimates by systematically combining noisy observations with the numerical
model [10, 9]. The data assimilation problem differs from other state estimation problems in that the
numerical model acts both as an evolution equation and as a mechanism for transporting information
from regions where observations are dense to regions where observations are sparse [11]. Thus for
accurate estimates of the full system state, it is important to utilize both the model and observations.
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One recent trend in deep learning research has been the push to develop neural network models to
replace expensive, oft repeated processes. This incurs a large upfront cost to train the network in
exchange for a faster solution to subsequent iterations of the problem. These amortized methods
were initially developed for statistical inference [12] but have also been used in the context of
numerical simulation [13], and meta-learning [14]. Our work extends this approach to variational
data assimilation [15].

In this work, we introduce a self-supervised framework for learning to assimilate which we call
amortized assimilation. Here, we use the term self-supervised to indicate that our method learns to
assimilate entirely from trajectories of noisy observations without the use of ground truth data during
training. Our design incorporates the objective flexibility of variational assimilation but amortizes
the expense of solving the nonlinear optimization problem inherent to variational methods into the
training of a neural network that then behaves as a sequential filter.

Our contributions are both theoretical and empirical. In Section 3.1, we introduce an amortized
assimilation architecture based on the Ensemble Kalman Filter [16]. We then develop the theory of
amortized assimilation in Section 3.2 by extending the powerful self-supervised denoising results of
Batson and Royer [17] to the dynamical systems setting through the use of differentiable simulation.
We then support this theory through a set of numerical experiments! in Section 5, where we see
that amortized assimilation methods match or outperform conventional approaches across several
benchmark systems with especially strong performance at smaller ensemble sizes.

2 Preliminaries

Problem Setting In this work, we consider a dy-
namical system with state variable x(¢) € C C R?
where C'is a compact subset of R? and system dy-

namics defined by the differential equation: @ @ @

X x(1) m

with g as a time-invariant, Lipschitz continuous map
from R? — R<. The state is observed at a sequence

of K discrete time points {7, 71, ..., 7x } generating Figure 1: Observations are assumed to be

the time-series yg.;c = {¥o,¥1,---, ¥ | Where 0 < generated from a Hidden Markov Model.
k < K is an index corresponding to the time point

7. These observations are imperfect representations of the system states xo.x = {Xo,X1,...Xx }
generated from observation operators of the form:

Vi = He(Xe) + m (2)

where H;, is an arbitrary potentially nonlinear function and 1, ~ N(0, o2I). This noise model is
often referred to as a Hidden Markov Model (Figure 1). In the classical assimilation setting, the
observation operators are assumed to be known a priori though our proposed method is capable
of learning a subset of observation operators. For a problem like numerical weather prediction,
these operators may represent measurements taken of certain atmospheric quantities at a particular
measurement location.

Data assimilation is then the inverse problem of estimating the true trajectory Xg. x from our noisy
observations y,. - and our model of the system evolution:

Tk+1

X(ri41) = Misa (x(72)) = x(m3) + / g(x(1)) dt. 3)

Tk

Sequential Filtering In the absence of ground truth, it is practical to present data assimilation from
a statistical perspective. In particular, the quantity of interest that we are concerned with in this paper
is the filtering distribution p(Xy, | y,.;, ). Efficient algorithms for estimating the filtering distribution

!Code available at https://github. com/mikemccabe210/amortizedassimilation.



Analysis

s’ N g
| \

|
?
|

w“?ﬂc) ?
|
z%(Th+1)
zf (Th41) | ] |
. N - !
< >-+.Z >
Tk Forecast Th+1 Forecast Th+2

Figure 2: Ensemble filters model the time-evolution of uncertainty under nonlinear dynamics by
maintaining a set of samples from the state distribution and simulating their trajectories forward in
time. Observations are then used to refine these forecast estimates in what is called the analysis step.

are derived from exploiting dependence relationships in the generative model to produce the two step
cycle:

Forecast: P(Xk | Y1) = / p(Xg | Xe—1) dxp_1 (4a)
Rd

Analysis: P(Xk | ¥o.) o< P(Yy | X0)P(Xk | Yo 1) (4b)

When evaluating data assimilation methods, the objective function is often evaluated with respect
to the “analysis” estimates as these act as these are the initial conditions used for the next forecast

phase. In subsequent sections, we will use x£ and x} to refer to forecast and analysis estimates of x,
respectively.

In the case of linear dynamics with Gaussian uncertainties, the Kalman filter [18] provides both the
forecast and analysis distributions exactly in closed form. However, the general case is significantly
more complicated. Under nonlinear dynamics, computing the forecast distribution requires the
solution of the Fokker-Planck partial differential equation [19]. While finding an exact solution to
these equations is computationally infeasible, one can produce what is called an ensemble estimate of
the forecast distribution using Sequential Monte Carlo methods [20].

Ensemble filters (Figure 2) replace an exact representation of the uncertainty over states with an
empirical approximation in the form of a small number of samples called particles or ensemble
members. The forecast distribution can then be estimated by integrating the dynamics forward in
time for each ensemble member independently. Allowing for full generality leads to particle filter
approaches while enforcing Gaussian assumptions leads to the Ensemble Kalman filter (EnKF) [16].
The former is rarely used in data assimilation settings as particle filters can become degenerate in
high dimensions [21] while the latter has been quite successful in practice. Like the classical Kalman
filter, the EnKF assumes that both the state distribution and observation likelihoods are Gaussian.
The latter is often reasonable, but the former is a rather strong assumption under nonlinear dynamics.

Ensemble methods possess an inherent trade-off in that larger ensembles more accurately model
uncertainty, but each ensemble member requires independently integrating the dynamics forward in
time which can be significantly more expensive than the assimilation step itself. Bayesian filters rely
on robust covariance estimates to maintain stability which can be difficult to obtain when using a small
ensemble. Heuristics such as covariance inflation [22] and localization [23] have been developed
to improve stability at smaller ensemble sizes, but there remains value in developing methods that
improve upon the accuracy of these approaches.

Variational Assimilation The alternative to sequential filters is variational assimilation. Variational
assimilation methods, like 4D-Var [24], directly solve for the initial conditions of a system by finding
the state Xy which minimizes the negative log posterior density through nonlinear optimization. This
is expensive, but gradient-based optimization utilizing the adjoint of the numerical model avoids the
persistent Gaussian state assumptions necessary for tractable Bayesian filters. Furthermore, these
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Figure 3: The AmEnF replaces the analysis step of a conventional ensemble filter with a neural
network trained using historical data. The model uses an augmented state which includes both
standard inputs as well as recurrent memory.

methods can be augmented by auxiliary objectives promoting concordance with physical properties
like conservation laws.

3 Amortized Assimilation

3.1 Amortized Ensemble Filters

Our proposed approach attempts to combine the flexibility of variational methods with the efficiency
of sequential filters by training a neural network to act as an analysis update mechanism. Before
diving into the theory, we present the general amortized assimilation framework from the perspective
of a specific architecture which we call the Amortized Ensemble Filter (AmEnF). The AmEnF (Figure
3) replaces the EnKF analysis equations with a parameterized function in the form of a neural network
whose weights are optimized for a specific dynamical system during training. By unrolling a fixed
number of assimilation cycles as first proposed in Haarnoja et al. [25], the AmEnF can be trained
efficiently using backpropagation through time [26]. The loss used for this training will be discussed
in more detail in Section 3.2.

One advantage of decoupling from the statistical model in this way is that it allows us to incorporate
more information into our analysis process. Like the EnKF, the analysis ensemble members are

computed using the forecast values x{ . for each ensemble member i € [m] with m denoting the

number of ensemble members, the ensemble covariance P,f , and the observations y;. However,

we augment these features with the dynamics g(x{ &) and coordinate-wise recurrent memory ¢; x—1
resulting in the following update equations:

xl ) = Mi(x, ) Pf = Cov({x] 1)
Zyy 2, — fL(Xika P]fa Ykag(xik)aci,kfl) Axi’Aci - fN(Xika P]faYka g(xik)aci,kfl) (%)
X?,k =Az; ® Xik + Zg, Cik = Ae; OCip—1 + Ze,

where fr, and fy are neural networks with linear and sigmoid final activations respectively. We
implement these as a single network which is split only at the final layer. We observed notable gains
to training stability through the inclusion of this sigmoid-gated final layer. For scalability, we do not
use the full covariance matrix as an input to the model. Rather, we include local covariance entries
as additional feature channels where each channel represents the covariance with the state value at
a fixed relative spatial position. For instance in a 1D system, the relative covariance channels may
contain the variance at the given point and the covariances with the points to the left and right.

The inclusion of recurrent memory may seem out of place when the dynamics are assumed to be
Markovian. However, while the dynamics themselves are Markovian, the data assimilation process is
not. The inclusion of memory allows the model to learn from the past without explicitly including
previous states and observations. This is a significant benefit in practice. The other non-standard
inclusion, the local dynamics, led to a small performance boost as well. As our method is not reliant
on generative models of the inputs, additional features could be added trivially.



3.2 Self-Supervised Assimilation

The major obstacle to training an assimilation model is the lack of ground truth data. In this section,
we derive theoretical motivation for the self-supervised training procedure that lies at the heart of
amortized assimilation. Recent work in image denoising has shown that self-supervised methods
are a promising alternative to denoising methods with explicit noise models. Lehtinen et al. [27]
initially demonstrated the ability to denoise images without clean ground truth images by using
multiple noise samples. Batson and Royer [17] expanded this idea to the more general 7 -invariance
framework which exploits independence assumptions between noise in different partitions of the state
vector to derive a valuable decomposition of the denoising loss. Techniques developed using this
approach have exhibited comparable performance to explicitly supervised denoising across multiple
applications [28-30]. In our work, we extend this approach to the dynamical systems setting using
differentiable simulation. As we do not need the full generality of the [7-invariance framework to
derive our results, we begin by restricting Proposition 1 from Batson and Royer [17] to our setting.

Lemma 1 (Noise2Self — Restricted). Suppose concatenated noisy observation vectory = [y.; ¥, 1]
is an unbiased estimator of concatenated state vector x = [Xj;Xyy1] and that the noise in y,, is
independent from the noise iny, 1. Now letz = f(y) = [2r;2x+1]- If f is a function such that 2,1
does not depend on the value of y, _, | then:

Eyllf 01 =Yg 1= BylllF O)iar = Xnsa P+ pxg 1 — Xnsa]]?) (6)

While the proof of this lemma can be found in the supplementary materials (C.1), the main takeaway
is that if we are able to define a search space for our denoising function such that all f in the space
have the stated independence property, then the expected self-supervised denoising loss can be
decomposed into the expected supervised loss and the noise variance. As the noise variance term is
irreducible, this decomposition implies that minimizing the expected self-supervised loss is equivalent
to minimizing the expected supervised loss.

Moving back over to data assimilation, our ultimate goal is to train a neural network to act as our
denoising agent. Letting fy denote a neural network parameterized by weights 6, we can formalize
the objective that we’d actually like to minimize as the supervised analysis loss:

K—-1 m 2
. 1 1 :
L (9) = K _1 E (m E fF)(X{]wP]‘gfaYk7g(X{7k)7ci,k—l)) — Xk (7)
k=1 =1

This supervised loss reflects that our goal is to produce the best initial condition estimates at the
start of a forecast window. Unfortunately, Xj, is unknown so this objective cannot be used to train a
denoising model. In the amortized assimilation framework, we instead minimize what we call the
self-supervised forecast loss:

K-—1 m 2
1 1
£55(9) = 1 E (m E M1 (M1 Ofe(X,{kw)) = Yit1 ®)
k=1 =1

The self-supervised approach (Figure 4) has the obvious advantage that it uses readily available noisy
observations as the training target. However, we can also show that it is theoretically well-motivated
under Lemma 1. Differentiable simulation acts as a bridge between our denoised estimate and future
observations which are assumed to have independently sampled noise under the generative model
described in Section 2. While Lemma 1 is stated in terms of one step ahead forecasting, similar to
prior work [31], we observe significantly improved performance by unrolling the procedure over
multiple steps.

The power of this approach lies in the fact that the forecast objective can actually be used to bound
the analysis objective so that minimizing the forecast objective is equivalent to minimmizing an upper
bound on the analysis objective. To show this, apart from the previously specified generative model
assumptions, we rely on two additional assumptions:

Assumption 1 (Uniqueness of Initial Value Problem (IVP) Solution). The autonomous system

evolution equation ©'(t) = g(x(t)) is deterministic and L-Lipschitz continuous in x thus admitting a
unique solution to the initial value problem under the Picard-Lindeldf theorem [32].

Assumption 2 (Unbiased Observation Operators). For all observation operators Hy, the observation
Yy, is an unbiased estimator of some subset of xy, ie. if a:f is the restriction of xy, to some subset of
features S then Elyy, | x| = 3.
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Figure 4: The self-supervised training process is unrolled across multiple filtering steps. Loss is
evaluated between “pseudo-observations” and noisy observations obtained from the system.

We also define an additional loss, the supervised forecast loss £f as the mean squared error between
the forecast state and the true state. For the purposes of our analysis, we’ll assume that S is the full
state such that E[yy, | xx] = xx though this will not be the case in our numerical experiments. Our
first result focuses on the case where the supervised loss is driven to zero.

Proposition 1 (Zero Loss Regime). Under the stated assumptions, let fy denote a family of functions
parameterized by 0 for which min ¢ L (0) = 0. For any 0 which achieves this minimum, it is also
true that £°(0) = 0 and that 0 is in set of minimizers of By _[L57(0)].

The proof can be found in the supplementary materials (C.2). This case provides important motivation
by showing that if a perfect denoiser exists and is contained within our search space then it is also in
the set of minimizers for our expected self-supervised objective. This does not necessarily mean that
such a function will be discovered as the objective is non-convex and in practice, we’re minimizing
the self-supervised loss over a finite sample rather than over the expectation of the noise distribution.

For the more general case, with sufficiently smooth dynamics, one might expect that over short time
horizons, a function which minimizes the forecast loss should perform well for the analysis loss,
this is not guaranteed and depends on the properties of the system under study. For our bound, we
only consider the supervised losses as per the decomposition in Lemma 1, minimizing the expected
self-supervised forecast loss is equivalent to minimizing the expected supervised forecast loss.

Proposition 2 (Non-zero Loss Regime). Under the previously stated assumptions, the supervised
analysis loss can be bounded by the supervised forecast loss as:

(= im-») x

The proof (found in C.3) simply uses the Lipschitz coefficient to bound the system Lyapunov
exponents which govern the evolution of perturbations. While the tightness of the bound is system
specific, large Lyapunov exponents can be offset by more frequent assimilation cycles. In Section
5, our numerical results suggest that training under this loss is effective in practice for a number of
common test systems designed to simulate real-world phenomena.

K—-1 eL(7k+177k) K—-1
< — max
k=1

1

K—1 €)
k=1

Mirsro folxl ) —x

3.3 Implementation Details

Avoiding Ensemble Collapse Ensemble-based uncertainty estimates are an elegant solution to the
problem of computing the evolution of uncertainty under nonlinear dynamics, but without assumptions
on the noise model, evaluating the analysis uncertainty is non-trivial. A well-known problem in deep
learning-based uncertainty quantification is feature collapse [33, 34], a phenomenon in which the
hidden representations resulting from regions of the input space are pushed arbitrarily closely together
by the neural network. In our ensemble-based uncertainty quantification scheme, this poses an issue
as ensemble members can quickly converge over a small number of assimilation steps resulting in
ensemble collapse.

We address this by combining ensemble estimation with MC Dropout [35] which interprets a pass
through a dropout-regularized neural network as a sample from a variational distribution over network
weights. Thus, for standard usage of MC Dropout one can estimate uncertainty in the predictive
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Figure 5: MC Dropout introduces an additional stochastic element that stabilizes the ensemble
resulting in realistic relationships between the ensemble spread and system uncertainty.

distribution by using multiple dropout passes to integrate out weight uncertainty. In our case, we
further have to account for uncertainty over the input distribution which is represented by our forecast
ensemble. We employ a relatively simple Monte Carlo scheme in which the forecast ensemble
members are assimilated by a single pass through a dropout-regularized network with independent
dropout masks giving us m samples from the predictive distribution as our analysis ensemble. While
this is a crude approximation, we found it resulted in more consistent performance with less tuning
compared to the sensitivity constraints found in recent uncertainty quantification methods [33, 36, 37].

Incomplete Observations One important concern in data assimilation is handling a variety of
observation operators as the full state will rarely be observed at one time point. We discuss two
processes for addressing this in amortized filters. The first, which is far more flexible but less effective
at exploiting prior knowledge, is to initialize an network with independent weights corresponding
to each observation type. This can be used with any observation type, even ones with unknown
relationships to the system state. These unknown observation operators can be trained by evaluating
the loss at points with future, known observation operators and passing the gradient signal back in
time through the differentiable simulation connecting the time points.

The second, which we implement in the AmEnF, is to use our knowledge of the spatial distribution
of the observation operators to assign the observed values corresponding to certain locations as
channels in the input representation. Coordinates which are not observed can be masked and an
additional channel is appending indicating whether a particular coordinate was observed during the
given assimilation cycle. This is depicted by the shading in the observation channels of Figure 3.
More details on the masking process can be found in the supplementary material.

4 Related Work

Work on the intersection of deep learning and data assimilation has exploded in recent years. Some
early efforts explicitly used reanalysis data produced by traditional assimilation methods as a target
for supervised training [38, 39]. These approaches are limited as they cannot reasonably expect to
outperform the method used to produce the reanalysis data in terms of accuracy. More recently,
significant effort has gone into using traditional assimilation alongside learned surrogate models to
stabilize training, learn augmented dynamics, or accelerate simulation with larger ensembles [40—43].

The work most comparable to our own is that which uses machine learning methods to learn a
component of the assimilation mechanism directly in continuous nonlinear systems [44, 45]. Our
method differs from Gronquist et al. [44] in that we use differentiable simulation to enable self-
supervised learning. While Frerix et al. [45] incorporates differentiable simulation, their Learned
Inverse Operator framework acts as a component of the 4D-Var algorithm and still requires solving
an expensive optimization problem at each assimilation step rather than using using a closed form
update. Outside of the field of data assimilation specifically, there has also been significant work into
neural parameterization of Bayesian filters [25, 46-54].



5 Experiments

We examine the empirical performance of amortized assimilation from two perspectives. In the first,
we derive empirical justification for our design choices, comparing the performance of the various
objective functions and qualitatively examining the evolution of uncertainty in the ensemble.

The second objective is to compare the performance of our amortized model, the AmEnF, against
standard data assimilation methods over multiple common benchmark dynamical systems. All
methods tested in this section have explicit knowledge of the system dynamics. Due to the challenge
of learning chaotic dynamics, we found that methods which rely on learning the dynamics were
uncompetitive.

For all experiments, we generate a training set consisting of 6000 sequences consisting of 40
assimilation steps each. The validation set consists of a single sequence of an additional 1000 steps
and the test set is a further 10,000 steps. AmEnF models are developed in PyTorch [55] using the
torchdiffeq [56] library for ODE integration. Models are trained on a single GTX 1070 GPU for
500 epochs using the Adam [12] optimizer with initial learning rate 8¢ — 4 with a warm-up over 50
iterations followed by halving the learning rate every 200 iterations. All experiments are repeated
over ten independent noise samples and error bars indicate a single standard deviation.

5.1 Qualitative Evaluation

Experiments in this section are performed using the Lorenz 96 system [57]. Lorenz 96 is a system
of coupled differential equations intended to emulate the evolution of a single atmospheric quantity
across a latitude circle.

Ly = (2501 — 35 2)x5 1 —z; + F (10)
The system is defined to have periodic boundary conditions xpy1 = 21, xg = zp,and x_1 = xTp_1
where D is the number of system dimensions. We set the number of dimensions to 40 and the forcing
value to F' = 8. This is perhaps the most widely used test system in data assimilation and is what
we will use the explore the behavior of the AmEnF model. Unless explicitly stated otherwise, all
experiments in this section were performed with o=1 and m = 10.

Ensemble Behavior Figure 5 demonstrates

the benefit of incorporating MC Dropout. In
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servations. We can see that while the ensemble

trajectories occasionally approach such obser- Figure 6: Analysis RMSE evaluated on the val-
vations, when the ensemble spread is tight the idation set across models trained using different
learned assimilator trusts the current forecast losses foro = 1.

trajectory and the ensemble members do not move onto a worse path to match the observation.

Training Objective Figure 6 shows a comparison between the test-time supervised analysis loss
across AmEnF models trained using several objective functions. The problem used for comparison
is the fully observed Lorenz 96 system with observation noise o = 1. As one might anticipate, the
self-supervised analysis objective, the only objective available without differentiable simulation,
results in the AmEnF learning an identity mapping from the observation so that the error is exactly the
observation variance. The supervised analysis (which we are able to use since this is simulated data)
and self-supervised forecast training approaches result in learning a legitimate denoising function.
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Figure 7: Results from numerical comparisons across multiple ensemble sizes and observation noises.

What is intriguing is that the self-supervised forecast loss actually outperforms the supervised analysis
loss for this system. The optimization problem is nonconvex, so neither approach is guaranteed to
reach a global minimizer. This is not definitive as the performance gap is within the margin of error;
however, it does suggest that there may be some value to including differentiable simulation in the
training pipeline beyond simply enabling the denoising property.

5.2 Method Comparison

We evaluate performance on three benchmark systems. Loss is reported as the time-averaged RMSE
between the mean analysis state estimate and the true state on the test state. Each system is evaluated
across a variety of ensemble sizes (denoted by m) and isotropic Gaussian observation noise levels
(whose standard deviation is denoted by o). All results are reported in Figure 7.

We compare performance against a set of widely used filtering methods for data assimilation imple-
mented in the Python DAPPER library [58]. These methods include 4D-Var [24], the Local Ensemble
Transform Kalman Filter (LETKF) [59], and the Iterative Ensemble Kalman Smoother iEnKS) [60].
4D-Var and the iEnKF are used in a filtering capacity, using only the latest observation rather than
a multi-step trajectory. Full experiment settings including hyperparameters such as inflation and
localization settings searched are included in the supplementary materials.

Lorenz 96 For method comparisons, we examine the more challenging case of a partially observed
system. At every assimilation step, we observe only a rotating subset consisting of every fourth
spatial dimension so that only 25% of the system is observed at any time. These experiments use an
RK-4 [61] integrator with step sizes of .05 and partial observations every two integration steps.

Kuramoto-Shivashinsky While our theoretical results focus on ordinary differential equations,
the method can also be used with partial differential equations like the KS equation. The KS equation
[62] is a fourth-order partial differential equation known to exhibit chaotic behavior. In one spatial
dimension, the governing equation can be written as:

with periodic boundary conditions. These experiments were fully observed. The system was
integrated with an ETD-RK4 method with step sizes of .5 with observations every two steps.

Vissio-Lucarini 20 The system described by Vissio and Lucarini [63] is a coupled system intended
to represent a minimal model of the earth’s atmosphere. It augments the Lorenz system with
“temperature” variables allowing for more complicated behavior:

dX;
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db; "
d—tj — Xj+10j+2 - Xj710j72 + aX] - FYG] + G



We set F' =10, G = 10, v = 1, a = 1, and use 36 spatial points. Experiments using this system are
also partially observed with every fourth spatial coordinate being observed at one time. The system is
integrated using RK-4 with steps of length .05 and partial observations every two steps. 4D-Var was
excluded in this comparison as performance on prior experiments did not justify further examination.

Results As we can see in Figure 7, the AmEnF models match or outperform the competitive
methods with more significant improvements coming at smaller ensemble sizes and higher noise
levels which are associated with stronger nonlinear effects [60]. The only system in which the AmEnF
does not notably outperform the comparison models is the KS equation. This is interesting as our
theoretical results rely on assumptions about ODEs while the KS equation is a PDE. Furthermore,
the bound we derived has a time component and the KS experiments occur at the largest time scales.
Nonetheless, despite these potential theoretical snags, the AmEnF model near matches the the top
performing models in accuracy while exhibiting stronger stability under repeated experiments.

6 Discussion and Conclusion

Limitations Despite the successful numerical results, the method is not without challenges. The
largest consideration is related to scaling. First, while the use of differentiable simulation allowed our
method to outperform competitive methods, the availability of adjoints in numerical forecasting is not
certain. Forecasts in domains like NWP often use legacy code where adjoints need to be maintained
by hand. We expect this to change over time, but this will limit the adoption of similar approaches in
the near future. Assuming the presence of adjoints, training cost is also a concern as it requires the
repeated simulation of the dynamical systems. However, numerical models tend to change slowly
and applications like NWP are among the largest users of compute in the world [1] with assimilation
cycles occurring multiple times per day, thus we expect the amortization to pay off over time.

Conclusion We theoretically and experimentally motivate the use of a self-supervised approach
for learning to assimilate in chaotic dynamical systems. This approach uses a hybrid deep learning-
numerical simulation architecture which outperforms or matches several standard data assimilation
methods across several numerical experiments. The performance gains are especially profound at
low ensemble sizes, which could enable higher resolution, more accurate simulation for assimilation
problems leading to stronger predictions for high value problems like numerical weather prediction
in the future.
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