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Photonic GHZ states serve as the central resource for a number of important applications in
quantum information science, including secret sharing, sensing, and fusion-based quantum comput-
ing. The use of photon-emitter entangling gates is a promising approach to creating these states
that sidesteps many of the difficulties associated with intrinsically probabilistic methods based on
linear optics. However, the efficient creation of high-fidelity GHZ states of many photons remains
an outstanding challenge due to both coherent and incoherent errors during the generation process.
Here, we propose an entanglement concentration protocol that is capable of generating perfect GHZ
states using only local gates and measurements on imperfect weighted graph states. We show that
our protocol is both efficient and robust to incoherent noise errors.

I. INTRODUCTION

Photonic GHZ states play a central role in a number
of quantum information applications, including quantum
sensing [1–3], secret sharing [4], and fusion-based quan-
tum computing [5]. However, since photons do not in-
teract with one another directly, creating such highly en-
tangled states is a very nontrivial task; it in fact remains
one of the most challenging problems in photonic quan-
tum computation and communication.

One way to generate photon-photon entanglement is
through quantum interference and measurement [6–8].
Knill et al. [6] showed that it is possible to entangle
photons probabilistically using only linear optical ele-
ments such as beam splitters and single-photon detec-
tors, an approach that has been implemented in experi-
ments [9, 10]. However, because the approach is proba-
bilistic, the likelihood of successfully creating a multipho-
ton entangled state is exponentially small in the number
of photons [6, 11]. Although the success rate can be im-
proved by recycling failure states and using Bell states as
building blocks [12–14], the resource requirements of this
approach continue to limit the size and fidelity of GHZ
states that can be produced in this way.

A possible solution to these challenges is to employ
entanglement generation methods that are determinis-
tic, at least in principle. One such approach is to
create all of the needed entanglement during the pho-
ton emission process [15, 16]. For example, Lindner
and Rudolph proposed to use photon emission com-
bined with single-qubit gates on the emitter to gen-
erate one-dimensional photonic cluster states [17], an
approach that was subsequently demonstrated experi-
mentally [18, 19]. More recently, protocols for gener-
ating more complex multiphoton entangled states, e.g.,
2D cluster states [20–24], repeater graph states [25–27],
and tree graph states [26, 28, 29], have been proposed
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based on similar principles and experimentally demon-
strated [30–34]. In fact, a general algorithm for finding
protocols that produce any target graph state [35] from a
minimal number of quantum emitters has recently been
developed [36]. However, to generate photonic graph
states with low error, this approach requires nearly per-
fect photon emission from quantum emitters, which re-
mains technologically challenging.

This limitation can be overcome using a second de-
terministic approach to generating multiphoton entan-
gled states. Instead of creating all the entanglement
during emission, this approach leverages nonlinearities
to directly implement entangling gates between pho-
tons. Taking advantage of the nonlinearity induced by
strongly-coupled cavity-QED systems [37, 38], a photon-
photon controlled-Z (CZ) gate can be achieved between
two incoming photons scattered by the cavity-QED sys-
tem [39, 40]. Given access to such CZ gates, photonic
graph states can be generated on demand via time-
delayed feedback [41]. In experiments, the phase on
photonic qubits induced by the nonlinearity from the
cavity-QED system is not yet fully controllable [38, 42–
46]. Instead of a CZ gate, the gate that is applied to the
photonic qubits is a controlled-phase (CP) gate [47–52].
Unlike CZ gates, CP gates are not maximally entangling
when the phase is not π. When the CZ gates in the graph
state generation procedure are replaced by CP gates, the
resulting state is called a weighted graph state [53–57].
This then leads to the question of whether or not such
states are still useful; in particular, is it possible to effi-
ciently concentrate their entanglement [58–63] to obtain
high-fidelity GHZ states?

In this paper, we show that it is indeed possi-
ble to efficiently extract high-fidelity GHZ states from
weighted graph states using only local gates and mea-
surements. Entanglement concentration methods for im-
perfect graph states that maximize the entanglement in
the final state have been studied extensively [60–62, 64–
69]. However, such works usually focus on generating
small maximally entangled states. In our case, we pro-
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pose a general protocol that can create GHZ states of any
number of qubits. Our approach is also distinct from en-
tanglement purification techniques [70–77], which require
a large number of copies of the imperfect state, as well
as the application of entangling gates between copies.
In contrast, our protocol uses only single-qubit measure-
ments and single-qubit gates applied to a single copy of
a 1D weighted graph state to construct a perfect GHZ
state with fewer qubits. This approach can be realized
in existing photonic systems with low experimental cost.

This paper is organized as follows. In Sec. II, we
present our protocol for generating photonic GHZ states
from 1D weighted graph states using single-qubit mea-
surements and gates. We give the explicit example of
generating a three-qubit GHZ state. In Sec. III, we in-
vestigate how possible experimental errors will affect our
protocol. Specifically, in Sec. III A, we consider coher-
ent errors on the CP gates, while in Sec. III B, we focus
on depolarizing errors on the weighted graph state. In
Sec. IV, we summarize our main results.

II. ENTANGLEMENT CONCENTRATION
WITH LOCAL MEASUREMENTS

A graph state of N qubits is defined based on a graph
with a set of vertices (V ) and a set of edges (E):

|ψ⟩ =
∏

α,β∈V,{α,β}∈E

CZα,β |+⟩⊗N
, (1)

where |+⟩ is the +1 eigenstate of the Pauli-X operator,
and the CZ gate is defined by

CZα,β := |0⟩⟨0|(α) ⊗ I(β) + |1⟩⟨1|(α) ⊗ Z(β), (2)

where I and Z are the identity and Pauli-Z operator,
respectively. In the presence of coherent errors, the CZ
gate becomes a CP gate:

CPα,β := |0⟩⟨0|(α) ⊗ I(β) + |1⟩⟨1|(α) ⊗ S(ϕα,β)
(β), (3)

where S(ϕα,β) is

S(ϕα,β) =

(
1
eiϕα,β

)
(4)

in the computational basis with arbitrary ϕα,β .
In the graph state generation procedure, if the CZ

gates are replaced by CP gates (2), the state becomes
a weighted graph state (WGS). The weights of edges in-
side the WGS correspond to the phases of the CP gates
(ϕα,β). In general, the weights of different edges can be
different. In this paper, we focus on the case in which
the edges have the same weight ϕα,β = ϕ, and we refer to
this type of WGS as a uniform WGS. An example of such
a state is presented in Fig. 1a, where the qubits form a
linear 1D uniform WGS with weight ϕ.

FIG. 1. (a) Uniform WGS with weights ϕ. (b),(c) The entan-
glement concentration protocol: (b) Start with a 1D uniform
WGS containing 2n+ 1 qubits and perform optimized single-
qubit measurements M̂ϕ (see Eq. (5)) on all even qubits. (c)
After performing single-qubit measurements, apply a Pauli-Z
rotation on qubit number 2n + 1. The final graph state is a
(n + 1)-qubit GHZ state.

Here, we consider a 1D uniform WGS with 2n + 1
qubits. We show that by performing single-qubit mea-
surements on all even sites (n qubits in total) and single-
qubit rotations on the other qubits, the entanglement can
be concentrated to probabilistically generate a (n + 1)-
qubit GHZ state, which is local unitary equivalent to a
star-shaped graph state (see Fig. 1). Our protocol has
the following two steps:

1. Measure the qubits on even sites of the 1D uniform
WGS with 2n+ 1 qubits (Fig. 1b) in the following
basis:

M̂ϕ := Rz(ϕ)X̂R
†
z(ϕ), (5)

where Rz(ϕ) = exp
(
−iϕẐ/2

)
is a Pauli-Z rotation,

ϕ is the edge weight of the WGS, and X̂ the Pauli-X
operator. The projective measurement basis states
are given in Eq. (A2). The Kraus operators for
each single-photon measurement are shown in Ap-
pendix A.

2. If the measurement outcomes are all −1, the con-
centration succeeds. We then apply a Pauli-Z rota-
tion Rz[n(π− ϕ)] on one of the surviving qubits to
turn the final state into a (n+1)-qubit GHZ state.
Otherwise, the concentration process failed, and we
are left with a less entangled state.

We note that the protocol succeeds only if all the mea-
surement outcomes are −1. Therefore, the success prob-
ability is

Ps,n =
1

2n
|sin (ϕ/2)|2n . (6)

We stress that when the phase ϕ = π, the uniform
WGS turns into a 1D cluster state, and the measure-
ment in (5) in step 1 changes into a Pauli-X measure-
ment. In this case, there is no failure as the ‘failure’
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outcomes can be corrected by single-qubit gates on other
qubits, and our protocol converts a 1D cluster state to
a GHZ state deterministically. It should be noted that
there exist schemes that produce GHZ states from per-
fect 1D cluster states using fewer measurements [78, 79].
However, these more efficient methods do not apply when
starting from a WGS. Therefore, in the rest of our paper,
we focus on the case ϕ ̸= π.

FIG. 2. The success probability of constructing the 3-qubit
GHZ state from a 5-qubit uniform WGS. Here, the horizontal
red dashed line marks the 1/32 probability of getting a 3-
qubit GHZ state using linear optical methods. When ϕ = π,
the success probability is unity (not shown in the plot).

In the following, we discuss an explicit example: We
generate a 3-qubit GHZ state from a 5-qubit uniform
WGS. According to our protocol, we measure qubit 2 and
qubit 4 in the M̂ϕ basis. When our protocol succeeds, the
other three qubits are in the state

|ψ3⟩ =
1√
2

(
|000⟩+ ei2ϕ |111⟩

)
, (7)

which can be turned into a GHZ state by applying a sin-
gle Pauli-Z rotation Rz(ϕ) on any of the three qubits. In
this example, the success probability is given by Eq. (6)
with n = 2, which is shown in Fig. 2. Compared with lin-
ear optics-based methods for generating GHZ states, for
which the success probability of constructing the three-
qubit GHZ state starting from single photons is 1/32 (red
dashed line in Fig. 2) [11, 12], Fig. 2 shows that starting
from a 5-qubit uniform WGS and employing our protocol
is more efficient over a wide range of weights ϕ (ϕ > π/2).
Furthermore, we stress that as long as the weights of the
WGS are nonzero, there will be a non-zero probability
for our protocol to succeed.

Before we move on, we comment on the implementa-
tion of the photonic CP gates in realistic experiments.
Such gates are implemented either directly using linear
optics or indirectly by interfering photons with quan-
tum emitters to first create emitter-photon entanglement
and then photon-photon entanglement upon measure-
ment of the emitter. The weights ϕα,β of emitter-photon
CP gates reported in experiments span a wide range of
values. These weights are highly sensitive to emitter-
photon couplings and to detunings relative to the emit-
ter transitions. However, accurate control of the weight

has been demonstrated through interaction with a quan-
tum dot or Rydberg atom emitter, where the resulting
weights range from 0 to π depending on the photon de-
tuning [38, 42–46]. On the other hand, in the case of
direct photon-photon gates implemented via linear op-
tics, the weights depend on other factors. As discussed in
Ref. [80] for example, we can change the weight by sweep-
ing the duration of the incoming pulse or by changing
the time difference between the two photon pulses [47].
The resulting CP weights range from 0 to ∼ 0.55π, cor-
responding to weakly entangled final states. Regardless
of which method is used to create photon-photon entan-
glement, our protocol can concentrate entanglement so
long as there is entanglement shared between the pho-
tons (ϕ > 0). Moreover, our protocol enjoys a higher
success probability compared to the direct, linear-optics
entanglement generation approach when ϕ > π/2.
Apart from the weight ϕ, the success probability of

the protocol is also affected by the detector’s efficiency,
η. The overall success probability is proportional to η.

III. NOISE IN THE PROTOCOL

In this section, we consider the robustness of our pro-
tocol to the presence of noise. As demonstrated in
Refs. [38, 42–46], the photon-photon gates implemented
in experiments can achieve a large range of phases; how-
ever, precisely controlling the phase is demanding, and
coherent errors in the generated WGSs are common. On
the other hand, the polarization mixing of photons during
their emission causes the photonic qubits to suffer from
depolarization errors as well [81, 82]. Therefore, in this
section, we study two types of errors: coherent errors
in the weights of the given uniform WGS and incoherent
errors that occur during the construction of the uniform
WGS.
In our protocol, a single measurement on one of the

qubits in the WGS only affects its nearest neighbors (see
Appendix A). Therefore, we at first focus on the exam-
ple of constructing a two-qubit GHZ state (a Bell state)
starting from a three-qubit linear WGS to understand the
effect of noise on a single measurement. We find the opti-
mal measurement basis that maximizes the entanglement
between the nearest neighbors of the measured qubit to
the extent possible. We show this explicitly by calcu-
lating the concurrence of the two unmeasured neighbors.
Concurrence is a well-known entanglement measure for
two qubits [83–86], but to the best of our knowledge,
there does not exist a natural generalization of concur-
rence for n-qubit systems, where n > 2. Thus for n > 2,
we instead calculate correlation functions to quantify the
entanglement. In particular, to show that our entan-
glement concentration protocol continues to work well
for larger system sizes even in the presence of noise, we
calculate ZZ correlation functions on multiple pairs of
qubits in target GHZ states containing up to 16 qubits.
We also compute the fidelity relative to a perfect GHZ



4

state for states of up to 9 qubits.

A. Coherent error

So far, we have restricted our attention to uniform
WGSs. However, due to experimental errors, the CP
gates can have different phases (ϕα,β). The created pho-
tonic WGS may not be uniform. In this subsection, we
consider the performance of our protocol when there are
coherent errors on the two weights of a three-qubit WGS
(ϕ1,2 ̸= ϕ2,3). We also consider the impact of errors on
the concentration of larger GHZ states containing up to
16 qubits.

To check whether a GHZ state can still be prepared
from a 3-qubit WGS with coherent error, we numerically
optimize the concurrence of the outer two qubits after
the measurement of the middle qubit by adjusting the
measurement basis (M̂ϕ) of the latter. The concurrence
of a given two-qubit mixed state ρ is defined as [85]

C(ρ) = max(λ1 − λ2 − λ3 − λ4, 0) , (8)

where λ1, λ2, λ3 and λ4 are the singular values of the
matrix

√
ρ
√
ρ̃ with

ρ̃ = (Y1 ⊗ Y2)ρ
∗(Y1 ⊗ Y2) . (9)

ρ∗ is the complex conjugate of the density matrix ρ in
the computational basis. We find that the concurrence
is maximized when the measurement is M̂ϕ′ with phase
ϕ′ = (ϕ1,2 + ϕ2,3)/2 in Eq. (5).
Note that when ϕ1,2 ̸= ϕ2,3, the state after the mea-

surement is not a maximally entangled state. In Fig. 3a,
we plot the concurrence of the two-qubit state after our
protocol. When ϕ1,2 = ϕ2,3 or ϕ1,2 = −ϕ2,3, the con-
currence can reach 1. The latter case is consistent with
a previous finding regarding entanglement concentration
on WGSs with opposite-phase CP gates [87, 88]. Our
protocol targets the situation in which the CP gate is
close to a CZ gate but has systematic phase shifts away
from a perfect CZ. Therefore, in Fig. 3b, we consider the
success probability of our protocol when ϕ1,2 and ϕ2,3
are in the range of 0 to π. We can see that as the entan-
gling power of the CP gate decreases, i.e., ϕ1,2 and ϕ2,3
decreases to 0, the probability to get a highly entangled
state decreases as well.

In Fig. 3c, we focus on the case in which the CP weights
are centered at∼ 0.6π (corresponding to the approximate
value of the photon-photon correlations in Ref. [80]). We
compare the concurrence of the state prepared by our
protocol (blue line in Fig. 3c) with a two-qubit WGS gen-
erated by a CP gate with phase ϕref = max(0.6π, ϕ2,3)
(orange line in Fig. 3c). We notice that there is a region,
especially when ϕ2,3 ∼ 0.55π, where our protocol im-
proves the resulting entanglement compared to directly
applying a CP gate with ϕref. Note that even if the
concurrence of the resulting state is not sufficiently high
for a given application, our protocol could be combined

with standard purification techniques to achieve a target
value. Using our protocol to produce the initial imper-
fect Bell pairs could significantly reduce the number of
copies and iterations needed for the purification process.

Next, we examine the impact of coherent errors when
our protocol is scaled to larger GHZ states containing up
to 16 qubits. As a concrete example, we consider starting
from a linear WGS with alternating phases ϕmean ±∆ϕ.
Via numerical search, we find that the state fidelity rel-
ative to a perfect GHZ state is optimal when the mea-
surement basis is chosen as in Eq. (5) with ϕ = ϕmean.
Furthermore, we find that the single-qubit unitaries that
maximize the fidelity in the case of successful measure-
ment outcomes are always Z rotations, which commute
with the ZZ stabilizers of the GHZ state. Therefore,
to quantify how the entanglement decreases as the GHZ
state grows to larger numbers of qubits, we consider the
decay of the ⟨Z1Zj⟩ correlation function, where j ranges
from 2 to n, where n is the number of qubits in the GHZ
state.

Figure 4a shows the decay of the ⟨Z1Zj⟩ correlation
function with increasing j for three different values of
ϕmean and with ∆ϕ = 0.1π. It is evident that the cor-
relation function decays exponentially as the system size
grows. This is because the coherent errors on the CP
gates degrade the projective measurements on the even
qubits of the WGS, which gradually decrease the long-
range entanglement in the resulting GHZ-like state. Note
that while all qubits can be viewed as nearest-neighbors
in a perfect GHZ state, the fact that here we start from
a noisy, linear WGS produces an asymmetry and effec-
tive spatial ordering of the qubits in the final GHZ-like
state. We fit the correlation function and extract its de-
cay length. For comparison, results for the direct con-
struction of GHZ-like states are shown as well. In par-
ticular, the figure shows ⟨Z1Zj⟩ correlation functions of
GHZ-like states generated by starting from a linear array
of qubits in the state |+⟩⊗16

and sequentially applying
CP gates with angle ϕmean between all pairs of neighbor-
ing qubits followed by Hadamard gates on one qubit in
each pair (see Fig. 4b for a 3-qubit example circuit). It
is evident from the figure that the correlation functions
decay much more quickly in this case compared to using
our entanglement concentration protocol.

In Fig. 4c, we plot the decay lengths extracted from
fits like those shown in Fig. 4a as a function of ϕmean and
∆ϕ. When the mean phase ϕmean is close to π, the decay
length decreases more slowly as ∆ϕ increases.

To provide further evidence that our protocol can gen-
erate better GHZ states compared to direct generation,
even when coherent errors on the CP gates are included,
we also compute the fidelity relative to a perfect state
starting from a linear WGS with alternating weights,
with ϕmean = 0.55π and ∆ϕ = 0.05π, which is shown in
Fig. 4d (blue dots). For comparison, we also show fideli-
ties for directly generated GHZ-like states constructed
using circuits like that shown in Fig. 4b. In each case
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FIG. 3. Constructing a 2-qubit entangled state from a 3-qubit uniform WGS with coherent error that causes the weights to
differ: ϕ1,2 ̸= ϕ2,3. (a) The concurrence of the resulting two-qubit state when our protocol succeeds. (b) The success probability
Ps of our protocol. (c) Concurrence (blue) of the two-qubit state after a successful measurement in our protocol in the special
case of a 3-qubit WGS where ϕ1,2 is fixed to 0.55π, and ϕ2,3 can vary from 0.3π to 0.9π. For comparison, we also show the
concurrence of a 2-qubit WGS with weight ϕref = Max(0.6π, ϕ2,3) (orange).

we optimize the fidelity relative to a perfect GHZ state
by performing arbitrary single-qubit gates on all qubits
and adjusting gate parameters. The optimal fidelity is
shown in Fig. 4d (orange squares). Even with coherent
errors, our protocol can generate GHZ states with better
fidelity, especially as the size of the target state grows.

B. Photon depolarization error

Here, we study the performance of our protocol by con-
sidering possible incoherent errors on the initial linear,
uniform WGS. Due to photon scattering and frequency
fluctuations of quantum emitters, the photonic qubits are
likely to suffer from dephasing and depolarization errors
during the graph state generation process. The depolar-
izing error for a single qubit is described by the chan-
nel [89]

E(ρ) = (1− p)ρ+
p

3
(XρX + Y ρY + ZρZ) , (10)

with error probability p, while a dephasing error can be
modeled by a single Pauli-Z error on the qubit, such that
the impact of dephasing errors is contained in the analysis
of the depolarizing error. Therefore, here we focus on
the case of depolarizing error and leave the discussion
of dephasing errors to Appendix B. In this section, we
investigate the impact of such errors on the concentration
of GHZ-like states involving up to 12 qubits.

To incorporate depolarizing errors into our calcula-
tions, we apply the same depolarizing error model to all
the photonic qubits before applying the CP gates that
prepare the initial linear WGS. This is because we as-
sume the errors are equally likely to happen on all pho-
tonic qubits, which can be though of as the worst-case
scenario.

To gain an understanding of how depolarizing errors
affect the measurement basis in our protocol, we first con-
sider the simple case of a three-qubit linear WGS in which

the middle qubit is measured to produce an approximate
Bell state. We numerically optimize the concurrence of
the two unmeasured qubits by adjusting the measure-
ment basis, as the concurrence (Eq. (8)) is still a good
measure of entanglement for two-qubit mixed states. Our
numerical analysis reveals that the optimal measurement
basis is not affected by the depolarizing error. However,
the two-qubit state is mixed and no longer a maximally
entangled state regardless of the CP angle ϕ ∈ (0, π).

To further understand how depolarizing error affects
our protocol, in Fig. 5a, we show the best concurrence
of the final two-qubit state after applying our protocol.
We sweep the uniform WGS weight ϕ and the depolar-
izing error probability p on the photonic qubits. Notice
that even with moderate depolarizing error (p < 0.02),
our protocol can still generate a decent amount of entan-
glement (C > 0.9) over a wide range of weights ϕ. In
Fig. 5b, we show the success probability of our protocol.
In the range ϕ > 0.6π, the success probability is weakly
dependent on the depolarizing error probability p. Our
protocol is more robust against depolarizing error in the
regime where ϕ is close to π. As ϕ decreases, i.e., the
CP gate generates less and less entanglement directly,
the entanglement generated by our protocol drops sig-
nificantly with stronger depolarizing error [see Fig. 5a,
ϕ ∼ 0.1π for example]. This is because the symmetry of
the depolarization process does not prefer a special mea-
surement basis. However, the depolarizing error makes
the final state mixed, which decreases the entanglement
of the state.

To see whether and to what extent we can still bene-
fit from using our protocol, we calculate the concurrence
advantage (∆C) of our protocol in Fig. 5c. We define the
concurrence advantage as the difference between the con-
currence of the two-qubit state generated by our protocol
and the reference concurrence, which is the concurrence
of a two-qubit state generated by directly applying a CP
gate with phase ϕ on a pair of depolarized photonic qubits
with the same error probability. We notice that over a
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FIG. 4. Effect of correlated errors on the entanglement and fi-
delity of concentrated GHZ states containing up to 16 qubits.
(a) ZZ correlation functions of 16-qubit GHZ states obtained
from measuring the even qubits of 31-qubit linear WGSs with
alternating CP weights ϕmean ± ∆ϕ with ∆ϕ = 0.1π. ⟨Z1Zj⟩
correlation functions with j = 2, ..., 16 are shown for three dif-
ferent values of ϕmean. The solid lines are fits of the data to
exponential decays. For comparison, the ⟨Z1Zj⟩ correlation
functions of GHZ-like states directly generated by starting
from a linear array of 16 qubits in the state |+⟩⊗16 and ap-
plying CP gates with angle ϕmean between neighboring qubits
and Hadamard gates are also shown (dashed lines). (b) 3-
qubit example circuit used to create the directly generated
reference states in (a) and (d). (c) The decay lengths of the
correlation functions ⟨Z1Zj⟩ with j = 2, ..., 16 as a function
of ϕmean and ∆ϕ obtained from fits to exponential decays like
those shown in (a). (d) Fidelity of concentrated GHZ states
containing n = 2 to 6 qubits (blue dots) relative to a per-
fect GHZ state. Here, the initial linear WGS has alternating
weights with ϕmean = 0.55π and ∆ϕ = 0.05π, which are val-
ues quoted in Ref. [80]. For comparison, fidelities of imperfect
GHZ states directly constructed using circuits as in (b) with
ϕ = 0.55π and initial states |+⟩⊗n for n = 2 to 6 are also
shown (orange squares). Each point is obtained by applying
arbitrary single-qubit gates to all qubits and adjusting gate
parameters until the fidelity of the resulting state relative to
a perfect GHZ state is maximized.

large range of parameters (the region with warm colors
in Fig. 5c), our protocol will result in more entanglement
between the two photonic qubits. Specifically, in the re-
gion where ϕ ∼ 0.8π, our protocol can generate more
entanglement even with p ∼ 5% [Eq. (10)]. Although the
two-qubit state is mixed and does not have maximal en-
tanglement, the state with more entanglement can help
to increase the efficiency with further entanglement pu-
rification.

To investigate the effect of depolarizing errors on con-
centrating GHZ states with more photons, we calculate
ZZ correlation functions of the outcome state of our pro-

tocol as in the case of coherent errors discussed above.
The results for a 12-qubit GHZ-like state concentrated
from an initial 25-qubit linear WGS are shown in Fig. 6a
for three different values of the error probability p and
a CPl angle ϕ = 0.55π. We note that when p = 0, our
protocol can generate perfect GHZ states, which gives a
constant correlation function ⟨Z1Zj⟩ = 1 for all j. As
we increase the depolarizing error probability p, the cor-
relations start to decay exponentially with a character-
istic decay length. This is similar to the discussion in
Sec. III A. Note that as shown in Refs. [81, 82], there
is no possibility of creating pure polarized photons, and
we instead have mixed polarization states. In quantum
dot experiments, the polarization mixing is around 2-5%.
We therefore consider a depolarization error probability
of p = 0.02 as a concrete example. In Fig. 6b, we calcu-
late the fidelity of the state generated from our protocol
with CP weight ϕ = 0.55π (blue dots). For comparison,
we also calculate the state fidelity (optimized over local
gates) generated directly using the same CP gates and
with the same depolarization error p = 0.02, which is
shown as the blue diamonds on a dashed line in Fig. 6b.
It is evident that our protocol yields substantially bet-
ter GHZ states even in the presence of realistic photon
polarization errors.
On the other hand, Fig. 6b also reveals that when the

CP weight is 1.05π as in Ref. [49], the reference state
has better fidelity. This is because the main source of
error in the state produced from our entanglement con-
centration protocol is the depolarizing error, while for the
reference state, the imperfection in the CP gate plays a
more important role. The relative performance of our
protocol versus direct state generation thus depends on
the relative importance of p and ϕ−π. For a given value
of the depolarizing error probability p, there is in fact
a critical value ϕc of the CP weight at which the fideli-
ties of the two state-generation methods exactly match.
Our protocol does not provide any benefit when ϕ > ϕc.
Figure 6c shows the dependence of ϕc on p in the case
of n = 2 qubits in the final state, from which it is evi-
dent that our protocol provides a benefit across a range
of CP weights that shrinks from ϕ < 0.98π to ϕ < 0.8π
as p increases by two orders of magnitude from 0.001 to
0.1. Further details about these results can be found in
Appendix C.

IV. CONCLUSIONS

In this paper, we addressed the problem of concen-
trating the entanglement of 1D weighted graph states
through single-qubit measurements. We proposed a pro-
tocol to probabilistically construct GHZ states (or equiv-
alently, star-shaped graph states) using 1D uniformly
weighted graph states. The protocol only uses single-
qubit measurements and gates, which can be applied ef-
ficiently in photonic systems. We showed that the proto-
col can efficiently generate small-sized GHZ states with
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FIG. 5. The performance of our protocol in the presence of depolarizing errors on the initial linear WGS. (a) The concurrence
C of the 2-qubit state after successfully applying our protocol on a 3-qubit WGS with depolarizing error. The concurrence
is shown as a function of CP weight ϕ and depolarizing error probability p. (b) The success probability of our protocol as a
function of ϕ and p. (c) Comparison of the concurrences of the state from our protocol with that of a 2-qubit uniform WGS in
the presence of the same depolarizing error. The concurrence advantage (∆C) is shown as a function of ϕ and p.

a large tolerance on WGS weights (the controlled phase
gate angles) compared to the generation of GHZ states
using linear optical methods. Our protocol can generate
more entanglement compared to other approaches in the
presence of moderate coherent two-qubit or single-qubit
depolarizing errors on the photonic qubits. Although the
success probability of the protocol decays exponentially
as we increase the number of qubits in the target GHZ
state, the fact that the number of measured qubits is
relatively small results in a much better scaling coeffi-
cient compared to previous methods based on linear op-
tics [6, 11], making it promising for paradigms that uti-
lize moderately sized resource states such as fusion-based
quantum computing [5].
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Appendix A: Kraus operators

In this section, we present the Kraus operators of our
entanglement concentration protocol. The elementary
operation in our protocol is the single-qubit measurement
M̂ϕ on the middle qubit in a 3-qubit uniform linear WGS.
As we discussed in the main text, a 3-qubit uniform

WGS can be generated by applying CP gates between
neighboring qubits:

|ψ⟩ = CP1,2CP2,3 |+++⟩ . (A1)

In our protocol, we perform a single-qubit measurement
on qubit 2, with M̂ϕ as shown in Eq. (5), which is a

projective measurement in the basis

|±ϕ⟩ =
1√
2

(
|0⟩ ± e−iϕ |1⟩

)
. (A2)

Therefore, the Kraus operators on qubits 1 and 3 corre-
sponding to ±1 measurement outcomes are

K± = ⟨±ϕ|2 CP1,2CP2,3 |+⟩2 . (A3)

Using the expression for the CP gates [Eq. (3)], the Kraus
operators can be expressed as

K+ = cos

(
ϕ

2

)(
e−iϕ/2 |00⟩⟨00|+ eiϕ/2 |11⟩⟨11|

)
+ (|01⟩⟨01|+ |10⟩⟨10|) , (A4)

K− = i sin

(
ϕ

2

)(
e−iϕ/2 |00⟩⟨00| − eiϕ/2 |11⟩⟨11|

)
. (A5)

When our protocol succeeds, i.e., the measurement re-
sult is −1, the measurement effectively projects the state
of qubits 1 and 3 into the even parity subspace, which
creates a GHZ state with probability sin2(ϕ/2)/2.

Appendix B: Photon dephasing error

In the main text, we study the effect of depolarizing
errors on our protocol. Apart from depolarizing errors,
dephasing error also frequently arises in photonic sys-
tems. Therefore, in this appendix, we consider the effect
of dephasing errors, where the dephasing error for a single
qubit is modeled by [89]:

E(ρ) = (1− pz)ρ+ pzZρZ, (B1)

where pz is the error probability, and ρ is the density
matrix corresponding to the qubit that experiences the
dephasing error.
We apply dephasing errors on photonic qubits before

the CP gate that generates the uniform WGS, just like
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FIG. 6. Effect of depolarization errors on the entanglement
and fidelity of concentrated GHZ states containing up to 12
qubits. (a) ZZ correlation functions of 12-qubit GHZ states
obtained from measuring the even qubits of 25-qubit linear
WGSs with uniform CP weights ϕ = 0.55π. ⟨Z1Zj⟩ correla-
tion functions with j = 2, ..., 12 are shown for three different
values of the depolarization probability p. The solid lines cor-
respond to fits of the data to exponential decays. (b) Fidelity
of concentrated GHZ states containing n = 2 to 6 qubits rela-
tive to a perfect GHZ state. Here, the initial linear WGS has
the same depolarization probability p = 0.02 on all photons.
Results are shown for two different values for the CP gates:
ϕ = 0.55π [80] (blue solid lines) and 1.05π [49] (orange solid
lines). For comparison, fidelities of imperfect GHZ state di-
rectly constructed by sequential applying CP gates with the
same CP gates are also shown (dashed lines). The generation
circuit is shown in Fig. 4d, where the initial states of photonic
qubits experience the same depolarization error (p = 0.02).
(c) The critical CP angle (∆φc ≡ π−ϕc) at which our proto-
col and the direct (reference) approach have the same fidelity
as a function of the depolarizaton error probability p in the
case of n = 2 qubits. Results with (blue dots) and without
(orange squares) optimization of the reference state with re-
spect to single-qubit gates are shown. The orange line is an
analytical result obtained using perturbation theory.

we do for depolarization errors. Similar to the argument
in the main text, dephasing errors are likely to happen on
all three photonic qubits in the WGS, which is used for
our protocol to generate a two-qubit maximally entangled
state. So, we apply the same dephasing error to all three
photonic qubits, i.e., we use the same pz for all three
qubits.

With the dephasing errors, we numerically optimize
the measurement basis in our protocol to maximize the
concurrence of the two-qubit state. We find that the
optimal measurement basis is unchanged. In Fig. 7a,
we show the concurrence of the resulting two-qubit state
while sweeping the three-qubit WGS weights ϕ and the
strength of dephasing errors pz. Our protocol can still
achieve relatively high entanglement (C > 0.9) with mod-
erate dephasing error pz < 0.02. When the dephasing

error strength increases, the entanglement between the
two remaining, unmeasured qubits decreases. In Fig. 7b,
we show the success probability of our protocol.
In order to understand if our protocol can generate

better entanglement compared to directly generating en-
tanglement using CP gates between photon qubits with
dephasing error, we calculate the entanglement advan-
tage ∆C = C − Cref, where C is the concurrence from
our protocol, and Cref is the concurrence of the directly
generated photonic states with CP gates with the same
phase, which is shown in Fig. 7c. We see that with mod-
erate dephasing errors, our protocol can still generate
more entanglement.

Appendix C: Critical CP weights in presence of
depolarization errors

In the main text, we show that with depolarization
error p = 0.02, and CP weight ϕ = 1.05π, the GHZ
states generated by our protocol do not have higher fi-
delity compared with the GHZ state directly generated
by the imperfect CP gates (see Fig. 6c). In this sec-
tion, we investigate when our protocol can perform bet-
ter and why our protocol can sometimes fail to provide
an improvement. For illustrative purposes, we consider a
3-qubit uniform WGS from which we concentrate a two-
qubit GHZ state.
Note that for the reference state, we construct an im-

perfect GHZ state directly using the CP gates according
to the gate sequence shown in Fig. 4b. After applying the
gate sequence, we numerically optimize the state fidelity
by adjusting the parameters of single-qubit gates applied
to all the qubits. We stress that even without the single-
qubit gates, the reference state can still achieve better
fidelities when the CP gate is close to π.
In our protocol, as discussed in the main text, when

there is no depolarization error on the measurement
qubit, a “successful” measurement outcome results in a
perfect parity projection on the other qubits (see Ap-
pendix A) regardless of the CP gate angle. However,
when there are depolarization errors, the operation is im-
perfect. This imperfection will be mainly affected by the
depolarization error and weakly depend on the CP gates.
On the other hand, the main imperfection in the reference
state comes from the CP gate between the two qubits.
Therefore, we expect there to be a critical CP gate an-
gle beyond which our protocol performs worse than the
reference case.
In Fig. 8, we plot the difference in fidelity between our

protocol and the reference case. Similar to the results
shown in the main text, in the reference case, we apply
single-qubit gates on both qubits to numerically optimize
the state fidelity. We see that, depending on the value
of the depolarization error probability p, there is a criti-
cal value ϕc of the CP weight above which our protocol
performs worse than the direct-generation approach.
To obtain a quantitative understanding of the relation
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FIG. 7. The performance of our protocol in the presence of dephasing errors on the initial linear WGSs. (a) The concurrence C
of the 2-qubit state after successfully applying our protocol on a 3-qubit WGS with dephasing error. The concurrence is shown
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between ϕc and p, we compute the fidelities analytically
using perturbation theory. We first note that for our
concentration protocol, we can apply a single-qubit gate
U on one of the two un-measured qubits to maximize the
state fidelity to a perfect GHZ state, where

U =

(
e−i(π−ϕ)

1

)
. (C1)

The optimal state fidelity is

F =

(
3

3− 2p
+

24p

9 + (3 cosϕ+ 4p)(4p− 3)

)−1

, (C2)

where p is the depolarization error probability shown in
Eq. (10), and ϕ is the CP gate angle.

In the reference case, as it is hard to find an analyti-
cal expression for the numerically optimized single-qubit
gate parameters, we focus instead on the state directly
generated using the circuit shown in Fig. 4b (without
single-qubit gates after the circuit). The fidelity relative

to a two-qubit GHZ state with photon depolarization er-
rors is

Fno-opt =
1

72
[18 + (4p− 3)(4p− 9)(1− cosϕ)] . (C3)

Note that in the reference case, when ϕ→ π, the fidelity
is

Fno-opt =
1

9
(9− 12p+ 4p2) ∼ 1− 4

3
p, (C4)

which is caused by the depolarization error on two pho-
tonic qubits. However, in our protocol, when the CP gate
is close to π, and p is small, the state fidelity is

F =
1

27
(3− 2p)(9− 12p+ 8p2) ∼ 1− 2p, (C5)

which suffers more from the depolarization error on the
measured qubits.

In Fig. 6c, we plot the critical phase (ϕc) above which
our protocol cannot improve the state fidelity. Specifi-
cally, the critical phase ϕc corresponding to un-optimized
reference states is plotted as orange squares. With
Eq. (C2) and Eq. (C3), we can further expand the expres-
sion F − Fno-opt in the regime where p → 0 and ϕ → π
and solve for the critical phase ϕc:

∆φ2
c ∼ 32

9
p, (C6)

where ∆φc ≡ π − ϕc. This result is shown as the orange
line in Fig. 6c, which matches well with the numerical
solution. For comparison, we also calculate the critical
phase when the reference state fidelity is optimized using
single-qubit gates (blue dots in Fig. 6c). We notice that
the parametric dependence is the same relative to the un-
optimized reference case, and the parameter dependence
from our analysis still applies.
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