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This note is to study the proximity operator of hp = ‖ · ‖p
1, the power function of 

the �1 norm. For general p, computing the proximity operator requires solving a 
system of potentially highly nonlinear inclusions. For p = 1, the proximity operator 
of h1 is the well known soft-thresholding operator. For p = 2, the function h2 serves 
as a penalty function that promotes structured solutions to optimization problems 
of interest; the computation of the proximity operator of h2 has been discussed 
in recent literature. By examining the properties of the proximity operator of the 
power function of the �1 norm, we will develop a simple and well-justified approach 
to compute the proximity operator of hp with p > 1. In particular, for the squared 
�1 norm function, our approach provides an alternative, yet explicit way to finding 
its proximity operator. We also discuss how the structure of hp represents a class of 
relative sparsity promoting functions.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

The power-p (p ≥ 1) function of the �1 norm on Rn is

hp : Rn → R : x �→ ‖x‖p
1. (1)

Its proximity operator (or proximal mapping) at x ∈ Rn with index β > 0 is defined as

proxβhp
(x) = argmin

{
1
2‖u − x‖2

2 + βhp(u) : u ∈ Rn

}
. (2)
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For p = 1, the function h1 is simply the �1 norm whose proximity operator is the well known soft-thresholding 
operator, which has been extensively used in sparse optimization in the last two decades [3]. For p = 2, the 
computation of proxβh2

is the main computational component in regularized robust portfolio estimation [4]. 
Unlike the proximity operator of h1, the proximity operator of h2 given in [4] does not have a closed form 
since it requires locating the positive root of a nonlinear function through the bisection method. The key 
step in the derivation of proxβh2

in [4] is to view h2 as the optimal value of an optimization problem over 
the unit simplex set on Rn. Using the technique of Lagrange multipliers, a procedure was presented for the 
computation of proxβh2

in [6]. It is not obvious how this idea can be adapted for dealing with hp for p �= 2.
The focus of this paper is the computation and understanding of the proximity operator of hp for p > 1. 

We propose a method for computing proxβhp
that essentially relies on finding the unique positive root of 

the triterm function

f(r) = rp−1 + ar − b,

where both a and b are positive. Correspondingly, proxβhp
(x) for any x ∈ Rn has an explicit expression 

as long as the root of the above function has an explicit expression. Fortunately, the positive root of this 
triterm function has such a form at least for p ∈ {2, 3, 4}. In particular, for p = 2 our result clearly improves 
the one in [4] and is the same as the one in [6] for this case, although arrived at by a different process. If 
an explicit expression of the positive root of this triterm function is not available, we can efficiently find it 
by either bisection or Newton’s method. However, we emphasize that our proposed method for computing 
proxβhp

works for all p > 1.
The �1 norm, that is h1, is a typical sparsity promoting function (SPF). Loosely speaking, a function is an 

SPF if its subdifferential at the origin contains at least one nonzero element; that is, an SPF has a corner or 
cusp at the origin [8,9]. Viewed in another way, the subdifferential of the function at the origin is a set that 
defines a threshold for small elements which are considered noise or insignificant. The proximity operator 
of the SPF will send all elements under this threshold to the origin. According to the above description, 
the function hp with p > 1 is not an SPF since it is differentiable at the origin. As a result, the proximity 
operator of hp maps a nonzero vector to another nonzero vector. However, we see that hp promotes a type 
of relative sparsity. In particular, rather than a uniform threshold sending elements to zero, the threshold 
depends on the relationship between the components.

The remaining part of this note is organized as follows. In Section 2, we give a brief review on the 
proximity operators of h1 and h2 to motivate the computation of the proximity operator of hp with p > 1. 
In Section 3, we present the properties of the proximity operator of hp with p > 1. In particular, based 
on these properties, we propose an iterative scheme to compute the proximity operator of hp for vectors 
with ordered nonnegative elements. A general scheme for computing proximity operator of hp is given in 
Section 4. We visually present the relative sparsity promoted by the function hp for p > 1 in Section 5.

2. Brief review on the proximity operators of h1 and h2

The proximity operator of h1 is the well known soft-thresholding operator given as follows:

proxβh1
(x) = (sgn(xi)(|xi| − β)+)n

i=1 . (3)

We denote by (a)+ the hinge function, namely, (a)+ = max{0, a}, and sgn is the signum function which is 
defined at a ∈ R as

sgn(a) =

⎧⎪⎨
⎪⎩

−1, if a < 0;
0, if a = 0;
1, if a > 1.
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The formula (3) shows that the operator proxβh1
maps all vectors in the n-dimensional cube with sidelength 

β to the origin and shrinks every element of a vector outside this cube towards the origin by β.
The computation of proxβh2

was studied for regularized robust portfolio estimation in [4]. Here we present 
a similar derivation of proxβh2

from the book [2, Lemma 6.70]. The key step in computing proxβh2
is to 

express h2(x) = ‖x‖2
1 as the optimal value of an optimization problem as follows

‖x‖2
1 = min

λ∈Δn

n∑
j=1

ϕ(xj , λj), (4)

where

ϕ(s, t) =

⎧⎪⎨
⎪⎩

s2

t , t > 0;
0, s = 0, t = 0;
∞, else

(5)

and Δn is the unit simplex set, that is, the convex hull of the standard basis of Rn. With (4), for x �= 0, 
u = proxβh2

(x) is the u-part solution of the optimal solution of

min
u∈Rn,λ∈Δn

{
1
2‖u − x‖2

2 + β
n∑

i=1
ϕ(ui, λi)

}
.

Fixing λ and minimizing over u for the above optimization problem we obtain that ui = λixi

λi+2β , and 
substituting the resulting vector u into the above problem leads to

min
λ∈Δn

n∑
i=1

βx2
i

λi + 2β
.

This constrained optimization problem can be solved through the associated Lagrangian multipliers. Putting 
the above together, we obtain that

proxβh2
(x) =

{ (
λixi

λi+2β

)n

i=1
, x �= 0;

0, x = 0,
(6)

where λi =
(√

β|xi|√
μ∗ − 2β

)
+

with μ∗ being any positive root of the nonincreasing function

ψ(μ) =
n∑

i=1

(√
β|xi|√

μ
− 2β

)
+

− 1. (7)

The root μ∗ is found by the bisection search. To explore (6) in more detail, let us write u = proxβh2
(x). If 

λi > 0, then λi =
√

β|xi|√
μ∗ − 2β and ui = xi − 2

√
βμ∗ sgn(xi); all nonzero elements ui thus are shrinkage of xi

towards the origin by 2
√

βμ∗. The value of 2
√

βμ∗ does not have an explicit expression in terms of β and 
x since μ∗ as a root of ψ in (7) is obtained from the bisection method.

A different way of exploiting Lagrangian multipliers for the computation of proxβh2
was proposed in [6]

and will be mentioned in section 4. In the rest of the paper, we will propose a unified procedure to compute 
proxβh for all p > 1.
p
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3. The properties of the proximity operator of hp

All functions in this work are defined on Euclidean space Rn equipped with the standard inner product 
〈·, ·〉 and the induced Euclidean norm ‖ · ‖2. For a function g : Rn → R ∪ {∞}, the set dom(g) = {x : g(x) <
∞} is the domain of g. We use Γ0(Rn) to represent the set of proper lower semicontinuous convex functions 
on Rn. We denote the cone of vectors x in Rn satisfying x1 ≥ x2 ≥ . . . ≥ xn ≥ 0 by Rn

↓ .
For any g ∈ Γ0(Rn), the subdifferential of g at x ∈ dom(g) is the set

∂g(x) = {d ∈ Rn : g(y) ≥ g(x) + 〈d, y − x〉, ∀y ∈ Rn}.

Furthermore, if g is Fréchet differentiable, ∂g(x) = {∇g(x)}. The relationship between the subdifferential 
and proximity operator of a function f ∈ Γ0(Rn) is characterized as follows (see, e.g., [1,7]):

for any β > 0, x ∈ β∂f(y) if and only if y = proxβf (x + y).

From this relationship, we get the following characterization on the proximity operator of hp.

Lemma 1 (Chain rule and shrinkage). For the power-p function of the �1 norm hp given in (1) with p > 1, 
the following statements hold.

(i) The function hp is convex on Rn and ∂hp(x) = p‖x‖p−1
1 ∂‖ · ‖1(x) for all x ∈ Rn.

(ii) ‖ proxβhp
(x)‖ ≤ ‖x‖ for all x ∈ Rn and β > 0.

Proof. (i) Note that hp = (·)p
+ ◦ ‖ · ‖1, where (·)p

+ is a nondecreasing and convex function, and the �1 norm 
‖ · ‖1 is convex. Hence, hp is convex. It follows from [5, Theorem 4.3.1] that ∂hp(x) = p‖x‖p−1

1 ∂‖ · ‖1(x).
(ii) From item (i), we have ∂hp(0) = {0}. Hence proxβhp

(0) = 0. It leads to ‖ proxβhp
(x)‖ = ‖ proxβhp

(x) −
proxβhp

(0)‖ ≤ ‖x‖ due to the nonexpansiveness of proxβhp
. �

Item (i) of Lemma 1 implies that hp with p > 1 is differentiable at the origin while it is not differentiable 
at nonzero vectors having at least one zero element. Item (ii) of Lemma 1 says that proxβhp

is a shrinkage 
operator.

Now let P(−)(n) denote the set of all n × n signed permutation matrices: those matrices that have only 
one nonzero element in every row or column, which is ±1. Since hp(x) = hp(P(−)x) for all P(−) in P(−)(n)
and x ∈ Rn, we immediately have that

proxβhp
(x) = P −1

(−) proxβhp
(P(−)x). (8)

For every x ∈ Rn, there exists a signed permutation matrix P(−) such that P(−)x ∈ Rn
↓ . Thus, with the 

identity (8), we should focus on the computation of the operator proxβhp
over the set Rn

↓ .

Lemma 2 (Order preservation and nonzero elements). Let x be a nonzero vector in Rn
↓ .

(i) For any p ≥ 1 and β > 0, proxβhp
(x) is also in Rn

↓ .
(ii) proxβhp

(x) is a nonzero vector in Rn
↓ for any p > 1 and β > 0.

Proof. (i) Recall that proxβhp
(x) = argmin

{ 1
2‖u − x‖2

2 + β‖u‖p
1 : u ∈ Rn

}
. For any given u ∈ Rn, we have 

‖u‖p
1 = ‖P(−)u‖p

1 for any signed permutation matrix P(−) in P(−)(n). Furthermore, there exists a signed 
permutation matrix Q ∈ P(−)(n) such that Qu ∈ Rn

↓ . Since x ∈ Rn
↓ , we know that ‖Qu −x‖2 ≤ ‖P(−)u −x‖2, 

hence, ‖Qu − x‖2 + β‖Qu‖p
1 ≤ ‖P(−)u − x‖2 + β‖P(−)u‖p

1 for all P(−) ∈ P(−)(n). We conclude from the 
above discussion that proxβh (x) ∈ Rn

↓ .

p
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(ii) Let us write u� = proxβhp
(x) for the nonzero vector x in Rn

↓ . Then, by item (i) of Lemma 2, u� ∈ Rn
↓ . 

To show u� is a nonzero vector, it is sufficient to show u�
1 > 0. We prove it by contradiction.

Suppose that u�
1 = 0, that is, u� is a zero vector. Define g(u) = 1

2‖u − x‖2
2 + β‖u‖p

1. By the definition of 
proximity operator, we have that

1
2‖x‖2

2 = g(u�) ≤ g(u)

holds for all u ∈ Rn
↓ . In particular, plugging u = (a, 0, . . . , 0)ᵀ ∈ Rn

↓ with a ≥ 0 into the above inequality 
yields 1

2x2
1 ≤ 1

2 (a − x1)2 + βap, or equivalently,

1
2a2 − x1a + βap ≥ 0 (9)

for all a ≥ 0. Write f(a) = 1
2a2 − x1a + βap. Since f(0) = 0 and f ′(0) = −x1 < 0, we conclude that 

equation (9) does not hold for all a ≥ 0, therefore, contradicting the assumption. Hence, u� must be a 
nonzero vector. �

Recall that a function f ∈ Γ0(Rn) is said to be an SPF provided that (i) f(0) = 0 and f achieves its 
global minimum at the origin; and (ii) the set ∂f(0) contains at least one nonzero element. More discussions 
on this concept can be found in [8]. Moreover, SPFs are characterized by the thresholding behavior of their 
proximity operators, which item (ii) of Lemma 2 seems to contradict. Clearly, h1 is an SPF while hp with 
p > 1 is not due to ∂hp(0) = {0} by Lemma 1.

To illustrate the behavior of hp, consider x ∈ R2. As noted before, hp is differentiable at the origin with 
∇hp(0) = 0. However, when one component is zero, say x2 = 0, the subdifferential is as follows

∂hp(x1, 0) = {p|x1|p−1 · (sgn(x1), η)ᵀ : η ∈ [−1, 1]}.

With this, we can consider the differential inclusion defined by the proximity operator; i.e. if (u, v) ∈
proxβhp

(x1, x2), then

0 ∈ (u − x1, v − x2 )ᵀ + β∂hp(u, v). (10)

By Lemma 1, we know that proxβhp
(x) �= 0, but it may still be more sparse than x. For example, prox will 

send the second component to zero if

x1 = u + βp sgn(u)|u|p−1

−βp|u|p−1 ≤ x2 ≤ βp|u|p−1
(11)

This highlights the dependence of the thresholding on the relationship between x1 and x2. We refer to this 
as relative sparsity, and defer further discussion to Section 5.

The next result will give a characterization on the number of nonzero elements produced by the proximity 
operator of hp. To this end, for a given nonzero vector x ∈ Rn

↓ , scalars β > 0 and p > 1, and an integer 
1 ≤ m ≤ n, we define a triterm function g(m,β,p) : [0, ∞) → R as follows:

g(m,β,p)(r) := mβprp−1 + r −
m∑

i=1
xi. (12)

Since g(m,β,p)(0) = − 
∑m

i=1 xi < 0, g(m,β,p)(‖x‖1) > 0, and g′
(m,β,p)(r) = mβp(p − 1)rp−2 + 1 > 0 for all 

r ≥ 0, g(m,β,p) has one and only one positive root located in the interval (0, ‖x‖1). We denote by g−1
(m,β,p)(0)

the positive root of g(m,β,p).
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Lemma 3 (Counting nonzero elements). Let x be a nonzero vector in Rn
↓ and let β > 0. The following 

statements are equivalent.

(i) The proximity operator of hp with index β at x has m nonzero elements.
(ii) xm > βprp−1 and xm+1 ≤ βprp−1 if 1 ≤ m ≤ n − 1 or xm > βprp−1 if m = n, where r is the only 

positive root of g(m,β,p) defined in (12).

Proof. (i)⇒(ii) Write u = proxβhp
(x). From x being a nonzero vector and item (ii) of Lemma 2, we have 

m ≥ 1, and the first m elements of u are positive and the remaining ui = 0 for i = m + 1, . . . , n. Since 
u = proxβhp

(x), we know x − u ∈ ∂(βhp)(u), that is, x − u ∈ βp‖u‖p−1
1 ∂‖ · ‖1(u) by Lemma 1. Therefore, 

we obtain the following

xi − ui = βp‖u‖p−1
1 (13)

for i = 1, 2, . . . , m. Summing (13) over i = 1, 2, . . . , m yields

m∑
i=1

xi − ‖u‖1 = mβp‖u‖p−1
1 ,

which implies g(m,β,p)(‖u‖1) = 0. Hence r = ‖u‖1 is the only positive root of g(m,β,p). From (13), we have 
that ui = xi − βprp−1 > 0 for i = 1, 2, . . . , m.

From the inclusion x − u ∈ βp‖u‖p−1
1 ∂‖ · ‖1(u), due to ui = 0, we have xi ≤ βprp−1 for i = m + 1, . . . , n. 

Hence, item (ii) holds.
(ii)⇒(i) We construct a vector u ∈ Rn as follows: ui = xi − βprp−1 for i = 1, 2, . . . , m and ui = 0 for 

i = m + 1, . . . , n if 1 ≤ m ≤ n − 1, and ui = xi − βprp−1 for i = 1, 2, . . . , n if m = n. By the assumption, 
u ∈ Rn

↓ with m nonzero elements. Summing the first m elements of u yields ‖u‖1 =
∑m

i=1 xi −mβprp−1. We 

conclude r = ‖u‖1. Hence ui = xi − βp‖u‖p−1
1 for i = 1, 2, . . . , m and xi ≤ βp‖u‖p−1

1 for i = m + 1, . . . , n if 
1 ≤ m ≤ n −1, and ui = xi −βp‖u‖p−1

1 for i = 1, 2, . . . , n if m = n. This implies x −u ∈ βp‖u‖p−1
1 ∂‖ · ‖1(u). 

By Fermat’s rule, u = proxβhp
(x), which has exactly m nonzero elements. Hence, item (i) holds. �

A direct consequence of Lemma 3 is that for any nonzero vector x ∈ Rn
↓ there is a unique integer m such 

that

ui =
{

xi − βprp−1, if i = 1, 2, . . . , m;
0, if i = m + 1, . . . , n,

(14)

where r is the only positive root of g(m,β,p) defined in (12).
It is clear from (14) that one needs to determine both the number of nonzero elements in proxβhp

(x) and 
the positive root of the function g(m,β,p). A complete scheme for computing the proximity of hp at arbitrary 
point in Rn and the discussion on computing the positive root of the function g(m,β,p) will be postponed in 
section 4. We provide an iterative scheme that counts one nonzero element in proxβhp

(x) at a time in the 
rest of this section.

Given a nonzero vector x in Rn
↓ , β > 0, and p > 1, for an integer m between 1 and n − 1, let r and r̂

be the only positive root of g(m,β,p) and g(m+1,β,p), respectively. From (12), the difference of g(m,β,p)(r) = 0
and g(m+1,β,p)(r̂) = 0 is

mβp(r̂p−1 − rp−1) + (r̂ − r) + (βpr̂p−1 − xm+1) = 0. (15)
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We conclude from (15) that xm+1 ≤ βpr̂p−1 if and only if r̂ ≤ r, and xm+1 > βpr̂p−1 if and only if r̂ > r. 
With the above preparation, an iterative scheme to determine the number of nonzero elements in proxβhp

(x)
for a nonzero vector x in Rn

↓ is described as follows. We begin with m = 1 since proxβhp
(x) has at least 

one nonzero element by Lemma 2. If x2 ≤ βprp−1, then x1 − βprp−1, the first element of proxβhp
(x), is 

the only nonzero element of proxβhp
(x) by Lemma 3; If x2 > βprp−1, x1 > βprp−1 holds automatically, 

hence, the number of nonzero elements in proxβhp
(x) is at least two. Moreover, βpr̂p−1 is closer to xi than 

βprp−1 for i = 1, 2 due to r̂ > r. If x3 ≤ βpr̂p−1, the number of nonzero elements in proxβhp
(x) is exactly 

two; otherwise, we should update m = 2 and repeat the previous procedure until the nonzero elements in 
proxβhp

(x) are identified.

4. Computing the proximity operator of hp

In this section, we will present a complete scheme for computing the proximity operator of hp. First, an 
iterative scheme given in Algorithm 1 is used to compute the proximity operator of hp at a nonzero vector 
x ∈ Rn

↓ . The main idea behind Algorithm 2, the general algorithm, is equation (8), which converts the 
proximity operator of hp at an arbitrary point as one at a point in Rn

↓ so that the latter can be handled by 
Algorithm 1. In this way, the proximity operator of hp at an arbitrary point as a highly nonlinear process is 
viewed as the composition of relatively simpler nonlinear processes. The detailed description of the scheme 
is outlined in Algorithm 2.

Algorithm 1: Computing proxβhp
(x) for a nonzero vector x ∈ Rn

↓ .
Input: p > 1, β > 0, and a nonzero vector x ∈ Rn

↓ ;
1.1 Initialization: m = 1 and r is the positive root of g(1,β,p);
1.2 while m < n do
1.3 if xm+1 ≤ βprp−1 then
1.4

ui =
{

xi − βprp−1, for i = 1, . . . , m;
0, for i = m + 1, . . . , n.

break ;
1.5 else
1.6 Update m ← m + 1 and r ← g−1

(m,β,p)(0), the positive root of g(m,β,p);

Output: proxβhp
(x) ← u.

Line 1 of Algorithm 1 is ensured by Lemma 2 while the “while-loop” from line 2 to line 6 is due to 
Lemma 3 and its following discussion. The only remaining issue is finding the positive root of g(m,β,p). 
Fortunately, an explicit expression for the positive root of g(m,β,p) exists at least for p ∈ {2, 3, 4}. In more 
details, we have the following.

• For p = 2, we have g(m,β,2)(r) = (2mβ + 1)r −
∑m

i=1 xi, whose positive root is

g−1
(m,β,2)(0) =

∑m
i=1 xi

2mβ + 1 . (16)

In this case, Algorithm 1 is the same as the one given in [6]. We point it out that our approach is 
developed differently from the one in [6].
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• For p = 3, we have g(m,β,3)(r) = 3mβr2 + r −
∑m

i=1 xi, whose positive root is

g−1
(m,β,3)(0) = 1

6mβ

⎛
⎝−1 +

√√√√1 + 12mβ
m∑

i=1
xi

⎞
⎠ . (17)

• For p = 4, we have g(m,β,4)(r) = 4mβr3 + r −
∑m

i=1 xi, whose positive root is

g−1
(m,β,4)(0) = 3

√
c +

√
c2 + b3 + 3

√
c −

√
c2 + b3, (18)

where b = 1
12mβ and c = 1

8mβ

∑m
i=1 xi.

• For p ∈ (1, 2), since g(m,β,p)(0) < 0 and g(m,β,p)(
∑m

i=1 xi) > 0 we can use the bisection method to locate 
the only root of g(m,β,p) in the interval (0, 

∑m
i=1 xi).

• p ∈ (2, ∞), in addition to g(m,β,p)(0) < 0 and g(m,β,p)(
∑m

i=1 xi) > 0, since g(m,β,p) is at least 2-
differentiable on [0, ∞) and convex on [0, ∞), Newton’s method, starting with 

∑m
i=1 xi, can generate a 

decreasing sequence that converges to the root of g(m,β,p) in the interval (0, 
∑m

i=1 xi). We comment that 
the bisection method can be used, but Newton’s method is preferred due to its faster convergence rate.

Line 2 of Algorithm 2 is the proximity operator of hp with p = 1, which is the well known soft-thresholding 
operator. Line 3 is due to item (ii) of Lemma 1. The core part of the algorithm is in lines 4 to 7 which 
implement equation (8) regarding the computation of proxβhp

(x) for p > 1 and any nonzero vector x in 
Rn. The vector x̃ in line 5 is the sorted absolute values of elements of x and is obtained through a signed 
permutation matrix P(−) ∈ P(−)(n). It is followed by computing proxβhp

(x̃) via Algorithm 1 in line 6. 
Finally, line 7 follows directly from equation (8).

Algorithm 2: Computing proxβhp
(x) for a vector x ∈ Rn.

Input: p ≥ 1, β > 0, and x ∈ Rn;
2.1 case p = 1 do
2.2 proxβhp

(x) = (sgn(xi)(|xi| − β)+)n
i=1;

2.3 case p > 1 and x = 0 do proxβhp
(x) = 0;

2.4 case p > 1 and x 
= 0 do
2.5 Find a signed permutation matrix P(−) ∈ P(−)(n) such that x̃ = P(−)x ∈ Rn

↓ ;
2.6 Compute proxβhp

(x̃) via Algorithm 1;
2.7 Compute proxβhp

(x) = P −1
(−) proxβhp

(x̃).
Output: proxβhp

(x);

For p = 2, Algorithm 2 gives a constructive way to accurately compute proxβh2
, thus improving the 

existing result in [4] in the sense that the bisection method is not required for evaluating proxβh2
at a point.

5. Relative sparsity

In this section, we visually present the relative sparsity promoted by the function hp for p > 1. As 
mentioned in the introduction, the function h1, i.e., the �1 norm, is a sparsity promoting function. Its 
proximity operator proxβh1

sends the element of a vector to zero if its absolute value is smaller than the 
threshold β; otherwise, shrinks this element toward zero by β. Similarly, the function hp with p > 1 promotes 
a type of relative sparsity in the sense that its proximity operator maps a nonzero vector to another nonzero 
vector and sends some elements of the vector to zero according to a threshold depending on the relationship 
between the elements. Next, we discuss the proximity operator proxβh for p ∈ {1, 2, 3} in R2.
p
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Fig. 5.1. Thresholding and shrinkage of proxβh1
. The side length of the square is (a) 2β and (b) 7β (outer square). All of the blue 

segments in (a) map to the origin, marked by ⊕, and the red segments in (b) map to the red ⊕ while the blue segments shift to 
the corresponding blue segments. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

Fig. 5.1 shows the properties of proxβh1
in R2. The side lengths of the squares centered at the origin 

in Fig. 5.1(a) and (b) are 2β and 7β, respectively. Since the threshold is β, the operator proxβh1
maps all 

points on the boundary of the square in Fig. 5.1(a) to the origin marked by ⊕. Fig. 5.1(b) has two concentric 
squares with side lengths of 5β and 7β. There are four points marked by the symbol ⊕ in the middle of each 
side of the smaller square while there are four red line segments with length 2β lying in the middle of each 
side of the bigger square. The operator proxβh1

maps all points in the red line to the closest point marked 
by ⊕. The other points in blue lines of the larger square will be moved toward the origin by the amount β
for each coordinate, falling on the smaller square.

For p > 1, we call Rn
↓ the primitive set for proxβhp

in the sense that

Rn = ∪P(−)∈P(−)(n)P(−)R
n
↓ .

Therefore, we focus on investigating the operator proxβhp
on the primitive set Rn

↓ . For any nonzero vector 
in Rn

↓ , depending on the relative values of its elements, the number of nonzero elements in the resulting 
vector from proxβhp

can be 1, 2, . . . , n − 1, or n by Algorithm 1.
Fig. 5.2 shows the properties of the operator proxβh2

in R2 through observing where the points on the 
squares are mapped to. The side lengths of the squares centered at the origin in Fig. 5.2(a) and (b) are 2β

and 7β with β = 1
2 , respectively. The side lengths of the squares centered at the origin in Fig. 5.2(c) and 

(d) are 2β and 7β with β = 2, respectively. We partition vectors in R2
↓ as follows:

{x = (x1, x2)ᵀ : x ∈ R2
↓} = I1 ∪ I2

with

I1 =
{

x = (x1, x2)ᵀ ∈ R2
↓ : x2 ≤ 2β

2β + 1x1

}

and

I2 =
{

x = (x1, x2)ᵀ ∈ R2
↓ : x2 >

2β

2β + 1x1

}
.

For a fixed value of x1, the red lines on the right and left of each outside square in Fig. 5.2 are formed by 
I1 and its reflection across the x2-axis, and the other red lines are the rotated versions of these red lines. 
By simply replacing I1 by I2, the blue lines are formed. With Lemma 3, we get
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Fig. 5.2. The properties of proxβh2
. The side length of the square is (a) 2β and (b) 7β with β = 1

2 ; (c) 2β and (b) 7β with β = 2. 
Red segments send one component to zero, marked by red ⊕, while blue segments map to blue segments. The thresholding depends 
not only on the parameter β but also the relationship between the two components.

proxβh2
(x) =

⎧⎨
⎩

(
1

2β+1 x1, 0
)ᵀ

, if x ∈ I1;

x − 2β
2β+1 (x1 + x2) · (1, 1)ᵀ, if x ∈ I2.

Clearly, proxβh2
might send some components of a vector, for example vectors in I1, to zero, or shrink the 

components of a vector by the threshold depending on both β and the components of the vector itself, like 
the vectors in I2. Visually, in Fig. 5.2 proxβh2

maps all points in the red lines to a closed point marked by 
the nearest ⊕, and maps the points in the blue lines to the ones on the inner octagon. We further remark 
that the operator proxβh2

is linear on I1 and I2, and the plots of Fig. 5.2(a) and Fig. 5.2(b) are visually 
similar, while the plots of Fig. 5.2(c) and Fig. 5.2(d) are also visually similar, although each on different 
scales.

Fig. 5.3 shows the properties of the operator proxβh3
in R2. The side lengths of the squares centered at 

the origin in Fig. 5.3(a) and (b) are 2β and 7β with β = 1
2 , respectively. The side lengths of the squares 

centered at the origin in Fig. 5.3(c) and (d) are 2β and 7β with β = 2, respectively. We partition vectors in 
R2

↓ as follows:

{x = (x1, x2)ᵀ : x ∈ R2
↓} = I3 ∪ I4

with

I3 =
{

x = (x1, x2)ᵀ ∈ R2
↓ : x2 ≤ x1 − 1

6β

√
1 + 12βx1

}

and
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Fig. 5.3. The properties of proxβh3
. The side length of the square is (a) 2β and (b) 7β with β = 1

2 ; (c) 2β and (b) 7β with β = 2. 
As before, red segments map to red ⊕, while blue segments map to blue segments.

I4 =
{

x = (x1, x2)ᵀ ∈ R2
↓ : x2 > x1 − 1

6β

√
1 + 12βx1

}
.

Swapping I1 (I2) and I3 (I4), the red (blue) lines on the squares in Fig. 5.3 are formed as in Fig. 5.2. With 
Lemma 3, we get

proxβh3
(x) =

⎧⎪⎨
⎪⎩

(
1

6β

√
1 + 12βx1, 0

)ᵀ
, if x ∈ I3;

x −
(

x1+x2
2 − 1

24β

√
1 + 24β(x1 + x2)

)
· (1, 1)ᵀ, if x ∈ I4.

Similar to proxβh2
, proxβh3

might send some components of a vector, for example vectors in I3, to zero, or 
shrink the components of a vector by the threshold depending on both β and the components of the vector 
itself, like the vectors in I4. In Fig. 5.3, we see that proxβh3

maps all points in the red lines to a closed point 
marked by ⊕, while it maps the points in the blue lines to the ones on the octagon-like curve.

Similar to the preceding examples for p ∈ {1, 2, 3} in R2, the function hp with p > 1 promotes relative
sparsity in that rather than a uniform threshold shrinking elements or mapping them to zero, the threshold 
depends on the relationship among the components.

6. Conclusions

In this paper, we provide a constructive way to compute the proximity operator of the p-th power of the 
�1 norm. For p ∈ {2, 3, 4}, explicit expressions of these proximity operators can be derived from the proposed 
way. Moreover, this construction gives a characterization on the regions where the proximity operator of 
the p-th power of the �1 norm can provide sparsity.
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