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This note is to study the proximity operator of h, = || - ||}, the power function of
the ¢; norm. For general p, computing the proximity operator requires solving a
system of potentially highly nonlinear inclusions. For p = 1, the proximity operator
of h; is the well known soft-thresholding operator. For p = 2, the function hg serves
as a penalty function that promotes structured solutions to optimization problems
of interest; the computation of the proximity operator of hs has been discussed
in recent literature. By examining the properties of the proximity operator of the
power function of the ¢; norm, we will develop a simple and well-justified approach
to compute the proximity operator of h, with p > 1. In particular, for the squared
¢1 norm function, our approach provides an alternative, yet explicit way to finding
its proximity operator. We also discuss how the structure of h;, represents a class of
relative sparsity promoting functions.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

The power-p (p > 1) function of the ¢; norm on R™ is

hy :R" - R : 2 ||z]]f.

Its prozimity operator (or proximal mapping) at x € R™ with index § > 0 is defined as

. f1 n
proxg, (z) = argmin {§||u — 2|3 + Bhy(u) :u € R } .
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For p = 1, the function h; is simply the #; norm whose proximity operator is the well known soft-thresholding
operator, which has been extensively used in sparse optimization in the last two decades [3]. For p = 2, the
computation of proxgy,, is the main computational component in regularized robust portfolio estimation [4].
Unlike the proximity operator of hq, the proximity operator of hy given in [4] does not have a closed form
since it requires locating the positive root of a nonlinear function through the bisection method. The key
step in the derivation of proxg,, in [4] is to view hy as the optimal value of an optimization problem over
the unit simplex set on R™. Using the technique of Lagrange multipliers, a procedure was presented for the
computation of proxgy,, in [6]. It is not obvious how this idea can be adapted for dealing with h,, for p # 2.

The focus of this paper is the computation and understanding of the proximity operator of h, for p > 1.
We propose a method for computing proxgy, that essentially relies on finding the unique positive root of
the triterm function

fr)=r"""+ar —b,

where both a and b are positive. Correspondingly, Proxgy, (z) for any = € R™ has an explicit expression
as long as the root of the above function has an explicit expression. Fortunately, the positive root of this
triterm function has such a form at least for p € {2,3,4}. In particular, for p = 2 our result clearly improves
the one in [4] and is the same as the one in [6] for this case, although arrived at by a different process. If
an explicit expression of the positive root of this triterm function is not available, we can efficiently find it
by either bisection or Newton’s method. However, we emphasize that our proposed method for computing
proxg, ~works for all p > 1.

The ¢1 norm, that is k1, is a typical sparsity promoting function (SPF). Loosely speaking, a function is an
SPF if its subdifferential at the origin contains at least one nonzero element; that is, an SPF has a corner or
cusp at the origin [8,9]. Viewed in another way, the subdifferential of the function at the origin is a set that
defines a threshold for small elements which are considered noise or insignificant. The proximity operator
of the SPF will send all elements under this threshold to the origin. According to the above description,
the function h, with p > 1 is not an SPF since it is differentiable at the origin. As a result, the proximity
operator of h, maps a nonzero vector to another nonzero vector. However, we see that h, promotes a type
of relative sparsity. In particular, rather than a uniform threshold sending elements to zero, the threshold
depends on the relationship between the components.

The remaining part of this note is organized as follows. In Section 2, we give a brief review on the
proximity operators of h; and hy to motivate the computation of the proximity operator of h, with p > 1.
In Section 3, we present the properties of the proximity operator of h, with p > 1. In particular, based
on these properties, we propose an iterative scheme to compute the proximity operator of h, for vectors
with ordered nonnegative elements. A general scheme for computing proximity operator of hj, is given in
Section 4. We visually present the relative sparsity promoted by the function h, for p > 1 in Section 5.

2. Brief review on the proximity operators of h; and ho
The proximity operator of h; is the well known soft-thresholding operator given as follows:

proxgy, () = (sgn(@:)(Jzi — B)+)i; - (3)

We denote by (a)4 the hinge function, namely, (a)+ = max{0,a}, and sgn is the signum function which is
defined at a € R as

-1, ifa<0;
sgn(a) =4 0, ifa=0;
1, ifa>1.
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The formula (3) shows that the operator proxg, maps all vectors in the n-dimensional cube with sidelength
[ to the origin and shrinks every element of a vector outside this cube towards the origin by 5.

The computation of proxg,, was studied for regularized robust portfolio estimation in [4]. Here we present
a similar derivation of proxg,, from the book [2, Lemma 6.70]. The key step in computing proxgy, is to

express ho(x) = ||z||? as the optimal value of an optimization problem as follows
n
|2 = min > (s, ), (4)
€A, =
where
%7 t > 0;
o(s,t) =40, s=0,t=0; (5)
0o, else

and A, is the unit simplex set, that is, the convex hull of the standard basis of R”™. With (4), for « # 0,
u = proxg,, () is the u-part solution of the optimal solution of

1 5 ~
i a - i7>\i .
et {2llu z3 +ﬁ;<p(u )}

Fixing A and minimizing over u for the above optimization problem we obtain that w; = ,\/\l—ziw and
substituting the resulting vector u into the above problem leads to

,\eA Z)\ +2B

This constrained optimization problem can be solved through the associated Lagrangian multipliers. Putting
the above together, we obtain that

\ix; "

1L 0’

ProXgp, (;(;) B { 0()\71+2ﬁ)i_1 , X # . (6)
b x = b

where \; = (% — 2ﬁ> with p* being any positive root of the nonincreasing function
+

i) = Z(C’S’" 2ﬁ)+—1- (7)

i=1

The root p* is found by the bisection search. To explore (6) in more detail, let us write u = proxgy,, (). If
Ai >0, then \; = ‘zl‘ — 28 and u; = x; — 2+/Bp* sgn(z;); all nonzero elements u; thus are shrinkage of x;
towards the origin by %/W . The value of 24/Bu* does not have an explicit expression in terms of 8 and
x since p* as a root of ¢ in (7) is obtained from the bisection method.

A different way of exploiting Lagrangian multipliers for the computation of proxg,, was proposed in [6]
and will be mentioned in section 4. In the rest of the paper, we will propose a unified procedure to compute
Proxgy, for all p > 1.
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3. The properties of the proximity operator of h,

All functions in this work are defined on Euclidean space R™ equipped with the standard inner product
(-,-) and the induced Euclidean norm || - ||2. For a function g : R™ — R U{co}, the set dom(g) = {x : g(z) <
oo} is the domain of g. We use I'o(R™) to represent the set of proper lower semicontinuous convex functions
on R™. We denote the cone of vectors = in R” satisfying z1 > 22 > ... > x, > 0 by ]Ri".

For any g € T'o(R™), the subdifferential of g at « € dom(g) is the set

dg(x) ={d e R" : g(y) > g(x) + (d,y — x), Yy € R"}.

Furthermore, if ¢ is Fréchet differentiable, dg(x) = {Vg(z)}. The relationship between the subdifferential
and proximity operator of a function f € T'o(R"™) is characterized as follows (see, e.g., [1,7]):

for any 8 > 0, z € BOf(y) if and only if y = proxg(z + y).

From this relationship, we get the following characterization on the proximity operator of h,.

Lemma 1 (Chain rule and shrinkage). For the power-p function of the {1 norm h, given in (1) with p > 1,
the following statements hold.

(i) The function h, is convex on R™ and dh,(z) = p|z|?0| - |1 () for all x € R™.
(i) || proxg, (z)|| < ||z[| for all z € R™ and 8> 0.

Proof. (i) Note that h, = (-)% o - ||1, where (-)! is a nondecreasing and convex function, and the ¢, norm
|| - |l is convex. Hence, h,, is convex. It follows from [5, Theorem 4.3.1] that 8h,(z) = pllz||? || - || (z).

(ii) From item (i), we have 9h,(0) = {0}. Hence proxg, (0) = 0.1t leads to || proxg, (2)|| = || proxg,, (z)—
proxg;, (0)[ < ||z due to the nonexpansiveness of proxg, . O

Item (i) of Lemma 1 implies that h, with p > 1 is differentiable at the origin while it is not differentiable
at nonzero vectors having at least one zero element. Item (ii) of Lemma 1 says that prox Bh, 18 a shrinkage
operator.

Now let P_y(n) denote the set of all n x n signed permutation matrices: those matrices that have only
one nonzero element in every row or column, which is +1. Since h,(x) = hy,(P_yz) for all P_y in P_)(n)
and z € R™, we immediately have that

proxg, ()= P(__l) proxg;, (P(-)). (8)

For every x € R", there exists a signed permutation matrix P such that P_yz € R. Thus, with the
identity (8), we should focus on the computation of the operator proxg, —over the set RY.

Lemma 2 (Order preservation and nonzero elements). Let x be a nonzero vector in RT.

(i) For anyp > 1 and B> 0, proxg, (x) is also in RY.
(it) proxgy, (x) is a nonzero vector in R for any p > 1 and 8 > 0.

Proof. (i) Recall that proxg, (z)= argmin {3 ||u — z||3 + B|ul} : w € R™}. For any given u € R", we have
lullf = [[P—yu|l} for any signed permutation matrix P_y in P(_y(n). Furthermore, there exists a signed
permutation matrix Q € P(_y(n) such that Qu € R}. Since z € R}, we know that [|Qu—z[|* < [|P_yu—=z|?,
hence, ||Qu — z|* + B|Qull} < |[Pyu — z||* + B||Pyul]} for all P_y € P_y(n). We conclude from the
above discussion that proxg, (z) € RY.
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(ii) Let us write u* = proxg, (z) for the nonzero vector z in RY. Then, by item (i) of Lemma 2, u* € RT.
To show u* is a nonzero vector, it is sufficient to show uj > 0. We prove it by contradiction.
1

Suppose that uf = 0, that is, u* is a zero vector. Define g(u) = 3|lu — z||3 + S||u|}. By the definition of

proximity operator, we have that

Sl = g(u*) < gu)

holds for all u € RY. In particular, plugging u = (a,0,...,0)T € R’j with @ > 0 into the above inequality
yvields 223 < 1(a — 1) + Ba?, or equivalently,

1
§a27x1a+5ap >0 (9)

for all a > 0. Write f(a) = 3a* — z1a + BaP. Since f(0) = 0 and f/(0) = —=z1 < 0, we conclude that
equation (9) does not hold for all a > 0, therefore, contradicting the assumption. Hence, u* must be a

nonzero vector. O

Recall that a function f € T'g(R™) is said to be an SPF provided that (i) f(0) = 0 and f achieves its
global minimum at the origin; and (ii) the set 9f(0) contains at least one nonzero element. More discussions
on this concept can be found in [8]. Moreover, SPFs are characterized by the thresholding behavior of their
proximity operators, which item (ii) of Lemma 2 seems to contradict. Clearly, hy is an SPF while h, with
p > 1 is not due to 0h,(0) = {0} by Lemma 1.

To illustrate the behavior of h,, consider x € R%. As noted before, h,, is differentiable at the origin with
Vh,(0) = 0. However, when one component is zero, say x2 = 0, the subdifferential is as follows

Ohy(z1,0) = {ple1 [P~ (sgn(z1), )T :n € [~1,1]}.

With this, we can consider the differential inclusion defined by the proximity operator; i.e. if (u,v) €
proxg, (21, 22), then

0€ (u—z1,v—x2)" + BOhy(u,v). (10)

By Lemma 1, we know that Proxgy, () # 0, but it may still be more sparse than z. For example, prox will
send the second component to zero if

xy = u -+ Bpsgn(u)|ufP~!

(11)
—BplulP™t < 29 < BplulP~?

This highlights the dependence of the thresholding on the relationship between x; and x5. We refer to this
as relative sparsity, and defer further discussion to Section 5.

The next result will give a characterization on the number of nonzero elements produced by the proximity
operator of h,. To this end, for a given nonzero vector x € R7, scalars 3 > 0 and p > 1, and an integer

1 <m < n, we define a triterm function g(,, g, : [0,00) — R as follows:

Gim,p.p) (1) == mPBpr?~' +r — Z x;. (12)
i=1
Since g(m.p.0)(0) = =221 @i < 0, gampp)(l2l1) > 0, and g, 5 (1) = mBp(p — HrP=* +1 > 0 for all
7 >0, g(m,3,p) has one and only one positive root located in the interval (0, ||z||1). We denote by 9(_771 8 p)(O)
the positive root of g, z,p)-
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Lemma 3 (Counting nonzero elements). Let x be a monzero vector in R and let B > 0. The following
statements are equivalent.

(i) The prozimity operator of h, with index B at x has m nonzero elements.

(ii) xm > BprP~t and Ty < BprPtif 1 <m < n—1 or x, > BprP=t if m = n, where r is the only
positive 100t of G(m.5.p) defined in (12).

Proof. (i)=-(ii) Write u = proxg, (z). From x being a nonzero vector and item (ii) of Lemma 2, we have

m > 1, and the first m elements of u are positive and the remaining u; = 0 for i = m + 1,...,n. Since

u = proxg, (z), we know x —u € 9(Bhy)(u), that is, z —u € Bpllul?~9) - |1 (1) by Lemma 1. Therefore,

we obtain the following

T — U; = 5I’||U|\]f_1 (13)
for i =1,2,...,m. Summing (13) over ¢ = 1,2,...,m yields
m
> @i —|ully = mBpluli7,
i=1

which implies g(m, g, ([lull1) = 0. Hence 7 = ||u||; is the only positive root of g(,, gp). From (13), we have
that u; = x; — BprP"! >0fori=1,2,...,m.

From the inclusion z — u € Sp|jul[?~ ]| - ||1(u), due to u; = 0, we have z; < Bpr?~' fori =m+1,...,n.
Hence, item (ii) holds.

(ii)=(i) We construct a vector u € R™ as follows: u; = x; — BprP~! for i = 1,2,...,m and u; = 0 for
i=m+1,...,nifl<m<n-1,and u; = z; — BprP~! for i = 1,2,...,n if m = n. By the assumption,

u € R with m nonzero elements. Summing the first m elements of u yields |luly = Y2i", z; —mBprP~". We
conclude r = |Ju||;. Hence u; = x; — Bpllul/®~! for i =1,2,...,m and x; < Bpllul[®~" fori=m+1,...,nif
1<m<n-1,and u; = z; — Bpllul[?~" fori = 1,2,...,n if m = n. This implies = —u € Bp||ul?~ |- ||1 (u).
By Fermat’s rule, u = proxg, (z), which has exactly m nonzero elements. Hence, item (i) holds. O

A direct consequence of Lemma 3 is that for any nonzero vector x € R there is a unique integer m such
that

14
0, ifi=m+1,...,n, (14)

{xi — Bprr~l, ifi=1,2,...,m;
U; =
where 7 is the only positive root of g(,, g ) defined in (12).

It is clear from (14) that one needs to determine both the number of nonzero elements in proxg, () and
the positive root of the function g(,, g ). A complete scheme for computing the proximity of h, at arbitrary
point in R™ and the discussion on computing the positive root of the function g(,, ) will be postponed in
section 4. We provide an iterative scheme that counts one nonzero element in proxg, (z) at a time in the
rest of this section.

Given a nonzero vector x in RT, B > 0, and p > 1, for an integer m between 1 and n — 1, let r and 7
be the only positive root of g(m, g,) and gim+1,8,p), respectively. From (12), the difference of g, 5,)(7) = 0
and g(m41,8,p)(7) =0 is

mﬁp(fpil - rpil) + (72 - T) + (ﬁp'ﬁpil - xm—&-l) = 0. (15)
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We conclude from (15) that z,,,+1 < SpfP~1 if and only if # < r, and x,,41 > BpfP~! if and only if 7 > 7.
With the above preparation, an iterative scheme to determine the number of nonzero elements in Proxgy, (2)
for a nonzero vector z in R} is described as follows. We begin with m = 1 since proxg,, () has at least
one nonzero element by Lemma 2. If zo < BprP~!, then z1 — Bpr?~!, the first element of ProXgy, (x), is
the only nonzero element of Proxgy, () by Lemma 3; If 2o > BprP~!, x; > BprP~! holds automatically,
hence, the number of nonzero elements in proxg, (x) is at least two. Moreover, BpiP~! is closer to x; than
BprP~1 for i = 1,2 due to # > 7. If x5 < BpiP~!, the number of nonzero elements in Proxgy, (x) is exactly
two; otherwise, we should update m = 2 and repeat the previous procedure until the nonzero elements in
proxg, (z) are identified.

4. Computing the proximity operator of h,

In this section, we will present a complete scheme for computing the proximity operator of h,. First, an
iterative scheme given in Algorithm 1 is used to compute the proximity operator of h;, at a nonzero vector
z € R}. The main idea behind Algorithm 2, the general algorithm, is equation (8), which converts the
proximity operator of h, at an arbitrary point as one at a point in R so that the latter can be handled by
Algorithm 1. In this way, the proximity operator of h, at an arbitrary point as a highly nonlinear process is
viewed as the composition of relatively simpler nonlinear processes. The detailed description of the scheme
is outlined in Algorithm 2.

Algorithm 1: Computing Proxgy, (z) for a nonzero vector z € RY.

Input: p > 1, 8 > 0, and a nonzero vector € RY;
1.1 Initialization: m = 1 and r is the positive root of g1 g p);
1.2 while m < n do

1.3 if Zpp1 < BprP~ ! then
1.4
“ z; — BprP~t, fori=1,...,m;
T 0, fori=m+1,...,n
break ;
1.5 else
1.6 L Update m < m + 1 and 7 <+ g(}lb 3 m(O), the positive root of g(m,g,p);

Output: proxg, () « u.

Line 1 of Algorithm 1 is ensured by Lemma 2 while the “while-loop” from line 2 to line 6 is due to
Lemma 3 and its following discussion. The only remaining issue is finding the positive root of g, 5,p)-
Fortunately, an explicit expression for the positive root of g, 3p) exists at least for p € {2,3,4}. In more

details, we have the following.

o For p =2, we have g(;, g2)(r) = (2mfB + 1)r — > | ;, whose positive root is

diey T

T o2mB+ 1 (16)

-1
9I(m,B,2) (0)

In this case, Algorithm 1 is the same as the one given in [6]. We point it out that our approach is
developed differently from the one in [6].
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o For p =3, we have g(,, 5,3)(r) = 3mfBr*> +r — > " | x;, whose positive root is

_ 1 <
g(;’ﬂ’g)(o)zm —1+4  |1+12mB> ;| . (17)

i=1

o For p =4, we have g(,, 5,4)(r) = 4mfBr® +r — > | ;, whose positive root is

9(775,5,4)(0): </0+ c2+b3+</c—\/c2+b3, (18)

where b= —1— and c = 2> Y7"
12mp 8mp =1

 For p e (1,2), since gm.g,)(0) < 0 and g g, (> 1 ;) > 0 we can use the bisection method to locate
the only root of g, s, in the interval (0,>;" ;).

e p € (2,00), in addition t0 g(m g (0) < 0 and g g, (> ieq 2i) > 0, since gim gp) is at least 2-
differentiable on [0, c0) and convex on [0, c0), Newton’s method, starting with >/, x;, can generate a
decreasing sequence that converges to the root of g, 5 ) in the interval (0, > x;). We comment that
the bisection method can be used, but Newton’s method is preferred due to its faster convergence rate.

Line 2 of Algorithm 2 is the proximity operator of h, with p = 1, which is the well known soft-thresholding
operator. Line 3 is due to item (ii) of Lemma 1. The core part of the algorithm is in lines 4 to 7 which
implement equation (8) regarding the computation of proxﬁhp(a:) for p > 1 and any nonzero vector x in
R™. The vector Z in line 5 is the sorted absolute values of elements of x and is obtained through a signed
permutation matrix P_y € P_)(n). It is followed by computing ProXgy, (z) via Algorithm 1 in line 6.
Finally, line 7 follows directly from equation (8).

Algorithm 2: Computing proxg, (z) for a vector x € R".

Input: p > 1, 3 > 0, and =z € R"™;
2.1 case p =1 do
22 | proxg, (2) = (sgn(@:)(eil — B)4)7 s
2.3 case p > 1 and = 0 do proxg, (z)=0;
2.4 case p > 1 and x # 0 do

2.5 Find a signed permutation matrix P(_y € P(_y(n) such that & = P_yz € RY;
2.6 Compute prothP(i) via Algorithm 1;
2.7 Compute prothp(J:) = P(__l) proxﬁhp(i).

Output: proxg, (x);

For p = 2, Algorithm 2 gives a constructive way to accurately compute proxgy,,, thus improving the
existing result in [4] in the sense that the bisection method is not required for evaluating proxg,, at a point.

5. Relative sparsity

In this section, we visually present the relative sparsity promoted by the function h, for p > 1. As
mentioned in the introduction, the function hi, i.e., the £; norm, is a sparsity promoting function. Its
proximity operator proxg,, sends the element of a vector to zero if its absolute value is smaller than the
threshold 3; otherwise, shrinks this element toward zero by 3. Similarly, the function h, with p > 1 promotes
a type of relative sparsity in the sense that its proximity operator maps a nonzero vector to another nonzero
vector and sends some elements of the vector to zero according to a threshold depending on the relationship
between the elements. Next, we discuss the proximity operator proxg, —for p € {1,2,3} in R%
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¢
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(@) (b)

Fig. 5.1. Thresholding and shrinkage of proxg, . The side length of the square is (a) 28 and (b) 78 (outer square). All of the blue
segments in (a) map to the origin, marked by @, and the red segments in (b) map to the red @ while the blue segments shift to
the corresponding blue segments. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this
article.)

Fig. 5.1 shows the properties of proxg,, in R2. The side lengths of the squares centered at the origin
in Fig. 5.1(a) and (b) are 28 and 7/, respectively. Since the threshold is 3, the operator proxgy, maps all
points on the boundary of the square in Fig. 5.1(a) to the origin marked by ®. Fig. 5.1(b) has two concentric
squares with side lengths of 53 and 73. There are four points marked by the symbol & in the middle of each
side of the smaller square while there are four red line segments with length 25 lying in the middle of each
side of the bigger square. The operator proxg,, maps all points in the red line to the closest point marked
by @. The other points in blue lines of the larger square will be moved toward the origin by the amount
for each coordinate, falling on the smaller square.

For p > 1, we call R} the primitive set for proxg, in the sense that

R" =Up_jer,mP-)R]-

Therefore, we focus on investigating the operator Proxg;, —on the primitive set R}'. For any nonzero vector
in R}, depending on the relative values of its elements, the number of nonzero elements in the resulting
vector from proxg, canbe 1,2,...,n—1, or n by Algorithm 1.

Fig. 5.2 shows the properties of the operator proxg,, in R? through observing where the points on the
squares are mapped to. The side lengths of the squares centered at the origin in Fig. 5.2(a) and (b) are 23
and 78 with g = %, respectively. The side lengths of the squares centered at the origin in Fig. 5.2(c) and
(d) are 28 and 78 with 8 = 2, respectively. We partition vectors in Ri as follows:

{x=(x1,22)T:2 €R}} =1 UL

with

2
Il = {l‘ = (.Z'],.I'Q)T c Rf Ty < w%l’l}

and

28

_ _ 2,

I, = {$ = (1’1,1'2)T S Ri LT > m.’ﬂl} .

For a fixed value of 1, the red lines on the right and left of each outside square in Fig. 5.2 are formed by
I, and its reflection across the xs-axis, and the other red lines are the rotated versions of these red lines.
By simply replacing I3 by I, the blue lines are formed. With Lemma 3, we get
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(0) (d)

Fig. 5.2. The properties of proxg,,. The side length of the square is (a) 28 and (b) 78 with 8 = 15 (c) 28 and (b) 78 with 8 = 2.
Red segments send one component to zero, marked by red @, while blue segments map to blue segments. The thresholding depends
not only on the parameter 8 but also the relationship between the two components.

T

(ﬁl‘l,O) s if v € I;
proxg,, (x) = y
= gpg(er+a2) - (LT, ifwel.

Clearly, proxg),, might send some components of a vector, for example vectors in Iy, to zero, or shrink the
components of a vector by the threshold depending on both 8 and the components of the vector itself, like
the vectors in 5. Visually, in Fig. 5.2 proxg,, maps all points in the red lines to a closed point marked by
the nearest @, and maps the points in the blue lines to the ones on the inner octagon. We further remark
that the operator proxgy,, is linear on I; and I, and the plots of Fig. 5.2(a) and Fig. 5.2(b) are visually
similar, while the plots of Fig. 5.2(c) and Fig. 5.2(d) are also visually similar, although each on different
scales.

Fig. 5.3 shows the properties of the operator proxg,, in R2. The side lengths of the squares centered at
the origin in Fig. 5.3(a) and (b) are 28 and 78 with 8 = %, respectively. The side lengths of the squares
centered at the origin in Fig. 5.3(c) and (d) are 28 and 78 with 8 = 2, respectively. We partition vectors in
Rf as follows:

{o=(z1,22)T: 2 eR}}=13UL4

with

1
I3 = {x: (ml,ajg)T ERi:xz <z — @ 1—|—12ﬁx1}

and
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(© (d)

Fig. 5.3. The properties of proxg, . The side length of the square is (a) 28 and (b) 78 with 8 = 23 (c) 28 and (b) 78 with 8 = 2.
As before, red segments map to red @, while blue segments map to blue segments.

1
.[4:{1‘:((E1,(E2)T€Rill’2>l’1—@ 1+12ﬂ{1}1}

Swapping I (I3) and I3 (1), the red (blue) lines on the squares in Fig. 5.3 are formed as in Fig. 5.2. With
Lemma 3, we get

]
(%w/il ¥ 1253:1,0) , if 2 € Is;

proxﬂhg(x) = N 1 .
z— (ml_zrz — W\/l + 248(z1 + xQ)) (LT, ifx e Iy

Similar to proxgy,,, proxg,, might send some components of a vector, for example vectors in I3, to zero, or
shrink the components of a vector by the threshold depending on both S and the components of the vector
itself, like the vectors in I4. In Fig. 5.3, we see that proxg,  maps all points in the red lines to a closed point
marked by @, while it maps the points in the blue lines to the ones on the octagon-like curve.

Similar to the preceding examples for p € {1,2,3} in R?, the function hp with p > 1 promotes relative
sparsity in that rather than a uniform threshold shrinking elements or mapping them to zero, the threshold
depends on the relationship among the components.

6. Conclusions

In this paper, we provide a constructive way to compute the proximity operator of the p-th power of the
£1 norm. For p € {2, 3,4}, explicit expressions of these proximity operators can be derived from the proposed
way. Moreover, this construction gives a characterization on the regions where the proximity operator of
the p-th power of the ¢; norm can provide sparsity.
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