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We propose and analyze deterministic protocols to generate qudit photonic graph states from
quantum emitters. We exemplify our approach by constructing protocols to generate absolutely
maximally entangled states and logical states of quantum error correcting codes. Some of these
protocols make use of time-delayed feedback, while others do not. These results significantly broaden
the range of multi-photon entangled states that can be produced deterministically from quantum
emitters.

I. INTRODUCTION

Entanglement is a uniquely quantum property that
plays an important role in almost all aspects of quan-
tum information science, including quantum computing
[1], quantum error correction [2, 3], quantum sensing [4],
and quantum networks [5–7]. Many of these applications
require generating large multi-photon entangled resource
states upfront, especially in the context of measurement-
or fusion-based quantum computing [8–10] and quantum
communication [11–14].

However, creating entangled states of many photons
is challenging because photons do not interact directly.
Standard ways of circumventing this issue make use
of either nonlinear media [15] or quantum interference
and measurement [16, 17]; the former approach is made
challenging by low coupling efficiencies, while the lat-
ter is intrinsically probabilistic. Approaches that rely
on interfering photons are usually based on linear optics
and post-selection [16, 17], and consequently the success
probability decreases exponentially with the number of
photons [16, 18]. Despite a number of conceptual and
technological advances, the probabilistic nature of this
approach continues to severely limit the size of multi-
photon entangled states constructed in this way [19, 20].

An alternative approach is to use coupled, controllable
quantum emitters with suitable level structures to deter-
ministically generate multi-photon entanglement [21–23].
There now exist several explicit protocols for creating en-
tangled states of many photonic qubits, either by using
entangling gates between emitters and transferring en-
tanglement to the photons in the photon emission stage
[23–29], or by (re)interfering photons with emitters to
create entanglement beyond that potentially generated
through the emission process [30–33]. Proof-of-principle
experimental demonstrations of such deterministic pro-
tocols have been performed in both the optical and mi-
crowave domains [34–37].

To date, the vast majority of theoretical and exper-
imental efforts towards the deterministic generation of
multi-photon entangled states have focused on photonic
qubits. These are based on using either polarization,
spatial path, or time bin as the logical encoding. How-
ever, photons can naturally encode not only qubits but
also multi-dimensional qudit states, for example by using

more than two spatial paths or time bins. This can allow
for novel approaches to quantum computing, communi-
cation, sensing, and error correction in which quantum
information is stored in a more compact way [38–40].
Such states can in particular provide benefits in quan-
tum networks and repeaters [41, 42]. Although there
have been recent experimental demonstrations of entan-
gled qudit state creation, these have been limited thus
far to two photons [38, 43]. An outstanding question is
whether multi-photon entangled qudit states can be gen-
erated deterministically from a small number of quantum
emitters.

In this paper, we propose and evaluate determinis-
tic methods to generate multi-photon qudit graph states
from multi-level quantum emitters. We present sev-
eral different explicit protocols that can produce var-
ious states either using a single emitter together with
time-delayed feedback, or using multiple coupled quan-
tum emitters. While our approach is quite general,
here we focus on constructing highly entangled multipar-
tite states called absolutely maximally entangled (AME)
states. These states are defined by the property that
they maximize the entanglement entropy for any biparti-
tion [44, 45], and they have applications in quantum error
correcting codes (QECCs) and secret sharing [2, 44–50].
In addition, we present protocols for constructing logical
states of QECCs whose code spaces are spanned by AME
states of qutrits.

The paper is organized as follows. We begin with a
brief review of qudit graph states and describe the basic
operations needed to create them from quantum emitters
(Sec. II). In Sec. III, we describe how to produce photonic
qudits from quantum emitters and illustrate our basic
approach to multi-qudit-state generation by presenting
a protocol to create one-dimensional qudit graph states.
In Sec. IV, we present protocols for generating various
AME states. Finally, in Sec. V, we show how to generate
an explicit example of a QECC whose codewords are all
AME states of qutrits. We conclude in Sec. VII.
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II. BACKGROUND: QUDITS AND GRAPH
STATES

In this work, we focus on the generation of an impor-
tant class of entangled states called graph states [51].
Graph states are pure quantum states that are defined
based on a graph G = (V,Γ), which is composed of a
set V of n vertices (each qudit is represented by a ver-
tex), and a set of edges specified by the adjacency matrix
Γ. Γ is an n × n symmetric matrix such that Γi,j = 0
if vertices i and j are not connected and Γi,j > 0 oth-
erwise [51–54]. These states have many applications in
measurement-based quantum computing [9, 55], quan-
tum networks [12–14], and QECCs [56, 57].

There are differences between qubit and qudit graph
states. For the qubit case, the graph state is defined by
initializing all qubits in the +1 eigenstate of the X Pauli
matrix, i.e., the state |+⟩ = |0⟩+ |1⟩ (here and in the fol-
lowing we will not always explicitly normalize states for
the sake of a more compact notation), and then applying
controlled-Z (CZ) gates on all pairs of qubits connected
by an edge. In the case of qubits, the adjacency matrix
Γ contains two different elements: Γi,j = 0 whenever two
vertices i and j are not connected, and Γi,j = 1 other-
wise. Most of the existing protocols for creating multi-
photon entangled states have focused on the generation
of multi-qubit graph states [22–29, 31–33].

To define qudit graph states, we first introduce gener-
alized Pauli operators acting on qudits with q levels [54].
The Pauli operators X and Z act on the eigenstates of
Z as follows:

X|i⟩ = |i+ 1 mod q⟩, (1)

Z|i⟩ = ωi |i⟩ . (2)

These operators are unitary and traceless, and they sat-
isfy the condition ZX = ωXZ, where ω = ei 2π/q is a q-th
root of unity. Each of the Pauli matrices has q eigenval-
ues and eigenvectors. The powers of X and Z applied to
basis states give

Xα|i⟩ = |i+ α mod q⟩, (3)

Zβ |i⟩ = ωiβ |i⟩ , (4)

and Xq = Zq = 1. Similar to the case of qubits, we can
define controlled-Zβ (CZβ) gates as

CZβ |i, j⟩ = ωβ ij |i, j⟩, ∀β ∈ {1, . . . , q − 1} . (5)

The special case of q = 2 in the above corresponds to
qubits.

One other operator that is essential to studying qu-
dit graph states is the Hadamard gate. The Hadamard
gate H is a matrix that maps the Z-eigenbasis into the
X-eigenbasis. For qubits, we have H|0⟩ = |+⟩, and
H|1⟩ = |−⟩, where |−⟩ is the −1 eigenvector of the X
Pauli operator. There is also a useful identity involv-
ing the Hadamard and the Pauli matrices X and Z:
HXH = Z.

Similarly to the qubit case, we can define the qudit
Hadamard operator H such that H|i⟩ = |Xi⟩, where |Xi⟩
is an eigenstate of X. In general, we can write

H|i⟩ =
q−1∑
j=0

ωij |j⟩ = |Xi⟩ ∀i ∈ {0, 1, ..., q − 1} . (6)

The relationship between the Hadamard and the Pauli
operators Xα and Zα in the case of qudits takes the
form

HXαH† = Zα, (7)

where H† is the inverse of H:

H†|i⟩ =
q−1∑
j=0

ω(q−1)ij |j⟩ = |Xq−i mod q⟩, i = 0, ..., q − 1

(8)
Also note that H† acts on the X-eigenbasis as H†|Xi⟩ =
|i⟩.

To understand how we can use these ingredients to de-
fine qudit graph states, we present an explicit example
involving qutrits. A qutrit is realized by a 3-level quan-
tum system (q = 3), where we denote the Z-eigenstates
by |0⟩, |1⟩, and |2⟩. The X-eigenstates then are

|X0⟩ = |0⟩+ |1⟩+ |2⟩, (9)

|X1⟩ = |0⟩+ ω|1⟩+ ω2|2⟩, (10)

|X2⟩ = |0⟩+ ω2|1⟩+ ω|2⟩ , (11)

where ω = ei 2π/3. The X operator couples levels as
follows: X|i⟩ = |i+1 mod 3⟩ and X2|i⟩ = |i+2 mod 3⟩.
The Z and Z2 operators add different phase factors to
each basis state, i.e., Z|i⟩ = ωi|i⟩ and Z2|i⟩ = ω2i|i⟩,
while X3 = 1 and Z3 = 1.
In order to obtain qutrit graph states, we first initialize

all qutrits in state |X0⟩. For each edge, we can consider
two possible gates on the corresponding qutrits: CZ and
CZ2, which are defined such that

CZ|i, j⟩ = ωij |i, j⟩, (12)

CZ2|i, j⟩ = ω2 ij |i, j⟩, (13)

where i, j ∈ {0, 1, 2}. Therefore, the adjacency matrix Γ
contains three different elements, Γi,j = 0 when the two
vertices i and j are not connected, Γi,j = 1 when they are
connected via CZ, and Γi,j = 2 when they are connected
via CZ2.

III. EMITTING PHOTONIC QUDITS AND
LINEAR GRAPH STATES

In addition to qudit operations, another key ingredi-
ent we need to generate qudit photonic graph states is a
“pumping” operation that produces photonic qudits from
quantum emitters. In this section, we explain how such
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operations can be realized in systems containing multi-
level emitters with the appropriate level structure and
selection rules. Later on in Sec. VI, we give explicit ex-
amples of such systems, which include color centers in
solids and trapped ions. In the present section, we also
illustrate how photon pumping, together with qudit oper-
ations on emitters and photons, can be used to determin-
istically create entanglement between photonic qudits.

As a warm-up example illustrating how this works,
in this section we present protocols for generating one-
dimensional (1D) qudit graph states using a single quan-
tum emitter with an appropriate level structure. This
example is closely related to Ref. [58], which showed how
to produce a qubit 1D graph state from an emitter com-
prised of a single electron spin in an optically active quan-
tum dot. That work introduced a protocol in which each
photon emission is preceded by a Hadamard gate. Re-
peating the basic sequence of Hadamard gate followed
by optical pumping/photon emission n times results in
a n-qubit linear graph state. Because each photon emis-
sion can be viewed as a CNOT gate acting on the emit-
ter and emitted photon, this operation together with the
Hadamard gates effectively generates the requisite CZ
gate between neighboring photonic qubits.

Although the original proposal of Ref. [58] focused on
using photon polarization as the qubit degree of freedom,
it is important to note that one can also generate a linear
graph state based on time-bin qubits by using circularly
(rather than linearly) polarized light to pump the emitter
and by including a few additional operations during each
cycle of the protocol [59]. In this protocol, only one of the
emitter ground states, say |0⟩e, can be optically excited
by the pump, so that an initial superposition state |0⟩e+
|1⟩e becomes |0⟩e|0⟩p + |1⟩e|vac⟩ after the first photon
emission, where |0⟩p corresponds to a photon in the first
time bin, while |vac⟩ represents the vacuum. If we then
apply an X gate on the emitter and perform a second
optical pumping operation, we obtain |1⟩e|0⟩p + |0⟩e|1⟩p,
where |1⟩p corresponds to a photon in the second time
bin.

The above protocol for time-bin qubits naturally ex-
tends to time-bin qudits with local dimension q, provided
we have at our disposal a quantum emitter with q en-
ergy levels comprising the ground state manifold, one of
which is optically coupled to an excited state. As in the
qubit case, upon emission these photonic time-bin qu-
dits will be entangled with the emitter. In general, the
cyclic transitions commonly used for optical readout of
various qudit systems can be used to optically pump pho-
tonic time-bin qudits with q levels through a straightfor-
ward generalization of the pumping procedure described
above for qubits. For example, consider a three-level
quantum emitter with states |0⟩e, |1⟩e, |2⟩e. By starting
from an initial equal superposition state |0⟩e+ |1⟩e+ |2⟩e
and interspersing three such pumping/emission events by
gate operations that rotate the three different emitter
ground states into one another, one can obtain the state
|0⟩e|0⟩p + |1⟩e|1⟩p + |2⟩e|2⟩p, where |0⟩p, |1⟩p, |2⟩p are

(a)

(b)

FIG. 1: One-dimensional linear graph states of three qutrits.
(a) A linear graph state in which both edges correspond to CZ
gates. (b) A linear graph state in which both edges correspond
to CZ2 gates.

three different photonic time-bin states. We denote this
net photon-pumping operation by

Ppump(|0⟩e + |1⟩e + |2⟩e) = |0⟩e|0⟩p + |1⟩e|1⟩p + |2⟩e|2⟩p.
(14)

This operation (and its natural generalization to q time
bins) is a central ingredient in the protocols that follow.
Focusing on the qutrit case for concreteness, we now

show how to produce linear graph states using Eq. (14).
In addition to this photon-pumping operation, we also
need to use the qutrit Hadamard operator H in order
to obtain the desired entanglement structure in the final
multi-photon state. Unlike in the qubit case, in the case
of qutrits there are multiple types of linear graph states,
depending on whether we use CZ or CZ2 for each edge.
For example, two different linear graph states of three
qutrits are shown in Fig. 1, where we use single edges to
denote CZ and double edges to denote CZ2. We can of
course also have graph states that contain both types of
edges.
With these ingredients in hand, our proposal for gener-

ating 1D linear photonic qutrit graph states comprised of
only CZ edges (as in Fig. 1(a)) from a quantum emitter
with three ground levels is as follows:

1. Prepare the emitter in the state |0⟩e.

2. Perform a Hadamard gate H, Eq. (6), to produce
the state |X0⟩ = |0⟩e + |1⟩e + |2⟩e.

3. Generate a time-bin encoded photon with a photon-
pumping operation Ppump, Eq. (14), to obtain

the state
∑2

i=0 |i⟩e|i⟩p1
= |0⟩e|0⟩p1

+ |1⟩e|1⟩p1
+

|2⟩e|2⟩p1
.

4. Perform an H gate on the emitter to obtain∑2
i,j=0 ω

ij |j⟩e|i⟩p1
= |X0⟩e|0⟩p1

+ |X1⟩e|1⟩p1
+

|X2⟩e|2⟩p1
.

5. Repeat steps 3 and 4 two more times to produce
the state

∑2
i,j,k,l=0 ω

ijωjkωkl |l⟩e|k⟩p3
|j⟩p2

|i⟩p1
.

6. Measure the emitter in the Z basis to decou-
ple it from the photons. If the measurement
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outcome is 0, we obtain the photonic state∑2
i,j,k=0 ω

ijωjk |k⟩p3
|j⟩p2

|i⟩p1
, and if the outcome

is 1 (or 2), then performing a Z2 (or Z) gate on
photon 3 yields the same photonic state.

The final state is a 3-qutrit linear photonic graph state
in which each edge corresponds to a CZ operator, as
in Fig. 1(a). By repeating steps 3 and 4 a total of n
times, one can produce a linear graph state of n photonic
qutrits.

How can we produce a state like that shown in
Fig. 1(b)? In this state, each edge now corresponds to
a CZ2 gate. This state can be generated using a very
similar protocol as the one above, except that we replace
all but the first Hadamard gate by H† gates:

1. Prepare the emitter in the state |0⟩e.

2. Perform a Hadamard gate H, Eq. (6), to produce
the state |X0⟩ = |0⟩e + |1⟩e + |2⟩e.

3. Generate a time-bin encoded photon with a photon-
pumping operation Ppump, Eq. (14), to obtain

the state
∑2

i=0 |i⟩e|i⟩p1
= |0⟩e|0⟩p1

+ |1⟩e|1⟩p1
+

|2⟩e|2⟩p1
.

4. Perform an H† gate, Eq. (8), on the emitter to ob-

tain
∑2

i,j=0 ω
2ij |j⟩e|i⟩p1

= |X0⟩e|0⟩p1
+|X2⟩e|1⟩p1

+

|X1⟩e|2⟩p1
.

5. Repeat steps 3 and 4 two more times to produce
the state

∑2
i,j,k,l=0 ω

2ijω2jkω2kl |l⟩e|k⟩p3
|j⟩p2

|i⟩p1
.

6. Measure the emitter in the Z basis to decou-
ple it from the photons. If the measurement
outcome is 0, we obtain the photonic state∑2

i,j,k=0 ω
2ijω2jk |k⟩e|j⟩p2

|i⟩p1
, and if the outcome

is 1 (or 2), then performing a Z (Z2) gate on photon
3 yields the same photonic state.

The final state in step 6 is a 3-photonic-qutrit linear
graph state with CZ2 edges, as in Fig. 1(b). Here also,
repeating steps 3 and 4 a total of n times yields an n-
photon linear graph state with the same structure. Both
of the above protocols can be straightforwardly general-
ized to the case of q-state photonic time-bin graph states
generated from q-level quantum emitters.

IV. AME STATE GENERATION

Absolutely maximally entangled (AME) states, also re-
ferred to in some works as maximally multipartite entan-
gled states [60–62], are pure n-qudit quantum states with
local dimension q such that every reduced density matrix
on at most half the system size is maximally mixed. For
example, the Bell state |ϕ+⟩ = |00⟩ + |11⟩ and the GHZ

(a) (b)
p1 p3

p4p2

p3 p1

p2p4

FIG. 2: AME state of 4 qutrits. (a) The graph that repre-
sents an AME(4, 3) state. (b) A graph representing a state
that is the same as the one in (a) up to a rearrangement of
the qutrits.

state |GHZ⟩ = |0000⟩+ |1111⟩ are both AME states be-
cause the reduced density matrices on each half of the sys-
tem are completely mixed. More formally, an AME(n, q)
state is a n-qudit pure state in H(n, q) := C⊗n

q iff

ρS = TrSc |ψ⟩⟨ψ| ∝ 1 ∀S ⊂ {1, . . . , n}, |S| ≤ ⌊n/2⌋ ,

where Sc denotes the complementary set of S. We de-
note an AME state by |AME(n, q)⟩. In this section, we
describe how one can generate some of these states from
quantum emitters.

A. Generating AME states of 4 qutrits

While it is known that AME states of 4 qubits do not
exist [2, 63], such states can exist for q > 2 [46, 64]. For
example, in the case of 4 qutrits (q = 3), the correspond-
ing AME state can be written explicitly as [64]:

|AME(4, 3)⟩ =
2∑

i,j=0

|i, j, i+ j, i+ 2j⟩ . (15)

This state is equivalent to the graph state representation
shown in Fig. 2 [64]. In what follows, we present two pro-
tocols for generating this state from two quantum emit-
ters, each of which has three ground levels, one of which
is optically coupled to an excited state via a cyclic tran-
sition. The two protocols produce two states that are the
same up to a swapping of two photonic qutrits. The gates
we use in the first method (Fig. 2 (a)) are CZ (Eq. (12)),
H (Eq. (6)), and H† (Eq. (8)), and the gates we use in
the second method (Fig. 2 (b)) are CZ (Eq. (12)), H
(Eq. (6)), and CZ2 (Eq. (13)). In both protocols, we
make use of entangling operations between the emitters,
in the spirit of Refs. [24, 27, 29, 65–68].
Here is the first method of generating an AME state

of 4 qutrits:

1. Prepare the two emitters in the state |0⟩e1 |0⟩e2 .
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2. Perform a Hadamard gate H, Eq. (6), on each
emitter to obtain the state |X0⟩e1 |X0⟩e2 =∑2

i,j=0 |i⟩e1 |j⟩e2 .

3. Perform a CZ gate, Eq. (12), on the two emitters

to obtain
∑2

i,j=0 ω
ij |i⟩e1 |j⟩e2 .

4. Perform photon-pumping operations Ppump,
Eq. (14), on each emitter to produce time-
bin encoded photons, yielding the state∑2

i,j=0 ω
ij |i⟩e1 |i⟩p1

|j⟩e2 |j⟩p2
.

5. Perform an H gate, Eq. (6), on the first emitter
and an H† gate, Eq. (8), on the second emitter

to obtain
∑2

i,j=0 ω
ij |Xi⟩e1 |i⟩p1

|X2j mod 3⟩e2 |j⟩p2
=∑2

i,j,k,l=0 ω
ijωikω2jl |k⟩e1 |i⟩p1

|l⟩e2 |j⟩p2
.

6. Perform a CZ gate on the two
emitters to produce the state∑2

i,j,k,l=0 ω
ijωikω2jlωkl |k⟩e1 |i⟩p1

|l⟩e2 |j⟩p2
.

7. Perform photon-pumping operations Ppump

on each emitter to produce two more time-
bin encoded photons, yielding the state∑2

i,j,k,l=0 ω
ijωikω2jlωkl |k⟩e1 |k⟩p3

|i⟩p1
|l⟩e2 |l⟩p4

|j⟩p2
.

8. Perform an H gate on each emitter and then mea-
sure each emitter in the Z basis. Perform the local
gates Z2o1

p3
Z2o2
p4

on photons 3 and 4, where o1 and
o2 are the measurement outcomes for emitters 1
and 2, respectively, to finally arrive at the state∑2

i,j,k,l=0 ω
ijωikω2jlωkl |k⟩p3

|i⟩p1
|l⟩p4

|j⟩p2
.

The final state in step 8 is the state |AME(4, 3)⟩ shown
in Fig. 2(a). This state is equivalent to Eq. (15); it can
be obtained from that equation by applying Hadamard
gates to the third and fourth qudits and by relabeling
qutrits.

To produce the state shown in Fig. 2(b), we propose
the following slightly modified protocol. The first 4 steps
remain the same as above, but steps 5-8 are different:

5. Perform a Hadamard gate H, Eq. (6),
on each emitter to obtain the state∑2

i,j=0 ω
ij |Xi⟩e1 |i⟩p1

|Xj⟩e2 |j⟩p2
=∑2

i,j,k,l=0 ω
ijωikωjl |k⟩e1 |i⟩p1

|l⟩e2 |j⟩p2
.

6. Perform CZ2, Eq. (13), on the two
emitters, after which the state is∑2

i,j,k,l=0 ω
ijωikωjlω2kl |k⟩e1 |i⟩p1

|l⟩e2 |j⟩p2
.

7. Perform photon-pumping operations Ppump,
Eq. (14), on each emitter to produce two
more time-bin encoded photons, yielding the state∑2

i,j,k,l=0 ω
ijωikωjlω2kl |k⟩e1 |k⟩p3

|i⟩p1
|l⟩e2 |l⟩p4

|j⟩p2
.

8. Perform an H gate on each emitter and then mea-
sure each emitter in the Z basis. Perform the local
gates Z2o1

p3
Z2o2
p4

on photons 3 and 4, where o1 and
o2 are the measurement outcomes for emitters 1
and 2, respectively, to finally arrive at the state∑2

i,j,k,l=0 ω
ijωikωjlω2kl |k⟩p3

|i⟩p1
|l⟩p4

|j⟩p2
.

FIG. 3: Graph representation of AME(5, q) states.

The final state in step 8 is the state shown in Fig. 2(b).
We see that we have the freedom to choose between per-
forming a CZ2 gate on the emitters or performing an
H† (instead of H) gate on one emitter followed by a CZ
gate on the two emitters. Note also that larger ladder-
type qudit graph states with arbitrary combinations of
CZ and CZ2 edges can be produced by repeating steps
3-6 in the above protocols.

B. Generating AME states of 5 qudits

AME states of 5 qubits were shown to exist in Ref. [69].
By exploiting a connection to quantum orthogonal ar-
rays, explicit examples of AME(5, q) states for any local
dimension q ≥ 2 were discovered more recently [47]:

|AME(5, q)⟩ =
q−1∑
i,j=0

|i, j, i+ j⟩|ϕi,j⟩ , (16)

where |ϕi,j⟩ = Xi ⊗ Zj
∑q−1

α=0 |α, α⟩. One can also show
that this state has a graph representation. In particular,
if one performs Hadamard gates on the third and fourth
qudits, the resulting state is the graph state shown in
Fig. 3.
In this section we present two general protocols for gen-

erating such states that work for all values of the local
dimension q. The first uses only a single quantum emit-
ter but assumes the capability of re-interfering an emitted
photon with the emitter. The second protocol does not
require photon-emitter interference, but at the expense
of needing two coupled quantum emitters. In both pro-
tocols, we assume the emitters have q ground states, one
of which can be optically excited to a higher-energy state
via a cyclic transition. This allows for a photon-pumping
operation analogous to Eq. (14).
We begin by presenting the protocol that requires only

one quantum emitter with q ground levels:

1. Prepare the emitter in the state |0⟩e.

2. Perform a Hadamard gate H, Eq. (6), to produce
the state |X0⟩ =

∑
i |i⟩e.
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3. Perform a photon-pumping operation Ppump,
Eq. (14), to generate a time-bin encoded photon,

yielding the state
∑q−1

i=0 |i⟩e|i⟩p1
.

4. Perform an H gate on the emitter to get∑q−1
i,j=0 ω

ij |j⟩e|i⟩p1
.

5. Repeat steps 3 and 4 three more times to obtain∑q−1
i,j,k,l,m=0 ω

ijωjkωklωlm |m⟩e|l⟩p4
|k⟩p3

|j⟩p2
|i⟩p1

.

6. Interfere the first photon p1 with the emitter to
perform a CZ gate between them, yielding∑

i,j,k,l,m

ωijωjkωklωlmωmi|m⟩e|l⟩p4
|k⟩p3

|j⟩p2
|i⟩p1

.

7. Perform a photon-pumping operation Ppump fol-
lowed by an H gate on the emitter to obtain∑

i,j,k,l,m,r

ωijωjkωklωlmωmiωmr|r⟩e|m⟩p5
|l⟩p4

|k⟩p3
|j⟩p2

|i⟩p1
.

8. Measure the emitter in the Z basis and perform

Z
(q−1)o
p5

on photon p5, where o is the measurement
outcome. The resulting state is the desired AME
state:

|AME(5, q)⟩ =∑
i,j,k,l,m

ωijωjkωklωlmωmi|m⟩p5
|l⟩p4

|k⟩p3
|j⟩p2

|i⟩p1
.

In the protocol described above, we need to re-interfere
one of the emitted photons with the emitter to generate
a CZ gate between them. While several works have pro-
posed schemes for doing this in the case photonic qubits
[31, 32, 70, 71], the analogous qudit operation may be
substantially more challenging. This motivates the devel-
opment of an alternative protocol that does not require
such an operation. Such an alternative is possible if have
access to two coupled emitters with q ground levels each;
one such protocol works as follows:

1. Prepare the two emitters in the state |0⟩e1 |0⟩e2 .

2. Perform a Hadamard gateH, Eq. (6), on each emit-

ter, yielding
∑q−1

i,j=0 |i⟩e1 |j⟩e2 .

3. Perform a CZ gate, Eq. (5), on the two emitters to

get
∑q−1

i,j=0 ω
ij |i⟩e1 |j⟩e2 .

4. Perform photon-pumping operations Ppump,
Eq. (14), to each emitter to create
two time-bin photonic qudits, yielding∑q−1

i,j=0 ω
ij |i⟩e1 |i⟩p1

|j⟩e2 |j⟩p2
.

5. Perform an H gate on each emitter to get∑q−1
i,j,k,l=0 ω

ijωikωjl |k⟩e1 |i⟩p1
|l⟩e2 |j⟩p2

.

6. Perform a photon-pumping operation on the
first emitter (e1) to produce another photon:∑q−1

i,j,k,l=0 ω
ijωikωjl |k⟩e1 |k⟩p3

|i⟩p1
|l⟩e2 |j⟩p2

.

7. Perform an H gate on the first emitter (e1) to get∑q−1
i,j,k,l=0 ω

ijωikωjlωkm |m⟩e1 |k⟩p3
|i⟩p1

|l⟩e2 |j⟩p2
.

8. Perform a CZ gate on the two emitters to get

q−1∑
i,j,k,
l,m=0

ωijωikωjlωkmωml |m⟩e1 |k⟩p3
|i⟩p1

|l⟩e2 |j⟩p2
.

9. Perform a photon-pumping operation on each emit-
ter, followed by an H gate on each emitter:

q−1∑
i,j,k,l

m,r,s=0

Ω|r⟩e1 |m⟩p4
|k⟩p3

|i⟩p1
|s⟩e2 |l⟩p5

|j⟩p2
,

where Ω = ωijωikωjlωkmωmlωmrωls.

10. Measure both emitters in the Z basis and perform

Z
(q−1)o1
p4

Z
(q−1)o2
p5

on photons p4 and p5, where o1
and o2 are the measurement outcomes. This yields
the desired 5-photon state:

|AME(5, q)⟩ =
q−1∑
i,j,k,
l,m=0

ωijωikωjlωkmωml |m⟩p5
|k⟩p3

|i⟩p1
|l⟩p4

|j⟩p2
.

C. Generating AME states of 6 qudits

Next, we consider AME(6, q) states. The graph repre-
sentations of two such states are shown in Fig. 4 [64, 72].
Here, we present protocols for generating both of these
types of graph states for qudits of arbitrary local dimen-
sion q. The first protocol utilizes two coupled emitters
with q ground levels each and photon-emitter interference
to generate graph states of the sort shown in Fig. 4(a).
The protocol consists of the following steps:

1. Prepare two q-level emitters in the state |0⟩e1 |0⟩e2 .

2. Perform a Hadamard gateH, Eq. (6), on each emit-

ter to obtain
∑q−1

i,j=0 |i⟩e1 |j⟩e2 .

3. Perform a CZ gate, Eq. (5), on the two emitters to

get
∑q−1

i,j=0 ω
ij |i⟩e1 |j⟩e2 .

4. Perform photon-pumping operations Ppump,
Eq. (14), on each emitter to produce two photons:∑q−1

i,j=0 ω
ij |i⟩e1 |i⟩p1

|j⟩e2 |j⟩p2
.

5. Perform an H gate on each emitter to obtain∑q−1
i,j,k,l=0 ω

ijωikωjl |k⟩e1 |i⟩p1
|l⟩e2 |j⟩p2

.

6. Apply two CZ gates, one on the first pho-
ton (p1) and the second emitter (e2), and
the other on the two emitters, yielding∑q−1

i,j,k,l=0 ω
ijωikωjlωilωkl |k⟩e1 |i⟩p1

|l⟩e2 |j⟩p2
.
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(a) (b)
p1

p2

p6p5

p3
p4

p1

p2
p3

p4
p5

p6

FIG. 4: Two types of AME(6, q) states represented as graphs.

7. Perform photon-pumping operations on
each emitter to create two more photons:∑

i,j,k,l ω
ijωikωjlωilωkl |k⟩e1 |k⟩p3

|i⟩p1
|l⟩e2 |l⟩p4

|j⟩p2
.

8. Perform an H gate on each emitter to get∑
i,j,k,
l,m,r

Ω |m⟩e1 |k⟩p3
|i⟩p1

|r⟩e2 |l⟩p4
|j⟩p2

, where Ω :=

ωijωikωjlωilωklωkmωlr.

9. Perform three CZ gates: One CZ on p4 and e1, the
other CZ on p2 and e2, and the third CZ operator
on e1 and e2. With this we obtain

q−1∑
i,j,k,

l,m,r=0

Ω′ |m⟩e1 |k⟩p3
|i⟩p1

|r⟩e2 |l⟩p4
|j⟩p2

,

where Ω′ := ωijωikωjlωilωklωkmωlrωlmωjrωmr.

10. Perform a photon-pumping operation on each emit-
ter, followed by an H gate on each emitter.
Measure both emitters and perform the gates

Z
(q−1)o1
p5

Z
(q−1)o2
p6

on the newly generated photons
p5 and p6, where o1 and o2 are the measurement
outcomes. The final state is

|AME(6, q)⟩ =
q−1∑
i,j,k,

l,m,r=0

Ω′ |m⟩p5
|k⟩p3

|i⟩p1
|r⟩p6

|l⟩p4
|j⟩p2

,

which is the one shown in Fig. 4(a).

We now present a protocol for generating the
AME(6, q) states corresponding to the graph shown in
Fig. 4(b). This protocol requires three coupled emit-
ters with q ground levels each but does not need photon-
emitter interference:

1. Prepare three emitters in the state |0⟩e1 |0⟩e2 |0⟩e3 .

p1

p2

p7

p5

p6

p3

p4

FIG. 5: Graph representing the AME(7, 3) state.

2. Perform a Hadamard gateH, Eq. (6), on each emit-

ter to obtain
∑q−1

i,j,k=0 |i⟩e1 |j⟩e2 |k⟩e3 .

3. Perform three CZ gates on each pair of emitters
(i.e., on e1 and e2, on e2 and e3, and on e1 and e3):∑q−1

i,j,k=0 ω
ijωjkωik |i⟩e1 |j⟩e2 |k⟩e3 .

4. Perform photon-pumping operations Ppump,
Eq. (14), to each emitter to create three photons:∑q−1

i,j,k=0 ω
ijωjkωik |i⟩e1 |i⟩p1

|j⟩e2 |j⟩p2
|k⟩e3 |k⟩p3

.

5. Perform an H gate on each emitter:∑q−1
i,j,k,l,m,r=0 Θ |l⟩e1 |i⟩p1

|m⟩e2 |j⟩p2
|r⟩e3 |k⟩p3

,

where Θ := ωijωjkωikωilωjmωkr.

6. Again perform a CZ gate on each pair of emitters:

q−1∑
i,j,k,l,m,r=0

Θ′ |l⟩e1 |i⟩p1
|m⟩e2 |j⟩p2

|r⟩e3 |k⟩p3
,

where Θ′ := ωijωjkωikωilωjmωkrωlmωmrωlr.

10. Perform a photon-pumping operation on each emit-
ter, followed by an H gate on each emitter. Mea-
sure all three emitters and perform the gates

Z
(q−1)o1
p4

Z
(q−1)o2
p5

Z
(q−1)o3
p6

on the newly generated
photons p4, p5, and p6, where o1, o2, o3 are the
measurement outcomes. The final state is

|AME(6, q)⟩ =
q−1∑

i,j,k,l,m,r=0

Θ′ |l⟩p4
|i⟩p1

|m⟩p5
|j⟩p2

|r⟩p6
|k⟩p3

,

which is the one shown in Fig. 4(b).

D. Generating AME states of 7 qutrits

It is known that while AME states of 7 qubits do not
exist [73], AME states of 7 qutrits do exist. Through an
exhaustive numerical search checking the bipartite en-
tanglement of various graph states, it was found that
the graph shown in Fig. 5 corresponds to the AME(7, 3)
state [64]. In this section, we show how to generate this
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state. Our protocol uses two quantum emitters with
three ground levels each, as well as photon-emitter in-
terference. The protocol is similar to the one presented
above for the AME(6,q) states depicted in Fig. 4 due to
the similarity in graph structure.

1. Prepare the two quantum emitters in the state
|0⟩e1 |0⟩e2 .

2. Perform a Hadamard gateH, Eq. (6), on each emit-

ter: |X0⟩e1 |X0⟩e2 =
∑2

i,j=0 |i⟩e1 |j⟩e2 .

3. Perform CZ2, Eq. (13), on the two emitters to get∑2
i,j=0 ω

2ij |i⟩e1 |j⟩e2 .

4. Perform the photon-pumping operation Ppump,
Eq. (14), on each emitter to create two photons:∑2

i,j=0 ω
2ij |i⟩e1 |i⟩p1

|j⟩e2 |j⟩p2
.

5. Perform an H gate on each emitter:∑2
i,j,k,l=0 ω

2ijωikωjl |k⟩e1 |i⟩p1
|l⟩e2 |j⟩p2

.

6. Apply two CZ gates, Eq. (12), one on the first
photon (p1) and the second emitter (e2), and the
other on the two emitters (e1 and e2), yielding∑2

i,j,k,l=0 ω
2ijωikωjlωilωkl |k⟩e1 |i⟩p1

|l⟩e2 |j⟩p2
.

7. Perform photon-pumping operations on
each emitter to create two more photons:∑

i,j,
k,l
ω2ijωikωjlωilωkl |k⟩e1 |k⟩p3

|i⟩p1
|l⟩e2 |l⟩p4

|j⟩p2
.

8. Perform an H gate on each emitter:∑2
i,j,k,

l,m,r=0
Ξ |m⟩e1 |k⟩p3

|i⟩p1
|r⟩e2 |l⟩p4

|j⟩p2
, where

Ξ := ω2ijωikωjlωilωklωkmωlr.

9. Perform two CZ gates, one on p4 and
e1, the other on e1 and e2, yielding∑2

i,j,k,
l,m,r=0

Ξ′ |m⟩e1 |k⟩p3
|i⟩p1

|r⟩e2 |l⟩p4
|j⟩p2

where

Ξ′ := ω2ijωikωjlωilωklωkmωlrωlmωmr.

10. Perform a photon-pumping operation
on only e2 to create one more photon:∑2

i,j,k,
l,m,r=0

Ξ′ |m⟩e1 |k⟩p3
|i⟩p1

|r⟩e2 |r⟩p5
|l⟩p4

|j⟩p2
.

11. Perform an H† gate, Eq. (8), on e2 to

yield
∑2

i,j,k,l
m,r,s=0

Ξ′′ |m⟩e1 |k⟩p3
|i⟩p1

|s⟩e2 |r⟩p5
|l⟩p4

|j⟩p2

where Ξ′′ := ω2ijωikωjlωilωklωkmωlrωlmωmrω2sr.

12. Apply two CZ gates, one on the fourth photon (p4)
and the second emitter (e2), and the other on p2

and e2:

2∑
i,j,k,l

m,r,s=0

Ξ̃ |m⟩e1 |k⟩p3
|i⟩p1

|s⟩e2 |r⟩p5
|l⟩p4

|j⟩p2
.

where

Ξ̃ := ω2ijωikωjlωilωklωkmωlrωlmωmrω2srωslωjs.
13. Perform a photon-pumping operation on each emit-

ter, followed by an H gate on each emitter. Mea-
sure both emitters in the Z basis and perform the

gates Z
(q−1)o1
p6

Z
(q−1)o2
p7

on the newly generated pho-
tons, p6 and p7, where o1 and o2 are the measure-
ment outcomes. The final state is

|AME(7, 3)⟩ =
2∑

i,j,k,l
m,r,s=0

Ξ̃ |m⟩p6
|k⟩p3

|i⟩p1
|s⟩p7

|r⟩p5
|l⟩p4

|j⟩p2
,

which is the state shown in Fig. 5.

A summary of the multi-qudit graph states generation
protocols presented so far is given in Table. I.

V. QUANTUM ERROR CORRECTING CODES

It is known that AME states are useful for construct-
ing QECCs [2, 46, 49]. In this section, we show how this
connection can be exploited to develop protocols for gen-
erating multiphoton logical states of QECCs. First, we
briefly review the relation between certain QECCs and
AME states. A subspace C spanned by an orthonormal
set of states {|ψ0⟩, |ψ1⟩, . . . , |ψqk−1⟩}, also called code-
words, is a QECC with parameters [[n, k, d]]q. This code
is a qk dimensional subspace that encodes k logical qu-

dits into n physical qudits, if it obeys the Knill-Laflamme
conditions [56, 74]

∀m,m′ ∈ [qk] : ⟨ψm|E†F |ψm′⟩ = f(E†F ) δm,m′ , (17)

for all errors E,F with weight(E†F ) ≤ d, where the
weight of an operator is defined to be the number of
sites on which it acts non-trivially. The parameter d is
the distance of the quantum code, which is the minimal
number of single-qudit operations that are needed to cre-
ate a non-zero overlap between any two codewords from
the code state space C. A QECC with minimum distance
d can correct errors that affect no more than (d − 1)/2
of the physical qudits. In this section, we show how to
generate a [[3, 1, 2]]3 QECC, for which the codewords are
all AME states of 3 qutrits.
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Graph # photons Local dimension # emitters Photon interference required?

…q = 2

…q = 3
… …

n ≥ 2 q ≥ 2 1 no

and n = 4 q = 3 2 no

n = 5 q ≥ 2

First method: 1

Second method: 2

yes

no

n = 6 q ≥ 2 2 yes

n = 6 q ≥ 2 3 no

n = 7 q = 3 2 yes

TABLE I: Summary of the generation protocols of various multi-photon qudit graph states presented in this work. For each
protocol, the corrsponding graph representation of the target state is shown, along with the number of photons it contains, the
number q of photonic time-bin states, the number of quantum emitters (with q levels each) needed to produce the state, and
whether or not photon-emitter interference is required for the protocol.

First, let us review how to construct the [[3, 1, 2]]3 quan-
tum code (see also [3, 49, 75]). It is known that the
AME(3, 3) states [49, 76]

|ψ0⟩ =
2∑

j=0

|j, j, j⟩,

|ψ1⟩ =M |ψ0⟩ =
2∑

j=0

|j + 1, j, j + 2⟩,

|ψ2⟩ =M2|ψ0⟩ =
2∑

j=0

|j + 2, j, j + 1⟩,

(18)

are the codewords of the [[3, 1, 2]]3 code. In the above, the
operator M is defined as M = X ⊗ 1⊗X2.
In order to construct the corresponding graph states,

it helps to first notice that by performing an H gate,
Eq. (6), on the first and third qudits, we get

|ψ′
0⟩ = H ⊗ 1⊗H |ψ0⟩ =

2∑
i,j,k=0

ωkjωij |k, j, i⟩, (19)

|ψ′
1⟩ = H ⊗ 1⊗H |ψ1⟩ =

2∑
i,j,k=0

ω(j+1)kω(j+2)i |k, j, i⟩,

(20)
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|ψ′
2⟩ = H ⊗ 1⊗H |ψ2⟩ =

2∑
i,j,k=0

ω(j+2)kω(j+1)i |k, j, i⟩ .

(21)
Notice that the state |ψ′

0⟩ is equivalent to the 3-qutrit
graph state shown in Fig. 1(a) and discussed in Sec. III.
Thus, we already know how to generate this state, and
so it remains to show how to produce |ψ′

1⟩ and |ψ′
2⟩ from

a 3-level quantum emitter. For this, let us first discuss
how to generate |ψ′

1⟩:

1. Prepare the emitter in the state |2⟩e.

2. Perform a Hadamard gate H, Eq. (6), to produce

the state |X2⟩e =
∑2

i=0 ω
2i|i⟩e = |0⟩e + ω2|1⟩e +

ω|2⟩e.

3. Generate a time-bin encoded photon with a photon-
pumping operation Ppump, Eq. (14), to obtain the

state
∑2

i=0 ω
2i|i⟩e|i⟩p1

= |0⟩e|0⟩p1
+ ω2|1⟩e|1⟩p1

+
ω|2⟩e|2⟩p1

.

4. Perform an H gate, Eq. (6), on the emitter

to obtain
∑2

i,j=0 ω
2iωij |j⟩e|i⟩p1

= |X0⟩e|0⟩p1
+

ω2|X1⟩e|1⟩p1
+ ω|X2⟩e|2⟩p1

.

5. Repeat steps 3 and 4 to produce the state∑2
i,j,k=0 ω

2iωijωjk |k⟩e|j⟩p2
|i⟩p1

.

6. Perform a Z gate, Eq. (2), on the emitter to obtain∑2
i,j,k=0 ω

2iωijωjkωk |k⟩e|j⟩p2
|i⟩p1

.

7. Repeat steps 3 and 4 once more to produce the
state

∑2
i,j,k,l=0 ω

2iωijωjkωkωkl |l⟩e|k⟩p3
|j⟩p2

|i⟩p1
.

8. Measure the emitter in the Z basis and perform the
gate Z2o

p3
on photon p3, where o is the measurement

outcome. The resulting state is the desired |ψ′
1⟩:

|ψ′
1⟩ =

2∑
i,j,k=0

ω2iωijωjkωk |k⟩p3
|j⟩p2

|i⟩p1
. (22)

A similar protocol can be used to generate |ψ′
2⟩:

1. Prepare the emitter in the state |1⟩e.

2. Perform a Hadamard gate H, Eq. (6), to produce

the state |X1⟩e =
∑2

i=0 ω
i|i⟩e = |0⟩e + ω|1⟩e +

ω2|2⟩e.

3. Generate a time-bin encoded photon with a photon-
pumping operation Ppump, Eq. (14), to obtain the

state
∑2

i=0 ω
i|i⟩e|i⟩p1

= |0⟩e|0⟩p1
+ ω|1⟩e|1⟩p1

+

ω2|2⟩e|2⟩p1
.

4. Perform an H gate, Eq. (6), on the emitter

to obtain
∑2

i,j=0 ω
iωij |j⟩e|i⟩p1

= |X0⟩e|0⟩p1
+

ω|X1⟩e|1⟩p1
+ ω2|X2⟩e|2⟩p1

.

5. Repeat steps 3 and 4 to produce the state∑2
i,j,k=0 ω

iωijωjk |k⟩e|j⟩p2
|i⟩p1

.

6. Perform a Z2 gate, Eq. (4), on the emitter to obtain∑2
i,j,k=0 ω

iωijωjkω2k |k⟩e|j⟩p2
|i⟩p1

.

7. Repeat steps 3 and 4 once more to produce the
state

∑2
i,j,k,l=0 ω

iωijωjkω2kωkl |l⟩e|k⟩p3
|j⟩p2

|i⟩p1
.

8. Measure the emitter in the Z basis and perform the
gate Z2o

p3
on photon p3, where o is the measurement

outcome. The resulting state us the desired |ψ′
2⟩:

|ψ′
2⟩ =

2∑
i,j,k=0

ωiωijωjkω2k |k⟩p3
|j⟩p2

|i⟩p1
. (23)

Similar protocols can be devised to generate the code-
words of QECCs associated with any of the AME states
discussed in Sec. IV.

VI. PHYSICAL IMPLEMENTATIONS

Photonic qudit states can be generated from a range
of different emitters. On the solid-state side, an example
is the well-known NV center in diamond, where among
its three ground states, |0⟩ and | ± 1⟩, state |0⟩ can be
reliably pumped to an excited state that subsequently
decays back down to |0⟩, emitting a photon [77, 78]. NV
centers can thus be used to generate photonic time-bin
qutrits. Since however the NV has a very low probability
of emitting into the zero-phonon line, it may be preferable
to consider alternative defects. The silicon-carbon diva-
cancy in SiC is another defect that has a triplet ground
state, and that generally resembles the electronic struc-
ture of NV-diamond, but with improved optical proper-
ties and comparably long coherence times [79]. For local
dimension q = 4, the silicon vacancy could be used in-
stead.

Atomic systems provide even more options for the
value of q, as they can contain well-resolved hyperfine
states. Trapped ions such as 40Ca+ [80] and 171Yb+ [81–
83] can serve as multi-level quantum emitters with local
dimensions ranging from q = 3 up to q = 7 [80–85].
There has been significant experimental progress in re-
alizing single- and multi-qudit gate operations in chains
of such ions [80, 83]. Few-atom systems in a cavity are
another contender for generation of qudit graph states.
A recent milestone experiment demonstrated the genera-
tion of GHZ and linear cluster states of qubits from a Rb
atom [36]. While in that experiment the photonic qubit
was encoded in the polarization degree of freedom, and
therefore only two of the states in the ground state man-
ifold were used explicitly in the protocol, a similar setup
could be employed to demonstrate qudit graph-state gen-
eration with time-bin encoding and with more levels par-
ticipating in generation process (up to q = 8 when both
the F = 1 and the F = 2 manifolds are used). To create
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more complex qudit graphs, cavity-mediated interactions
between two or more atoms can be leveraged to create
qudit CZ-type gates by modifying the protocol for the al-
ready demonstrated two-qubit gates in such systems [86].

VII. CONCLUSIONS AND OUTLOOK

In conclusion, we presented explicit protocols for using
coupled, controllable quantum emitters to deterministi-
cally generate multi-photon entangled states of time-bin
qudits. Although our methods are quite general, we fo-
cused primarily on the problem of generating highly en-
tangled states known as AME states, which are impor-
tant for a number applications in quantum networks and
quantum error correction. We showed that such states
can be produced from a small number of emitters, with
or without photon-emitter interference, provided emit-
ters with the appropriate level structure are available. In
some cases, we found that one less emitter can be used if
photon-emitter interference is available, providing hints
at what sort of resource tradeoffs are possible. Poten-
tial candidates include defect centers in solids as well as
atomic systems. Our results provide a clear path for-

ward toward the efficient generation of complex states of
light for quantum information applications and a guide
to experimental groups.
Future directions this work opens include addressing

the question of what the minimal resources are—in terms
of the number of emitters and the circuit depth—for the
generation of a target qudit graph. Similar to the formal-
ism developed to answer these questions in the context of
qubits [29], one could set up a similar approach for qudits.
Another interesting direction would be to design specific
qudit gates for various candidate emitters and to quan-
tify the anticipated performance of the protocols. Our
protocols could also be combined with new approaches
to photonic one-way quantum repeaters based on pho-
tonic qudit states [42] to build error-correction into that
approach.
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Lu, Kai Chen, and Jian-Wei Pan. Multipho-
ton graph states from a solid-state single-photon
source. ACS Photonics, 7(7):1603–1610, 07 2020.
doi:10.1021/acsphotonics.0c00192. URL https://doi.

org/10.1021/acsphotonics.0c00192.
[21] C. Schön, E. Solano, F. Verstraete, J. I. Cirac, and

M. M. Wolf. Sequential generation of entangled mul-
tiqubit states. Phys. Rev. Lett., 95:110503, Sep 2005.
doi:10.1103/PhysRevLett.95.110503. URL https://

link.aps.org/doi/10.1103/PhysRevLett.95.110503.
[22] Netanel H. Lindner and Terry Rudolph. Proposal

for pulsed on-demand sources of photonic cluster state
strings. Phys. Rev. Lett., 103:113602, Sep 2009.
doi:10.1103/PhysRevLett.103.113602. URL https://

link.aps.org/doi/10.1103/PhysRevLett.103.113602.
[23] Sophia E. Economou, Netanel Lindner, and Terry

Rudolph. Optically generated 2-dimensional
photonic cluster state from coupled quantum
dots. Phys. Rev. Lett., 105:093601, Aug 2010.
doi:10.1103/PhysRevLett.105.093601. URL https://

link.aps.org/doi/10.1103/PhysRevLett.105.093601.
[24] Donovan Buterakos, Edwin Barnes, and Sophia E.

Economou. Deterministic generation of all-photonic
quantum repeaters from solid-state emitters. Phys. Rev.
X, 7:041023, Oct 2017. doi:10.1103/PhysRevX.7.041023.
URL https://link.aps.org/doi/10.1103/PhysRevX.

7.041023.
[25] Antonio Russo, Edwin Barnes, and Sophia E Economou.

Generation of arbitrary all-photonic graph states from
quantum emitters. New Journal of Physics, 21(5):055002,
may 2019. doi:10.1088/1367-2630/ab193d. URL https:

//doi.org/10.1088/1367-2630/ab193d.
[26] Mercedes Gimeno-Segovia, Terry Rudolph, and

Sophia E. Economou. Deterministic generation of
large-scale entangled photonic cluster state from inter-
acting solid state emitters. Phys. Rev. Lett., 123:070501,
Aug 2019. doi:10.1103/PhysRevLett.123.070501. URL
https://link.aps.org/doi/10.1103/PhysRevLett.

123.070501.
[27] Paul Hilaire, Edwin Barnes, and Sophia E. Economou.

Resource requirements for efficient quantum communi-
cation using all-photonic graph states generated from
a few matter qubits. Quantum, 5:397, February 2021.
ISSN 2521-327X. doi:10.22331/q-2021-02-15-397. URL
https://doi.org/10.22331/q-2021-02-15-397.

[28] Chenxu Liu, Edwin Barnes, and Sophia Economou. Pro-
posal for generating complex microwave graph states
using superconducting circuits, 2022. URL https://

arxiv.org/abs/2201.00836.
[29] Bikun Li, Sophia E. Economou, and Edwin Barnes. Pho-

tonic resource state generation from a minimal num-
ber of quantum emitters. npj Quantum Information,
8(1):11, 2022. doi:10.1038/s41534-022-00522-6. URL
https://doi.org/10.1038/s41534-022-00522-6.

[30] Howard M. Wiseman and Gerard J. Milburn. Quantum
Measurement and Control. Cambridge University Press,
2009. doi:10.1017/CBO9780511813948.

[31] Hannes Pichler, Soonwon Choi, Peter Zoller, and
Mikhail D. Lukin. Universal photonic quantum compu-
tation via time-delayed feedback. Proceedings of the Na-
tional Academy of Sciences, 114(43):11362–11367, 2017.
ISSN 0027-8424. doi:10.1073/pnas.1711003114. URL
https://www.pnas.org/content/114/43/11362.

[32] Yuan Zhan and Shuo Sun. Deterministic generation of
loss-tolerant photonic cluster states with a single quan-
tum emitter. Phys. Rev. Lett., 125:223601, Nov 2020.
doi:10.1103/PhysRevLett.125.223601. URL https://

link.aps.org/doi/10.1103/PhysRevLett.125.223601.
[33] Yu Shi and Edo Waks. Deterministic generation of mul-

tidimensional photonic cluster states using time-delay
feedback. Physical Review A, 104(1), Jul 2021. ISSN
2469-9934. doi:10.1103/physreva.104.013703. URL http:

//dx.doi.org/10.1103/PhysRevA.104.013703.
[34] I. Schwartz, D. Cogan, E. R. Schmidgall, Y. Don,

L. Gantz, O. Kenneth, N. H. Lindner, and D. Ger-
shoni. Deterministic generation of a cluster state
of entangled photons. Science, 354(6311):434–437,
2016. doi:10.1126/science.aah4758. URL https://www.

science.org/doi/abs/10.1126/science.aah4758.
[35] Jean-Claude Besse, Kevin Reuer, Michele C. Collodo,

Arne Wulff, Lucien Wernli, Adrian Copetudo, Daniel
Malz, Paul Magnard, Abdulkadir Akin, Mihai Gabu-
reac, Graham J. Norris, J. Ignacio Cirac, Andreas Wall-
raff, and Christopher Eichler. Realizing a deterministic
source of multipartite-entangled photonic qubits. Na-
ture Communications, 11(1):4877, Sep 2020. ISSN 2041-
1723. doi:10.1038/s41467-020-18635-x. URL https:

//doi.org/10.1038/s41467-020-18635-x.
[36] Philip Thomas, Leonardo Ruscio, Olivier Morin, and

Gerhard Rempe. Efficient generation of entangled mul-
tiphoton graph states from a single atom. Nature, 608
(7924):677–681, 2022. doi:10.1038/s41586-022-04987-5.
URL https://doi.org/10.1038/s41586-022-04987-5.

[37] N. Coste, D. Fioretto, N. Belabas, S. C. Wein, P. Hi-
laire, R. Frantzeskakis, M. Gundin, B. Goes, N. So-
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and Antonio Aćın. Constructions of k-uniform and
absolutely maximally entangled states beyond maxi-
mum distance codes. Phys. Rev. Research, 2:033411,
Sep 2020. doi:10.1103/PhysRevResearch.2.033411.
URL https://link.aps.org/doi/10.1103/

PhysRevResearch.2.033411.
[49] Zahra Raissi. Modifying method of construct-

ing quantum codes from highly entangled
states. IEEE Access, 8:222439–222448, 2020.
doi:10.1109/ACCESS.2020.3043401.

[50] Zahra Raissi, Adam Burchardt, and Edwin Barnes. Gen-
eral stabilizer approach for constructing highly entangled
graph states. 2021. URL https://arxiv.org/abs/2111.

08045.
[51] M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Van den

Nest, and H. J Briegel. Entanglement in graph states
and its applications. 2006. URL https://arxiv.org/

abs/quant-ph/0602096.
[52] Maarten Van den Nest, Jeroen Dehaene, and Bart

De Moor. Graphical description of the action of local
clifford transformations on graph states. Phys. Rev. A,
69:022316, Feb 2004. doi:10.1103/PhysRevA.69.022316.
URL https://link.aps.org/doi/10.1103/PhysRevA.

69.022316.
[53] M. Hein, J. Eisert, and H. J. Briegel. Multiparty entan-

glement in graph states. Phys. Rev. A, 69:062311, June
2004. doi:10.1103/PhysRevA.69.062311.

[54] M. Bahramgiri and S. Beigi. Graph states under the
action of local clifford group in non-binary case. 2006.
URL https://arxiv.org/abs/quant-ph/0610267.

[55] Robert Raussendorf and Hans J. Briegel. A one-way
quantum computer. Phys. Rev. Lett., 86:5188–5191, May
2001. doi:10.1103/PhysRevLett.86.5188. URL https:

//link.aps.org/doi/10.1103/PhysRevLett.86.5188.
[56] D. Gottesman. Stabilizer codes and quantum error cor-

rection. PhD thesis, Caltech, 1997. URL https://arxiv.

org/abs/quant-ph/9705052.
[57] D. Gottesman. An introduction to quantum error cor-

rection and fault-tolerant quantum computation. 2009.
URL http://www.arXiv.org/abs/0904.2557.

[58] Netanel H. Lindner and Terry Rudolph. Proposal
for pulsed on-demand sources of photonic cluster state
strings. Phys. Rev. Lett., 103:113602, Sep 2009.
doi:10.1103/PhysRevLett.103.113602. URL https://

link.aps.org/doi/10.1103/PhysRevLett.103.113602.
[59] J P Lee, B Villa, A J Bennett, R M Stevenson, D J P

Ellis, I Farrer, D A Ritchie, and A J Shields. A quan-
tum dot as a source of time-bin entangled multi-photon
states. Quantum Science and Technology, 4(2):025011,
mar 2019. doi:10.1088/2058-9565/ab0a9b. URL https:

//doi.org/10.1088/2058-9565/ab0a9b.
[60] Paolo Facchi. Multipartite entanglement in qubit sys-

tems. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur.,
20:25, 2009. doi:DOI 10.4171/RLM/532. URL https:

//ems.press/journals/rlm/articles/1988.
[61] Dardo Goyeneche, Daniel Alsina, José I. Latorre, Ar-
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