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Abstract. Models of collaborative learning need to account for interdependence,
the ways in which collaborating individuals construct shared understanding by
making connections to one another’s contributions to the collaborative discourse.
To operationalize these connections, researchers have proposed two approaches:
(1) counting connections based on the presence or absence of events within a tem-
poral window of fixed length, and (2) weighting connections using the probability
of one event referring to another. Although most QE researchers use fixed-length
windows to model collaborative interdependence, this may result in miscounting
connections due to the variability of the appropriate relational context for a given
event. To address this issue, we compared epistemic network analysis (ENA)mod-
els using both a window function (ENA-W) and a probabilistic function (ENA-
P) to model collaborative discourse in an educational simulation of engineering
design practice.We conducted a pilot study to compare ENA-W and ENA-P based
on (1) interpretive alignment, (2) goodness of fit, and (3) explanatory power, and
found that while ENA-P performs slightly better than ENA-W, both ENA-W and
ENA-P are feasible approaches for modeling collaborative learning.

Keywords: Collaborative Learning · Learning Analytics · Epistemic Network
Analysis · Modeling Recent Temporal Context · Engineering Education

1 Introduction

A critical element of collaborative learning is that learners co-construct knowledge
and make cognitive connections both intrapersonally and interpersonally [1]. That is, a
learner forms links (a) between concepts that they themselves contribute to collabora-
tive interactions and (b) between their own contributions and those of their collabora-
tors. These links are operationalized in models of collaborative learning as connections
between concepts. To accomplish this, Suthers et al. [2] suggest that in collaborative
discourse, common ground can be represented in terms of the recent temporal context
for an utterance: that is, the common ground for the current utterance in a conversation
is composed of the utterances that precede it back to some prior point in time. Because
both manual construction and natural language processing techniques face challenges
in determining recent temporal context for each utterance at scale [3, 4], models of col-
laborative learning approximate the appropriate recent temporal context for utterances
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using a fixed-length moving window or using a probabilistic function. Each of these
approaches has advantages and disadvantages in approximating recent temporal con-
text. Fixed windows are easy to compute but may over- or under-count connections in
the model. Probabilistic models may, in some settings, be more accurate, but they can
be more difficult to implement.

In this study, I examine one technique for modeling cognitive connections in col-
laborative contexts, Epistemic Network Analysis (ENA), which has been implemented
primarily with a fixed-length moving window to operationalize recent temporal context.
Using one dataset, I examine whether a novel approach, ENAwith a probabilistic model,
better models the process of collaborative learning.

2 Theory

2.1 Modeling Collaborative Learning

One important component of learning is the process by which individual learners work
together to develop cognitive connections between concepts [5, 6]. For example, Suthers
et al. [2] refer to a particular type of connection in collaborative learning, uptake, as the
process of one student contributing to the conversation based contributions of another.
Clark [7] in turn argues that critical to the notion of uptake is the concept of common
ground: the shared knowledge and assumptions across individuals, groups, and com-
munities that are relevant to a specific turn of talk. As Suthers and Desiato [8] suggest,
in collaborative discourse, common ground can be operationalized as recent temporal
context: that is, the common ground for some current utterance in a conversation is
composed of the utterances that precede it back to some prior point in time.

Thus, Swiecki [1] argues that interactivity and interdependence are fundamental
to collaborative learning. Interactivity refers to the process through which learners co-
construct knowledge by responding to others’ opinions or actions. This interactivity
results in interdependence—that is, one learner’s utterances or actions influence others.
In other words, all learning can be characterized, at least in part, as a process of making
connections between ideas. In collaborative learning, those connections are made from
a learner’s ideas to some collaborative recent temporal context.

2.2 Quantifying Interdependent Connections

In cognitive science, scholars make two claims about how humans understand informa-
tion and make connections within the common ground. Each of these claims leads to a
different approach to modeling connections.

Counting Cognitive Connections Based on Presence or Absence of Events Within
the Window. The first claim is that people have limitations on their capacity for pro-
cessing information. [9] argues that a speaker engages a listener’s attention during a
conversation by dividing big chunks of information into smaller, logically connected
units, which is termed as intonation units. To construct appropriate intonation units, a
speaker needs to make an assumption at each moment about how much understanding
they share with others in a conversation. Thus, there is an underlying assumption about
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what each person thinks the others can remember in the process of conversational uptake.
Based on this framework, researchers operationalize cognitive connections within the
recent temporal context using a fixed-length moving window. The window is fixed on
the assumption that all of the participants make a similar assumption about other partic-
ipants’ shared understanding. The window is moving in the sense that each line in the
dataset has a window that represents its recent temporal context. Within each window,
researchers develop indicators to described learning patterns, such as whether or not
two events co-occur within the window.

Weighting Cognitive Connections Using the Probability of One Utterance Refer-
ring to Another. In addition to how much information a person can hold within their
short-term memory, previous research has investigated how likely it is that a person can
retain some piece of information in short-term memory as time passes. For example,
Ebbinghaus [10] studied rates of retention and forgetting based on a test of vocabulary
recall, resulting in an exponential decay function. Other research on information reten-
tion models forgetting based on power functions [11, 12]. Regardless of what function
we use to model information retention, this perspective suggests that the probability
of recalling information decays as time passes. Rather than claiming the connection
strength between two codes is either 1 or 0, I propose to quantify the connection strength
as a function of distance between the two lines where codes occur. To operationalize
connection strength, I use a probabilistic function to model recent temporal context
in collaborative discourse. The probabilistic function estimates the probability of one
utterance referring to another based on the distance between two utterances.

2.3 Epistemic Network Analysis

Epistemic Network Analysis (ENA) is an approach to quantifying connections between
concepts, behaviors and other elements to model collaborative learning [13]. ENA takes
coded data generated by individuals during interactivity and represents connections
among those codes as a network structure. Specifically, ENA computes connections
basedon thepresenceof the codes in each line of data and the codes in the previous lines of
data that constitute its recent temporal context. That is, ENA currently is operationalized
based on the first approach in Sect. 2.2. Using this approach to model a dataset, we need
to construct a window for each utterance. However, the challenge is that not every line
has the same window size. Ruis et al. [14] proposed to resolve this issue by choosing a
fixed length for the window as a best approximation. They argue that the window size
needs to be sufficient to capture the recent temporal context for 95% of utterances in
a dataset and minimize improperly-included connections within the fixed size of the
window. As Shaffer [13] argues, a fixed window is a good approximation because even
though some responses are not direct responses to preceeding lines, they are part of
the common ground. This kind of response is called a dispreferred response [15], a
contribution that is “not an expected and direct reply to prior referents” ([13], p. 159).
Therefore, even if covered by the fixed-length window, such dispreferred responses are
still in the common ground and should be included in the recent temporal context.
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In what follows, I refer to these two requirements for a fixed window model as the
maximum window postulate and the dispreferred response postulate. The first says that
we should choose a large fixed-length window to cover the recent temporal context for
majority of utterances; and the second says that in choosing a large fixed window, we
believe that dispreferred responses should be included in the recent temporal context.

ProblemswithFixed-LengthWindow. Thefixed-lengthwindowmethod thus depends
on the dispreferred response postulate. That is, dispreferred responses should always be
included in the recent temporal context for an utterance. However, it is not clear that
this is always true. If we ignore the maximum window postulate and choose a shorter
window,wewill exclude lineswhich should be in the recent temporal context. That is, we
produce a Type II error or a false negative, where we do not count connections which are
relevant. If we follow the maximum window postulate, then we may include irrelevant
responses within the window. That is, we produce a Type I error or a false positive,
where we count connections which are actually irrelevant. This happens because, in
this case, the dispreferred response postulate is not always valid: we cannot consider all
dispreferred responses as relevant context for future utterances. Thus, situations where
the dispreferred response postulate fails necessarily result in either Type I or Type II
errors: either overcounting (Type I) or undercounting (Type II) connections.

Miscounting connections in an ENA model can lead to interpretive misalignment:
the ENA model may include irrelevant connections or exclude relevant connections,
which means the model is not aligned with a qualitative understanding of the data.
Overcounting or undercounting connections also introduces error when constructing an
ENA model, which may result in lower goodness of fit or lower the amount of variance
explained.

2.4 Research Question

To address the issue of fixed window approach, I test whether ENA with a probabilistic
approach provides a better model of collaborative discourse than a fixed-length win-
dow. In this study, I apply both ENA with a fixed-length window model (ENA-W) and
ENA with a probabilistic model (ENA-P) to analyze the collaborative problem-solving
processes in an engineering design training program, which consists of two primary
learning activities: in the first half, student project teams explore a design space using
a single material component, and in the second half, they attempt to create an optimal
design using any available material. I compare these twomodels to answer the following
research questions:

(1) Does ENA-P exhibit better interpretative alignment between qualitative and
quantitative results than ENA-W?

(2) Does ENA-P have a better goodness of fit than ENA-W?
(3) Does ENA-P explain more variance between the two learning activities than ENA-

W?
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3 Methods

3.1 Dataset and Codebook

The dataset was collected from the virtual internship Nephrotex [16]. Nineteen engi-
neering students participated in an online training simulation in which they designed a
nanotechnology-based membrane for kidney dialysis machines at a fictitious company.
The training program was divided into two activities. The goal for the first half was to
help students explore the design space and learn the functional characteristics of a single
material by analyzing graphs and data and conducting tests. The goal for the second half
was to help students optimize the performance of a design across multiple parameters
using a range of materials and other components. During these two activities, students
communicated with their peers and a mentor through a persistent online chat tool that
was a part of the simulation environment. To analyze the collaborative processes in this
learning environment, researchers collected all 1443 chat posts across the 10 different
groups in the simulation (5 in the first half, and 5 jigsawed groups in the second half). The
chat posts were labeled by username and group number and arranged in a chronological
order within each group.

To analyze the collaborative discourse, Siebert-Evenstone et al. [17] developed and
validated a coding schemewith six codes: (1) performance parameters: criteria used
to assess the design prototype including cost, marketability, reliability, flux, and blood
cell reactivity; (2) design- based decision making: processes of making design deci-
sions, including prioritization and tradeoffs; (3) client and consultant requests:
concerns or needs of stakeholders in the simulation including suggestions and require-
ments for the final product; (4) data: specific technical or numeric information; (5)
collaboration: teamwork during decision making, including discussion of a team’s
collective action (e.g., “we need to…”); (6) technical specifications: characteristics
of design prototypes, including selected materials, transformation processes, surfactant,
and carbon nanotube percentage. All 6 codes were validated by two trained human raters
(for each code, kappa > 0.83, ρ(0.65) < 0.05).

3.2 ENA

ENA takes binary-coded data as input and then constructs a fixed-lengthmovingwindow
to calculate connection counts between codes for each utterance. For each unit, ENA
aggregates connection counts by summing across all windows for that unit’s utterances.
The aggregated connection counts are represented as an adjacency vector. ENA normal-
izes and centers the adjacency vectors, and the terms are used as line weights between
nodes in the network representation. ENA performs a dimensional reduction technique
to reduce the high-dimensional adjacency vectors to a low-dimensional space. In this
study, the first dimension was constructed using a means rotation that maximizes the
variance between the two primary activities in the simulation, and the second dimen-
sion was constructed using singular value decomposition, which maximizes variance
among all units. ENA optimizes node positions in the resulting low-dimensional space
to align the network centroids (based on line weights) with ENA scores (based on the
dimensional reduction). To measure how aligned centroids and ENA scores are, ENA
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calculates the goodness of fit using Pearson’s r correlation between these two values on
all dimensions.

In the network representation, codes are represented as nodes, while connection
strengths are represented by edge thickness and saturation. To compare patterns of
connection-making in the first-half and second-half of activities, ENA creates a visual-
ization called difference plot. That is, ENA calculates the mean line weights for units in
each simulation activity separately and subtracts one group of mean line weights from
the other, visualizing the differences with the color and thickness of the edges.

While network visualizations provide insights about different patterns of making
connections between groups, ENA scores can be used to test whether these differences
are statistically significant. In this analysis, I regressed theENAscores from twodifferent
ENA models on a grouping variable of two activities. To test whether the variances
explained by ENA-W and ENA-P are significantly different, I bootstrapped units and
computed both regressions repeatedly, which created an empirical distribution of R2

for both models. I applied Fischer’s Z transformation and used a Monte Carlo rejection
method to determine whether the difference in variance explained by the two ENA
models was significant.

As a unified approach to data analysis, ENA integrates both qualitative interpretation
and quantitative representation of data. Researchers establish interpretive alignment by
showing that the conclusions derived fromanENAmodel is alignedwith somequalitative
interpretation of the original data. In my study, I checked the interpretive alignment in
two ways:

• Individual-Level: I identified two segments of discussion and manually evaluated
whether ENA-P addresses the potential over- and under-counting problems introduced
by ENA-W.

• Site-Level: I evaluate whether the connection strengths in ENA-W or ENA-P provides
a better representation of the expected outcomes based on the learning objectives for
two activities.

3.3 Construction of ENA-W and ENA-P

Determining an Appropriate Window Size. To determine the window size for ENA-
W, I adopted the method proposed by [14]. Two researchers randomly sampled 177
utterances from Nephrotex chat logs and determined the furthest referent for each utter-
ance using social moderation. As proposed by [14], I identified the window size to be
7 utterances, accounted for recent temporal context in more than 95% of the sampled
lines.

Determining an Appropriate Probabilistic Function. We derived the probabilistic
function based on the same 177 samples. We define the sampled lines as an ordered set
of lines (l1, l2, . . . , l177). Each line li has its furthest referent lxi . Based on our definition
of the recent temporal context, each line is related to its referents and itself. Thus, we
operationalized the window to represent the recent temporal context is an ordered set
of lines, Wi = (

lxi , lxi+1, . . . , li
)
, where |Wi| = i − xi + 1 (that is, the number of lines

from lxi to li, , inclusive). For each line, li, we identified its furthest referent, lxi . We then
constructed a histogram of window sizes, |Wi|, as shown in Fig. 1.
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Fig. 1. Histogram for |Wi| based on 177 Sampled Lines

The height of bars in the histogram indicates the total counts of a referring line lr
with the window length of Wi. We define the counts of referring lines given a window
length k as ak = |{ i|wi = k}|. Let e be the maximum window length, e = max(Wi).
The frequency distribution of window sizes lets us estimate the probability of a referring
line (li) is related to any proceeding lines (lλ), λ < i. We can also define the probability
function π(i − λ) = P(|Wi| > i − λ), which estimates the probability of the prior line
lλ is related to the referring line li. Thus, the frequency distribution of window sizes for
all referring lines can be written as:

π(i − λ) = P(|Wi| > i − λ) = 1 −
∑i−λ

j=0 aj∑e
k=1 ak

, a0 ≡ 0.

4 Results

4.1 Research Question 1: Interpretive Alignment

Individual-Level Interpretive Alignment. In this section, I examined two examples
from one student, Lily, who participated in the training program: one example illustrates
that ENA-W may overcount connections, and the other illustrates that ENA-W may
undercount connections. In both examples, I conducted a qualitative analysis on the
recent temporal context of one utterance and manually derived the adjacency matrix of
connection strengths using ENA-W and ENA-P.

Overcounting Problem. In the following example, a group of students is discussing
different prototypes and evaluating their performance in preparation for choosing a final
design:

Line Team Member Utterance

1 Abby sounds good

2 Jina Well the only other prototype i would consider
is the one that was comprised of PMMA, vapor,
using a hydrophilic surfactant, with a nanotube % of 4.0%
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3 Jina this cost $100 dollars per unit, sold 500,000,
had a reliability of 12 hours with a flux of 15
but a blood cell reactivity of 54.44

In line 1, Abby comments on a previous design, indicating that it “sounds good”
as a candidate for the final prototype. Then Jina (line 2) proposes another candidate
design “comprised of PMMA, vapor, using a hydrophilic surfactant, with a nanotube
% of 4.0%.” That is, she lists technical specifications as inputs for the design. In
line 3, Jina continues by describing the performance parameters of the prototype,
including cost, marketability, reliability, flux and blood cell reactivity. She further adds
that the performance on the first four parameters is great, “but … blood cell reactivity”
is low at “54.44”.

After summarizing the technical specifications and performance param-
eters of her prototype, Jina suggests that her teammates type the values of the per-
formance parameters for their prototypes in the chat (line 4), which will be used to
justify their design choices:

Line Team Member Utterance

4 Jina If you guys could, can you type out the information
from the prototypes on chat. We need it for the justifications

5 Bob Flux: 29
BCR: 65.56
Reliability: 9
Marketability: 900,000

6 Abby This resulted in a reliability of 8 h, marketability
of 600,000 units, a flux rate of 13 m3/m2-day, and
a low Bloodcell reactivity of 21.11. In total
this prototype costs $130 dollars per unit

7 Lily The BCR Type: Reliability-5, Market-800,000.
Flux - 23. BCR- 10. Cost -$150

In response to Jina’s proposal, Bob (line 5), Abby (line 6), and Lily (line 7) all
enter the numerical values for the performance parameters of their prototypes.
That is, they summarize how each of their prototypes performed on the metrics that the
stakeholders care about.

Jina’s response in line 4 is thus a dispreferred response. The previous discussion
(lines 1–3) was focused on the technical specifications of the prototypes that each
teammember designed and tested. Jina (line 4) then abruptly shifted the discussion to the
performance parameters of the prototypes, effectively beginning a new discussion.

How, then, should we model Lily’s utterance in line 7? Based on the fixed win-
dow with 7 utterances, all lines in this segment, including any dispreferred responses,
are relevant context because they are within the window, which in turn quantifies the
connection between technical specifications and performance parameters as
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1. In other words, the window models a connection between performance parame-
ters and technical specifications for line 7 even though qualitatively, Lily was not
making that connection.

If we use a probabilistic function to quantify connection strength, line 7 comes
5 lines after line 2. Thus, the connection between Lily’s reference to performance
parameters in line 7 and Jina’s reference to technical specifications is weighted
by π(7 − 2) = π(5) = 0.107. Thus, the probabilistic model also shows a connection,
but now with a weakened strength of only 0.107. This adjustment of connection strength
suggests that the probabilistic model is a better representation—or perhaps in this case,
a less imperfect representation—of Lily’s response.

Undercounting Problem. In the following example, which comes at the beginning of
the second half of the training program, students have switched groups. In their new
group they introduce themselves, and then Abby describes (line 1) the conclusion by
their team in the first half, suggesting that it was not particularly useful for designing a
final prototype:

Line Team Member Utterance

1 Abby basically the only thing i was able to
conclude from my surfactant was that the
BCR was constant in all of the prototypes. was 43.33%

2 Jina The group i had previously worked with came up with
a prototype that gave us an all around great dialyzer.
It was comprised of PMMA for the material, Used the
process of Vapor, and used a biological surfactant,
and had a nanotube percentage of 1.5%

3 Jina This resulted in a reliability of 8 h, marketability of
600,000 units, a flux rate of 13 m3/m2-day, and a
low Bloodcell reactivity of 21.11. In total this
prototype costs $130 dollars per unit

4 Abby submit that prototype label in Team1 Batch1

5 Abby do we want to stick to a specific material

6 Lily I think we should include one prototype of each material

7 Abby okay so each of us creates one from our material

8 Jina Well what was the best one out of the previous
prototypes for each material? It makes sense
to do the best ones overall for each

9 Lily well, change it up a bit. You can optimize your best result

Jina replies to Abby by reporting (line 2) the technical specifications for “an
all around great dialyzer” that their group tested in the first half of the training pro-
gram. Then, she provides (line 3) data about the performance parameters for her
prototype.
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Abby replies by suggesting (line 4) that the team use one of their prototypes from the
first half of the training program in their next submission (“submit that prototype label in
Team1 Batch1”). She asks (line 5) whether the whole team should use one material for
the final submission. Lily replies (line 6) to Abby’s question, saying that each person on
the team should test a prototype for a different material. Abby confirms (line 7) that she
understands what Lily had said: each student on the new team should design a prototype
using the material studied by their old team. In response to Lily and Abby, Jina suggests
(line 8) that they should use the “best ones overall” from their previous team. However,
Lily disagrees and suggests (line 9) that they should consider changing the design from
the previous team to achieve the best result possible.

This final comment about data (the “best result” of a design using one material)
is thus a response to the previous 8 lines where students were deciding how to move to
the next phase of their design process. More specifically, it relates to Jina’s description
(line 2) of the technical specifications for one specific device and its performance
parameters (line 3).

But notice that with a window size of 7, data (line 9) is connected to performance
parameters (line 3)—which is aligned with this qualitative analysis of the example.
However, it is not connected to technical specifications (line 2), even though they
are part of what would have been read as a single continuous comment by the same
student (Jina). That is, the connection calculated by ENA-W is 0. In other words, the
window excludes a connection between data and technical specifications for line
9 even though qualitatively, Lily was making that connection.

If we use a probabilistic function to quantify connection strength (see 3.2.1), line 9
comes 7 lines after line 2. Thus, the connection between Lily’s data in line 9 and Jina’s
technical specifications is weighted by π(9 − 2) = π(7) = 0.034. In other words,
in this example, a qualitative analysis shows that Lily was making a non-zero connection
between data and technical specifications.

In summary, the probabilistic model (1) reduces the type I error by decreasing the
connection strength between performance parameters and technical specifica-
tions, which is overcounted by the fixed-length window model and (2) reduces the type
II error by increasing the connection strength between data and technical specifica-
tions, which is undercounted by the fixed-length window model. These patterns persist
throughout Lily’s network throughout the training program: The connection strength
between performance parameters and technical specifications is 0.70 in the
ENA-W model, which decreases to 0.67 in the ENA-P model; the connection strength
between data and technical. specifications is 0.42 in the ENA-W model, which
increases to 0.51 in the ENA-P model.

Site-Level Interpretive Alignment. To assess interpretive alignment at the site level,
I constructed an ENA-W and ENA-P model based on the chats from the whole class
during the training program. Recall that the training program was designed to help
students learn two abilities: the goal of the first half is to explore the performance of a
single material based on different data sources (e.g., technical reports and graphs) and
experimentation, while the goal of the second half is to optimize the performance (i.e.,
cost, safety, reliability, etc.) of a design prototype using any available material.
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Thus, wewould anticipate that students in the first half of the training programwould
make more connections between data and technical specifications because they
are spending more time reading and discussing technical reports, collecting preliminary
data, and constructing graphs to understand various design attributes for one single
material. Students in the second half are more likely to make connections between
data and performance parameters, as they are designing and testing prototypes to
better understand the design space and maximize device performance across a range of
parameters.

According to Fig. 2, the subtracted plot of ENA-P better aligns with expected dif-
ference between the first-half and the second-half of the training, based on the learning
objectives of two halves. For example, students are expected to make more connections
between data and technical specifications in the first-half of training. However, the
edge between data and technical specifications in the subtracted plot for ENA-W
is veryweak, indicating little difference in the overall strength of that connection between
the two halves: the edge weights differ by only 0.48. However, the ENA-P model shows
that students made relatively more connections between data and technical speci-
fications in the first half of training: the edge weights differ by 3.08. In other words,
the ENA-W model does not reflect an expected difference in student discourse between
the two halves of the simulation, while the ENA-P model does.

Similarly, students are expected to make more connections between data and per-
formance parameters in their second-half, which is reflected in the subtracted plot
of ENA-W: the edge weights differ by 1.60. However, the edge weight of this connection
in ENA-P model shows even more salient difference, according to the thicker and darker
blue edge. That is, the difference of this connections between two halves is larger in
ENA-P: the edge weights differ by 4.01. In other words, the ENA-P model manifest and
shows a more salient difference in network representation, compared to ENA-W.

Thus, in the individual-level, the individual network of Lily using ENA-P is more
aligned with the qualitative evidence; in the site-level, the subtracted plot using ENA-P
is more aligned with the expected difference based on the design and intervention of the.
Thus, ENA-P models collaborative learning process and achieves a better interpretive
alignment, compared to ENA-W.

4.2 Research Question 2: Evaluation of ENA Models Using Goodness of Fit

As described in Sect. 3.2., goodness of fit is a measure of discrepancy between dual
representations for units. A higher goodness of fit provides a stronger warrant for the
interpretation of the ENA scores based on the individual network. While goodness of
fit for ENA-W is 0.93, goodness of fit for ENA-P is higher at 0.96. Thus, ENA-P has a
better co-registration between dual representations than the ENA-W model.

4.3 Research Question 3: Evaluation for ENA Models Using Regression Analysis
and Variance Explained

As described in Sect. 3.2. I applied a two bivariate regression models to predict ENA
scores on the primary axis for the ENA-W and ENA-P and based on the condition of



Modeling Collaborative Discourse with ENA 143

Fig. 2. Subtracted ENA Plots and Group ENA Plots Using Fixed Window Approach and
Probabilistic Function

first-half and second-half of the game. Condition of first versus second half significantly
predicts ENA scores for both models. However, the variance explained by ENA-W (R2

= 0.22) is lower than the variance explained by ENA-P (R2 = 0.38).
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To explore whether the variance explained is significantly different between two
models, as described in Sect. 3.2. I bootstrapped units from the whole set and ran the
regression models repeatedly. With 1,000 iterations of bootstrapping, I calculated the
95% confidence interval (CI) for the R2 of both models. The results show that the
ENA-W model (95% CI ∈ [0.20, 0.24]) has significantly lower variance explained than
the ENA-P model (95% CI ∈ [0.39, 0.43]). Thus, ENA-P has more explanatory power
in accounting for differences between students in the first-half and second-half of the
training program.

5 Discussion

This study explored two approaches to modeling collaborative learning in which the unit
of analysis is individuals-in-a-group. Specifically, it compared ENAmodels constructed
using two different methods for quantifying the strength of connections in collaborative
discourse: (a) a fixed-length window approach (ENA-W), which quantifies connections
as either present or absentwithin a set number of turns of talk; and (b) a novel probabilistic
function approach (ENA-P), which estimates the likelihood that a connection is present.
I hypothesized that ENA-P would better address the problem of over- or undercounting
connections—that is, incorrectly quantifying connection strength—when a fixed-length
window is used. To test this hypothesis, I conducted a pilot study to test the feasibility of
ENA-P relative toENA-Wusingdata from19 studentswhoparticipated in a collaborative
engineering design training program.

I compared ENA-P with ENA-W using three criteria: interpretive alignment, vari-
ance explained between groups, andmodel goodness of fit. Bothmodels performedwell,
but ENA-P achieved slightly higher goodness of fit, explained significantly more vari-
ance, and was better aligned with both qualitative interpretation and expected learning
processes based on the design of the training program. At the individual-level, given two
discourse segments involving one particular student, ENA-P better quantified the con-
nections overcounted or undercounted by ENA-W. Furthermore, this pattern persisted
when all connections were aggregated for this student. At the site-level, the ENA-P
model better reflected expected differences in student discourse between the first and
second halves of the training.

This pilot study suggests that in at least some collaborative learning contexts, ENA-
P may perform better than ENA-W; thus, ENA-P is a feasible method for quantifying
connections in ENA models. While ENA-P models may perform better in some cir-
cumstances, they are also more difficult to construct. For example, in this study, we
manually identified a probabilistic function based on an empirical distribution, which
takes more time and effort. There are also other possible probabilistic models, such as
exponential functions or power functions; thus, the findings of this study suggest that
such approaches should be tested in future work.

In summary, while ENA-P performs slightly better than ENA-W based on the pilot
test, both ENA-W and ENA-P are feasible approaches to model collaborative learning.
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