
Using Auxiliary Data to Boost Precision in
the Analysis of A/B Tests on an Online Ed-
ucational Platform: New Data and New
Results*

Adam C Sales
Worcester Polytechnic Institute
asales@wpi.edu

Ethan B Prihar
Worcester Polytechnic Institute
ebprihar@gmail.com

Johann A Gagnon-Bartsch
University of Michigan
johanngb@umich.edu

Neil T Heffernan III
Worcester Polytechnic Institute
nth@wpi.edu

Randomized A/B tests within online learning platforms represent an exciting direction in learning sci-
ences. With minimal assumptions, they allow causal effect estimation without confounding bias and
exact statistical inference even in small samples. However, often experimental samples and/or treat-
ment effects are small, A/B tests are under-powered, and effect estimates are overly imprecise. Recent
methodological advances have shown that power and statistical precision can be substantially boosted
by coupling design-based causal estimation to machine-learning models of rich log data from historical
users who were not in the experiment. Estimates using these techniques remain unbiased and inference
remains exact without any additional assumptions. This paper reviews those methods and applies them
to a new dataset including over 250 randomized A/B comparisons conducted within ASSISTments, an
online learning platform. We compare results across experiments using four novel deep-learning models
of auxiliary data, and show that incorporating auxiliary data into causal estimates is roughly equivalent to
increasing the sample size by 20% on average, or as much as 50-80% in some cases, relative to t-tests, and
by about 10% on average, or as much as 30-50%, compared to cutting-edge machine learning unbiased
estimates that use only data from the experiments. We show the gains can be even larger for estimating
subgroup effects, that they hold even when the remnant is unrepresentative of the A/B test sample, and
extend to post-stratification population effects estimators.
Keywords: A/B Tests Deep Learning Evaluation

1. INTRODUCTION

In randomized A/B tests on an online learning platform, students are randomized between dif-
ferent educational conditions or strategies, and their subsequent educational outcomes of in-
terest are compared between different conditions. For instance, Harrison et al. (2020) studied

*Data and code used in this work can be found at https://osf.io/k8ph9/?view\protect_only=
ca7495965ba047e5a9a478aaf4f3779e.
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data from 2,152 middle- and high-school students whose teachers assigned a specific module—a
“skill builder”—on the ASSISTments online tutoring platform (Heffernan and Heffernan, 2014).
Prior to the students’ work, the authors designed four different educational conditions, which
differed in how the numbers and symbols in arithmetic expressions were spaced. As students
logged on to the platform, in the course of their usual schoolwork, they were each individually
randomized to one of the four conditions, and completed their work under that condition. Sub-
sequently, the authors of the study compared the average number of problems students in each
condition had to work before achieving mastery, defined as answering three problems correct in
a row. They found that students who were assigned the “congruent” condition—in which the
spacing between numbers corresponded to the order of operations—needed to work on roughly
one fewer problem, on average, than students in the “incongruent” condition. This finding, and
others reported in the paper, validated their previous scientific hypotheses regarding embodied
cognition, the relationship between abstract learning and the arrangement of objects in physical
(or virtual) space.

In general, A/B tests have two significant advantages over observational study designs, which
do not include randomization, and additional advantages over studies conducted in a lab. First,
they are (famously) free of confounding bias—since students are randomly allocated between
conditions, differences in outcomes must be due to either a causal effect of the randomized con-
ditions or to random error, but not to systematic baseline differences between students, observed
or unobserved. Perhaps less famously, randomization forms a “reasoned basis for inference”
(Fisher, 1935): the (known) probabilities of allocation of students between experimental con-
ditions provide nearly all of the necessary justification for the unbiased estimation of causal
effects, as well as standard errors, confidence intervals, and p-values. No other distributional
assumptions or modeling assumptions are necessary. These properties allowed Harrison et al.
(2020) to estimate causal effects of spacing conditions, as well as to statistically rule out other
alternative explanations.1 Causal effect and standard error estimators that rely only on the ex-
perimental design are referred to as “design-based” (Schochet, 2015).

On the other hand, A/B tests can be hobbled by statistical imprecision. For instance, Harrison
et al. (2020) was unable to confirm or disconfirm one of their initial hypotheses, regarding
differences in causal effects between subgroups of students, because the standard errors of the
relevant estimates were too high. Unlike observational studies using data from online tutors,
the sample size in A/B tests is necessarily limited to those students who worked on the relevant
modules while the study was taking place. In contrast, a typical observational study would use
data from all students who have ever worked on the relevant modules, including the (often large)
number of students who worked on them before the onset of the study, and might sometimes use
data from students who worked on similar modules as well. Analysis of A/B tests must discard
data from these students, who were not randomized between treatment conditions and are subject
to confounding. Unlike studies conducted in carefully controlled laboratory environments, A/B
tests are subject to the haphazard unpredictability of real life, which only increases the statistical
imprecision—even a sample as large as the 2,152 of Harrison et al. (2020) may not be enough
to answer some causal questions.

However, recent methodological innovations (Gagnon-Bartsch et al., 2021; Sales et al.,
2018a) have argued that data from the “remnant” from an experiment—students who were not

1Actually the authors of that paper did make modeling assumptions in their analysis, but they could have con-
ducted a non-parametric analysis.
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randomized between conditions, but for whom covariate and outcome data are available—need
not be discarded, but can play a valuable role in causal estimation. In fact, researchers can use
data from the remnant to decrease experimental standard errors without sacrificing the unbi-
ased estimation and design-based inference that recommend A/B testing. The basic idea is to
first use the remnant data to train a machine learning model predicting outcomes as a function
of covariates; then, use that fitted model to generate predicted outcomes for participants in the
experiment. Finally, use those predictions as a covariate in a design-based covariate-adjusted
causal estimator (Aronow and Middleton, 2013; Wager et al., 2016a; Wu and Gagnon-Bartsch,
2018a; Chernozhukov et al., 2018, for eg.). Variants of the the method use the predictions from
the remnant alongside other covariates to estimate causal effects.

These methods can help alleviate another weakness, shared by A/B tests and observational
studies—the dependence of conclusions on statistical modeling choices. By observing outcome
data prior to selecting and fitting statistical models, researchers (often inadvertently) choose
models most favorable to their desired conclusions and undermine statistical objectivity and the
logic of inference. Two proposed solutions to this issue are (1) to split the sample prior to data
analysis, and use one part to choose a model and the second part to estimate effects (Heller
et al., 2009) or (2) to rely on flexible non-parametric models that can be specified prior to data
collection (Van der Laan and Rose, 2011). Design-based estimators incorporating remnant data
rely on both these techniques: model-fitting in the remnant can be interactive and based on
human judgement, without adversely affecting the objectivity or validity of statistical inference
using the experimental sample. Design-based covariate adjustment often uses robust or non-
parametric models.

This paper reviews design-based effect estimation from A/B tests, along with a set of design-
based causal estimators that use remnant data (Section 2). Next (Section 3) we describe a new
dataset which we used to test these methods: a collection of 68 multi-armed A/B tests run on
the ASSISTments TestBed (Ostrow et al., 2016), which together include 277 different two-way
comparisons, and 38,035 students. Alongside this experimental data, we collected log data for
an additional 193,218 students who worked on similar skill builders in ASSISTments but did
not participate in any of the 68 experiments—the remnant. The following section (Section 4)
describes the Deep Learning model that we trained in the remnant to predict student outcomes
as a function of prior log data.

The next four sections use that data and those models to address four research questions
regarding the use of remnant data to assist in the analysis of A/B tests. The first research ques-
tion (Section 5) regards the overall efficacy of our approach: to what extent might remnant
data improve the precision of effect estimates from A/B tests? Does it ever harm precision, in
practice? As part of this research question, we also investigated the roles various types of rem-
nant data may play in the process. The second research question (Section 6) regards subgroup
effects—treatment effects may be present for some groups of students but not others, or may dif-
fer between groups of students. However, breaking A/B test data into subsets further exacerbates
sample size issues—is this something remnant data may help with? The third research question
(Section 7) regards differences between the remnant and A/B testing data—in particular, what if
the remnant is known to be drawn from a different population than the participants in A/B tests?
Can it still be useful? To answer this question, we purposely constructed a new remnant that we
believe is composed mostly of white and Asian males, and used it to analyze A/B testing data
from primarily other demographic groups. The last research question (Section 8) asks if remnant
data may be helpful in generalizing effects estimated from an A/B test to a wider population,
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Table 1: Descriptions of sets of subjects described in the text, and associated causal estimands.

Name Abbreviation Explanation Avg. Effect
RCT Set RCT Participants in the RCT, ran-

domized between Z = 0 and
Z = 1 conditions

τRCT

Population of interest POP The total population for
which researchers wish to
estimate effects

EPOP [τ ]

Subgroup k G = k One of K disjoint subsets of
POP or RCT

τG=k or
EPOP [τ | G = k]

Remnant REM Subjects with covariate (x)
and outcome (Y ) data avail-
able, but who were random-
ized between conditions in
the RCT

n/a

even when subjects in the A/B test were not randomly drawn from that population.
Across the board, we find that estimates using the remnant are often substantially more

precise than estimates that do not, and very rarely are much less precise. This holds for overall
estimates, estimated subgroup effects, population average effects, and even when the remnant is
unrepresentative of the A/B test by construction. Our results give a much clearer picture of the
potential impacts of using remnant data in design-based causal inference than was previously
available.

2. BACKGROUND

2.1. FRAMEWORK: DIFFERENT (GROUPS OF) USERS, DIFFERENT (AVERAGE) TREAT-
MENT EFFECTS

For the method we are describing, it will be useful to define several different sets of subjects or
users, summarized in Table 1 and Figure 1 (also see (Imbens, 2004)).

Consider an A/B test in which subjects i = 1, . . . , n are randomized between two conditions,
which we denote as Zi = 0 or Zi = 1, with the goal of estimating effects of Zi on an outcome
Yi. Call the set of randomized subjects i the “RCT set,” or RCT . Typically, researchers running
A/B tests are interested in the effect of Z on a broader population than RCT , such as all users of
the system, or all users of a particular type; denote this target population as POP . For instance,
students in a set of participating classrooms (RCT ), working on a mastery-based homework
assignment, may be randomized to either receive tutoring in the form of multi-step hints (Z = 1)
or complete explanations of problem solutions (Z = 0), with the ultimate goal of estimating the
effects of hints versus explanations on assignment completion (Y ) for all users of the educational
software (POP ). (We focus on binary treatments for the sake of simplicity, though the methods
and concepts we discuss extend easily to experiments with more than two conditions.)

Following (Neyman, 1923; Rubin, 1978) let yi(z), z = 0, 1 represent the outcome that
subject i would experience if randomized to z—that is, if Zi = 0, the observed outcome Yi =
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Figure 1: A Venn Diagram for the sets of subjects described in the text and Table 1.

yi(0), and if Zi = 1 then Yi = yi(1). Then, define the treatment effect for subject i as τi =
yi(1) − yi(0), the difference between the outcome i would experience under condition 1 versus
what they would experience under condition 0.

The challenge of causal inference is that for each i, only one of yi(0) or yi(1) is observed.
Hence, individual treatment effects τi cannot be estimated directly (at least, not precisely), but
under some circumstances, average treatment effects can be estimated.

2.1.1. The Sample Average Treatment Effect

First, consider the sample average treatment effect,

τRCT =
n∑

i=1

τi/n = y(1)− y(0)

where y(1) is the sample average of y(1) over every subject in the RCT (whether Z = 1 or
Z = 0), and y(0) is the sample average of y(0). Hence, τRCT is never observed, but can often be
estimated. Claims about τRCT pertain only to the participants in RCT , not (necessarily) about
the treatment effect among other subjects.

2.1.2. The Population Average Treatment Effect

When researchers’ interest goes beyond the average effect in RCT , and actually pertains to the
larger population POP , then the estimand of interest is the population average effect, denoted
EPOP [τ ]

2. If RCT is a random sample of POP , then there is little difference between estimating
τRCT and estimating EPOP [τ ]. However, it is often the case that experimental participants are
not representative of POP .

2We use the notation of expected value E[·] instead of sample average ·̄ since it will often be mathematically
convenient to think of POP as an infinite “super-population” from which subjects are drawn randomly (see, e.g.
(Ding et al., 2017))
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2.1.3. Subgroup Effects

If the population is partitioned into K subgroups—for instance, students with high or low per-
formance prior to randomization, students in different school districts, or students in different
demographic categories—then let Gi ∈ 1, . . . , K denote subject i’s group membership, so that
if Gi = k, then i is in the kth subgroup. Then τG=k and EPOP [τ | G = k] are average treatment
effects for members of the subgroup k in RCT or the population POP , respectively. In general,
τRCT =

∑K
k=1 pkτG=k and EPOP [τ ] =

∑K
k=1 πkEPOP [τ | G = k], where pk and πk are the

proportions of RCT and POP , respectively, that belonging to group k.

2.2. ESTIMATION AND TYPES OF CAUSAL BIAS

Estimation, and possibility of bias, depends on the causal estimand of interest, and can be due
to bias in estimating τRCT , which we will call “internal” bias, bias in estimating EPOP [τ ] due to
differences between subjects in the experiment and the population, which we will call “external
bias,” or a combination of the two. Our terminology mirrors the distinction between internal and
external validity (McDermott, 2011, for eg.).

2.2.1. Aside: Why do We Care about Statistical Bias?

While a good amount of early work in theoretical statistics focused on unbiased estimators,
recent decades have seen increasing acknowledgement that unbiased estimators are often sub-
optimal according to alternative estimation criteria and that a small amount of statistical bias
may be a reasonable price to pay for improved statistical precision. That being the case, what
accounts for our focus on unbiased estimation in this paper?

Although unbiasedness may not be an important goal for estimation in general, the concept
of bias remains a useful formalization of some very important problems in estimation. For
instance, the widely-known problems of estimating population quantities from unrepresentative
or non-random samples or estimating causal effects from observational studies with unobserved
confounding variables are both—in our opinion—most easily and clearly expressed in terms of
bias. Extrapolation from unrepresentative samples and confounding can cause estimators to be
inconsistent or inadmissible, and for confidence intervals and hypothesis tests to under-cover
or over-reject, respectively. Our focus is on bias since we take it to be the simplest and most
straightforward way to formalize confounding and unrepresentative sampling.

2.2.2. Estimating τRCT and Internal Bias

In a completely randomized experiment, the set of subjects with Z = 1 are a random sample
of all the experimental participants, so Y Z=1 = (

∑n
i=1 YiZi)/(

∑n
i=1 Zi), the average observed

outcome for treated subjects, is an unbiased estimate of y(1), and likewise Y Z=0 is an unbiased
estimator of y(0). (In general, let XG be the sample mean of X for subjects for whom G is true
(
∑n

i=1 Xi1{Gi})/(
∑n

i=1 1{Gi}), where 1{Gi} = 1 if G is true for i and 0 otherwise.) Then

τ̂DM = Y Z=1 − Y Z=0

the “difference-in-means” or “T-Test” estimator, is (internally) unbiased for τRCT . However,
if treatment Z is not randomized—or if randomization is “broken” due attrition or some other
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irregularity—then τ̂DM will be biased due to confounding. Similarly, if treatment was random-
ized, but with different probabilities of treatment assignment for different subjects, τ̂DM may be
a biased estimate of τRCT .

Even in a completely randomized experiment without other complications, some common
effect estimators are biased for τRCT . For instance, say a vector of covariates xi is observed for
each subject. The ANCOVA estimator for τRCT , the estimated coefficient on Z from an ordinary
least squares regression of Y on Z and x, is biased for τRCT , unless the linear model is correct.
In general, non-linear relationships between x and y(0) or y(1), or un-modeled interactions be-
tween the treatment indicator and x, will lead to bias in the ANCOVA estimator. That said, when
x has low dimension relative to n, the bias of the ANCOVA estimator is negligible (under suitible
regularity conditions it decreases roughly with 1/n; Freedman (2008)). However, if x has high
dimension relative to n, or if a prediction algorithm other than OLS is used (improperly), the
bias might be substantial.

2.3. INTERNALLY UNBIASED ESTIMATORS USING AUXILIARY DATA

2.3.1. The Remnant

While the difference-in-means estimator τ̂DM is unbiased for τRCT in a completely randomized
experiment, it may be imprecise, especially when the sample size is small. This problem may
be exacerbated if a researcher is interested in estimating subgroup effects, either because of
scientific interest in subgroups or for the sake of post-stratification as in (6). The reason is that
τRCT depends on unobserved counterfactual potential outcomes, yi(0) if Zi = 1 and yi(1) if
Zi = 0, which must be imputed. τ̂DM relies on very rudimentary imputation strategy: the
imputed ŷi(0) = Y Z=0 for all i such that Zi = 1, and ŷi(1) = Y Z=1 for all i such that Zi =
0. This strategy ignores all observed differences between subjects in the experiment, instead
imputing one of the same two values for every subject.

In many cases, covariate and outcome data from an experiment are drawn from a larger
database. For instance, educational field trials may use state longitudinal data systems to collect
covariate data on student demographics and prior achievement, as well as on post-treatment
standardized test scores, the outcome of interest, and medical trials may gather baseline and
outcome data from databases of medical records. Most relevant for our purposes, analysis of
A/B tests within online applications can access rich baseline data from users’ logs prior to the
onset of the experiment, and often draw outcome data from that same source. In these cases,
researchers have the option of gathering additional auxiliary data—covariate and outcome data
from users who were not part of the experiment. This includes historical data from before the
onset of the experiment, as well as concurrent users who were not part of the experiment for
some other reason. We refer to this set of users as the “remnant” from the experiment (Sales
et al., 2018b) (rounding out the list of sets described in Table 1 and Figure 1).

2.3.2. A Naive Estimator using the Remnant

Say, for the sake of argument, that every subject in the remnant was in the Z = 0 condition; this
will be the case if, for instance, Z = 0 represents a “business as usual” condition. Then, say
researchers used the remnant to train an algorithm ŷREM(0) (x;β) predicting outcomes from
covariates, with parameters β, estimated with remnant data as β̂, and calculated imputations for
participants in the experiment as ŷri = ŷREM(0)

(
x; β̂

)
. Then, for each experimental participant
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with Zi = 1, estimate an individual treatment effect of τ̂i = Yi − ŷri and estimate τ̄ or EPOP [τ ]
as τ̂naive = τ̂Z=1.

The estimator τ̂naive has the potential to be much more precise than τ̂DM , since it can ac-
count for observed baseline differences between experimental subjects, and use those differences
to tailor its imputations to each individual subject. On the other hand, it has two serious disad-
vantages. First, the participants in the experiment are not necessarily drawn from the same popu-
lation as the remnant, so there is no guarantee that the conditional distribution of y(0) given x is
the same in both groups. If the remnant is not representative of the experiment, so that p(y(0)|x)
differs between the two sets, τ̂naive may be biased for both τ̄ and EPOP [τ ]. Second, even if the
remnant is representative of the sample, there is typically no guarantee that the ŷREM(0) (·;β)
is unbiased—in this case, the often erratic behavior of supervised learning algorithms in finite
samples can also lead to bias.

2.3.3. Better Estimation using the Remnant

Both of these disadvantages can be corrected by relying on both randomization and supervised
learning from the remnant. Specifically, the problems that cause internal bias in τ̂naive will also
be present when comparing Yi to ŷri for subjects in the control group, leading to the “remnant-
based residualization” or “rebar” estimator (Sales et al., 2018b),

τ̂rebar ≡ τ̂naive − Y − ŷr
Z=0 = Y − ŷr

Z=1 − Y − ŷr
Z=0 = τ̂DM − ŷr

Z=1 − ŷr
Z=0 (1)

where ŷr is the vector of imputations {ŷri }ni=1. As (1) suggests, there are (at least) two ways
to conceptualize the rebar estimator: first, it corrects the bias of τ̂naive by subtracting the analo-
gous contrast in the Z = 0 group, Y − ŷr

Z=0, and second, it corrects for imprecision in τ̂DM

by subtracting finite-sample difference in ŷr between students in the two treatment conditions.
τ̂rebar is precise if ŷr are close to y(0), on average, and is always unbiased for τ̄ , due to the ran-
domization of treatment assignment. Importantly, because the parameters β from the algorithm
ŷREM(0) (·;β) are estimated using a separate sample, and x is fixed at baseline, τ̂rebar will be
unbiased for τ̄ regardless of whether imputations ŷr are themselves accurate or biased. This
property is guaranteed by the randomization of treatment assignment.

The problem with τ̂rebar is that if the algorithm ŷREM(0) (·;β) performs poorly for subjects
in RCT , then τ̂rebar will have high variance—sometimes even higher than τ̂DM . A better solu-
tion is based on the fact that, in essence, ŷri is itself a covariate, since it is a function of covariates
xi and parameters β estimated using a separate sample. That being the case, it can be used as a
covariate, perhaps along with others, in an existing covariate-adjusted estimator of τRCT .

For instance, a researcher could incorporate ŷr into the ANCOVA estimator, the coefficient
on Z of the regression of outcomes Y on an intercept, Z, ŷr, and, perhaps, a small number
of other covariates. As discussed above, the ANCOVA estimator is consistent and only slightly
biased in moderate to large samples.

Alternatively, Gagnon-Bartsch et al. (2021) suggests incorporating ŷr, perhaps alongside
other covariates, into a flexible, internally-unbiased effect estimator that adjusts for baseline
covariates using only RCT data (Wager et al., 2016b; Aronow and Middleton, 2013, for eg.).
Like Gagnon-Bartsch et al. (2021), we will focus on the “LOOP” estimator (Wu and Gagnon-
Bartsch, 2018b). Consider an A/B test with Bernoulli randomization—i.e. each subject is inde-
pendently randomized—with Pr(Zi = 1) = p for all i. In this context, specify a 2nd algorithm

ŷ(z)
RCT

(x, ŷr;α) to impute potential outcomes y(0) and y(1) from remnant-based imputations
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ŷr, and (optionally) covariates x, with parameters α. (Note that there are two separate algo-
rithms predicting Y from x: ŷREM(0) (x;β) is fit using data from the remnant and produces

imputations ŷri , while ŷ(z)
RCT

(x, ŷr;α) is fit using RCT data.) For instance, (Gagnon-Bartsch
et al., 2021) considers models

ŷ(z)
RCT

(ŷrα)OLS = αz
0 + αz

1ŷ
r (2)

as well as a random forest predictor, ŷ(z)
RCT

(x, ŷr;α)RF incorporating covariates x alongside
ŷr as predictors, but ultimately recommends an ensemble of the two.

To estimate τRCT without bias, it is essential that the predictions from ŷ(z)
RCT

(x, ŷr;α)
be statistically independent from the treatment assignment Z. The recommended estimators in
(Gagnon-Bartsch et al., 2021) ensure that this is the case by using leave-one-out sample-splitting.
For each subject in the experiment i = 1, . . . , n, estimate α as α̂(i) using data from the other

n − 1 subjects, and impute missing potential outcomes using predictions ŷi(0)
RCT

(ŷr,x) =

ŷ(0)
RCT (

ŷri ,xi; α̂(i)

)
and ŷi(1)

RCT

(ŷr,x) = ŷ(1)
RCT (

ŷri ,xi; α̂(i)

)
.

Finally, estimate τRCT : first, let m̂i = pŷi(0)
RCT

(ŷr,x) + (1− p)ŷi(1)
RCT

(ŷr,x), an impu-
tation of i’s expected counterfactual potential outcome. Then estimate τ as:

τ̂LOOP (ŷ
r,x) =

∑
i:Zi=1

Yi − m̂i(ŷ
r,x)

np
− 1

n

∑
i:Zi=0

Yi − m̂i(ŷ
r,x)

n(1− p)
(3)

where p, as above, is the probability of an individual participant being assigned to the Z = 1
condition. This is an inverse-probability-weighted estimate (also called Horvitz Thompson)—it
is similar in form to τ̂DM , except with the treatment and control sample sizes replaced with their
expected values, np and n(1− p). Aside from that difference, τ̂LOOP (ŷ

r,x) with m̂i = 0 would
correspond to τ̂DM , and τ̂LOOP (ŷ

r,x) with m̂i = ŷri would be equivalent to τ̂rebar. In general,
τ̂LOOP (ŷ

r,x) is much more flexible than either τ̂DM or τ̂rebar, since it allows ŷr’s role to vary
depending on its prognostic value, and because it allows flexible incorporation of other baseline
covariates.

Because parameters α are estimated independently of i’s outcome data, and xi is fixed prior
to treatment assignment, the sample splitting estimator is unbiased for the sample average treat-
ment effect τ .

In Gagnon-Bartsch et al. (2021), incorporating ŷri into the LOOP estimator of (Wu and
Gagnon-Bartsch, 2018b) in many cases led to substantial gains in precision compared to either
τ̂DM or to the LOOP estimator with other covariates but not ŷri .

None of the methods considered here assumes that either imputation model, ŷREM(0) (·;β)
or ŷ(z)

RCT
(x, ŷr;α) is correct, unbiased, or consistent in any sense. Regardless of the quality

of the imputation methods, randomization of treatment assignment ensures that effect estimates
are unbiased.

2.3.4. Specific Estimators and Associated Terminology

Our two recommended estimators, which we term ReLOOP and ReLOOP+, combine ideas from
τ̂rebar (1) and the leave-one-out covariate adjustment strategy LOOP (Wu and Gagnon-Bartsch,
2018b)—hence the name “ReLOOP.” We will compare ReLOOP and ReLOOP+ to the T-Test
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estimator τ̂DM , and a LOOP estimator that does not use remnant data. All told, we consider four
different estimators:

• “T-Test”: the difference-in-means estimator τ̂DM , with no covariate adjustment

• “LOOP”: τ̂LOOP (x) adjusts for covariates using a random forest imputation model fit to
RCT data. It does not use any remnant data.

• “ReLOOP”: τ̂LOOP (ŷ
r) adjusts only for ŷri , imputations from the model trained in the

remnant, using LOOP with the OLS (2) RCT imputation model. It adjusts for no other
covariates.

• “ReLOOP+”: τ̂LOOP (ŷ
r,x) uses an ensemble of OLS and random forests trained in RCT

to adjust for both ŷri and other covariates.

When an imputation model ŷ(z)
RCT

(x, ŷr;α) is trained using RCT data, we refer to the as-
sociated covariate adjustment as “within-sample” or “within-RCT” adjustment. When an impu-
tation model is trained in the remnant (i.e. ŷREM(0) (x;β)), we refer to the associated covariate
adjustment as “remnant-based.” Comparing the two types of adjustment, within-sample adjust-
ment has the advantage of hewing more closely to the actual RCT data on which it’s trained,
while remnant-based adjustment can rely on models fit using the remnant, which may boast a
much larger sample size than the RCT . ReLOOP and ReLOOP+ make use of both types of
adjustment.

2.3.5. Estimating Sampling Variance, p-values, and Confidence Intervals

The true sampling variances of τ̂DM , τ̂rebar, and τ̂LOOP (ŷ
r,x), as estimates of τRCT , depend

on the correlation of y(0) and y(1), which is not identified without making further assumptions,
since y(0) and y(1) are never observed simultaneously. However, it is possible to conservatively
estimate the sampling variances of all three estimators. Specifically, for z = 0, 1, let

Ê2
z =

1

nz

∑
i:Zi=z

[
ŷ(z)

RCT (
ŷri ,xi; α̂z

(i)

)
− Y

]2
. Then estimate the sampling variance of τ̂LOOP (ŷ

r,x) as:

V̂ (τ̂LOOP (ŷ
r,x))

1

n

[
p

1− p
Ê2

0 +
1− p

p
Ê2

1 + 2Ê0Ê1

]
As Wu and Gagnon-Bartsch (2018b) shows, E

[
V̂ (τ̂LOOP (ŷ

r,x))
]
≥ V (τ̂LOOP (ŷ

r,x))—that
is, τ̂LOOP (ŷ

r,x)’s estimated sampling variance is conservative in expectation.
Let the estimated standard error of τ̂LOOP (ŷ

r,x) ŜE = V̂ (τ̂LOOP (ŷ
r,x))1/2. The usual

1− α confidence interval has asymptotic coverage of at least 1− α—i.e.

Pr(τ̄ ∈ τ̂LOOP (ŷ
r,x)± z1−α/2SE) → 1− α̃ ≥ 1− α

as n → ∞, where z1−α/2 is the 1− α/2 quantile of the standard normal distribution. Similarly,
a hypothesis test that rejects the null hypothesis of τ̄ = 0 when |τ̂LOOP (ŷ

r,x)/SE| ≥ z1−α/2

will have a type-I error rate of at most α in large samples.
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The possible upward bias in these variance estimates will, if anything, cause confidence in-
tervals to include the true parameter too often, or cause type-I error rates to be too low. While
an unbiased sampling variance estimator would be preferable, conservative estimators are (ar-
guably) the next best thing.

3. DATA FROM 68 EDUCATIONAL A/B TESTS

The remainder of the paper will discuss a set of illustrations and case-studies in using the
ReLOOP and ReLOOP+ to estimate causal treatment effects from A/B tests run on an edu-
cational technology platform. This section describes the dataset—first the A/B tests themselves,
and then the remnant—and the following section describes ŷREM(0) (x;β), the deep-learning
model trained using remnant data. Subsequent sections will use data from the A/B tests and
imputations from the model trained in the remnant to answer our research questions.

E-Trials is a platform that allows researchers to design educational experiments that will then
be run within the ASSISTments online tutor. Education researchers can specify experimental
conditions, including variation on how subject matter is portrayed, available hints, and feedback
to students. Researchers also choose learning modules on which their experiments run. When
teachers subsequently assign these modules to their students, the students are randomized be-
tween the conditions. After the period of the experiment has ended, the researcher is provided
with a dataset, including classroom and student identifiers, log data from during the experiment,
and outcome data such as which students completed the assignment and how many problems
they worked. Students are randomized between conditions independently, one at a time; when
there are only two conditions, this is Bernoulli randomization.

We gathered data from a set of 84 A/B tests run on E-Trials. Since our interest here is primar-
ily methodological, with the goal of reducing standard errors, we focus on estimated standard
errors as opposed to treatment effects. Our analyses will focus on assignment completion as a
binary outcome.

We also gathered a set of nine student-level aggregated predictors, to be used for within-
RCT covariate adjustment. These were the numbers of skill builders (mastery-based modules in
ASSISTments) and problems sets each student began and completed, as well as each student’s
prior median first response time when working ASSISTments problems, median time on task,
overall correctness, completed problem count, and average attempt count.

Several experiments included multiple conditions, rather than only treatment and control.
We assume that primary interest in these experiments focuses on head-to-head comparisons
between conditions, and, as such, we analyze all unique pairs of conditions within randomized
experiments separately. All in all, this includes 383 pairs. However, not every pair was amenable
to analysis. Six pairwise contrasts were dropped because the outcome variance in one or both
of the conditions was zero. Further exclusions were motivated by two factors: first, the LOOP
estimator (which also underlies the ReLOOP and ReLOOP+ estimators) presumes that pi =
Pr(Zi = 1) is known. When the experiments were run, the E-Trials platform was only equipped
to run Bernoulli-randomized experiments in which students were independently assigned to
available conditions with equal probability. Hence, in theory, p = 1/2 should hold in all pairwise
comparisons. However, there were strong indications that that a handful of experiments used a
different randomization scheme—we suspect that in some cases two conditions were combined,
leading to p = 2/3 or 1/3. To exclude cases in which p ̸= 1/2, we estimated p-values testing the
null hypothesis that p = 1/2 for each comparison we considered; we dropped contrasts in which
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the p-value testing p = 1/2 was < 0.1. Secondly, there were some contrasts which included
extremely small samples, with the smallest being n = 16. The LOOP estimators rely on OLS
regression or more complex models, and cannot be expected to perform well when sample sizes
are so small. In the main analyses, we dropped experiments in which the sample size in either
condition was less than 5(k + 2) + 1, where k = 9 is the number of predictors, which would
allow for at least 5 observations per predictor in any model. In the subgroup analyses of Section
6, we analyzed subgroups with smaller sample sizes.

These exclusions left a total of 227 randomized contrasts—pairs of treatment conditions
between which students were randomly assigned—drawn from 68 separate A/B tests.

3.1. DATA COLLECTION

The data was collected from ASSISTments in two sets: remnant data and experiment data. Rem-
nant data was used to train the imputation models, and experiment data was used to impute the
outcomes in each experiment using the imputation models. The skill builders started by the stu-
dents in the remnant data were not the same skill builders as the experimental skill builders in the
experiment data, nor is there any overlap in students between the two datasets. No information
from the students or skill builders in the experiment data was in the remnant data used to
train the imputation models.

For both the remnant and experiment data, the same information was collected. For each
instance of a student starting a skill builder for the first time, data on whether they completed the
skill builder, and if so, how many problems they had to complete before mastering the material
was collected. The imputation models, discussed more in section 4, were trained to predict these
two dependent measures. The data used to predict these dependent measures was aggregated
from all of the previous work done by the student. Three different sets of data were collected
for each sample in the datasets: prior student statistics, prior assignment statistics, and prior
daily actions. Prior student statistics included the past performance of each student, for exam-
ple, their prior percent correct, prior time on task, and prior assignment completion percentage.
Prior assignment statistics were aggregated for each assignment the student started prior to the
skill builder. Prior assignment statistics included things like the skill builders’ unique identifiers
(or in the remnant data, the ID of the experimental version of a skill builder, if it existed), how
many problems had to be completed in the assignment, students’ percent correct on the assign-
ment, and how many separate sessions students used to complete the assignment. Prior daily
actions contained the total number of times students performed each possible action in the AS-
SISTments tutor for each day prior to the day they started the skill builder. The possible actions
included things like starting a problem, completing an assignment, answering a problem, and
requesting support. Complete lists of features included in prior student, assignment, and daily
action datasets are included in Tables 5, 6, and 7 in the appendix. 193,218 sets of prior statis-
tics on students, 837,409 sets of statistics on prior assignments, and 695,869 days of students’
actions were aggregated for the remnant data, and 113,963 sets of prior statistics on students,
2,663,421 sets of statistics on prior assignments, and 926,486 days of students’ actions were
aggregated for the experiment data.
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4. REMNANT-TRAINED IMPUTATION MODELS

4.1. MODEL DESIGN

Each of the three types of data in the remnant dataset were used to predict both skill builder
completion and number of problems completed for mastery. For each type of data: prior student
statistics, prior assignment statistics, and prior daily actions, a separate neural network was
trained. Additionally, a fourth neural network was trained using a combination of the previous
three models. The prior student statistics model, shown in Figure 2 in red was a simple feed
forward network with a single hidden layer of nodes using sigmoid activation and dropout. Both
the prior assignment statistics model and the prior daily actions model, shown in Figure 2 in blue
and yellow respectively, were recurrent neural networks with a single hidden layer of LSTM
nodes (Gers et al., 2000) with both layer-to-layer and recurrent dropout. The prior assignment
statistics model used the last 20 started assignments as input, and the prior daily actions model
used the last 60 days of actions as input. The last 20 assignments were chosen because of success
in prior work with similar numbers of prior assignments (Sales et al., 2018b), and the last 60 days
of actions were chosen based on usage data that indicated that after two months, students are
unlikely to be working on content that is relevant for predicting their assignment completion.
The combined model in Figure 2 takes the three models above and couples their predictions
such that the prediction is a function of all three models’ weights and the loss is backpropagated
through each model during training. The hyperparameters of the model, including the dropout
frequency, layer depth, and number of nodes in each layer, were determined via grid search
prior to using the model in the ReLOOP process. This model was chosen because this set of
hyperparameters led to the lowest loss when predicting a held-out subset of the data.

Dropout was used to regularize model training, but was not used in model validation, testing,
or prediction.

4.2. MODEL TRAINING

To select the best model hyperparameters and to measure the quality of each imputation model,
5-fold cross validation was used to train and calculate various metrics for each model. For all
training, the ADAM method (Kingma and Ba, 2014) was used during backpropagation, binary
cross-entropy loss was used for predicting completion, and mean squared error loss was used
for problems to mastery. The total loss for each model was the sum of the two individual
losses. Because mean squared error and binary cross-entropy have different scales, a gain of
16 was applied to the binary cross-entropy loss, which brought the loss into the same range
as the mean squared error loss for this particular dataset. The gain of 16 was determined via
grid search based on which gain led to the most accurate completion predictions during cross
validation because assignment completion was the parameter used as the dependent measure for
experiment analysis. Table 2 shows various metrics of the models’ quality. Interestingly, even
though all the models are bad at predicting problems to mastery, removing problems to mastery
from the loss function reduced the models ability to predict completion.

Based on Table 2, statistics on prior assignments was the most predictive of students’ as-
signment performance, followed by the students’ overall prior performance statistics, and then
their daily action history, which was the least predictive of their performance on their next as-
signment. Combining these datasets together led to predictions of a higher quality than any
individual dataset could achieve.
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Figure 2: All four of the imputation models in one. The red model predicts performance using
only prior statistics of the student, the blue model uses statistics on the last 20 assignments
completed by the student to predict performance, and the yellow model uses the last 60 days of
actions the student took in the tutor. The combined model, shown in grey, uses all three models
to predict performance.

Table 2: Metrics Calculated from 5-Fold Cross Validation for each Model.

Prior Student Prior Assignment Prior Daily
Metric Statistics Statistics Action Counts Combined

Completion AUC 0.743 0.755 0.658 0.770
Completion Accuracy 0.761 0.767 0.743 0.774

Completion R2 0.143 0.161 0.045 0.184
# of Problems MSE 8.489 8.505 8.719 8.363

# of Problems R2 0.033 0.032 0.007 0.048
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The effort we put into optimizing the model likely contributed to our methods’ successes.
However, our methods do not assume that the imputation model is optimal, accurate, or correct
in any sense. A well-fitting model will lead to precise effect estimates, but estimates using a
poorly-fitting model will still be unbiased, and their associated statistical inference will still be
valid.

5. RESEARCH QUESTION 1: CAN IMPUTATIONS FROM REMNANT-TRAINED

MODELS IMPROVE STANDARD ERRORS FOR AVERAGE EFFECTS?

To gauge the potential of remnant-based imputations to improve the precision of impact esti-
mates, we compared estimated sampling variances from the four different treatment effect esti-
mators listed in Section 2.3.4: T-Tests (τ̂DM ), which includes no covariate adjustment; LOOP,
which uses random forests for within-sample covariate adjustment using only the 9 student-
aggregated covariates in Section 3 but not the remnant; ReLOOP, which uses remnant-based
imputations ŷri in a within-sample OLS adjustment model; and ReLOOP+, which uses an en-
semble algorithm to adjust for both ŷri and the nine student-aggregate covariates in LOOP. In
this analysis, we used the “combined” model, including all available remnant data, to generate
remnant-based imputations ŷri . We used these four estimators to estimate effects in each of the
227 randomized contrasts described above.

Figure 3 shows the ratios of estimated sampling variances from the four estimators. Since
sampling variance scales as 1/n, ratios of sampling variances can be thought of as “sample size
multipliers”—that is, decreasing the variance by a factor of q is analogous to increasing the
sample size by the same factor. The results in Figure 3 were previously reported in a conference
poster (Sales et al., 2022).

The panel on the left of 3 compares τ̂LOOP (ŷ
r) to τ̂DM , the T-Test estimator. In nearly ev-

ery case the estimator using remnant data substantially outperformed the t-test estimator. In the
majority of cases, including remnant-based predictions was roughly equivalent to increasing the
sample by between 15 and 60%. The middle panel of Figure 3 compares τ̂DM to τ̂LOOP (ŷ

r,x).
Here the results are slightly more impressive than those of the left panel—the median improve-
ment is equivalent to increasing the sample size by about 20%, and in the best case the improve-
ment is equivalent to an 80% increase in sample size.

The rightmost panel of Figure 3 compares τ̂LOOP (x), which uses leave-one-out sample split-
ting and a random forest to adjust for covariates—but does not use the remnant—to τ̂LOOP (ŷ

r,x)
which does. In this case we see more modest relative gains, which is to be expected, since
τ̂LOOP (x) can accomplish a good deal of covariate adjustment using only experimental data.
Nevertheless, the contribution of the remnant is still significant—in roughly half of cases, in-
cluding data from the remnant was equivalent to increasing the sample size by about 10–20%,
and in a handful of cases the improvement was closer to 30%.

In summary, covariate adjustment can lead to substantial gains in precision, with the great-
est improvement resulting from adjustment using both within-sample aggregated covariates and
remnant-based imputations. In particular, estimators including remnant based imputations con-
sistently outperformed those that used only within-sample covariate adjustment.
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Figure 3: Boxplots and jittered scatter plots of the ratios of estimated sampling variances of
τ̂DM (i.e. “T-Test,” which includes no covariate adjustment), τ̂LOOP (x) (“LOOP”, which ad-
justs for covariates within sample, but does not use the remnant), τ̂LOOP (ŷ

r) (“ReLOOP,” which
adjusts for remnant-based imputations but not within-sample covariates), and τ̂LOOP (ŷ

r,x)
(“ReLOOP+,” which adjusts for both within-sample covariates and remnant-based imputations)
in 227 randomized contrasts. The Y-axis is on a logarithmic scale, so that, say, doubling the
sample size appears as the same magnitude of an effect as halving the sample size.
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5.1. DID THE REMNANT HELP US DISCOVER ANY EFFECTS?

Researchers may naturally want to know if our claim to increase the power of A/B tests to
detect effects actually lead, in practice, to more effects detected. In other words, did covariate
adjustment lead to any p-values dipping below the α = 0.05 threshold? Counting significant
p-values is a problematic approach to gauging the success of our method, since it depends on
the size of the true effects. In particular, if the true τRCT is equal to 0, then a p-value less than
0.05 would be a type-I error, but if the τRCT is not equal to 0, a p-value less than 0.05 would be
a true discovery. Since the ground truth is unknown, we cannot know which one is the case.

Table 3: The number of p-values less than α = 0.05 using each of the four estimators. The
table counts significant p-values unadjusted for multiple comparisons, and adjusted with the
Benjamini-Hochberg and Benjamini-Yekutieli procedures.

T-Test LOOP ReLOOP ReLOOP+
Unadjusted 38 41 41 41

Benjamini-Hochberg 3 8 8 10
Benjamini-Yekutieli 2 2 2 2

Nevertheless, we will press on. Table 3 gives the count of significant p-values using each
of the four estimates. The first row gives a count of unadjusted p-values; if each pairwise com-
parison were considered in isolation, these would be the relevant counts. A researcher using
T-Tests would report discoveries in 38 cases, while researchers using covariate adjustment via
LOOP, ReLOOP, or ReLOOP+ would report an additional 3 discoveries. However, since there
were 227 total hypothesis tests, even if the null hypothesis were true in every case we would
expect around 11 significant p-values; in other words, since we are considering the p-values
as a group a multiplicity adjustment is in order. We considered two adjustment methods, both
designed to limit the “false discovery rate”—the proportion of the discoveries that are, in fact,
type-I errors—to 5%. The second row of Table 3 counts p-values adjusted with the Benjamini-
Hochberg procedure (Benjamini and Hochberg, 1995). This procedure is guaranteed to control
the false discovery rate only if the tests are independent3. The pairwise comparisons we consider
are not independent, since each A/B test may have contributed several pairwise comparisons,
which share data. After Benjamini-Hochberg adjustment, a researcher using T-Tests would only
discover 3 effects, while researchers using LOOP and ReLOOP would discover 8; combining
within-sample and remnant-based adjustment with ReLOOP+ would lead to two additional dis-
coveries, or 10 total. The third row of the table counts significant p-values adjusted by the more
conservative Benjamini-Yekutieli procedure (Benjamini and Yekutieli, 2001), which controls
the false discovery rate even under arbitrary dependence of tests. Researchers using any of the
four estimators we’ve considered and adjusting with the Benjamini-Yekutieli procedure would
all reject 2 null hypotheses among the 227 possibilities.

5.2. WHICH REMNANT DATA HELPS THE MOST?

Figure 4 expands on figure 3 by contrasting the performance of ReLOOP and ReLOOP+, rela-
tive to T-Tests and LOOP, using remnant-based imputation models trained using different types

3There are some types of dependence which are OK, too, but they are difficult to describe, much less to verify.

17



Figure 4: Boxplots and jittered scatter plots of the ratios of estimated sampling variances of
τ̂DM (i.e. “T-Test,” which includes no covariate adjustment), τ̂LOOP (x) (“LOOP”, which ad-
justs for covariates within sample, but does not use the remnant), τ̂LOOP (ŷ

r) (“ReLOOP,” which
adjusts for remnant-based imputations but not within-sample covariates), and τ̂LOOP (ŷ

r,x)
(“ReLOOP+,” which adjusts for both within-sample covariates and remnant-based imputations)
in 227 randomized contrasts. The Y-axis is on a logarithmic scale.

of remnant data. As described above, the “action” model uses data on each student’s daily ac-
tions in ASSISTments leading up to the A/B test, the “student” model used student-aggregated
performance metrics prior to the beginning of the A/B test, and the “assignment” model used
student performance metrics on previous assignments or skill-builders each student had worked
on. Finally, the “combined” model—also shown above, in Figure 3—was an ensemble of the
action, student, and assignment models. By examining the performance of each separate model,
we can get a sense of the relative contribution of each type of remnant data to ReLOOP or
ReLOOP+’s performance.

Comparing across models fit in the remnant, the action-level model performed the worst,
while the combined model was responsible for the greatest decrease in sampling variance. Inter-
estingly, the assignment-level model performed nearly as well as the combined model, suggest-
ing that action- and student-level data did not contribute substantially. This pattern is consistent
across the three different comparisons shown, comparing ReLOOP and ReLOOP+ to T-Tests,
and comparing ReLOOP+ to LOOP.
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6. RESEARCH QUESTION 2: RELOOP FOR SUBGROUP EFFECTS

To judge ReLOOP’s potential for improving (or worsening) precision in subgroup effect esti-
mates, we created subgroups using each of the 9 student-aggregated covariates available for each
of the randomized comparisons we considered. Specifically, we first pooled each of the 9 co-
variates xk, k = 1, . . . , 9 across all of the 227 pairwise comparisons, and calculated the 1/3 and
2/3 quantiles, q1/3(xk) and q2/3(xk). Then, for each contrast and each covariate x, we identified
students with x values that were “low” (xik < q1/3(xk)) or “high” (xik > q2/3(xk)). Finally,
using each of the four estimators described in the previous section, for each pairwise contrast
and for each covariate, we estimated two effects: one for low students and one for high.

In addition to the 9 within-sample covariates, we also looked for effects in subgroups defined
by the remnant-based imputations themselves—that is, students with a high or low probability
of completing their assignment, using the remnant-based model.

All told, this should have resulted in 227 × 10 × 2 = 4, 540 estimates for each of the four
estimators. In practice, we did not estimate effects if either treatment arm within a subgroup
had fewer than 10 subjects, which excluded 210 of these comparisons, and we encountered
other estimation problems (such as the lack of variance in outcomes) in 19 others, leaving a
total of 4,311 random comparisons to consider. Now, these 4,311 comparisons are by no means
independent—they represent different ways to slice the data from the original 68 A/B tests.
Nevertheless, by considering them all we may be able to discern some patterns in ReLOOP’s
effectiveness in improving precision.

First, though, Figure 5 shows sampling variance ratios pooled across all A/B tests, pairwise
comparisons, and subgroups. For the first time, we see some cases of covariate adjustment
substantially harming the precision of effect estimates—ReLOOP gave larger standard errors
than T-Tests in about 14% of cases, ReLOOP+ gave larger standard errors than T-Tests in around
12.5% of cases and ReLOOP+ gave larger standard errors than LOOP in about 11% of cases. In
the vast majority of these cases the effect was comparable to decreasing the sample size by less
than 10%, but about 3% of cases using ReLOOP was equivalent to decreasing the sample size
by 10% or more, and in a handful of cases the decrease was even larger, up to about 50%.

Still, in the majority of cases remnant-based covariate adjustment improved the precision
of impact estimates, sometimes by dramatic amounts. For all three comparisons shown in
the figure, the median sampling variance ratio was greater than 1.1, meaning that ReLOOP
or ReLOOP+ was equivalent to increasing the sample size by more than 10% at least half the
time. Much more dramatic improvements were also common: in 25% of cases, ReLOOP out-
performed the T-Test by 22% or more, ReLOOP+ outperformed the T-Test by 25% or more, and
ReLOOP+ outperformed LOOP by at least 18%. In some extreme cases the improvement due
to ReLOOP was equivalent to doubling or tripling the sample size, and in a few cases it was
equivalent to multiplying the sample size by 5 or even 7.

Echoing the analysis in Section 5.1, Table 4 shows the number of discoveries—i.e. p <
0.05—a researcher would make using each of the three estimators. If p-values are not adjusted
for multiple comparisons, a researcher using ReLOOP or ReLOOP+ would reject 10 more null
hypotheses than a researcher using LOOP, and 43 more than a researcher using T-Tests. If p-
values are adjusted with the Bejamini-Hochberg procedure, a researcher using T-Tests would
fail to reject every one of the 4,311 null hypotheses, while one using LOOP would reject 23,
one using ReLOOP would reject 22, and a researcher using ReLOOP+ would reject 28, en-
suring tenure and grant funding. After adjusting with the Benjamini-Yekutieli procedure, only
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Figure 5: Histograms of the ratios of sampling variances of τ̂DM (T-Tests), τ̂LOOP (x) (LOOP),
τ̂LOOP (ŷ

r) (ReLOOP), and τ̂LOOP (ŷ
r,x) (ReLOOP+) for 4,311 estimated subgroup effects.

Sample statistics of the distributions of ratios are also shown. The X-axis is on logarithmic scale.

researchers using ReLOOP or ReLOOP+ would reject any hypotheses—7 in both cases.

Table 4: The number of p-values less than α = 0.05 using each of the four estimators. The
table counts significant p-values unadjusted for multiple comparisons, and adjusted with the
Benjamini-Hochberg and Benjamini-Yekutieli procedures.

T-Test LOOP ReLOOP ReLOOP+
Unadjusted 370 403 413 413

Benjamini-Hochberg 0 23 22 28
Benjamini-Yekutieli 0 0 7 7

The following two subsections dig deeper into these varying effects by looking at subgroup
effects broken down by subgroup, and as a function of sample size.

6.1. SUBGROUP EFFECT STANDARD ERRORS BY COVARIATE

Figure 6 shows boxplots of sampling variance ratios comparing ReLOOP to T-Tests and ReLOOP+
to LOOP for each subgroup we considered. A few features are apparent. First, ReLOOP per-
forms no better than T-Tests for the high completion prediction subgroup, and little
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Figure 6: Boxplots of the ratios of sampling variances of τ̂DM (T-Tests), τ̂LOOP (x) (LOOP),
τ̂LOOP (ŷ

r) (ReLOOP), and τ̂LOOP (ŷ
r,x) (ReLOOP+) for each subgroup considered. Outliers

are omitted. The Y-axis is on a logarithmic scale.

better than T-Tests for the low completion prediction subgroup. These are the sub-
groups defined based on ŷri ; since the variance of ŷri is, by definition, lower in these subgroups
than in the sample as a whole, there is less opportunity to use it for variance reduction.

Aside from those defined based on completion prediction, there was little difference
in ReLOOP’s effectiveness between subgroups. In every case the lower quartile was greater than
1, though the lower tail reached below 1. For comparisons between ReLOOP and T-Tests, the
median ratio was between 1.1 and 1.25, while for ReLOOP+/LOOP comparisons, the medians
were somewhat lower.

Figure 7 plots the sampling variance ratios comparing ReLOOP to T-Tests and ReLOOP+
to LOOP against each subgroup’s sample size. A semi-parametric regression fit (the natural
logarithm of the sampling variance ratio regressed on a b-spline of the log of sample size with
four degrees of freedom) is plotted over the points. The standard error shown is adjusted for the
correlation of ratios from the same experiment. There is little evidence of a trend in the mean
improvement due to ReLOOP—instead, it appears fairly constant as sample size varies. On the
other hand, the range and spread of ratios decreases markedly as sample size increases. Every
case in which ReLOOP hurt the precision relative to T-Tests was in a subgroup with n < 100,
as were all but one of the cases when ReLOOP adjustment was equivalent to multiplying the
sample size by 2.5 or higher, relative to T-Tests. Apparently ReLOOP’s greatest potential for
radically improving statistical precision occurs in relatively small samples. On the other hand,
in relatively small samples the asymptotic guarantee that ReLOOP cannot increase estimated
sampling variance apparently does not hold consistently.
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Figure 7: The ratios of sampling variances of τ̂DM (T-Tests) to τ̂LOOP (ŷ
r) (ReLOOP) and

τ̂LOOP (x) (LOOP) to τ̂LOOP (ŷ
r,x) (ReLOOP+) as the total sample size of the subgroup varies.

The X- and Y-axes are on a logarithmic scale.

7. RESEARCH QUESTION 3: RELOOP WITH AN UNREPRESENTATIVE

REMNANT

Previous sections illustrated the potential for a model fit in the remnant to improve the precision
of treatment effect estimates in A/B tests, without assuming that both datasets were drawn from
the same population. However, in previous examples it was not always entirely clear in what way
the data from the remnant may or may not have been representative of RCT data. In this section,
we examine a case where the remnant is primarily composed of one demographic subgroup,
while the RCT is a mix of subgroups.

In particular, we describe an experiment in which we intentionally designed the remnant to
differ from the RCT, in order to investigate the impact remnant unrepresentativeness may have
on ReLOOP or ReLOOP+’s ability to improve statistical precision.

The experiment builds on the analyses of previous sections. However, to illustrate the effects
of a remnant that is not representative of the RCT, we re-trained ŷREM(0) (·;β) using a subset
composed disproportionally (though not entirely) of white and Asian males, and examined the
estimated sampling variance of the τ̂LOOP (ŷ

r,x) estimator for the entire RCT, for a similarly-
composed subset, and for that subset’s complement.

7.1. “INFERRED GENDER”

To help maintain students’ privacy, ASSISTments does not gather data on student demograph-
ics. However, the ASSISTments foundation gathers (but does not publish) students’ names, to
facilitate classroom instruction (teachers need to know which student’s assignment they are grad-
ing). For some analyses on ASSISTments data, analysts will attempt to guess a student’s gender
identification based on that student’s name. To do so, the Python package “gender-guesser”4

was given each student’s first name. The gender-guesser package uses a library of names and

4https://pypi.org/project/gender-guesser/
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a script released by the German tech magazine, Heise, to determine which gender a name is
associated with based on input from native speakers of various European and Asian languages.
The script categorizes a name as being male, female, mostly male, mostly female, androgynous,
or unknown if the name is not in the library. Clearly, this process is faulty and inexact. That
being said, there is good reason to believe that most students who are inferred to be male or
mostly-male are male, and most inferred to be female or mostly-female are female.

There is also reason to believe that the “unknown” category has a higher proportion of non-
Asian racial or ethnic minorities or immigrants than the inferred male or female categories. This
claim follows from the assumption that names that are not in the library are uncommon, and that
uncommon names are probably most common among populations with non-European or non-
Asian language traditions (including immigrants and native speakers with non-European or non-
Asian cultural traditions) and African Americans, since there is a long tradition of distinctive
naming in the African American community (Cook et al., 2014).

It follows that while the set of students labeled “Male” or “mostly-male” includes students
with diverse genders, ethnicities, and linguistic traditions, it includes a disproportionate number
of white and Asian males. In this way, this set of students follows an unfortunate, though
common, pattern of disproportionately white male training sets for machine learning algorithms
(Denton et al., 2020).

To demonstrate the ability of the τ̂LOOP (ŷ
r,x) estimator to estimate internally-unbiased

causal effects, even when the remnant reflects common biases in training datasets, we artificially
limited the remnant to students labeled “Male” or “mostly-male”. Then, we estimated three sets
of effects: one in which the RCT was limited in the same way as the remnant—i.e. to students
labeled as male—another in which only the students who would be excluded from the remnant—
those not labeled male—and the complete RCT data.

7.1.1. Results

Using the predictions from the model described above, we estimated τRCT for each experimen-
tal contrast in four ways: with the difference-in-means estimator τ̂DM , with τ̂LOOP (x), a LOOP
estimator using aggregated student covariates but without using any information from the rem-
nant, with τ̂LOOP (ŷ

r), a LOOP estimator using only predictions from the remnant, and with
τ̂LOOP (ŷ

r,x), which uses both aggregated student-level covariates and the predictions from the
remnant.

Figure 8 shows the results comparing estimators that use imputations from the remnant to
those that do not. Both estimators τ̂LOOP (ŷ

r) and τ̂LOOP (ŷ
r,x) are almost always more precise

than the difference in means estimator τ̂DM . The only exception is a handful of cases in the
Male RCTs in which including remnant imputations is equivalent to decreasing the sample size
by 10% or less. This is mostly due to very small samples in some RCTs. On the other hand, in
roughly half of the RCTs the improvement was 10% or more, and in many it was upwards of
30%. Comparing τ̂LOOP (ŷ

r,x) to an estimator that uses other covariate adjustment, τ̂LOOP (x),
produced somewhat more modest gains, but still impressive. Most surprisingly, the estimators
performed as well or better in the non-Male sets and the full RCTs.

23



Figure 8: Results comparing estimators using imputations from the remnant, τ̂LOOP (ŷ
r) or

τ̂LOOP (ŷ
r,x) (with or without other covariates), to estimators that do not, τ̂DM and τ̂LOOP (x).

For all analyses, the remnant was composed of only students whose inferred gender was male;
imputations from a model trained on the male remnant were used to analyze A/B tests including
all participants (“Both”), or just inferred male (“M”) or inferred non-male (“O”).
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8. RESEARCH QUESTION 4: RELOOP FOR POPULATION AVERAGE

EFFECTS

Previous sections have focused on estimating τRCT , the average effect of a treatment for subjects
in an RCT . However, often researchers are interested in EPOP [τ ], average effects across a wider
population, POP . This section describes, first, how an unbiased estimate of τRCT may still be
biased for EPOP [τ ], and then describes a method for reducing some of this bias, and illustrates
a way in which ReLOOP and ReLOOP+ can improve EPOP [τ ] estimation.

8.1. ESTIMATING EPOP [τ ]

An unbiased estimator of τRCT may still be biased for EPOP [τ ], depending on the population
of interest POP . For instance, consider a stylized example in which G encoded income level:
poor G = 1 versus rich G = 2, and that the effect of an intervention differs by income level—
say EPOP [τ | G = 1] < EPOP [τ | G = 2]—and that sample proportions p1 < p2 while
population proportions π1 > π2, so the experiment was conducted among subjects who were
wealthier, on average, than the population of interest. Finally, say that within income groups G,
the experimental subjects are representative of the corresponding subgroups in the population,
so that E[τG=k] = EPOP [τ | G = k]. Let τ̂ be an unbiased estimator of τRCT . As an estimate of
the population average effect EPOP [τ ], τ̂ will be biased:

E[τ̂ ]− EPOP [τ ] = E[τRCT ]− EPOP [τ ]

=p1E [τG=1] + (1− p1)E [τG=2]− π1EPOP [τ | G = 1]− (1− π1)EPOP [τ | G = 2]

=(p1 − π1)EPOP [τ | G = 1] + (π1 − p1)EPOP [τ | G = 2]

=(p1 − π1)(EPOP [τ | G = 1]− EPOP [τ | G = 2]) > 0

(4)

since p2 = 1− p1 and π2 = 1− π1. It is clear from (4) that if either p1 = π1, so that the subjects
in the experiment are representative of POP , or if EPOP [τ | G = 1] = EPOP [τ | G = 2],
so that the average effect of the treatment doesn’t vary with G, that τ̂ will be unbiased. In
general, for an estimate to be externally biased, there must be at least one (observed or unob-
served) characteristic in which the subjects in the experiment do not represent the population,
and which predicts variation in the treatment effect. If the ways in which the experimental sam-
ple is unrepresentative are unrelated to treatment effect variation, then there will be no external
bias.

Since, in the example above, τ̂ was unbiased for τRCT , the bias of (4) is purely external bias.
However, if internal bias is also present, then the two biases add, so that

E [τ̂ ]− EPOP [τ ] = internal bias + external bias (5)

Note, however, that if internal and external bias have opposite signs, they may (partially) cancel
each other out—that said, it is hard to know when this fortunate situation may or may not hold.

8.1.1. Subgroup Effects and Bias

If τ̂G=k is an estimator of τG=k, it may be subject to its own internal bias, and if it is an estimator
of EPOP [τ | G = k], it may be subject to both internal and external bias, just like estimates of
the full sample or population average effects.
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Figure 9: Results comparing post-stratification estimators using imputations from the remnants
τ̂LOOP (ŷ

r) or τ̂LOOP (ŷ
r,x) (with or without other covariates) to estimators that do not, τ̂DM

and τ̂LOOP (x).

On the other hand, if E[τG=k] ≈ EPOP [τ | G = k] as in the example of § 8.1, and if
population proportions πk are known, then estimated subgroup effects can reduce external bias,
via post-stratification (Miratrix et al., 2013). Let τ̂k be unbiased estimates of τG=k; then,

E

[∑
k

πkτ̂k

]
=

∑
k

πkE[τ̂k] ≈
∑
k

πkEPOP [τ | G = k] = EPOP [τ ] (6)

Hence, accurate estimation of subgroup effects can reduce external bias of overall population
effects.

8.2. POST-STRATIFICATION FOR ESTIMATING EPOP [τ ]

To attempt to estimate EPOP [τ ], we conducted a post-stratification estimator (6) using the guessed
gender predictor. While we do not observe the true distribution of guessed gender among all
middle school ASSISTments users, we may estimate it from the remnant. When we do so, we
find that roughly a third are labeled ”Male.”

We calculated four post-stratified estimators for each treatment contrast, using the four sets
of τG estimates. Then, as in τRCT estimation, we gauged wither τ̂LOOP (ŷ

r,x) improves the
statistical precision of τ̂DM or τ̂LOOP (x).

Figure 9 shows similar results for post-stratification. Indeed, including imputations from the
remnant improves the precision of these estimators greatly.
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9. DISCUSSION

Using remnant-trained models to predict A/B test outcomes, then using those predictions to
estimate effects, has the potential to boost the precision of average effect estimators in education
research. For typical analysis of A/B testing results, the use of remnant-based imputations could
be equivalent to increasing the sample size by as much as 40-50% relative to t-tests and as much
as 30% relative to state-of-the art unbiased, covariate adjusted effect estimators. Further, in
the A/B tests we analyzed, incorporating remnant-based imputations never noticeably harmed
precision.

The benefits of remnant-based predictions were even more pronounced in estimating sub-
group effects, and could be roughly equivalent to increasing the sample size by factors of 2, 3,
or more. On the other hand, for subgroups with fewer than 100 students, there was a small risk
that incorporating remnant-based predictions could harm precision instead of improving it.

The benefits of using the remnant appear to extend to cases in which the remnant does not
resemble data from A/B tests on demographic characteristics. In fact, counterintuitively, we
found greater benefits in the subgroup that was least represented in the remnant.

Finally, we found that incorporating remnant-based predictions into a post-stratification
model can substantially improve post-stratified estimates, and hence help researchers generalize
their findings to broader populations.

9.1. LIMITATIONS AND FUTURE WORK

The methods discussed here are not a panacea. First of all, they do not apply in every randomized
trial—in particular, large datasets including covariate and outcome data for non-participants are
not always available. Furthermore, LOOP methods are only currently available for Bernoulli or
pair-randomized RCTs (including cases in which subjects are randomized with different proba-
bilities) but not for completely randomized or cluster randomized designs, or for general blocked
designs. We are currently working on extending LOOP—and hence ReLOOP—to these more
complicated experimental designs, as well as to observational studies.

Secondly, the methods may require considerable resources to implement—specifically, gath-
ering high-dimensional covariate data from the remnant and RCT participants and formulating,
tuning and training a predictive model are all tasks that can require time, computational re-
sources, and expertise (that said, in other work we have seen decent precision gains from out-
of-the-box random forest models). These issues suggest the need for guidelines as to when
ReLOOP is likely to boost precision, so that the gains in gathering and modeling remnant data
will be worth the effort.

In particular, we suspect that the RCT sample size may play an important role in ReLOOP’s
effectiveness. Our results here suggest that the most dramatic gains from ReLOOP occur when
the RCT sample size is below 100; however, in a handful of these cases, ReLOOP adjustment
led to substantially higher standard errors than t-tests. Even when ReLOOP adjustment hurts
precision, it does not cause bias; its associated statistical inference, such as confidence inter-
vals and p-values, remain valid. Still, a method with lower chances of hurting precision, even
when RCT sample sizes are small, may be desirable. Future research may show that simpler
adjustment methods, such as ANCOVA, may pose lower risks in small-sample settings.

Prior theoretical results have shown that, regardless of the properties of an RCT, its remnant,
or the imputation model, ReLOOP and ReLOOP+ cannot harm precision in large samples and
that they are unbiased regardless of sample size—that is, they are unlikely to hurt an analysis.
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What this paper adds is that ReLOOP and ReLOOP+ can dramatically improve some analyses.
However, these new results are necessarily limited to the analysis of A/B tests conducted on an
computer-assisted learning program, which is far from the only causal analysis in educational
data mining. The only way to conclusively demonstrate the broad applicability and usefulness
of ReLOOP and ReLOOP+ is to implement them in a wide array of contexts, perhaps alongside
other causal estimators.
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A. VARIABLES USED IN REMNANT IMPUTATION MODEL

Table 5: Prior Student Statistics Features.

Name Description
target sequence The ID of the experimental skill builder

has due date Whether the skill builder had a due date

assignments started
The number of assignments previously
started by the student

assignments percent completed
The number of assignments previously
completed by the student

median ln assignment time on task
The median of the log of the time between
starting and finishing an assignment for all
the students completed prior assignments

average problems per assignment
The average number of problems completed
by the student across all their previous
assignments

median ln problem time on task
The median of the log of the time the student
took between starting and finished all their
completed prior problems

median ln problem first response time

The median of the log of the time the student
took to submit their first answer or request
tutoring across all their completed prior
problems

average problem correctness
The fraction of previously completed
problems the student got correct on their first
attempt without tutoring

average problem attempt count
The average number of attempts for all
problems previously completed by the
student

average answer first

The fraction of times the student submitted
an answer before requesting tutoring for all
problems previously completed by the
student

average problem hint count
The average number of hints requested for
all problems previously completed by the
student

skill average problems per assignment
These features are the same as the

features above with a similar name,
but only calculate statistics across
problems with the same skills as the
problems in the experimental skill
builder

skill median ln problem time on task
skill median ln problem first response time

skill average problem correctness
skill average problem attempt count

skill average answer first
skill average problem hint count
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Table 6: Prior Assignment Statistics Features.

Name Description
id The ID of the student

assignment start time The UNIX time of when the assignment was started

directory 1
The highest level directory of the assignment location,
usually an indication of curriculum

directory 2
The second level directory of the assignment location,
usually an indication of grade level

directory 3
The third level directory of the assignment location, usually
an indication of unit

sequence id
The unique ID of the skill builder assignment, or the
corresponding normal skill builder ID for experiments

is skill builder
Boolean flag for whether or not this assignment is a skill
builder or a normal problem set

has due date Boolean flag for if the assignment has a due date
assignment completed Boolean flag for if the student completed the assignment

time since last assignment start
The time between the student starting this assignment and
starting their prior assignment

All Following Features

In addition to the raw value, a value z-scored across all
students who completed the assignment previously, and a
percentile across students in the same class who completed
the assignment previously was included in the model as
well.

session count
How many times the student left and rejoined the
assignment

day count How many days the student worked on the assignment for

completed problem count
How many problems the student completed in the
assignment

median ln problem time on task
The median of the log of the time between the student
starting and finishing problems in the assignment

median ln problem first response
The median of the log of the time it took for the student to
submit their first answer or request tutoring on the problems
they started in the assignment

average problem attempt count
The average number of attempts the student made on the
problems in the assignment

average problem answer first
The fraction of times the student made an attempt before
requesting tutoring on all the problems in the assignment

average problem correctness
The fraction of times the student got the problem correct on
their first try on all the problems in the assignment

average problem hint count
The average number of hints used by the student on all the
problems in the assignment

average problem answer given
The fraction of times the student was given the answer on
all the problems in the assignment
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Table 7: Prior Daily Actions Features.

Name Description
id The ID of the student

timestamp The UNIX time at 00:00:00 of the day the action counts apply to
ln action 1 count Log of the count of assignment started actions taken
ln action 2 count Log of the count of assignment resumed actions taken
ln action 3 count Log of the count of assignment finished actions taken
ln action 4 count Log of the count of problem set started actions taken
ln action 5 count Log of the count of problem set resumed actions taken
ln action 6 count Log of the count of problem set finished actions taken
ln action 7 count Log of the count of problem set mastered actions taken
ln action 8 count Log of the count of problem set exhausted actions taken
ln action 9 count Log of the count of problem limit exceeded actions taken

ln action 10 count Log of the count of problem started actions taken
ln action 11 count Log of the count of problem resumed actions taken
ln action 12 count Log of the count of problem finished actions taken
ln action 13 count Log of the count of tutoring set started actions taken
ln action 15 count Log of the count of tutoring set finished actions taken
ln action 16 count Log of the count of hint requested actions taken
ln action 17 count Log of the count of scaffolding requested actions taken
ln action 19 count Log of the count of explanation requested actions taken

ln action 20a count Log of the count of student correct response actions taken
ln action 20b count Log of the count of student incorrect response actions taken
ln action 21 count Log of the count of open response submission actions taken
ln action 25 count Log of the count of answer requested actions taken
ln action 26 count Log of the count of continue selected actions taken
ln action 30 count Log of the count of help requested actions taken
ln action 31 count Log of the count of timer started actions taken
ln action 32 count Log of the count of timer resumed actions taken
ln action 33 count Log of the count of timer paused actions taken
ln action 34 count Log of the count of timer finished actions taken
ln action 35 count Log of the count of live tutoring requested actions taken

Other Actions Artifacts of the database, always 0
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