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Image Processing Perspectives
of X-Ray Fluorescence Data in
Cultural Heritage Sciences

Abstract—X-ray fluorescence (XRF) analysis of art

objects has rapidly gained popularity since the late

2000s due to its increased accessibility to scientists.

This introduced an imaging component whereby the

XRF image volume provides clues as to which chemical

elements are present and where they are located spa-

tially in the object. However, as is the nature of collect-

ing measurements, there are limitations preventing

perfect acquisition; e.g, spatial resolution, signal-to-

noise ratio, etc. The field of image processing, in part,

aims to overcome these limitations. Image processing

applications in XRF imaging are only just starting to

arise due to the increased interest and availability in

XRF analysis. In this article, we aim to reach readers in

XRF imaging or image processing in an effort to call for

further research in the field. We review the basics of

XRF imaging and analysis that is tailored for those unfa-

miliar with this imaging modality. We then delve into

various publications of image processing methods as

applied to XRF data. Throughout this article, we examine

(and opine on) the XRF field through a lens of the image

processing field.

In 1887, Vincent van Gogh painted a patch of grass, aptly

titled, Patch of Grass. This painting is shown on the left of

Figure 1. Its surface appearance provides only a portion of

the work and the artist’s history; it is known that van Gogh

by this time was transitioning from a darker paint palette to

a lighter one. Underneath the visible surface, the painting

embodies this transition. Little would van Gogh have known

that over a century later, Dik et al. [1] would use x-ray fluo-

rescence (XRF) imaging to analyze it (especially considering

x-rays had yet to be discovered by Wilhelm Roentgen until

1895). Their colorized result, shown on the right of Figure 1,

uncovered in detail a woman’s face that van Gogh painted

over. Known to reuse canvases, van Gogh composed the

woman and the background with dark pigments prior to

overpainting a more vibrant grassy scene. The intersection

of XRF imaging and image processing then becomes appar-

ent, as Anitha et al. [2], [3] have shown how to restore and

colorize these underpaintings. XRF imaging is powerful in

that it is capable of revealing the iterations of a painting

before the final coat is applied.

In XRF imaging, a sample is scanned pixel-by-pixel with an x-

ray pencil beam. This stimulates the atoms in the sample to

emit characteristic fluorescence x-ray radiation. Elemental

distribution images are then calculated from the data. While

this article is focused on XRF imaging, a number of techni-

ques (e.g., hyperspectral imaging) have been used in object

analyses for tasks, such as pigment identification. We refer

the reader to these review papers [4], [5], instead noting that

XRF is one of several complementary techniques for identify-

ing the elemental and chemical makeup of the object.
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The use of XRF in cultural heritage science is not new since

acquiring XRF data is non-destructive—certainly an ideal for

preservation. What differs is the use of imaging as opposed

to spot analysis: prior studies examine select locations of

interest to identify pigments and materials. These locations

would be chemically understood, but are not necessarily rep-

resentative of other areas similar in visual appearance.

With the advent of XRF imaging in the late 2000s, a flurry of

research incorporated XRF imaging of paintings. Researchers

published applications that expose other hidden paint-

ings [6], [7], authenticate paintings [8], or aid in conservation

efforts [9], for example. Researchers additionally developed

various low-cost, mobile XRF imaging instruments [10], [11],

[12], [13] that expanded access to XRF analysis (early experi-

ments used synchrotron sources). Mobility is desirable as it

minimizes the risk of damaging the painting by bringing the

machinery to the painting, not vice versa.

As with any imaging instrument, however, there are limita-

tions to its capabilities, e.g., signal-to-noise ratio, spatial reso-

lution, and acquisition time. Image enhancement techniques

prove to alleviate these concerns in a wide variety of signal

domains. A plethora of denoising, super-resolution, and sub-

sampling methods exist in the literature. Oftentimes these

algorithms are domain-specific in order to incorporate prior

knowledge of the signal. The solutions of these models

depend on how the priors are incorporated. Everyone should

be cognizant of how these biases affect the results, especially

since no algorithm is perfect—which is why these fields are

still active. Due to the relative newness of XRF imaging, there

are understandably fewer dedicated publications of XRF

image enhancement techniques. Perhaps too those spectro-

scopists instead of imaging scientists first developed the

field, XRF volumes are conventionally viewed as a stack of

spectra rather than a stack of images. This is not to say that

writing this article on XRF image processing techniques is

unwarranted; rather, the limited number of existing algo-

rithms surveyed in this article only adds purpose.

In this article, we want to provide an image processing per-

spective to XRF analysis. For example, many of the papers

that address interpretability of XRF data use denoising meth-

ods, yet denoising is often nowhere mentioned in these

papers. This is by nomeans a criticism of the works, but hope-

fully, via this article, we bring an additional viewpoint to the

published work. We have two main goals for this article: we

aim to reach readers from 1) the XRF community to provide a

resource for enhancing XRF imaging and why it should be fur-

ther researched, and 2) the image processing community to

introduce XRF imaging, establish the current state of XRF

image processing research, and emphasize the need for fur-

ther developments in the area. In the discussion to follow, we

hope that researchers of either discipline can identify aisles of

opportunity for further development in XRF image processing

and perhaps foster new interdisciplinary collaborations.

This article is structured as follows: we first introduce the sci-

ence of XRF imaging and analysis. Second, we review and

provide new insights into different areas of XRF image proc-

essing, namely denoising, super-resolution and inpainting,

and subsampling. Finally, we opine the state of XRF image

processing research as well as directions for further research.

XRF Imaging Overview
XRF imaging was introduced as an alternative to other tech-

niques that image art objects beneath their surfaces. X-ray-

and infrared radiation-based imaging are common ways of

viewing internal structures of paintings [14], although practi-

cally the entire electromagnetic spectrum has been used for

these investigations [4]. These methods are employed to

avoid extracting samples of the painting. What distinguishes

XRF from other modalities is its ability to elucidate atomic

elemental composition; this only further reduces the need to

remove paint samples for chemical analysis. We will discuss

how the underlying science of XRF imaging is used to identify

pigments and materials throughout the layers of paints. For a

more in-depth yet gentle introduction to XRF spectrometry

than provided here, we refer the reader to Brouwer’s

work [15], which is tailored toward those new to the field.

Physics of XRF Spectroscopy
To collect XRF data, a source illuminates an object with a con-

tinuous spectrum of x-rays. These x-rays are collimated on a

small spot. As the sample is exposed to x-rays, some of the x-

rays are absorbed by the electrons in the sample. Impacted

electrons may be dislodged from the atom if the energy of the

incoming x-rays is larger than that of the binding energies.

Losing electrons creates energetically unfavorable vacancies

Figure 1
(Left) Vincent van Gogh, Patch of Grass, Paris, April–June

1887, oil on canvas, 30� 40 cm, Kr€oller–M€uller Museum,

Otterlo, The Netherlands (KM 105.264; F583/JH1263). The red

frame indicates the field of view of the right image (rotated

90� counter-clockwise). (Right) Approximate color

reconstruction using chemical elements Sb and Hg from XRF

data. Adapted with permission from Dik et al.’s work [1].

Copyright 2022 American Chemical Society.
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in the atom’s electron configuration. To stabilize, electrons in

outer orbitals move inward to fill the vacancy.

During this transition, energy is conserved. Outer orbitals

have higher energies than inner orbitals, so the transitioning

electron loses energy. This loss is realized as a photon emit-

ted by the atom. The photon’s energy equals the energy loss.

Not all photon energies are possible, however. Within any

type of atom, there are different electron orbitals/shells at

unique and distinct energy levels. The lowest energy orbital

is the K-shell, which holds two electrons. The L-shell, subdi-

vided into three subshells, has the next three lowest energy

levels for eight additional electrons. The M-shell has five sub-

shells, all with greater energy than those of the L-shell; it can

hold eighteen electrons. These shells constitute the main

transition lines whereby electrons fill the vacancies: elec-

trons typically move from in the following:

1) L- to K-shell;

2) M- to K-shell; and

3) M- to L-shell.

Not all transitions are possible, and some transitions are

more likely to occur than others.

The fluorescence photons are emitted in an isotropic manner,

and those not absorbed on their path to the detector are

recorded by it. In the semiconductor detector, the photons cre-

ate a charge that enhances the conductivity. This is transferred

into the energy dispersive spectrum used in XRF analysis.

The sources of the incoming x-rays are not only from the

electrons in atoms of the top surface layer. X-rays have high

energy that can penetrate below the surface layer and inter-

act with hidden atoms. Photons from these atoms must pass

back through intermediate layers and into the detector to be

recorded. These photons are less frequent than those of the

same element that lies on the top level, but are still present

in large quantities. There are established limits on the pene-

tration depth that depend on a multitude of factors, but

paintings are often thin enough to record photons through-

out all the layers.

XRF Measurement Challenges
There are some challenges that arise in XRF spectrometry

that introduce noise or artifacts into the recorded spectrum.

Here, we highlight some problems that are characteristic of

XRF spectroscopy.

X-Ray Source

X-ray tubes emit incoherent, polychromatic x-rays by accel-

erating electrons from a filament toward an anode. Upon

contact, the electrons decelerate, and x-rays are generated. A

sizeable portion of these x-rays is inadvertently reflected

back into the detector, which records a broad spectrum of

signals. This is called the continuum, which can be estimated

and subsequently subtracted from the spectrum. Some colli-

sions even result in electron vacancies in the anode itself.

Photons characteristic of the anode’s material are then emit-

ted from the source, which can create a false (or amplified)

peak in the XRF spectrum due to this backscattering.

Interactions Between X-Rays and the Object

Aside from the source, x-ray interactions with electrons of

the object of interest do not always involve electron ejection

or x-ray reflection. Rayleigh scattering may occur when elec-

trons hit by x-rays instead vibrate at the same frequency as

the incident photons. The vibrations cause photons of the

same frequency to be released, which contributes toward the

continuum.

Compton scattering occurs when the incoming x-ray is back-

scattered, but loses some of its energy. This scattering phe-

nomenon is more apparent in low-Z elements (i.e., elements

of low proton count), but can disappear in high-Z elements.

Detector

One last major origin of error occurs at the detector. Escape

peaks occur when incoming photons excite the detector

itself. The XRF photon is not reabsorbed but rather escapes

the detector. The photon then loses some of its energy before

being converted to a voltage, but the energy loss is well-

documented based on the material of the detector.

Pileup peaks can also be produced where two photons are

incident on the detector in a small time window. This creates

seemingly large energy equal to the sum of the individual pho-

ton contributions that the postprocessor cannot resolve as

two distinct photons. Pileup is enhanced by high count rates.

These sources of error cannot be controlled, but they can be

mitigated in XRF analysis. What can be (roughly) controlled

is the number of photons recorded by adjusting the scan

time. Photons arrive according to a Poisson process with

some unknown underlying rate. Since XRF spectrometry is a

photon counting measurement, photon peaks can only be

detected if there are enough arrivals to distinguish them

from both noise and the continuum. The longer the scan

time, the more apparent the peaks will be. XRF imaging

presents a challenge in that the dwell times per spot cannot

be too small such that peaks are lost in the noise, and cannot

be too long such that it takes an excessive amount of time to

collect the volume.
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Collection times are long since XRF systems are single-

pixel scanners. In order to generate an XRF image volume,

the x-ray source and detector are mounted on a gantry

that moves in a (typically) raster scanning motion to cover

the desired area. The acquisition process can be lengthy

depending on the dwell time and spatial resolution. For

example, the XRF volume in Figure 1 reportedly took two

days to collect a 17:5� 17:5 cm area [1], although being

an early paper, care was taken to get good statistics. While

XRF systems have since improved, the scan times are still

generally on the order of hours or days. The same area

that was scanned in Patch of Grass can nowadays be

scanned in approximately an hour.

Notation
Before understanding how XRF analysis is done, we need to

establish a notation. Throughout this article, we use the fol-

lowing rules:

1) lowercase lettering denotes scalars;

2) uppercase lettering denotes matrices and vectors; and

3) boldface uppercase letters denote 3-D tensors.

Let X 2 Z
C�H�W
þ be the collected XRF data where Zþ is the

set of nonnegative integers. The volume has height H , width

W , and channels C. Each channel corresponds to an energy

level where the incoming photons are binned. Each entry

Xc;h;w contains the number of recorded photons at pixel

ðh; wÞ with energy c.

As will become clear, many XRF analysis techniques revolve

around dictionary learning or other matrix factorization

methods. Thus, we introduce here some additional terms:

D 2 R
C�M
þ is the dictionary composed of M different spec-

tra, and A 2 R
M�H�W
þ denotes the abundances of each of the

M spectra.

In dictionary learning,D and A are found such that

X � DA (1)

where the matrix and tensor multiplication is carried out via

Xc;h;w ¼
X

M

m¼1

Dc;m �Am;h;w: (2)

This is the basis for many of the techniques surveyed here.

XRF Analysis of Individual Response
Lines
The core of XRF analysis is unmixing the resultant spec-

tra: which atomic elements are present, and of the pres-

ent elements, how much is present? All collected spectra

are essentially linear combinations of the spectra of

individual elements (along with the continuum, noise,

backscattering, etc.). Even within the elemental spectra,

they too can further be decomposed into the different

emission lines.

The first step in XRF analysis is identifying the peaks that

indicate the presence of a certain element. This is done man-

ually or automatically by examining the sum spectrum, i.e.,

the spatial sum of all the spectra

Sc ¼
X

ðh;wÞ

Xc;h;w: (3)

This provides the least noisy presentation of which elements

lie in the object. Since it is very likely the same elements/

compounds exist throughout the painting spatially, the sum

of many measurements reduces the noise. Any elements

identified are included in a dictionary composed of the ele-

mental responses. Figure 2 shows a sample sum spectrum as

well as a single pixel’s spectrum. The peaks are easy to notice

in the sum spectrum, but are more difficult to identify when

analyzing the single pixel—some maxima may be due to

noise in the individual pixel. Once the peaks are identified, a

table can be used to attribute the peak’s energy to an atomic

element.

Of the identified elements, the next step is to decompose

the XRF signal at each pixel according to the dictionary.

Each peak is often modeled as a Gaussian, and each ele-

ment consists of one or more peaks. These XRF response

curves for elements present in the sample are the columns

of the dictionary D. The continuum response is oftentimes

included in the dictionary. A non-negative least-squares

approach is then used to fit the XRF signal at each pixel

individually

A
� ¼ arg min

A�0
L X; D;Að Þ (4)

Figure 2
Sample XRF spectra with select peaks labeled. Note the

different y-scales for the spectra. (Blue) The sum spectrum.

(Green) The continuum. (Red) A sample pixel.
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for some objective (loss) function L, typically the L2 norm.

Optimal abundance A
� conveys the relative amount of each

element present. One can then visualize the individual chan-

nels of the abundance matrix to see how much of each ele-

ment are present across the painting—these are the

elemental maps.

PyMca [16] is a commonly used platform that can carry out

the tasks previously in a streamlined approach. It also takes

into account other modeling factors beyond the scope of this

article.

XRF Analysis Using Different Bases
Since XRF data analysis is fundamentally an unmixing prob-

lem, most techniques use some form of dictionary learning

and matrix factorization to analyze the data. Whereas the ele-

mental decomposition formulation of (4) only solves for the

abundance matrix A, another formulation solves for the dic-

tionary as well

D�;A� ¼ arg min
D;A�0

L X; D;Að Þ: (5)

This allows for a more complex representation of the data

that can aid in interpreting the data.

In particular, interpretability has posed an issue in terms of

identifying trace elements. Trace elements have short peaks

that may be lost in the total sum spectrum. A priori knowledge

is sometimes needed to identify the trace elements in the sum

spectrum, and it can be just as difficult to predict the abun-

dance of the trace elements in the individual spectra [17].

In addition to finding trace elements, XRF analysis seeks out

correlations in the data to identify not just the individual

chemical elements, but rather the chemical compounds and

where they appear spatially. These compounds can be diffi-

cult to identify using the individual elemental peaks alone.

For example, say an element is present in multiple distinct

compounds. It is a challenging task to separate out how

much of each compound (as well as which compounds) may

be present.

Many classical and some newer methods in data processing

are used to analyze the chemical composition of paintings.

These analysis techniques can also be used to denoise data

in the spectral domain; we will explore this in the next

section.

XRF Interpretation Methods as
Spectral Denoising Mechanisms
The first attempts to better interpret XRF image data to

revolve around the fact that pure elements typically do not

exist on their own in paintings, but rather as a compound.

Vermillion, for example, is a red paint that was previously

made from an Hg and S compound. In XRF analysis, charac-

teristic peaks of Hg and S would appear should vermillion

exist. This perhaps allows for dimensionality reduction that

identifies pigments and mixtures of different paints that the

artist used.

In XRF imaging, changing the composition of the dictionary

D from individual elemental responses to a new basis is how

many published analyses are carried out. As will become

clear, these methods can often be considered denoising algo-

rithms that are able to smooth the original data.

Data denoising is often overlooked in XRF analysis. Notice

the bottom plot of Figure 2 again. The signal is quite noisy

compared to the sum spectrum, as the signal is inherently

discretized and most peaks occur under 20 photon counts.

There are two primary ways to mitigate the effects of noise

on the individual spectra of a pixel: 1) increase the dwell

time for each pixel, and/or 2) use image processing techni-

ques to denoise the data. The former option is typically not

available since experimentalists already set the dwell time to

the longest reasonable length. Even the slightest addition of

dwell time can have immediate impacts on the total scan

time. For example, if the scan area is 500� 600 px, each

additional millisecond of dwell time per pixel adds five

minutes of overall scan time. Instead of increasing the dwell

time as a way to denoise the data, denoising techniques in

image processing can be applied.

In this section, we first address early methods that use prin-

cipal component analysis (PCA) or clustering approaches.

Then, we go into more popular methods used today to per-

form XRF analysis. Throughout this section, we note how

these techniques can be repurposed as potential denoising

methods alongside their use as an analysis method in XRF

literature.

PCA and Clustering Methods
Much of the early work in XRF interpretation uses PCA to

generate a new XRF basis [18]. PCA is known to be an easy

but effective way to extract correlations in data as the com-

ponents (dictionary members) are the eigenvectors of the

covariance matrix. The eigenvectors corresponding to the

largest eigenvalues are chosen as they best capture the direc-

tion of the highest variance in the data. Oftentimes only a few

components are needed to capture a significant amount of

the variation. Each pixel is then approximated by a linear

combination of the PCA vectors that compose D. The abun-

dances A are found via (4) sans the non-negativity con-

straint. XRF interpretation here identifies peaks that

correlate with one another.

What is perhaps missed in the XRF analysis is that PCA is also

effective at signal denoising [19]. Many denoising algorithms
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have been developed around PCA to remove noise in images

along the spectral and spatial components that could be of

use in XRF analysis. The application of PCA here would be no

exception, although perhaps rudimentary by today’s image

processing standards in terms of complexity.

Later, Vekemans et al. [20] used a combination of PCA and K-

means clustering to automatically extract correlations. The

goal here was to identify distinct regions of similar XRF

response. By doing so, the authors are able to find sum spec-

tra of similar regions. This aided them in the identification of

trace elements that may be lost in the overall sum spectrum.

To find these regions, the authors first perform PCA over the

channels of the XRF data. This finds the eigenvectors (or

equivalently eigenimages) of the covariance matrix. Then,

they perform K-means clustering of the pixels of the first n

principal eigenimages to find clusters that represent a com-

bination of elemental XRF responses. This method helped

them approach the goal of automatic segmentation: by seg-

menting the images, the sum spectra of each cluster can be

used to better detect trace elements. This was one of the ear-

liest works that used a combination of spectral and spatial

methods for XRF analysis.

Clustering-based methods have also been shown as a way to

denoise the data as well [21]. By establishing representative

cluster centroids, the data are mapped into a lower dimen-

sion where the noise is mitigated. In this case, spectral

denoising is done through K-means clustering while spatial

denoising is done via PCA.

Image processing is rich in PCA and clustering methods for

denoising, although more common now is the use of neural

networks, which are often not an option in XRF analysis due

to the lack of publicly available data. That being said, there is

a plethora of image and spectral denoising algorithms in sig-

nal processing literature more advanced than PCA and K-

means clustering. Some of these algorithms may be suitable

for XRF analysis perhaps with some changes that incorporate

prior XRF domain knowledge.

Nonnegative Matrix Factorization
While PCA-based techniques were popular, the results are

not always interpretable since PCA decomposition can con-

tain negative values. What exactly would a negative amount

of a spectrum indicate? All raw XRF data consists of nonnega-

tive photon counts, so it is not at all clear how to interpret

PCA decomposition in a physical sense. This realization led

to the additional constraint that both the dictionary and

abundances must be nonnegative to provide feasible results.

Instead of PCA-based interpretationmethods, Alfeld et al. [22]

proposed using nonnegative matrix factorization (NMF) as a

way to analyze the XRF correlations along the spectral

dimension. NMF is a problem that directly addresses the con-

straints of (5) unlike PCA. Once the basis (dictionary) and

abundance matrix are found, the results are more readily

interpretable as all the entries are nonnegative. The downside

is that the cost function is typically nonconvex. An iterative

algorithm converges to some local minimum that depends on

the initial values of D and A. Different initializations should

be tested to find the best local minimum.

NMF is often solved using an algorithm called fast nonnega-

tive least squares [23]. The method iteratively solves the fol-

lowing two equations until convergence:

A
kþ1  arg min

Ak�0

kX�Dk
A

kk2F (6)

Dkþ1  arg min
Dk�0

kX�Dk
A

kþ1k2F (7)

where the superscript k � 0 denotes the iteration number.

The entire, simple algorithm for solving (6) and (7) individu-

ally is provided in the reference.

It was found in Alfeld et al.’s work [22] that NMF provides

more interpretable results. There was, however, some diffi-

culty in distinguishing between different pigment groups

that contain some of the same elements. This was mitigated

by incorporating the additional information that some of the

compounds were known a priori. NMF here was only done

on some of the elemental maps instead of the XRF volume as

a whole. Santos et al. [24] also used NMF, but on the entire

XRF volume.

Again, just as PCA can smooth the data, so too can NMF. Per-

haps one of the most noticeable differences is the nonnega-

tivity constraint imposed on the NMF problem that

introduces sparsity to some extent. There is a possibility that

in the final spectral decomposition, D and A contain entries

of 0. Sparse representations of A are known to be able to

effectively denoise when redundancies exist in the data [25].

Intuitively, these zero-valued elements indicate the nonexis-

tence of some XRF response. The absence of certain

responses can be just as beneficial in XRF analysis as a

response that is present [26].

Other Factorization Methods
NMF provides a nonnegative factorization of the XRF data,

but in its native form does not require any other constraints

to be imposed. Take, for example, the issue of many solutions

for the decomposition. This so-called rotational ambiguity is

easily illustrated by choosing some non-singular matrix

Q 2 R
M�M [27]. The XRF decomposition of (1) can be

rewritten as

X � ðDQÞ Q�1A
� �

: (8)
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Any invertible matrix Q can be chosen so long as the entries

of DQ and Q�1A are all nonnegative. Additional constraints

can be added in order to further constrain the solution.

Multivariate Curve Resolution-Alternating Least

Squares (MCR-ALS)

One constrained NMF algorithm that is employed is called

MCR-ALS [27]. While this may not be familiar to those in the

image processing community, this algorithm is in essence a

NMF framework where certain additional constraints can be

added. A popular constraint to include is that the final dictio-

nary is a combination of the individual elemental spectra. As

a least squares minimization, we have that

B�;A� ¼ arg min
B;A�0

kX� DBð ÞAk2F (9)

where B 2 R
M�N
þ is the mixing matrix describing the linear

combination of the individual elemental spectra D. Note that

B need not be a square matrix; in fact, it is the case that N <

M to reduce the dimensionality of the dictionary and estab-

lish XRF correlations. The new dictionary is DB 2 R
C�N .

The dimensions of A are also modified to A 2 R
N�H�W
þ in

order to have a valid matrix multiplication operation.

With B known, dictionary DB is quite easily interpreted as

simply a linear combination of the original dictionary. Mar-

tins et al. [28] analyzed a painting by Jackson Pollock in this

manner, as seen in Figure 3. Their analysis shows that the

dominant colors can be identified based on the peaks of each

spectrum in the dictionary. It however does not encompass a

complete separation of the compounds present in the paint-

ing, which would be ideal considering the many overlapping

paints that are characteristic of Pollock’s work. Still, with

only twelve dictionary endmembers, MCR-ALS is able to cap-

ture correlations that are present in the XRF spectra. The

authors report that their criterion for selecting N is in part

based on whether at least 95% of the variance can be

explained.

We note that along with the other aforementioned techni-

ques, MCR-ALS can be used to denoise the original data in

addition to the XRF interpretation. Representing all pixels as

a linear combination of 12 spectra does not allow for much

of the noise to be reconstructed without incurring more

error in the overall cost of the objective function of (9).

Simplex VolumeMaximization (SiVM)

Aside from MCR-ALS, SiVM has also been proposed [29] to

overcome computational speed issues of NMF and MCR-ALS.

SiVM is also unique in that the dictionary is composed of

data points in the XRF volume X. These points are chosen

from the set of points that lie on the convex hull of X. Often-

times the number of vertices of the hull is more than the

desired number of endmembers in the dictionary. SiVM

chooses the M extreme points such that the volume of the

resulting simplex is maximized. These extreme points com-

pose the dictionary, making XRF interpretation perhaps even

easier than that of MCR-ALS since the basis endmembers can

be readily found in the original data.

The authors reported some overlap in the elements present

in the dictionary, but still gleaned new information that can

be seen in Figure 4. In particular, they noticed a glow around

the hair in one of the bases that was not present in the indi-

vidual elemental maps that highlights the intersection of

paint that compose the hair (Ca) and the sky (Cu and Pb).

This method illustrates another way to select the dictionary,

which has been shown to be a possible denoising algo-

rithm [30]. The authors of this article similarly note that

hyperspectral unmixing is a form of denoising the data.

Dictionary Denoising of Poisson Data

A final method involves the combination of Poisson noise

modeling and dictionary learning explicitly for denoising the

Figure 3
(Left) Pollock Number 1A, 1948 (1948). Oil and household

enamel paint on canvas (172:7 � 264:2 cm) The Museum of

Modern Art. (Right) Plots of the dictionary after applying

MCR-ALS. Adapted from Martins et al.’s work [28].

Figure 4
(Left) Portrait of a Man from the Lespinette Family, Hans

Memling, 1485–1490, Mauritshuis, The Hague, Oil on panel,

30:1� 22.3 cm2. (Middle) Abundance map of base 7. The base

pixel is denoted by a yellow plus in the map. (Right) The

spectrum of base 7. Adapted from [29] with permission from

Elsevier.
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XRF volume. Chopp et al. [31] proposed to use the Poisson

negative log-likelihood loss (PNLL) when solving for the dic-

tionary, particularly when the XRF pixels have relatively low

photon counts. This provides a better model for the noise

instead of the L2 norm, which assumes the data are drawn

from a Gaussian model.

The PNLL, derived from the Poisson maximum likelihood

estimation, is given by

PNLLðX; D;AÞ ¼
X

i2ðc;h;wÞ

ðDAÞi � Xi � ln ðDAÞi: (10)

When the PNLL is used as the objective function in a minimi-

zation problem, it minimizes the PNLL estimation (or equiva-

lently maximizes the Poisson likelihood estimation). The

objective function uses the PNLL instead of the L2 norm and

is regularized using an adaptive total variation (TV) regular-

izer as well as an L0 penalty term on the abundance tensor

to introduce sparsity, which is known to be an effective

modeling strategy in smoothing data with redundancies [25].

They provide experiments comparing different denoising

algorithms of fast XRF raster scans where the ground truth is

known. The algorithm outperformed MCR-ALS as a denoising

method, both in terms of the error in the denoised XRF vol-

ume and the denoised elemental maps.

Perspectives
The dictionary-based XRF analysis algorithms reviewed here

can be thought of as a method to denoise the data, even

when this is not explicitly mentioned or studied in the papers

present. Clearly, there is room for more advanced algorithms

to arise for both XRF analysis as well as denoising. Perhaps

by applying other denoising algorithms in image processing

literature (or developing a method on one’s own), better XRF

analysis can be accomplished. The converse could also hold

true whereby developing a new XRF analysis technique can

decrease the noise present in the original data volume.

We encourage those that have applied dictionary decomposi-

tion methods in XRF imaging to revisit their techniques from

a denoising perspective. Using the smoothed DA volume in

place of X, the original elemental maps can be found. Noisier

maps with low count rates may appear smoother than

before, and it would be an interesting study to see how well

each of these methods performs as a denoiser.

We would also like to note that many of the algorithms for

XRF interpretation only use spectral denoising techniques. It

is well known in image processing literature that pixels in a

local area generally have low variance in their values. This

knowledge could be applied in the spatial domain in the

form of a TV regularizer

TVðAÞ ¼ TVHðAÞ þ TVW ðAÞ (11)

TVHðAÞ ¼
X

C

c¼1

X

H�1

h¼1

X

W

w¼1

Ac;hþ1;w �Ac;h;w

� �2
(12)

TVW ðAÞ ¼
X

C

c¼1

X

H

h¼1

X

W�1

w¼1

Ac;h;wþ1 �Ac;h;w

� �2
: (13)

This regularizer penalizes large changes in neighboring pix-

els. Incorporating this term into the objective function, we

have

D�;A� ¼ arg min
D;A�0

L X; D;Að Þ þ �TVTVðAÞ (14)

for some scalar �TV > 0. Solving minimization problems of

this form could improve how XRF signals are analyzed with

the added prior knowledge, particularly in overcoming peak

detection limits with weak XRF signals, as seen in Chopp

et al.’s work [31]. Using neighboring information could pro-

vide a better decomposition of the pixels individually.

Take the Memling painting in Figure 4 which has many spa-

tially smooth regions. It is reasonable to predict that most

neighboring signals do not have wildly varying spectra. Add-

ing TV regularization could provide a different optimized dic-

tionary that takes these spatial relations into account. Of

course, the TV term is not set in stone, and could be adapted.

An adaptation is likely needed in the Pollock painting of

Figure 3, for example, since there is a large amount of high

spatial frequency. There are many different thin paint lines

that intersect each other, so it is reasonable to assume that

neighboring spectra vary quite a bit. The TV regularizer in

(11) may inadvertently be detrimental to the results if the

spatial resolution of the XRF image is low. Having an adap-

tive TV regularizer that identifies similar regions could be a

way to modify the standard TV equation.

Spatial Deblurring, Super-Resolution,
and InpaintingMethods for XRF
Volumes
Although XRF interpretation through known spectral denois-

ing techniques is quite common in XRF literature, we have

not yet focused on the spatial-based applications of XRF

image processing. There have been some published works

on deblurring, super-resolution, and inpainting techniques

applied to XRF data. The deblurring problem focuses on

restoring high-frequency components of the images lost in

the data acquisition process. This is mainly an issue in micro-

scale XRF imaging (m-XRF) where the spot size is more of a

factor than in the macroscale (MA-XRF) with art objects.

In super-resolution and inpainting problems, some pixels are

excluded or missing from measurements typically to reduce
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XRF acquisition time. Following hard acquisition time con-

straints may be a factor that affects the spatial resolution.

Instead of capturing the XRF data at the resolution that one

desires, time can be saved by decreasing the resolution or

sampling select areas.

In this section, we will review the different image processing

techniques that have been applied/developed for improving

XRF imaging in the spatial domain.

Fourier-Based Deblurring
Approaches
General algorithms for image deblurring already exist and

can be readily applied to XRF data. Yang et al. [32] conducted

an experiment on some elemental maps that compare four

different Fourier transform-based super-resolution methods:

1) Wiener deconvolution;

2) Richardson–Lucy [33];

3) fast iterative shrinkage-thresholding algorithm [34]; and

4) blind deblurring with L0-regularized intensity and gradi-

ent prior (L0RIGP) [35].

The first three algorithms are nonblind methods, i.e., the

point spread function (PSF) is known. L0RIGP is a blind

method where the PSF is not known. Since the authors

reported that the Richardson–Lucy algorithm performed the

best for their m-XRF datasets, we only review this method

and refer the reader to Yang et al.’s work [32].

Let Z;L 2 R
H�W
þ be the underlying super-resolved elemen-

tal map and the acquired elemental map respectively. With a

PSF P , Z can be approximated by

Z � L � P (15)

where � denotes convolution. Richardson–Lucy is an algo-

rithm that can notably be used to deblur images with Poisson

noise. The algorithm is iterative and converges at the maxi-

mum likelihood solution given the PSF

Zkþ1 ¼ Zk � P̂ �
L

P � Zk

� �

(16)

where P̂ is the “flipped” version of P whereby the rows and

columns are reversed. Elementwise multiplication is denoted

by �, and division is carried out elementwise as well.

The authors tested this method on the Fe–Ka, Ca–Ka, and Si–

Ka elemental maps of an iron skarn, which is known to have

sharp boundaries that are difficult to capture with m-XRF

imaging. These results are shown in Figure 5. While the Fe–

Ka and Ca–Ka maps have sharper boundaries as they

expected, the Si–Ka maps show more degradations than

there should be. They attribute this to the high noise in the

Si–Ka image due to the chemical nature of the quartz (which

is composed of Si) as it interacts with x-rays. The authors

conclude that the Richardson–Lucy algorithm can be applied

to elemental maps that have high XRF responses, but is not

as effective with elements that are harder to detect.

Super-Resolution and Inpainting
Approaches
The goal of super-resolution is to predict the values of

unmeasured pixels. Here, the object is sampled along a uni-

form rectangular grid, which composes the low-resolution

image. This is in contrast to generalized inpainting methods,

which are not classically constrained to be sampled in a uni-

form fashion. Whether due to time constraints or x-ray spot

size, the resolution needs to be increased for improved spa-

tial analysis.

Dai et al. [36] proposed a sparse dictionary-based method for

super-resolution of the XRF volume, X 2 R
C�Hl;Wl
þ , using

information from a high-resolution color image of a painting,

I 2 ½0; 1	3�Hs�Ws . Let Hl < Hs and Wl < Wh to conform

with the super-resolution problem. They propose to first sep-

arate the low-resolution XRF data X and the super-resolved

XRF image Y 2 R
C�Hs�Ws into two components: a visible ð�Þv

and nonvisible component ð�Þnv such that

X ¼ Xv þ Xnv (17)

Y ¼ Yv þ Ynv: (18)

The visible component is defined as the portion of the XRF

signal attributed to the surface response of the painting. The

non-visible component contains the XRF signal that origi-

nated from underneath the painting’s top layer of paint.

Figure 5
Elemental maps of an iron skarn. (Top row) Raw maps of

Fe–Ka, Ca–Ka, and Si–Ka; respectively. (Bottom row) Denoised

maps of Fe–Ka, Ca–Ka, and Si–Ka; respectively. Reproduced

from Yang et al.’s work [32].
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The purpose of separating the XRF signal is to establish a

relationship with the RGB signal, which only images the top

layer of paint. They propose using a dictionary decomposi-

tion of Yv, Ynv, and I

Yv ¼ Dxrf
v Av (19)

Ynv ¼ Dxrf
nv Anv (20)

I ¼ Drgb
Av: (21)

Notice the abundance Av is shared across the XRF and RGB

domains. The amount of contributions from the XRF and

RGB domains at each pixel is proposed to be equal.

Furthermore, the low- and high-resolution XRF volumes are

related by a binary sampling matrix S 2 f0; 1g1�Hs�Ws by

Xv ¼ Yv � S ¼ Dxrf
v Av

� �

� S (22)

Xnv ¼ Ynv � S ¼ Dxrf
nv Anv

� �

� S (23)

where � is an elementwise multiplication where S is the mul-

tiplier for each channel of the multiplicand.

The optimization problem is then

arg min
Q�0 Ak k0
s

X� Dxrf
v Av

� �

� S� Dxrf
nvAnv

� �

� S
�

�

�

�

2

F

þ I�Drgb
Av

�

�

�

�

2

F
þ�TV TV Dxrf

nv Anv

� �

(24)

where Q ¼ fDxrf
v ; Dxrf

nv ; D
rgb; Av; Anvg, A ¼ Av þAnv, and

k � k0 is the L0 pseudonorm. This equation is constrained to

have a sparse representation, which has been shown to have

smoothing effects when there are redundancies in the

data [25]. The first two terms of (24) are fidelity terms, and

the third is the TV regularizer from (11) that captures spatial

correlations. We refer the reader to the original paper to

learn how to minimize this complicated objective function.

Their solution provided better super-resolution results than

the other methods designed for hyperspectral images.

Figure 6 shows a super-resolved XRF image of The Bedroom

by Vincent van Gogh. They were able to capture the XRF

response of the curtain in a more accurate manner than the

other methods that either filter the curtain out or add arti-

facts to the map; they report a peak signal-to-noise ratio

(PSNR) of 56:19 dB.

As was mentioned earlier, inpainting is closely related to the

super-resolution problem since both problems estimate

unknown pixel values. Dai et al. [37] pushed their optimiza-

tion algorithm to be applied to any sampling matrix. The

sampling matrix will be discussed in the next section, but the

updated optimization algorithm introduces a new penalty

term. They postulate that the gradient of the visible compo-

nent of the XRF volume should be similar to the gradient of

the RGB image. This is formulated as a weighted TV regular-

izer TVðDxrf
v Av; IÞ in (24). The new penalty term weighs the

TV losses of (12) and (13) based on the RGB image gradient.

In low varying areas of the RGB image, they expect the visible

XRF component is low varying as well. Thus, a relatively

higher penalty in the smoothing is applied on pixels with like

neighbors. On the other hand, along the edges of the RGB

image, there is high contrast; relatively low penalties are

applied here since the high variation is expected that should

not be smoothed. We refer the reader to the work [37] for

the full optimization and a definition of the adaptive TV

regularizer.

These methods provide a good RGB-XRF fusion method for

super-resolution and inpainting, although the algorithm was

recently improved upon by Su et al. [38]. They make a slight

change in the framework from Dai et al. [36]: instead of sepa-

rating the XRF volume into visible and nonvisible compo-

nents, they propose to separate the volume by common and

unique components. This slight change in thinking introdu-

ces a new decomposition scheme

X ¼ Xc þ Xu ¼ Dxrf
c Ac

� �

� Sþ Dxrf
u A

xrf
u

� �

� S (25)

I ¼ Ic þ Iu ¼ Drgb
c Ac þDrgb

u A
rgb
u (26)

where ð�Þc denotes the common components and ð�Þu denotes
the unique components. There are also new and updated

terms in their objective function

arg min
Q�0

X�Dxrf
c Ac � S�Dxrf

u A
xrf
u � S

�

�

�

�

2

F

þ I�Drgb
c Ac �Drgb

u A
rgb
u

�

�

�

�

2

F

þ�TV TV Dxrf
u A

xrf
u

� �

þ�MI MI I � S; Dxrf
u A

xrf
u � S

� �

(27)

where Q ¼ fDxrf
c ; Dxrf

u ; Drgb
c ; Drgb

u ; Ac; A
xrf
u ; Argb

u g. The first

two terms of (27) are fidelity terms similar to that of (24).

The third term is again a TV regularizer term that penalizes

high spatial variation in neighboring pixels. The last term

MIð�Þ is novel in that it penalizes the estimated amount of

mutual information shared between the unique components

Figure 6
(Left) Low-resolution XRF image. (Middle) The super-resolved

XRF image. (Right) The high-resolution RGB image: The

Bedroom, Vincent van Gogh, 1853–1890, Arles, October 1888,

oil on canvas, 72:4� 91:3 cm2. Adapted from

Dai et al.’s work [36].
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between the low-resolution XRF and RGB data. Notice that

the sparsity constraint was dropped as well, which perhaps

is replaced by the mutual information loss to ensure the

separation of the representations. We refer the reader to

Yan et al.’s work [38] and Kraskov et al.’s [39] work on esti-

mating mutual information from which the penalty term

was derived.

They performed experiments showing that their method out-

performs Dai et al.’s work on the painting Bloemen en

Insecten by Jan Davidsz. de Heem. Their results are shown in

Figure 7. They also report a 2:42 dB increase in the PSNR to

reach 47:71 dB.

Super-resolution and inpainting of XRF image volumes using

joint dictionary optimization methods prove to be quite

effective in estimating an XRF cube in higher dimensions.

Whether the dictionaries are found from a sparsity lens or a

mutual information standpoint, these early methods are

already powerful. Perhaps a joining of these two ideas can

reduce the reconstruction error even further.

XRF Subsampling Design
The last category we will address is the design of subsam-

pling algorithms. Subsampling is a staple in signal process-

ing. In the XRF image setting, the goal of this problem is to

find a subsampling pattern that reduces the total acquisition

time of the XRF data. Since the scan time is quite long in

many cases, quickly acquiring this data without sacrificing

quality is starting to emerge in the literature.

While not a method to find an optimal sampling pattern, we

briefly note the work by Chopp et al. [31] that provided

some analysis on subsampling as it relates to the dwell

time. Using simulated fast XRF scans of Bloemen en Insecten,

they tested the limits of how short the dwell time could be

without incurring too much error. Scan times that are 20

times as fast as the original scan was reported as a possibil-

ity, which would greatly speed up the XRF acquisition pro-

cess; a mean-squared error of less than 3 was reported for

this case.

In an effort to break from the raster scan, three existing

methods are used to find the optimal sampling pattern in the

following:

1) manual mask design;

2) convolutional neural networks (CNNs); and

3) reinforcement learning (RL).

We will cover each in this section.

Manual Mask Design
One simple approach to take is designing the sampling mask

on one’s own. Kourousias et al. [40] provided a method

whereby they reduced the XRF scan time from 6 to 2 hours

using a scanning transmission x-ray microscopy (STXM)

map. First, the STXM map is rapidly acquired, which is

reportedly up to two orders of magnitude faster than the

XRF collection. Next, using this image as a guide, the user

manually selects the regions of interest for XRF scanning. A

sparse, uniform sampling pattern is overlaid on the mask so

that the background is not completely ignored. These loca-

tions are scanned, then an inpainting algorithm estimates the

pixels that were not scanned. The authors provide an exam-

ple in Figure 8.

This approach is able to better capture the foreground, but it

certainly has its limitations—primarily the possibility of

human error. For example, a different display method (e.g.,

linear versus log scale) may highlight details in the first

maps that could be undetected by human vision, resulting in

foreground exclusion. This is where computational methods

come into play. Aside from automating the mask design (and

therefore further reducing the total acquisition time), an

Figure 7
(Left) Low resolution Fe map and high-resolution ground truth

Fe map. (Middle) The super-resolved Fe map. (Right) The high

resolution RGB image: Bloemen en Insecten, Jan Davidsz. de

Heem, 49� 67 cm, Royal Museum of Fine Arts Antwerp, inv.

no. 54, oil on canvas. Adapted from Yan et al.’s work [38].

Figure 8
Hand-selected mask algorithm. (a) Quickly acquired STXM

map. (b) Hand-selected region of interest. (c) Sampling mask

with added sparse uniform sampling. (d) Si map of a full raster

scan (6 hour). (e) Si map of the masked scan (2 hours).

(f) Inpainted Si map of (e) using biharmonic inpainting.

Reproduced from Kourousias et al.’s work [40].
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algorithmic approach may not only select different areas, but

also provide insight into how to allocate dwell times that

vary per pixel.

Convolutional Neural Networks
CNN’s have grown in popularity in part due to their ability to

solve tasks by extracting local correlations in data. When

designing a sampling mask, spatial correlations are exploited

to find the best pixels to sample. These selected pixels are

typically the most difficult ones to estimate should they have

been excluded from the set of samples.

Dai et al. [37] used neural networks to find the best sampling

mask. To do so, they introduced a CNN NetM whose purpose

is to find the optimal sampling mask S for some given image

I and sampling rate r 2 ð0; 1Þ. This is tricky to accomplish

since there are no ground truth sampling masks available for

creating training pairs. To circumvent this issue, another

CNN, NetE, was appended to the output of the mask network.

NetE requires a subsampled RGB image as input that is

inpainted at the output.

The inpainting network was trained first separate from

the mask generating network using the L2 norm as a loss

function

Q
�
E ¼ arg min

QE

I�NetE I � S;QEð Þk k2F (28)

where QE are the neural network weights.

Once this network is trained, NetM can be trained with a

fixed NetE in a feedforward manner. Instead of providing S,

it is instead estimated via NetM, whose loss function is

Q
�
M ¼ arg min

QM

I�NetE I �NetM I; r;QMð Þð Þk k2F (29)

where QM is the neural network weights for NetM. At infer-

ence time, the inpainting network NetE is dropped. The out-

put of NetM is not binary; the final mask is instead drawn

from a Bernoulli distribution where the pixel values of the

mask are the probability of drawing a 1. This binarizes the

output with the desired rate. Figure 9 shows a sample ran-

dom mask and a mask from NetM when Bloemen en Insecten

is the input (see Figure 7, right, for the painting).

Notice that the background is sparsely sampled due to its

uniformity. The remaining samples are concentrated in the

foreground where the flowers are located, which is intui-

tively where one would place the samples. This mask was

shown to have improvements for inpainting over other algo-

rithms that solve for an optimal sampling mask achieving a

PSNR of 44:10 dB for 20 channels of the XRF volume. The

results were consistent over different sampling rates as well.

Reinforcement Learning
RL, much like CNNs, has gained in popularity for solving

tasks related to action taking. The general framework of RL

is based on a reward structure. With each action that is

taken, a reward (or penalty) is calculated. The larger the

reward at the end of an episode (i.e., a complete set of

actions), the more the network will learn to take similar

steps that previously rewarded it with a high score. RL is typ-

ically framed as a maximization problem, but this is not

always the case.

Betterton et al. [41] developed a RL algorithm for XRF sam-

pling. They formulated a sampling method using different

apertures for the x-ray beam. This is to first capture the gen-

eral scene in a quick manner, then allot more time to the

areas of interest with more focused apertures. The scan

times for local areas of the object are optimized with each

aperture.

There are two objectives to jointly minimize in their formula-

tion: 1) the main objective, LQ , which is to provide the best

quality image at the end of the scans, and 2) the amount of

time spent scanning, LC , is penalized if it is excessive. A sim-

plified representation of their algorithm for training tries to

find a path tt for each time step t that minimizes the

expected sum of the quality penalty and time penalties

t
� ¼ arg min

t

E LQðtT Þ þ �
X

T

t¼1

LCðttÞ

" #

: (30)

The first term only penalizes the deviation of the XRF estima-

tion from the ground truth after the final time step. The sec-

ond term penalizes the scan time for each of the T

trajectories. Hyperparameter � controls how much the time

taken is penalized relative to the XRF fidelity term.

Figure 10 shows results on a cropped region of an XRF scan.

The RL approach has both qualitative and quantitative

improvements over the raster scanning method. More noise

Figure 9
(Left) Random uniform mask with 20% of the pixels selected,

denoted with white. (Right) NetM mask of Bloemen en

Insecten also with 20% of the pixels selected.

Reproduced from [37].
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is present in the raster scan, and the foreground is better

estimated as well. This is attributed to how the algorithm

allocates more time to the foreground and avoids the

background.

These results are impressive, but may be hard to adapt on a

large scale. The ground truth resolution is 50� 50 px, which

is small for XRF volumes. Typical resolutions now are on the

order of hundreds of pixels in height and width. RL problems

are hard to optimize normally, not to mention the lack of

XRF data needed to train large-scale networks.

Conclusion
The field of XRF imaging is quite young. Despite its youth,

many paintings have been studied by many groups using

many techniques. It is only recently that efforts are being

made to join image processing research with XRF research.

We first introduced XRF imaging and analysis particularly for

the signal processing community to become acquainted with

this new imaging modality—establishing goals and problems

that are faced by researchers in the XRF field. We then pro-

vided a take of XRF analysis through the lens of image and sig-

nal processing particularly as it relates to denoising

techniques. Many XRF analysis methods can also be classified

as denoising algorithms (mostly denoising in the spectral

domain). This aspect, we believe, should see more attention

as the metaphorical field is ripe for research. No matter if the

goal is to improve how XRF signals are analyzed or denoise

the data, we encourage cross-collaboration between the two

disciplines to provide perspectives on one another’s research.

In addition, we also reviewed some techniques for classical

image processing problems, namely deblurring, super-reso-

lution and inpainting, and signal subsampling. We hope that

those in the XRF community can see the value of applying

these algorithms to their own work, whether out of analytical

necessity or just to collect more data in a faster manner.

The lack of published algorithms and XRF data is apparent.

Alfeld et al. [42] have published data from the tomb of

Nakhtamun in Egypt available for public use.1 This data can

be used to try the methods reviewed here or develop new

algorithms, although cross-collaboration between the image

processing and XRF imaging communities is essential to

understand the needs and concerns of both communities. We

recognize that without a database or publicly available XRF

data, it can hinder the advancement of XRF-based image

processing algorithms. We, therefore, encourage those with

XRF data to make their data publicly availables or be open to

cross-collaboration.

With time, all paintings naturally degrade. The sooner we, as

a collective group, can develop better tools for XRF analysis

and acquisition, the more of these timeless pieces we can

understand and potentially delay their degradation.
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