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Image Processing Perspectives
of X-Ray Fluorescence Data in
Cultural Heritage Sciences

Abstract—X-ray fluorescence (XRF) analysis of art
objects has rapidly gained popularity since the late
2000s due to its increased accessibility to scientists.
This introduced an imaging component whereby the
XRF image volume provides clues as to which chemical
elements are present and where they are located spa-
tially in the object. However, as is the nature of collect-
ing measurements, there are limitations preventing
perfect acquisition; e.g, spatial resolution, signal-to-
noise ratio, etc. The field of image processing, in part,
aims to overcome these limitations. Image processing
applications in XRF imaging are only just starting to
arise due to the increased interest and availability in
XRF analysis. In this article, we aim to reach readers in
XRF imaging or image processing in an effort to call for
further research in the field. We review the basics of
XRF imaging and analysis that is tailored for those unfa-
miliar with this imaging modality. We then delve into
various publications of image processing methods as
applied to XRF data. Throughout this article, we examine
(and opine on) the XRF field through a lens of the image
processing field.
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In 1887, Vincent van Gogh painted a patch of grass, aptly
titled, Patch of Grass. This painting is shown on the left of
Figure 1. Its surface appearance provides only a portion of
the work and the artist’s history; it is known that van Gogh
by this time was transitioning from a darker paint palette to
a lighter one. Underneath the visible surface, the painting
embodies this transition. Little would van Gogh have known
that over a century later, Dik et al. [1] would use x-ray fluo-
rescence (XRF) imaging to analyze it (especially considering
x-rays had yet to be discovered by Wilhelm Roentgen until
1895). Their colorized result, shown on the right of Figure 1,
uncovered in detail a woman’s face that van Gogh painted
over. Known to reuse canvases, van Gogh composed the
woman and the background with dark pigments prior to
overpainting a more vibrant grassy scene. The intersection
of XRF imaging and image processing then becomes appar-
ent, as Anitha et al. [2], [3] have shown how to restore and
colorize these underpaintings. XRF imaging is powerful in
that it is capable of revealing the iterations of a painting
before the final coat is applied.

In XRF imaging, a sample is scanned pixel-by-pixel with an x-
ray pencil beam. This stimulates the atoms in the sample to
emit characteristic fluorescence x-ray radiation. Elemental
distribution images are then calculated from the data. While
this article is focused on XRF imaging, a number of techni-
ques (e.g., hyperspectral imaging) have been used in object
analyses for tasks, such as pigment identification. We refer
the reader to these review papers [4], [5], instead noting that
XREF is one of several complementary techniques for identify-
ing the elemental and chemical makeup of the object.
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recon-
struction

Figure 1

(Left) Vincent van Gogh, Patch of Grass, Paris, April-June
1887, oil on canvas, 30 x 40 cm, Kroller-Miiller Museum,
Otterlo, The Netherlands (KM 105.264; F583/JH1263). The red
frame indicates the field of view of the right image (rotated
90° counter-clockwise). (Right) Approximate color
reconstruction using chemical elements Sb and Hg from XRF
data. Adapted with permission from Dik et al’s work [1].
Copyright 2022 American Chemical Society.

The use of XRF in cultural heritage science is not new since
acquiring XRF data is non-destructive—certainly an ideal for
preservation. What differs is the use of imaging as opposed
to spot analysis: prior studies examine select locations of
interest to identify pigments and materials. These locations
would be chemically understood, but are not necessarily rep-
resentative of other areas similar in visual appearance.

With the advent of XRF imaging in the late 2000s, a flurry of
research incorporated XRF imaging of paintings. Researchers
published applications that expose other hidden paint-
ings [6], [7], authenticate paintings [8], or aid in conservation
efforts [9], for example. Researchers additionally developed
various low-cost, mobile XRF imaging instruments [10], [11],
[12], [13] that expanded access to XRF analysis (early experi-
ments used synchrotron sources). Mobility is desirable as it
minimizes the risk of damaging the painting by bringing the
machinery to the painting, not vice versa.

As with any imaging instrument, however, there are limita-
tions to its capabilities, e.g., signal-to-noise ratio, spatial reso-
lution, and acquisition time. Image enhancement techniques
prove to alleviate these concerns in a wide variety of signal
domains. A plethora of denoising, super-resolution, and sub-
sampling methods exist in the literature. Oftentimes these
algorithms are domain-specific in order to incorporate prior
knowledge of the signal. The solutions of these models
depend on how the priors are incorporated. Everyone should
be cognizant of how these biases affect the results, especially
since no algorithm is perfect—which is why these fields are
still active. Due to the relative newness of XRF imaging, there
are understandably fewer dedicated publications of XRF
image enhancement techniques. Perhaps too those spectro-
scopists instead of imaging scientists first developed the
field, XRF volumes are conventionally viewed as a stack of

spectra rather than a stack of images. This is not to say that
writing this article on XRF image processing techniques is
unwarranted; rather, the limited number of existing algo-
rithms surveyed in this article only adds purpose.

In this article, we want to provide an image processing per-
spective to XRF analysis. For example, many of the papers
that address interpretability of XRF data use denoising meth-
ods, yet denoising is often nowhere mentioned in these
papers. This is by no means a criticism of the works, but hope-
fully, via this article, we bring an additional viewpoint to the
published work. We have two main goals for this article: we
aim to reach readers from 1) the XRF community to provide a
resource for enhancing XRF imaging and why it should be fur-
ther researched, and 2) the image processing community to
introduce XRF imaging, establish the current state of XRF
image processing research, and emphasize the need for fur-
ther developments in the area. In the discussion to follow, we
hope that researchers of either discipline can identify aisles of
opportunity for further development in XRF image processing
and perhaps foster new interdisciplinary collaborations.

This article is structured as follows: we first introduce the sci-
ence of XRF imaging and analysis. Second, we review and
provide new insights into different areas of XRF image proc-
essing, namely denoising, super-resolution and inpainting,
and subsampling. Finally, we opine the state of XRF image
processing research as well as directions for further research.

XRF Imaging Overview

XRF imaging was introduced as an alternative to other tech-
niques that image art objects beneath their surfaces. X-ray-
and infrared radiation-based imaging are common ways of
viewing internal structures of paintings [14], although practi-
cally the entire electromagnetic spectrum has been used for
these investigations [4]. These methods are employed to
avoid extracting samples of the painting. What distinguishes
XRF from other modalities is its ability to elucidate atomic
elemental composition; this only further reduces the need to
remove paint samples for chemical analysis. We will discuss
how the underlying science of XRF imaging is used to identify
pigments and materials throughout the layers of paints. For a
more in-depth yet gentle introduction to XRF spectrometry
than provided here, we refer the reader to Brouwer’s
work [15], which is tailored toward those new to the field.

Physics of XRF Spectroscopy

To collect XRF data, a source illuminates an object with a con-
tinuous spectrum of x-rays. These x-rays are collimated on a
small spot. As the sample is exposed to x-rays, some of the x-
rays are absorbed by the electrons in the sample. Impacted
electrons may be dislodged from the atom if the energy of the
incoming x-rays is larger than that of the binding energies.
Losing electrons creates energetically unfavorable vacancies

ﬂ] !
IEEE BITS THEINFORMATION THEORY MAGAZINE OCTOBER 2022 21
Authorized licensed use limited to: Northwestern University. Downloaded on August 18,2023 at 20:42:22 UTC from IEEE Xplore. Restrictions apply.



in the atom’s electron configuration. To stabilize, electrons in
outer orbitals move inward to fill the vacancy.

During this transition, energy is conserved. Outer orbitals
have higher energies than inner orbitals, so the transitioning
electron loses energy. This loss is realized as a photon emit-
ted by the atom. The photon’s energy equals the energy loss.

Not all photon energies are possible, however. Within any
type of atom, there are different electron orbitals/shells at
unique and distinct energy levels. The lowest energy orbital
is the K-shell, which holds two electrons. The L-shell, subdi-
vided into three subshells, has the next three lowest energy
levels for eight additional electrons. The M-shell has five sub-
shells, all with greater energy than those of the L-shell; it can
hold eighteen electrons. These shells constitute the main
transition lines whereby electrons fill the vacancies: elec-
trons typically move from in the following:

1) L- to K-shell;
2) M- to K-shell; and
3) M- to L-shell.

Not all transitions are possible, and some transitions are
more likely to occur than others.

The fluorescence photons are emitted in an isotropic manner,
and those not absorbed on their path to the detector are
recorded by it. In the semiconductor detector, the photons cre-
ate a charge that enhances the conductivity. This is transferred
into the energy dispersive spectrum used in XRF analysis.

The sources of the incoming x-rays are not only from the
electrons in atoms of the top surface layer. X-rays have high
energy that can penetrate below the surface layer and inter-
act with hidden atoms. Photons from these atoms must pass
back through intermediate layers and into the detector to be
recorded. These photons are less frequent than those of the
same element that lies on the top level, but are still present
in large quantities. There are established limits on the pene-
tration depth that depend on a multitude of factors, but
paintings are often thin enough to record photons through-
out all the layers.

XRF Measurement Challenges

There are some challenges that arise in XRF spectrometry
that introduce noise or artifacts into the recorded spectrum.
Here, we highlight some problems that are characteristic of
XRF spectroscopy.

X-Ray Source

X-ray tubes emit incoherent, polychromatic x-rays by accel-
erating electrons from a filament toward an anode. Upon

contact, the electrons decelerate, and x-rays are generated. A
sizeable portion of these x-rays is inadvertently reflected
back into the detector, which records a broad spectrum of
signals. This is called the continuum, which can be estimated
and subsequently subtracted from the spectrum. Some colli-
sions even result in electron vacancies in the anode itself.
Photons characteristic of the anode’s material are then emit-
ted from the source, which can create a false (or amplified)
peak in the XRF spectrum due to this backscattering.

Interactions Between X-Rays and the Object

Aside from the source, x-ray interactions with electrons of
the object of interest do not always involve electron ejection
or x-ray reflection. Rayleigh scattering may occur when elec-
trons hit by x-rays instead vibrate at the same frequency as
the incident photons. The vibrations cause photons of the
same frequency to be released, which contributes toward the
continuum.

Compton scattering occurs when the incoming x-ray is back-
scattered, but loses some of its energy. This scattering phe-
nomenon is more apparent in low-Z elements (i.e., elements
of low proton count), but can disappear in high-Z elements.

Detector

One last major origin of error occurs at the detector. Escape
peaks occur when incoming photons excite the detector
itself. The XRF photon is not reabsorbed but rather escapes
the detector. The photon then loses some of its energy before
being converted to a voltage, but the energy loss is well-
documented based on the material of the detector.

Pileup peaks can also be produced where two photons are
incident on the detector in a small time window. This creates
seemingly large energy equal to the sum of the individual pho-
ton contributions that the postprocessor cannot resolve as
two distinct photons. Pileup is enhanced by high count rates.

These sources of error cannot be controlled, but they can be
mitigated in XRF analysis. What can be (roughly) controlled
is the number of photons recorded by adjusting the scan
time. Photons arrive according to a Poisson process with
some unknown underlying rate. Since XRF spectrometry is a
photon counting measurement, photon peaks can only be
detected if there are enough arrivals to distinguish them
from both noise and the continuum. The longer the scan
time, the more apparent the peaks will be. XRF imaging
presents a challenge in that the dwell times per spot cannot
be too small such that peaks are lost in the noise, and cannot
be too long such that it takes an excessive amount of time to
collect the volume.
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Collection times are long since XRF systems are single-
pixel scanners. In order to generate an XRF image volume,
the x-ray source and detector are mounted on a gantry
that moves in a (typically) raster scanning motion to cover
the desired area. The acquisition process can be lengthy
depending on the dwell time and spatial resolution. For
example, the XRF volume in Figure 1 reportedly took two
days to collect a 17.5 x 17.5cm area [1], although being
an early paper, care was taken to get good statistics. While
XRF systems have since improved, the scan times are still
generally on the order of hours or days. The same area
that was scanned in Patch of Grass can nowadays be
scanned in approximately an hour.

Notation

Before understanding how XRF analysis is done, we need to
establish a notation. Throughout this article, we use the fol-
lowing rules:

1) lowercase lettering denotes scalars;

2) uppercase lettering denotes matrices and vectors; and

3) boldface uppercase letters denote 3-D tensors.

Let X € ZfXH *W be the collected XRF data where 7. is the
set of nonnegative integers. The volume has height H, width
W, and channels C. Each channel corresponds to an energy
level where the incoming photons are binned. Each entry

Xchw contains the number of recorded photons at pixel
(h,w) with energy c.

As will become clear, many XRF analysis techniques revolve
around dictionary learning or other matrix factorization
methods. Thus, we introduce here some additional terms:
De RgXM is the dictionary composed of M different spec-
tra, and A € RY***" denotes the abundances of each of the
M spectra.

In dictionary learning, D and A are found such that
X~ DA (1)

where the matrix and tensor multiplication is carried out via

M
X(:,h,,w = § Drt,m . Am,h,,w- (2)
m=1

This is the basis for many of the techniques surveyed here.

XRF Analysis of Individual Response
Lines

The core of XRF analysis is unmixing the resultant spec-
tra: which atomic elements are present, and of the pres-

Sample Spectrum

mmmmmmmm

15
Energy (keV)

Figure 2

Sample XRF spectra with select peaks labeled. Note the
different y-scales for the spectra. (Blue) The sum spectrum.
(Green) The continuum. (Red) A sample pixel.

individual elements (along with the continuum, noise,
backscattering, etc.). Even within the elemental spectra,
they too can further be decomposed into the different
emission lines.

The first step in XRF analysis is identifying the peaks that
indicate the presence of a certain element. This is done man-
ually or automatically by examining the sum spectrum, i.e,
the spatial sum of all the spectra

Sc = Z Xc,h,w~ (3)

(h,w)

This provides the least noisy presentation of which elements
lie in the object. Since it is very likely the same elements/
compounds exist throughout the painting spatially, the sum
of many measurements reduces the noise. Any elements
identified are included in a dictionary composed of the ele-
mental responses. Figure 2 shows a sample sum spectrum as
well as a single pixel’s spectrum. The peaks are easy to notice
in the sum spectrum, but are more difficult to identify when
analyzing the single pixel—some maxima may be due to
noise in the individual pixel. Once the peaks are identified, a
table can be used to attribute the peak’s energy to an atomic
element.

Of the identified elements, the next step is to decompose
the XRF signal at each pixel according to the dictionary.
Each peak is often modeled as a Gaussian, and each ele-
ment consists of one or more peaks. These XRF response
curves for elements present in the sample are the columns
of the dictionary D. The continuum response is oftentimes
included in the dictionary. A non-negative least-squares
approach is then used to fit the XRF signal at each pixel
individually

ent elements, how much is present? All collected spectra A* = arg min £(X,D,A) 4)
are essentially linear combinations of the spectra of AZ0
0 1
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for some objective (loss) function £, typically the L2 norm.
Optimal abundance A* conveys the relative amount of each
element present. One can then visualize the individual chan-
nels of the abundance matrix to see how much of each ele-
ment are present across the painting—these are the
elemental maps.

PyMca [16] is a commonly used platform that can carry out
the tasks previously in a streamlined approach. It also takes
into account other modeling factors beyond the scope of this
article.

XRF Analysis Using Different Bases

Since XRF data analysis is fundamentally an unmixing prob-
lem, most techniques use some form of dictionary learning
and matrix factorization to analyze the data. Whereas the ele-
mental decomposition formulation of (4) only solves for the
abundance matrix A, another formulation solves for the dic-
tionary as well

D*,A* = arg min L(X,D,A). 5
D,A>0

This allows for a more complex representation of the data
that can aid in interpreting the data.

In particular, interpretability has posed an issue in terms of
identifying trace elements. Trace elements have short peaks
that may be lost in the total sum spectrum. A priori knowledge
is sometimes needed to identify the trace elements in the sum
spectrum, and it can be just as difficult to predict the abun-
dance of the trace elements in the individual spectra [17].

In addition to finding trace elements, XRF analysis seeks out
correlations in the data to identify not just the individual
chemical elements, but rather the chemical compounds and
where they appear spatially. These compounds can be diffi-
cult to identify using the individual elemental peaks alone.
For example, say an element is present in multiple distinct
compounds. It is a challenging task to separate out how
much of each compound (as well as which compounds) may
be present.

Many classical and some newer methods in data processing
are used to analyze the chemical composition of paintings.
These analysis techniques can also be used to denoise data
in the spectral domain; we will explore this in the next
section.

XRF Interpretation Methods as

Spectral Denoising Mechanisms

The first attempts to better interpret XRF image data to
revolve around the fact that pure elements typically do not
exist on their own in paintings, but rather as a compound.

Vermillion, for example, is a red paint that was previously
made from an Hg and S compound. In XRF analysis, charac-
teristic peaks of Hg and S would appear should vermillion
exist. This perhaps allows for dimensionality reduction that
identifies pigments and mixtures of different paints that the
artist used.

In XRF imaging, changing the composition of the dictionary
D from individual elemental responses to a new basis is how
many published analyses are carried out. As will become
clear, these methods can often be considered denoising algo-
rithms that are able to smooth the original data.

Data denoising is often overlooked in XRF analysis. Notice
the bottom plot of Figure 2 again. The signal is quite noisy
compared to the sum spectrum, as the signal is inherently
discretized and most peaks occur under 20 photon counts.
There are two primary ways to mitigate the effects of noise
on the individual spectra of a pixel: 1) increase the dwell
time for each pixel, and/or 2) use image processing techni-
ques to denoise the data. The former option is typically not
available since experimentalists already set the dwell time to
the longest reasonable length. Even the slightest addition of
dwell time can have immediate impacts on the total scan
time. For example, if the scan area is 500 x 600 px, each
additional millisecond of dwell time per pixel adds five
minutes of overall scan time. Instead of increasing the dwell
time as a way to denoise the data, denoising techniques in
image processing can be applied.

In this section, we first address early methods that use prin-
cipal component analysis (PCA) or clustering approaches.
Then, we go into more popular methods used today to per-
form XRF analysis. Throughout this section, we note how
these techniques can be repurposed as potential denoising
methods alongside their use as an analysis method in XRF
literature.

PCA and Clustering Methods

Much of the early work in XRF interpretation uses PCA to
generate a new XRF basis [18]. PCA is known to be an easy
but effective way to extract correlations in data as the com-
ponents (dictionary members) are the eigenvectors of the
covariance matrix. The eigenvectors corresponding to the
largest eigenvalues are chosen as they best capture the direc-
tion of the highest variance in the data. Oftentimes only a few
components are needed to capture a significant amount of
the variation. Each pixel is then approximated by a linear
combination of the PCA vectors that compose D. The abun-
dances A are found via (4) sans the non-negativity con-
straint. XRF interpretation here identifies peaks that
correlate with one another.

What is perhaps missed in the XRF analysis is that PCA is also
effective at signal denoising [19]. Many denoising algorithms
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have been developed around PCA to remove noise in images
along the spectral and spatial components that could be of
use in XRF analysis. The application of PCA here would be no
exception, although perhaps rudimentary by today’s image
processing standards in terms of complexity.

Later, Vekemans et al. [20] used a combination of PCA and K-
means clustering to automatically extract correlations. The
goal here was to identify distinct regions of similar XRF
response. By doing so, the authors are able to find sum spec-
tra of similar regions. This aided them in the identification of
trace elements that may be lost in the overall sum spectrum.

To find these regions, the authors first perform PCA over the
channels of the XRF data. This finds the eigenvectors (or
equivalently eigenimages) of the covariance matrix. Then,
they perform K-means clustering of the pixels of the first n
principal eigenimages to find clusters that represent a com-
bination of elemental XRF responses. This method helped
them approach the goal of automatic segmentation: by seg-
menting the images, the sum spectra of each cluster can be
used to better detect trace elements. This was one of the ear-
liest works that used a combination of spectral and spatial
methods for XRF analysis.

Clustering-based methods have also been shown as a way to
denoise the data as well [21]. By establishing representative
cluster centroids, the data are mapped into a lower dimen-
sion where the noise is mitigated. In this case, spectral
denoising is done through K-means clustering while spatial
denoising is done via PCA.

Image processing is rich in PCA and clustering methods for
denoising, although more common now is the use of neural
networks, which are often not an option in XRF analysis due
to the lack of publicly available data. That being said, there is
a plethora of image and spectral denoising algorithms in sig-
nal processing literature more advanced than PCA and K-
means clustering. Some of these algorithms may be suitable
for XRF analysis perhaps with some changes that incorporate
prior XRF domain knowledge.

Nonnegative Matrix Factorization

While PCA-based techniques were popular, the results are
not always interpretable since PCA decomposition can con-
tain negative values. What exactly would a negative amount
of a spectrum indicate? All raw XRF data consists of nonnega-
tive photon counts, so it is not at all clear how to interpret
PCA decomposition in a physical sense. This realization led
to the additional constraint that both the dictionary and
abundances must be nonnegative to provide feasible results.

Instead of PCA-based interpretation methods, Alfeld et al. [22]
proposed using nonnegative matrix factorization (NMF) as a
way to analyze the XRF correlations along the spectral

dimension. NMF is a problem that directly addresses the con-
straints of (5) unlike PCA. Once the basis (dictionary) and
abundance matrix are found, the results are more readily
interpretable as all the entries are nonnegative. The downside
is that the cost function is typically nonconvex. An iterative
algorithm converges to some local minimum that depends on
the initial values of D and A. Different initializations should
be tested to find the best local minimum.

NMF is often solved using an algorithm called fast nonnega-
tive least squares [23]. The method iteratively solves the fol-
lowing two equations until convergence:

AR arg min [|X — DF AF|%, (6)
Ak>0

D*  arg min ||X — DF A2, )
DF>0

where the superscript £ > 0 denotes the iteration number.
The entire, simple algorithm for solving (6) and (7) individu-
ally is provided in the reference.

It was found in Alfeld et al.'s work [22] that NMF provides
more interpretable results. There was, however, some diffi-
culty in distinguishing between different pigment groups
that contain some of the same elements. This was mitigated
by incorporating the additional information that some of the
compounds were known a priori. NMF here was only done
on some of the elemental maps instead of the XRF volume as
a whole. Santos et al. [24] also used NMF, but on the entire
XRF volume.

Again, just as PCA can smooth the data, so too can NMF. Per-
haps one of the most noticeable differences is the nonnega-
tivity constraint imposed on the NMF problem that
introduces sparsity to some extent. There is a possibility that
in the final spectral decomposition, D and A contain entries
of 0. Sparse representations of A are known to be able to
effectively denoise when redundancies exist in the data [25].
Intuitively, these zero-valued elements indicate the nonexis-
tence of some XRF response. The absence of certain
responses can be just as beneficial in XRF analysis as a
response that is present [26].

Other Factorization Methods

NMF provides a nonnegative factorization of the XRF data,
but in its native form does not require any other constraints
to be imposed. Take, for example, the issue of many solutions
for the decomposition. This so-called rotational ambiguity is
easily illustrated by choosing some non-singular matrix
Q € RMM [27]. The XRF decomposition of (1) can be
rewritten as

X~ (DQ)(Q'A). ®)
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Figure 3

(Left) Pollock Number 1A, 1948 (1948). Oil and household
enamel paint on canvas (172.7 x 264.2 cm) The Museum of
Modern Art. (Right) Plots of the dictionary after applying
MCR-ALS. Adapted from Martins et al.’s work [28].

Any invertible matrix () can be chosen so long as the entries
of DQ and Q~'A are all nonnegative. Additional constraints
can be added in order to further constrain the solution.

Multivariate Curve Resolution-Alternating Least
Squares (MCR-ALS)

One constrained NMF algorithm that is employed is called
MCR-ALS [27]. While this may not be familiar to those in the
image processing community, this algorithm is in essence a
NMF framework where certain additional constraints can be
added. A popular constraint to include is that the final dictio-
nary is a combination of the individual elemental spectra. As
a least squares minimization, we have that

B*,A* = arg min | X — (D B)A|[3 9)
B,A>0

where B € Rf *N is the mixing matrix describing the linear
combination of the individual elemental spectra D. Note that
B need not be a square matrix; in fact, it is the case that N <
M to reduce the dimensionality of the dictionary and estab-
lish XRF correlations. The new dictionary is DB e R,
The dimensions of A are also modified to A € RY**" in
order to have a valid matrix multiplication operation.

With B known, dictionary DB is quite easily interpreted as
simply a linear combination of the original dictionary. Mar-
tins et al. [28] analyzed a painting by Jackson Pollock in this
manner, as seen in Figure 3. Their analysis shows that the
dominant colors can be identified based on the peaks of each
spectrum in the dictionary. It however does not encompass a
complete separation of the compounds present in the paint-
ing, which would be ideal considering the many overlapping
paints that are characteristic of Pollock’s work. Still, with
only twelve dictionary endmembers, MCR-ALS is able to cap-
ture correlations that are present in the XRF spectra. The
authors report that their criterion for selecting NV is in part
based on whether at least 95% of the variance can be
explained.

8 10 12 14 16
Energy [keV]

Figure 4

(Left) Portrait of a Man from the Lespinette Family, Hans
Memling, 1485-1490, Mauritshuis, The Hague, Oil on panel,
30.1 x 22.3 cm?. (Middle) Abundance map of base 7. The base
pixel is denoted by a yellow plus in the map. (Right) The
spectrum of base 7. Adapted from [29] with permission from
Elsevier.

We note that along with the other aforementioned techni-
ques, MCR-ALS can be used to denoise the original data in
addition to the XRF interpretation. Representing all pixels as
a linear combination of 12 spectra does not allow for much
of the noise to be reconstructed without incurring more
error in the overall cost of the objective function of (9).

Simplex Volume Maximization (SiVM)

Aside from MCR-ALS, SiVM has also been proposed [29] to
overcome computational speed issues of NMF and MCR-ALS.
SiVM is also unique in that the dictionary is composed of
data points in the XRF volume X. These points are chosen
from the set of points that lie on the convex hull of X. Often-
times the number of vertices of the hull is more than the
desired number of endmembers in the dictionary. SiVM
chooses the M extreme points such that the volume of the
resulting simplex is maximized. These extreme points com-
pose the dictionary, making XRF interpretation perhaps even
easier than that of MCR-ALS since the basis endmembers can
be readily found in the original data.

The authors reported some overlap in the elements present
in the dictionary, but still gleaned new information that can
be seen in Figure 4. In particular, they noticed a glow around
the hair in one of the bases that was not present in the indi-
vidual elemental maps that highlights the intersection of
paint that compose the hair (Ca) and the sky (Cu and Pb).

This method illustrates another way to select the dictionary,
which has been shown to be a possible denoising algo-
rithm [30]. The authors of this article similarly note that
hyperspectral unmixing is a form of denoising the data.

Dictionary Denoising of Poisson Data

A final method involves the combination of Poisson noise
modeling and dictionary learning explicitly for denoising the
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XRF volume. Chopp et al. [31] proposed to use the Poisson
negative log-likelihood loss (PNLL) when solving for the dic-
tionary, particularly when the XRF pixels have relatively low
photon counts. This provides a better model for the noise
instead of the L2 norm, which assumes the data are drawn
from a Gaussian model.

The PNLL, derived from the Poisson maximum likelihood
estimation, is given by

PNLL(X,D,A) = Y (DA),—X;-In(DA),. (10)

ie(c,hw)

When the PNLL is used as the objective function in a minimi-
zation problem, it minimizes the PNLL estimation (or equiva-
lently maximizes the Poisson likelihood estimation). The
objective function uses the PNLL instead of the L2 norm and
is regularized using an adaptive total variation (TV) regular-
izer as well as an LO penalty term on the abundance tensor
to introduce sparsity, which is known to be an effective
modeling strategy in smoothing data with redundancies [25].

They provide experiments comparing different denoising
algorithms of fast XRF raster scans where the ground truth is
known. The algorithm outperformed MCR-ALS as a denoising
method, both in terms of the error in the denoised XRF vol-
ume and the denoised elemental maps.

Perspectives

The dictionary-based XRF analysis algorithms reviewed here
can be thought of as a method to denoise the data, even
when this is not explicitly mentioned or studied in the papers
present. Clearly, there is room for more advanced algorithms
to arise for both XRF analysis as well as denoising. Perhaps
by applying other denoising algorithms in image processing
literature (or developing a method on one’s own), better XRF
analysis can be accomplished. The converse could also hold
true whereby developing a new XRF analysis technique can
decrease the noise present in the original data volume.

We encourage those that have applied dictionary decomposi-
tion methods in XRF imaging to revisit their techniques from
a denoising perspective. Using the smoothed D A volume in
place of X, the original elemental maps can be found. Noisier
maps with low count rates may appear smoother than
before, and it would be an interesting study to see how well
each of these methods performs as a denoiser.

We would also like to note that many of the algorithms for
XRF interpretation only use spectral denoising techniques. It
is well known in image processing literature that pixels in a
local area generally have low variance in their values. This
knowledge could be applied in the spatial domain in the
form of a TV regularizer

TV(A) = TVy(A) + TV (A) (11)

. i
TVa(A) =3 3 S (Achiiw —Aaiw)”  (12)
=1

¢ H .
TVW(A) = Z Z (Ac,h,w+1 - Ac.,h,u')z~ (13)

This regularizer penalizes large changes in neighboring pix-
els. Incorporating this term into the objective function, we
have

D*,A* = arg min L(X,D,A) + ArvTV(A) (14)
D,A>0

for some scalar Aty > 0. Solving minimization problems of
this form could improve how XRF signals are analyzed with
the added prior knowledge, particularly in overcoming peak
detection limits with weak XRF signals, as seen in Chopp
et al's work [31]. Using neighboring information could pro-
vide a better decomposition of the pixels individually.

Take the Memling painting in Figure 4 which has many spa-
tially smooth regions. It is reasonable to predict that most
neighboring signals do not have wildly varying spectra. Add-
ing TV regularization could provide a different optimized dic-
tionary that takes these spatial relations into account. Of
course, the TV term is not set in stone, and could be adapted.

An adaptation is likely needed in the Pollock painting of
Figure 3, for example, since there is a large amount of high
spatial frequency. There are many different thin paint lines
that intersect each other, so it is reasonable to assume that
neighboring spectra vary quite a bit. The TV regularizer in
(11) may inadvertently be detrimental to the results if the
spatial resolution of the XRF image is low. Having an adap-
tive TV regularizer that identifies similar regions could be a
way to modify the standard TV equation.

Spatial Deblurring, Super-Resolution,
and Inpainting Methods for XRF
Volumes

Although XRF interpretation through known spectral denois-
ing techniques is quite common in XRF literature, we have
not yet focused on the spatial-based applications of XRF
image processing. There have been some published works
on deblurring, super-resolution, and inpainting techniques
applied to XRF data. The deblurring problem focuses on
restoring high-frequency components of the images lost in
the data acquisition process. This is mainly an issue in micro-
scale XRF imaging (u-XRF) where the spot size is more of a
factor than in the macroscale (MA-XRF) with art objects.

In super-resolution and inpainting problems, some pixels are
excluded or missing from measurements typically to reduce
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XRF acquisition time. Following hard acquisition time con-
straints may be a factor that affects the spatial resolution.
Instead of capturing the XRF data at the resolution that one
desires, time can be saved by decreasing the resolution or
sampling select areas.

In this section, we will review the different image processing
techniques that have been applied/developed for improving
XRF imaging in the spatial domain.

Fourier-Based Deblurring
Approaches

General algorithms for image deblurring already exist and
can be readily applied to XRF data. Yang et al. [32] conducted
an experiment on some elemental maps that compare four
different Fourier transform-based super-resolution methods:

1) Wiener deconvolution;
2) Richardson-Lucy [33];
3) fast iterative shrinkage-thresholding algorithm [34]; and

4) blind deblurring with LO-regularized intensity and gradi-
ent prior (LORIGP) [35].

The first three algorithms are nonblind methods, i.e., the
point spread function (PSF) is known. LORIGP is a blind
method where the PSF is not known. Since the authors
reported that the Richardson-Lucy algorithm performed the
best for their ©-XRF datasets, we only review this method
and refer the reader to Yang et al’s work [32].

Let Z,L € fow be the underlying super-resolved elemen-
tal map and the acquired elemental map respectively. With a
PSF P, Z can be approximated by

Z~LxP (15)

where * denotes convolution. Richardson-Lucy is an algo-
rithm that can notably be used to deblur images with Poisson
noise. The algorithm is iterative and converges at the maxi-
mum likelihood solution given the PSF

. (s L
Zk = zF. <P * W) (16)

where P is the “flipped” version of P whereby the rows and
columns are reversed. Elementwise multiplication is denoted
by -, and division is carried out elementwise as well.

The authors tested this method on the Fe-K«, Ca-Ke, and Si-
Ko elemental maps of an iron skarn, which is known to have
sharp boundaries that are difficult to capture with w-XRF
imaging. These results are shown in Figure 5. While the Fe-
Ko and Ca-Koe maps have sharper boundaries as they
expected, the Si-Ke maps show more degradations than

Figure 5

Elemental maps of an iron skarn. (Top row) Raw maps of
Fe-Ko, Ca-Ka, and Si-Ko, respectively. (Bottom row) Denoised
maps of Fe-Ka, Ca-Ko, and Si-Ka, respectively. Reproduced
from Yang et al’s work [32].

there should be. They attribute this to the high noise in the
Si-Ka image due to the chemical nature of the quartz (which
is composed of Si) as it interacts with x-rays. The authors
conclude that the Richardson-Lucy algorithm can be applied
to elemental maps that have high XRF responses, but is not
as effective with elements that are harder to detect.

Super-Resolution and Inpainting
Approaches

The goal of super-resolution is to predict the values of
unmeasured pixels. Here, the object is sampled along a uni-
form rectangular grid, which composes the low-resolution
image. This is in contrast to generalized inpainting methods,
which are not classically constrained to be sampled in a uni-
form fashion. Whether due to time constraints or x-ray spot
size, the resolution needs to be increased for improved spa-
tial analysis.

Dai et al. [36] proposed a sparse dictionary-based method for
super-resolution of the XRF volume, X € RSXHI’WZ, using
information from a high-resolution color image of a painting,
Ie [0, 1]¥#Ws Let H; < H, and W; < W, to conform
with the super-resolution problem. They propose to first sep-
arate the low-resolution XRF data X and the super-resolved
XRF image Y € R+ into two components: a visible (-),,
and nonvisible component (-), such that

nv

X=X, + Xpo (17)
Y=Y, +Yy. (18)

The visible component is defined as the portion of the XRF
signal attributed to the surface response of the painting. The
non-visible component contains the XRF signal that origi-
nated from underneath the painting’s top layer of paint.
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Figure 6

(Left) Low-resolution XRF image. (Middle) The super-resolved
XRF image. (Right) The high-resolution RGB image: The
Bedroom, Vincent van Gogh, 1853-1890, Arles, October 1888,
oil on canvas, 72.4 x 91.3 cm®. Adapted from

Dai et al’s work [36].

The purpose of separating the XRF signal is to establish a
relationship with the RGB signal, which only images the top
layer of paint. They propose using a dictionary decomposi-
tion of Y,, Y., and I

Y, = DY A, (19)
Ym) = l)),?(,f Am! (20)
I1=D*® A, (21)

Notice the abundance A, is shared across the XRF and RGB
domains. The amount of contributions from the XRF and
RGB domains at each pixel is proposed to be equal.

Furthermore, the low- and high-resolution XRF volumes are

related by a binary sampling matrix S € {0, 1} #Ws py
X,=Y,-S=(D¥A,)-S (22)
Xn,'v = an -S= (Dﬁf AII,’I,') -S (23)

where - is an elementwise multiplication where S is the mul-
tiplier for each channel of the multiplicand.

The optimization problem is then

arg min ||X - (DirfAv) -S — (DXTfAm)) ' SH;

020l <s

+[1- DA+ dv TV(DEEAL)  (24)
where O = {Df Dot preb A ALY, A=A, + Ay, and
Il - ||, is the LO pseudonorm. This equation is constrained to
have a sparse representation, which has been shown to have
smoothing effects when there are redundancies in the
data [25]. The first two terms of (24) are fidelity terms, and
the third is the TV regularizer from (11) that captures spatial
correlations. We refer the reader to the original paper to
learn how to minimize this complicated objective function.

Their solution provided better super-resolution results than
the other methods designed for hyperspectral images.
Figure 6 shows a super-resolved XRF image of The Bedroom

by Vincent van Gogh. They were able to capture the XRF
response of the curtain in a more accurate manner than the
other methods that either filter the curtain out or add arti-
facts to the map; they report a peak signal-to-noise ratio
(PSNR) of 56.19 dB.

As was mentioned earlier, inpainting is closely related to the
super-resolution problem since both problems estimate
unknown pixel values. Dai et al. [37] pushed their optimiza-
tion algorithm to be applied to any sampling matrix. The
sampling matrix will be discussed in the next section, but the
updated optimization algorithm introduces a new penalty
term. They postulate that the gradient of the visible compo-
nent of the XRF volume should be similar to the gradient of
the RGB image. This is formulated as a weighted TV regular-
izer TV(D®IA,,I) in (24). The new penalty term weighs the
TV losses of (12) and (13) based on the RGB image gradient.
In low varying areas of the RGB image, they expect the visible
XRF component is low varying as well. Thus, a relatively
higher penalty in the smoothing is applied on pixels with like
neighbors. On the other hand, along the edges of the RGB
image, there is high contrast; relatively low penalties are
applied here since the high variation is expected that should
not be smoothed. We refer the reader to the work [37] for
the full optimization and a definition of the adaptive TV
regularizer.

These methods provide a good RGB-XRF fusion method for
super-resolution and inpainting, although the algorithm was
recently improved upon by Su et al. [38]. They make a slight
change in the framework from Dai et al. [36]: instead of sepa-
rating the XRF volume into visible and nonvisible compo-
nents, they propose to separate the volume by common and
unique components. This slight change in thinking introdu-
ces a new decomposition scheme

X=X.+X, = (DMA,)-S+ (DAY .S (25)
I= Iu + I“’ — D?’;bAu + DL{{I) A;gb (26)

where (-), denotes the common components and (-),, denotes
the unique components. There are also new and updated
terms in their objective function

arg min [X — DA, - S — DMAM S|,
0>0
[T - DA - DA
+Ary TV (DITAST)
+Ai MI(I- S, DXFAYT . ) 27

where @ = {D¥f Dxf Db Db AL AN AP The first
two terms of (27) are fidelity terms similar to that of (24).
The third term is again a TV regularizer term that penalizes
high spatial variation in neighboring pixels. The last term
MI(-) is novel in that it penalizes the estimated amount of
mutual information shared between the unique components
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Figure 7

(Left) Low resolution Fe map and high-resolution ground truth
Fe map. (Middle) The super-resolved Fe map. (Right) The high
resolution RGB image: Bloemen en Insecten, Jan Davidsz. de
Heem, 49 x 67 cm, Royal Museum of Fine Arts Antwerp, inv.
no. 54, oil on canvas. Adapted from Yan et al’s work [38].

between the low-resolution XRF and RGB data. Notice that
the sparsity constraint was dropped as well, which perhaps
is replaced by the mutual information loss to ensure the
separation of the representations. We refer the reader to
Yan et al's work [38] and Kraskov et als [39] work on esti-
mating mutual information from which the penalty term
was derived.

They performed experiments showing that their method out-
performs Dai et al’s work on the painting Bloemen en
Insecten by Jan Davidsz. de Heem. Their results are shown in
Figure 7. They also report a 2.42 dB increase in the PSNR to
reach 47.71 dB.

Super-resolution and inpainting of XRF image volumes using
joint dictionary optimization methods prove to be quite
effective in estimating an XRF cube in higher dimensions.
Whether the dictionaries are found from a sparsity lens or a
mutual information standpoint, these early methods are
already powerful. Perhaps a joining of these two ideas can
reduce the reconstruction error even further.

XRF Subsampling Design

The last category we will address is the design of subsam-
pling algorithms. Subsampling is a staple in signal process-
ing. In the XRF image setting, the goal of this problem is to
find a subsampling pattern that reduces the total acquisition
time of the XRF data. Since the scan time is quite long in
many cases, quickly acquiring this data without sacrificing
quality is starting to emerge in the literature.

While not a method to find an optimal sampling pattern, we
briefly note the work by Chopp et al. [31] that provided
some analysis on subsampling as it relates to the dwell
time. Using simulated fast XRF scans of Bloemen en Insecten,
they tested the limits of how short the dwell time could be
without incurring too much error. Scan times that are 20
times as fast as the original scan was reported as a possibil-
ity, which would greatly speed up the XRF acquisition pro-
cess; a mean-squared error of less than 3 was reported for
this case.

Figure 8

Hand-selected mask algorithm. (a) Quickly acquired STXM
map. (b) Hand-selected region of interest. (c) Sampling mask
with added sparse uniform sampling. (d) Si map of a full raster
scan (6 hour). (e) Si map of the masked scan (2 hours).

(f) Inpainted Si map of (e) using biharmonic inpainting.
Reproduced from Kourousias et al.’s work [40].

In an effort to break from the raster scan, three existing
methods are used to find the optimal sampling pattern in the
following:

1) manual mask design;
2) convolutional neural networks (CNNs); and

3) reinforcement learning (RL).

We will cover each in this section.

Manual Mask Design

One simple approach to take is designing the sampling mask
on one’s own. Kourousias et al. [40] provided a method
whereby they reduced the XRF scan time from 6 to 2 hours
using a scanning transmission x-ray microscopy (STXM)
map. First, the STXM map is rapidly acquired, which is
reportedly up to two orders of magnitude faster than the
XRF collection. Next, using this image as a guide, the user
manually selects the regions of interest for XRF scanning. A
sparse, uniform sampling pattern is overlaid on the mask so
that the background is not completely ignored. These loca-
tions are scanned, then an inpainting algorithm estimates the
pixels that were not scanned. The authors provide an exam-
ple in Figure 8.

This approach is able to better capture the foreground, but it
certainly has its limitations—primarily the possibility of
human error. For example, a different display method (e.g.,
linear versus log scale) may highlight details in the first
maps that could be undetected by human vision, resulting in
foreground exclusion. This is where computational methods
come into play. Aside from automating the mask design (and
therefore further reducing the total acquisition time), an
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algorithmic approach may not only select different areas, but
also provide insight into how to allocate dwell times that
vary per pixel.

Convolutional Neural Networks

CNN'’s have grown in popularity in part due to their ability to
solve tasks by extracting local correlations in data. When
designing a sampling mask, spatial correlations are exploited
to find the best pixels to sample. These selected pixels are
typically the most difficult ones to estimate should they have
been excluded from the set of samples.

Dai et al. [37] used neural networks to find the best sampling
mask. To do so, they introduced a CNN NetM whose purpose
is to find the optimal sampling mask S for some given image
I and sampling rate r € (0,1). This is tricky to accomplish
since there are no ground truth sampling masks available for
creating training pairs. To circumvent this issue, another
CNN, NetE, was appended to the output of the mask network.
NetE requires a subsampled RGB image as input that is
inpainted at the output.

The inpainting network was trained first separate from
the mask generating network using the L2 norm as a loss
function

0}, = arg min ||[I — NetE(I- S; 0p)|% (28)
O

E
where O are the neural network weights.

Once this network is trained, NetM can be trained with a
fixed NetE in a feedforward manner. Instead of providing S,
it is instead estimated via NetM, whose loss function is

0;, = arg min || — NetE(I - NetM(L 7, @ 5/))[| 5 (29)

Oy

where 0, is the neural network weights for NetM. At infer-
ence time, the inpainting network NetE is dropped. The out-
put of NetM is not binary; the final mask is instead drawn
from a Bernoulli distribution where the pixel values of the
mask are the probability of drawing a 1. This binarizes the
output with the desired rate. Figure 9 shows a sample ran-
dom mask and a mask from NetM when Bloemen en Insecten
is the input (see Figure 7, right, for the painting).

Notice that the background is sparsely sampled due to its
uniformity. The remaining samples are concentrated in the
foreground where the flowers are located, which is intui-
tively where one would place the samples. This mask was
shown to have improvements for inpainting over other algo-
rithms that solve for an optimal sampling mask achieving a
PSNR of 44.10 dB for 20 channels of the XRF volume. The
results were consistent over different sampling rates as well.

Figure 9

(Left) Random uniform mask with 20% of the pixels selected,
denoted with white. (Right) NetM mask of Bloemen en
Insecten also with 20% of the pixels selected.

Reproduced from [37].

Reinforcement Learning

RL, much like CNNs, has gained in popularity for solving
tasks related to action taking. The general framework of RL
is based on a reward structure. With each action that is
taken, a reward (or penalty) is calculated. The larger the
reward at the end of an episode (i.e, a complete set of
actions), the more the network will learn to take similar
steps that previously rewarded it with a high score. RL is typ-
ically framed as a maximization problem, but this is not
always the case.

Betterton et al. [41] developed a RL algorithm for XRF sam-
pling. They formulated a sampling method using different
apertures for the x-ray beam. This is to first capture the gen-
eral scene in a quick manner, then allot more time to the
areas of interest with more focused apertures. The scan
times for local areas of the object are optimized with each
aperture.

There are two objectives to jointly minimize in their formula-
tion: 1) the main objective, Lg, which is to provide the best
quality image at the end of the scans, and 2) the amount of
time spent scanning, L, is penalized if it is excessive. A sim-
plified representation of their algorithm for training tries to
find a path t; for each time step ¢ that minimizes the
expected sum of the quality penalty and time penalties

T

" = arg min E|Lg(tr) + )\ZLC(Q) . (30)
T t=1

The first term only penalizes the deviation of the XRF estima-
tion from the ground truth after the final time step. The sec-
ond term penalizes the scan time for each of the T
trajectories. Hyperparameter A controls how much the time
taken is penalized relative to the XRF fidelity term.

Figure 10 shows results on a cropped region of an XRF scan.
The RL approach has both qualitative and quantitative
improvements over the raster scanning method. More noise
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Figure 10

From left to right: (a) ground truth XRF sample. (b) XRF estimation using the method of Betterton et al.’s work [41]. (c) XRF estimation
using a raster scan of equal time. (d) Initial scan. (e) Next adaptive scan. (f) Final adaptive scan. The scale in (d)-(f) denotes the scan

is present in the raster scan, and the foreground is better
estimated as well. This is attributed to how the algorithm
allocates more time to the foreground and avoids the
background.

These results are impressive, but may be hard to adapt on a
large scale. The ground truth resolution is 50 x 50 px, which
is small for XRF volumes. Typical resolutions now are on the
order of hundreds of pixels in height and width. RL problems
are hard to optimize normally, not to mention the lack of
XRF data needed to train large-scale networks.

Conclusion

The field of XRF imaging is quite young. Despite its youth,
many paintings have been studied by many groups using
many techniques. It is only recently that efforts are being
made to join image processing research with XRF research.

We first introduced XRF imaging and analysis particularly for
the signal processing community to become acquainted with
this new imaging modality—establishing goals and problems
that are faced by researchers in the XRF field. We then pro-
vided a take of XRF analysis through the lens of image and sig-
nal processing particularly as it relates to denoising
techniques. Many XRF analysis methods can also be classified
as denoising algorithms (mostly denoising in the spectral
domain). This aspect, we believe, should see more attention
as the metaphorical field is ripe for research. No matter if the
goal is to improve how XRF signals are analyzed or denoise
the data, we encourage cross-collaboration between the two
disciplines to provide perspectives on one another’s research.

In addition, we also reviewed some techniques for classical
image processing problems, namely deblurring, super-reso-
lution and inpainting, and signal subsampling. We hope that
those in the XRF community can see the value of applying
these algorithms to their own work, whether out of analytical
necessity or just to collect more data in a faster manner.

The lack of published algorithms and XRF data is apparent.
Alfeld et al. [42] have published data from the tomb of

time. Adapted from Betterton et al’s work [41].

Nakhtamun in Egypt available for public use.! This data can
be used to try the methods reviewed here or develop new
algorithms, although cross-collaboration between the image
processing and XRF imaging communities is essential to
understand the needs and concerns of both communities. We
recognize that without a database or publicly available XRF
data, it can hinder the advancement of XRF-based image
processing algorithms. We, therefore, encourage those with
XRF data to make their data publicly availables or be open to
cross-collaboration.

With time, all paintings naturally degrade. The sooner we, as
a collective group, can develop better tools for XRF analysis
and acquisition, the more of these timeless pieces we can
understand and potentially delay their degradation.
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