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Abstract

Randomized controlled trials (RCTs) admit unconfounded design-based inference—randomization
largely justifies the assumptions underlying statistical effect estimates—but often have limited sample
sizes. However, researchers may have access to big observational data on covariates and outcomes from
RCT non-participants. For example, data from A/B tests conducted within an educational technology
platform exist alongside historical observational data drawn from student logs. We outline a design-based
approach to using such observational data for variance reduction in RCTs. First, we use the observational
data to train a machine learning algorithm predicting potential outcomes using covariates, and use that
algorithm to generate predictions for RCT participants. Then, we use those predictions, perhaps along-
side other covariates, to adjust causal effect estimates with a flexible, design-based covariate-adjustment
routine. In this way there is no danger of biases from the observational data leaking into the experimen-
tal estimates, which are guaranteed to be exactly unbiased regardless of whether the machine learning
models are “correct” in any sense or whether the observational samples closely resemble RCT samples.
We demonstrate the method in analyzing 33 randomized A/B tests, and show that it decreases standard
errors relative to other estimators, sometimes substantially.

1 Introduction

Randomized controlled trials (RCTs) are famously free of confounding bias. Indeed, a class of estimators,
often referred to as “design-based” [Schochet, 2015] or “randomization based” [Rosenbaum, 2002], estimate
treatment effects without assuming any statistical model other than whatever is implied by the experimental
design itself. Design-based statistical estimators are typically guaranteed to be unbiased. Their associated
inference—standard errors, hypothesis tests, confidence intervals—also come with accuracy guarantees. In
many cases, these apply regardless of the sample size and require only very weak regularity conditions.

While RCTs can reliably provide unbiased estimates, they are often limited in terms of precision. The
statistical precision of RCT-based estimates is inherently limited by the RCT’s sample size, which itself is
typically subject to a number of practical constraints.

In contrast, large observational datasets can frequently be brought to bear on some of the same questions
addressed by an RCT. Analysis of observational data, unlike RCTs, typically requires a number of untestable
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modeling assumptions, chief among them the assumption of no unmeasured confounding. Consequently,
treatment effect estimates from observational data cannot boast the same guarantees to accuracy as estimates
from RCTs. That said, in many cases they boast a much larger sample—and, hence, greater precision—than
equivalent RCTs.

In many cases, observational and RCT data coexist within the very same database. For instance, covariate
and outcome data for a biomedical RCT may be drawn from a database of electronic health records, and
that same database may contain equivalent records for patients who did not participate in the study and
were not randomized. Along similar lines, covariate and outcome data for an RCT designed to evaluate
the impact of an educational intervention might be drawn from a state administrative database, and that
database may also contain information on hundreds of thousands of students who did not participate in the
RCT. We refer to these individuals, who are non-participants of the RCT but who are in the same database,
as the remnant from the study [Sales et al., 2018a]. We ask, how can we use the remnant to improve power
to detect effects in RCTs?

An example from the field of education is www.ETRIALStestbed.org (formerly the ASSISTments TestBed
[Heffernan and Heffernan, 2014, Ostrow et al., 2016]). The TestBed is an A/B testing program designed for
conducting education research that runs within ASSISTments, and has been made accessible to third-party
education researchers. Using the TestBed, a researcher can propose A/B tests to run within ASSISTments.
That is, a researcher may specify two contrasting conditions, such as video- or text-based instructional
feedback, and a particular homework topic, such as “Adding Whole Numbers,” or “Factoring Quadratic
Equations.” Then, students working on that topic are individually randomized between the two conditions.
The researcher could then compare the relative impact of video- vs. text-based feedback on an outcome
variable of interest such as homework completion. The anonymized data associated with the study, consisting
of several levels of granularity and rich covariates describing both historical pre-study and within-study
student interaction, is made available to the researcher. The TestBed currently hosts over 100 such RCTs,
and several of these RCTs have recently been analyzed, e.g., [Fyfe, 2016, Walkington et al., 2019, Prihar
et al., 2022, Vanacore et al., 2023, Gurung et al., 2023a,b].

In the ASSISTments TestBed example, a given RCT is likely to consist of just a few hundred students
assigned to a specific homework assignment, limiting statistical power and precision. For instance, in one
typical ASSISTments TestBed A/B test, a total of 294 students were randomized between two conditions,
leading to a standard error of roughly four percentage points when estimating the effect on homework
completion. This standard error is too large to either determine the direction of a treatment effect or rule
out clinically meaningful effect sizes. But the ASSISTments database contains data on hundreds of thousands
of other ASSISTments users, many of whom may have completed similar homework assignments, or who
may have even completed an identical homework assignment but in a previous time period.

This paper outlines an approach to estimate treatment effects in an RCT while incorporating high-
dimensional covariate data, large observational remnant data, and machine learning prediction algorithms
to improve precision. It does so without compromising the accuracy guarantees of traditional design-based
RCT estimators, yielding unbiased point estimates and sampling variance estimates that are conservative
in expectation; the approach is design-based, relying only on the randomization within the RCT to make
these guarantees. In particular, the method prevents “bias leakage”: bias that might have occurred due to
differences between the remnant and the experimental sample, biased or incorrect modeling of covariates,
or other data analysis flaws, does not leak into the RCT estimator. We combine recent causal methods
for within-RCT covariate adjustment with other methods that have sought to incorporate high dimensional
remnant data into RCT estimators. In particular, we focus on the challenge of precisely estimating treatment
effects from a set of 33 TestBed experiments [Selent et al., 2016], using prior log data from experimental
participants and non-participants in the ASSISTments system.

The nexus of machine learning and causal inference has recently experienced rapid and exciting develop-
ment. This has included novel methods to analyze observational studies, e.g., [Diamond and Sekhon, 2013],
to estimate subgroup effects, e.g., [Künzel et al., 2019], or to optimally allocate treatment, e.g., Rzepakowski
and Jaroszewicz [2012]. Other developments share our goal, i.e., improving the precision of average treat-
ment effect estimates from RCTs. These include the flexible approaches of Aronow and Middleton [2013],
Wager et al. [2016], Chernozhukov et al. [2018], all of which can incorporate arbitrary prediction methods,
Bloniarz et al. [2016], which uses the Lasso regression estimator to analyze experiments, and the Targeted
Learning framework [Rosenblum and Van Der Laan, 2010, Van der Laan and Rose, 2011], which combines
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ensemble machine learning with semiparametric maximum likelihood estimation.
A large literature has explored the possibility of improving precision in RCTs by pooling the controls in

the RCT with historical controls from observational datasets or from other similar RCTs. This literature
dates back at least to Pocock [1976]; for a review see Viele et al. [2014]. Much of this work uses a Bayesian
framework, although frequentist approaches exist as well [Yuan et al., 2019]. In many of these methods
biases can be arbitrary large depending on the choice of historical controls. Other recent efforts have sought
to improve precision in RCT estimates by using the results of separate models fit on observational data.
These include Deng et al. [2013], which fits a covariate model to pre-experimental data and then uses it to
reduce standard errors of online A/B tests; Gui [2020], which uses the RCT to de-bias a broken IV estimate
obtained from observational data and then further combines this with an independent RCT-based estimate;
and Opper [2021], which develops a variant of the sample-splitting estimator that we review below, and
suggests a role for auxiliary data as well.

Other literature has sought to combine effect estimates from experimental and observational studies, often
under the framework of “data fusion” [Bareinboim and Pearl, 2016]; these methods require observational
data on both treated and untreated subjects. In addition to variance reduction, these methods may also
seek to generalize the results of RCTs to other populations or other outcome variables, improve the design
of RCTs, detect problems in observational studies, or accomplish other goals [Hartman et al., 2015, Athey
et al., 2020, Rosenman and Owen, 2021, Rosenman et al., 2020, 2022, Chen et al., 2021, Kallus et al., 2018].
For recent reviews, see Degtiar and Rose [2023], Colnet et al. [2020].

A parallel literature in survey methodology discusses the possibility of combining probability and non-
probability samples in order to increase precision, especially for small area estimation [Breidt and Opsomer,
2017, Erciulescu et al., 2020, Dagdoug et al., 2021, McConville et al., 2020].

In this paper, our goal is to estimate the average treatment effect within the RCT, and our focus is
on using observational data—non-randomized subjects in the control or treatment conditions, or both, or
neither—to improve the precision of the estimate. The main idea is to use observational data to train
an algorithm that predicts RCT outcomes, and use the resulting predictions in the randomized sample as
a new covariate. While this approach will work with any covariate adjustment technique, we suggest an
approach based on the principal of “first, do no harm,” meaning that we prioritize retaining the advantages
of randomized experiments highlighted above. In particular, we seek to ensure that our method (1) does not
introduce any bias, (2) will not harm precision, and ideally will improve precision, and (3) does not require
any additional statistical assumptions beyond those typically made in design-based analysis of RCTs.

The paper is organized as follows. Section 2 reviews background material, including design-based RCT
analysis and covariate adjustment. Section 3 discusses incorporating remnant data, and presents our main
methodological contribution. In Section 4 we apply the method to estimate treatment effects in 33 TestBed
experiments. Section 5 concludes.

2 Methodological Background

2.1 Causal Inference from Experiments

Consider a randomized experiment to estimate the average effect of a binary treatment T on an outcome Y .
There are N subjects, indexed by i = 1, . . . , N . Let Ti = 1 if subject i is assigned to treatment, and Ti = 0
if control. Let T = {i | Ti = 1} and C = {i | Ti = 0}, and let nt = |T | and nc = |C|.

Following Neyman [1923] and Rubin [1974], let potential outcomes yti and yci represent the outcome value
Yi that i would have exhibited if he or she had (perhaps counterfactually) been assigned to treatment or
control, respectively. We model the potential outcomes as fixed (not random). Observed outcomes are a
function of treatment assignment and potential outcomes:

Yi = Tiy
t
i + (1− Ti)yci

Define the treatment effect for i as τi = yti − yci . Our goal will be to estimate the average treatment effect

(ATE), τ̄ ≡
∑
i τi/N = ȳt − ȳc, where ȳt =

∑N
i=1 y

t
i/N is the mean of yt over all N units in the experiment

and ȳc is defined similarly.
If both yci and yti were known for each subject i, statistical modeling would be unnecessary—researchers

could calculate τ̄ exactly, without error, by simply averaging observed τ . In practice, we never observe both
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yci and yti . Instead, we rely on the experimental setup to estimate and infer causation. Since the treatment
and control groups are each random samples of the N participants, survey sampling literature provides
design-based unbiased estimators of ȳt and ȳc based on observed Y and the known distribution of T . These
estimators, and their associated inference, depend only on the experimental design, and not on modeling
assumptions. The survey sample structure of randomized experiments allows us to infer counterfactual
potential outcomes (at least on average) and estimate τ̄ as if τi were available for each i, albeit with sampling
error.

We will use this framework to analyze the 33 TestBed experiments. These experiments are examples of
“Bernoulli experiments,” in which each Ti is an independent Bernoulli trial: P(Ti = 1) = p, with 0 < p < 1,
and Ti ⊥⊥ Tj if i 6= j. In the TestBed experiments, p = 1/2. Estimation and inference about τ̄ is based on
the observed values of Y and T , and the known value of p.

We will now introduce some statistical elements that we will use as the ingredients for our approach. Let
Mi = Tiy

c
i + (1−Ti)yti denote i’s unobserved counterfactual outcome—when i is treated, Mi = yci and when

i is in the control condition Mi = yti . Then i’s treatment effect may be expressed as τi = (−1)Ti(Mi − Yi),
i.e., τi = Mi − Yi if i is in the control group, or τi = Yi −Mi if i is in the treatment group. Although Mi is,
by definition, unobserved, it plays a central role in causal inference; its expectation,

mi ≡ EMi = pyci + (1− p)yti
will also play a prominent role. Note that mi is a weighted average of subject i’s potential outcomes.

Let

Ui =

{
1
p Ti = 1

− 1
1−p Ti = 0

be subject i’s signed inverse probability weights; Ui is merely a rescaled treatment indicator. Note that
EUi = 0, and EUiYi = τi. To see the latter, note that when T = 1, with probability p, Yi = yti and
UiYi = yti/p; when T = 0, with probability 1 − p, UiYi = −yci /(1 − p). Thus UiYi may be thought of as an
unbiased estimate of τi, and τ̂ IPW ≡

∑
i UiYi/N is an unbiased estimate of τ̄ . Note τ̂ IPW is identical to the

“Horvitz-Thompson” estimator of Aronow and Middleton [2013]

τ̂ IPW =
1

N

∑
i∈T

Yi
p
− 1

N

∑
i∈C

Yi
1− p

(1)

since it is the difference between the Horvitz-Thomson estimates of ȳt and ȳc [Horvitz and Thompson, 1952].
The sampling variance of τ̂ IPW proceeds from the same principals. The variance of UiYi is

V(UiYi) =

(
yti

√
1− p
p

+ yci

√
p

1− p

)2

=
m2
i

p(1− p)
(2)

and V(τ̂ IPW) =
∑
im

2
i /[N

2p(1− p)] because treatment assignments are independent. Note that because yti
and yci are never simultaneously observed, V(τ̂ IPW) is not identified. However, V̂(τ̂ IPW) =

∑
i U

2
i Y

2
i /N

2 is

an upper bound, i.e., EV̂(τ̂ IPW) ≥ V(τ̂ IPW). (See Aronow and Middleton [2013] for equivalent expressions
for more general experimental designs.)

Strangely, τ̂ IPW and V(τ̂ IPW) are not translation-independent, i.e., adding a constant to each Y changes
both the value of τ̂ IPW and V(τ̂ IPW) without changing the estimand τ̄ . The more popular simple “difference-
in-means” estimator [Neyman, 1923],

τ̂DM =
1

nt

∑
i∈T

Yi −
1

nc

∑
i∈C

Yi = ȲT − ȲC (3)

and its associated variance estimator

V̂(τ̂DM) =
S2(YC)

nc
+
S2(YT )

nt
(4)

where S2(YC) =
∑
i∈C(Yi − ȲC)2/(nc − 1) is the sample variance of the control group and S2(YT ) is defined

similarly, do not have this undesirable property. Our presentation here focuses on τ̂ IPW as a jumping-off
point for subsequent methodological development, but τ̂DM will also play a prominent role.
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2.2 Design-Based Covariate Adjustment

The reason for error when estimating τ is our inability to observe counterfactual potential outcomes M .
As we have seen, randomized trials, coupled with design-based estimators like τ̂ IPW, use comparison groups
and survey sampling theory to implicitly fill in this missing information. Baseline covariates—a vector xi of
data for subject i gathered prior to treatment randomization—may potentially help us improve upon this
strategy. Suppose a researcher has constructed algorithms ŷc(·) and ŷt(·) designed to impute yc and yt,
respectively, from x. Then M̂i = Tiŷ

c(xi) + (1 − Ti)ŷt(xi) is an imputation of i’s missing counterfactual
outcome, and the researcher may estimate τi as (−1)Ti(M̂i − Yi). In general, the bias of algorithms such as
ŷc(·) and ŷt(·) will be unknown without further assumptions, so these effect estimates may be inadvisable.
On the other hand, imperfect or potentially biased imputations of potential outcomes can, when combined
with randomization, yield substantial benefits.

The approach we will take to combining covariate adjustment with randomization has antecedents in
Robins et al. [1994], Scharfstein et al. [1999], Robins [2000], Rosenbaum [2002], Bang and Robins [2005],
van der Laan and Rubin [2006], Tsiatis et al. [2008], Moore and van der Laan [2009], Van der Laan and
Rose [2011], Aronow and Middleton [2013], Belloni et al. [2014], Wager et al. [2016], Chernozhukov et al.
[2018], Wu and Gagnon-Bartsch [2018], among others. We will focus on exactly unbiased estimators, despite
the fact that a small amount of bias in finite sample is often acceptable, especially in the presence of other
considerations. In fact, the covariate adjustment techniques we will develop have advantageous properties
beyond unbiasedness (see, e.g. Section 4.3.3). That said, our main methodological contributions (in Section
3) are compatible with alternative techniques, including those that may be biased in finite samples. We will
frame our arguments around bias since we find it to be the easiest way to formalize confounding, which we
see as the most pressing threat to estimators that include observational data.

In a Bernoulli experiment, note that

Ui(Yi −mi) =

{
1
p (yti − pyci − (1− p)yti) Ti = 1

− 1
1−p (yci − pyci − (1− p)yti) Ti = 0

=

{
p(yti−y

c
i )

p Ti = 1
(1−p)(yti−y

c
i )

1−p Ti = 0

= τi

and this therefore suggests using imputations ŷc(xi) and ŷt(xi) to estimate mi as m̂i = pŷc(xi)+(1−p)ŷt(xi),
and then estimating τi as

τ̂i ≡ Ui(Yi − m̂i).

For τ̂i to be unbiased it is sufficient that algorithms ŷc(·) and ŷt(·) are constructed in such a way that

{ŷc(xi), ŷt(xi)} ⊥⊥ Ti. (5)

Since by design the distribution of Ti does not depend on xi, (5) is tantamount to requiring that Ti, and
variables such as Yi that depend on Ti, play no role in constructing algorithms ŷc(·) and ŷt(·). Then, under
(5),

E(τ̂i) = E(UiYi)− E(Uim̂i) = E(UiYi)− E(Ui)E(m̂i) = E(UiYi) = τi

where we use the facts that E(Ui) = 0 and E(UiYi) = τi. Finally, define the ATE estimate:

τ̂ =
1

N

N∑
i=1

τ̂i =
1

N

∑
i∈T

Yi − m̂i

p
− 1

N

∑
i∈C

Yi − m̂i

1− p
(6)

The unbiasedness of τ̂ for τ̄ follows from the unbiasedness of each of its summands, τ̂i for τi.
Crucially, this unbiasedness holds even if ŷc(xi) and ŷt(xi) are biased; algorithms ŷc(·) and ŷt(·) need

not be unbiased, consistent, or correct in any sense. As long as ŷc(xi) and ŷt(xi) are constructed to
be independent of Ti, then τ̂i will be unbiased. The same cannot be said for regression-based covariate
adjustment, the common technique of regressing Y on T and x [Freedman, 2008].
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The estimate τ̂ given in (6) is identical to the “augmented IPW” (AIPW) estimate familiar from the
double-robustness literature in observational studies [e.g., Bang and Robins, 2005], but with known propen-
sity scores p [see, e.g. Hahn, 1998, Rothe, 2016]. Though AIPW estimators are typically derived in a
model-based framework, the previous results show that in the context of an RCT, provided (5) holds, the
AIPW estimator (6) is unbiased under a design-based framework as well.

Compare τ̂ to the estimate τ̂ IPW given in (1). The only difference is that Yi in (6) has been replaced
by Yi − m̂i in (1). The goal of this covariate adjustment is to improve precision—we are residualizing our
outcomes, in effect, to reduce variation. Its success in this regard depends on the predictive accuracy of
ŷc(xi) and ŷt(xi). The variance of τ̂i depends on m̂i and is given by

V(τ̂i | m̂i) =
(m̂i −mi)

2

p(1− p)
. (7)

Compared with (2), (7) replaces mi with m̂i−mi—that is, replaces potential outcomes with their residuals.
Accurate imputations of yci and yti , and hence of m̂i, yield precise estimation of τi. On the other hand,
inaccurate imputations, i.e., when (m̂i − mi)

2 is greater than m2
i , will decrease precision—though, again,

without causing bias. The sampling variance of the full estimator τ̂ depends on how the parameters of ŷc(·)
and ŷt(·) are estimated, which may induce dependence between τ̂i and τ̂j for i 6= j. The most important
case, for our purposes, is discussed in the next section.

2.3 Sample Splitting

Successful covariate adjustment requires imputations ŷc(xi) and ŷt(xi) that are accurate and independent
of Ti. To satisfy the independence condition, i’s observed outcome Yi, which is a function of Ti, cannot play
a role in the construction of the algorithms ŷc(·) and ŷt(·); they must be trained using other data.

This may be achieved by sample splitting, also referred to in this context as cross-estimation or cross-
fitting. In a Bernoulli experiment, rather than fitting global imputation algorithms ŷt(·) and ŷc(·) (which
would violate 5), fit a separate set of imputation models ŷt−i(·) and ŷc−i(·) for each experimental participant i,
using data from the other participants. In other words, for each i, one first drops observation i, and then use
the remaining N − 1 observations to construct imputation models for the control and treatment potential
outcomes, denoted ŷc−i(·) and ŷt−i(·), respectively. These models may be fit by any method, for example
linear regression or random forests [Breiman, 2001] (which, conveniently, automatically provides out-of-bag
predictions for each subject). In particular, methods that allow for regularization to prevent overfitting may
be used. (For a discussion of sample-splitting for AIPW estimation, see, e.g. Chernozhukov et al. [2018],
Jiang et al. [2022], Smucler et al. [2019].)

In this leave-one-out context,
m̂i = pŷc−i(xi) + (1− p)ŷt−i(xi)

and the estimated average treatment effect is then again given by τ̂SS =
∑
i τ̂i/N as in (6), and where the

superscript denotes “sample splitting.” Note that in a Bernoulli experiment m̂i ⊥⊥ Ti due to the fact that
m̂i is computed using xi and a model fit without using observation i. It follows that τ̂SS is unbiased. Other
randomization designs would call for modifications to the algorithm, e.g., [Wu and Gagnon-Bartsch, 2021].

When we wish to explicitly specify the covariates and imputation method that are used within τ̂SS we will
write τ̂SS[covariates; imputation method]. For example, if we wished to use random forests and all available
covariates we would write τ̂SS[x; RF], or if we wished to use only the fourth covariate and ordinary least
squares regression we would write τ̂SS[x4; LS]. If we wished to ignore the covariates and always set m̂i = 0
we would write τ̂SS[∅; 0]. Note in particular that τ̂SS[∅; 0] = τ̂ IPW.

Building upon (7), and following Wu and Gagnon-Bartsch [2018], the variance of τ̂SS may be estimated
as follows. Let

Ê2
c =

1

nc

∑
i∈C

[
ŷc−i(xi)− yci

]2
(8)

be the mean-squared-error of control imputations ŷc(xi) with respect to potential outcomes yc, and define Ê2
t

similarly. Note Ê2
c and Ê2

t are leave-one-out cross validation mean squared errors. The estimated variance
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is then given by

V̂(τ̂SS) =
1

N

[
p

1− p
Ê2
c +

1− p
p

Ê2
t + 2

√
Ê2
c Ê

2
t

]
. (9)

This variance estimate will typically be somewhat conservative. This is due to the fact that V(τ̂SS) is
unidentifiable, because the correlation of the potential outcomes is not estimable, and instead an upper
bound is used Wu and Gagnon-Bartsch [2018]. This difficulty is not unique to τ̂SS; as noted in Section 2.1,
similar comments apply to τ̂ IPW, and the same is true of τ̂DM as well [Neyman, 1923, Aronow et al., 2014].

Note that by (9),

V̂(τ̂SS) ≤ Ê2
c

N(1− p)
+
Ê2
t

Np

≈ Ê2
c

nc
+
Ê2
t

nt
(10)

which is similar in form to the variance estimate typically used in a two-sample t-test, namely S2(YC)
nc

+ S2(YT )
nt

.

In (10), S2(YC) and S2(YT ) are replaced by Ê2
c and Ê2

t . In other words, the sample variances are replaced
by the estimated mean squared errors of the imputations.

A special case occurs when the potential outcomes are imputed by simply taking the mean of the observed
outcomes (after dropping observation i). That is, we set

ŷc−i(xi) =
1

|C \ i|
∑
j∈C\i

ycj (11)

and similarly for ŷt−i(xi). Note that the covariates are simply ignored, and we denote this special case by
τ̂SS[∅; mean]. It can be shown that τ̂SS[∅; mean] = τ̂DM, i.e., the sample splitting estimator using leave-
one-out mean imputation is exactly equal to the simple difference-in-means estimator. Moreover, in this
special case Ê2

c = nc

nc−1S
2(YC) and Ê2

t = nt

nt−1S
2(YT ) and thus the variance estimate given by (10) is nearly

identical to the ordinary t-test variance estimate [Wu and Gagnon-Bartsch, 2018].
In short, when using mean imputation for the potential outcomes, the leave-one-out sample splitting

procedure essentially simplifies to a standard t-test. The effect estimate is identical, and the variance
estimate is nearly identical.1 This is highly reassuring. Any imputation strategy that improves upon mean
imputation in terms of mean squared error will reduce the variance of τ̂SS relative to τ̂DM. Most modern
machine learning methods employ some form of regularization to guard against overfitting, and thus typically
perform no worse, or at least not substantially worse, than mean-imputation. Thus in practice there is
relatively little risk of hurting precision.2

1These statements are conditional on nc ≥ 2 and nt ≥ 2. When nc < 2, then S2(YC) and the expression in (11) are not
defined. When nc = 0, ȲC and τ̂DM are also undefined. More generally, several of our estimators are undefined when nc = 0,
namely τ̂DM defined in (3), Ê2

c defined in (8), as well as τ̂RE in (12) and τ̂GR(b) in (14) defined in the next section. Thus,
it is worth noting that when we assert τ̂DM is unbiased, we implicitly condition on nc, nt > 0. (It is well known that τ̂DM

is unbiased conditional on any nc, nt, so long as nc, nt > 0. Without conditioning on nc and nt, the moments of τ̂DM are
undefined in a Bernoulli trial. See, e.g., Freedman et al. [2007].) The same applies to τ̂RE and τ̂GR(b) in the next section. For
τ̂SS we do not implicitly condition nc, nt > 0 but rather assume that m̂i is defined for all possible randomizations, including
those in which nc < 2 or nt < 2. This may be accomplished, for example, by setting m̂i = 0 in cases where ŷc−i(xi) or ŷt−i(xi)

are otherwise undefined, in which case τ̂i reverts to the Horvitz-Thompson estimator. As for Ê2
c defined in (8), we note that

we could alternatively replace the nc in the denominator with N(1 − p), in which case Ê2
c would be an unbiased estimate of

1
N

∑N
i=1 MSE[ŷc−i(xi)]. In practice, we prefer to divide by nc, although, unlike τ̂DM, we cannot claim that Ê2

c is unbiased
conditional nc, nt > 0. See Wu and Gagnon-Bartsch [2018].

2Beyond the question of hurting precision, one might reasonably ask—as an anonymous reviewer did—whether, or in what
sense, τ̂SS is optimal. Since τ̂SS is a version of the AIPW estimator, we may refer to the extensive literature on its optimality.
For example, van der Laan and Rubin [2006] gives a set of conditions under which AIPW is efficient or locally efficient, Rothe
[2016] discusses the case of a known propensity score, and Chernozhukov et al. [2018], Jiang et al. [2022] discuss the sample-
splitting AIPW estimator. In general, the theoretical literature surrounding AIPW tends take potential outcomes as random,
whereas in our development they are fixed; we defer an examination of the consequences of that distinction for future research.
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3 Incorporating Observational Data

Modern field trials are often conducted within a very data-rich context, in which rich high-dimensional
covariate data is automatically, or already, collected for all experiment participants. For instance, in the
TestBed experiments, system administrators have access to log data for every problem and skill builder
each participating student worked before the onset of the experiment. In other contexts, such as healthcare
or education, rich administrative data is often available. In fact, these covariates are available for a much
wider population than just the experimental participants—in the TestBed case, there is log data for all
ASSISTments users. In other education or healthcare examples, administrative data is often available for
every student or patient in the system, not just for those who were randomized to a treatment or control
condition. Often, as in the TestBed case, the outcome variable Y is also drawn from administrative or log
data. We refer to subjects within the same data system in which the experiment took place—i.e. for whom
covariate and outcome data are available—but who were not part of the experiment, as the “remnant” from
the experiment. The remnant from a TestBed experiment consists of all ASSISTments users for whom log
data is available but who did not participate in the experiment, of whom there are several hundred thousand.

Simply pooling data from the remnant with data from the experiment undermines the randomization,
since students in the remnant were not randomized between conditions. This section will describe an al-
ternative approach—a set of unbiased effect estimators that use the remnant to improve precision. The
estimators all begin by using the remnant to fit or train a model predicting potential outcomes as a function
of covariates, and using that model to impute potential outcomes for units in the experiment. They differ
in how they use those imputations, and build on each other. The following subsection discusses a simple
residualizing estimator, Section 3.2 discusses sample splitting to improve that estimator, and Section 3.3
discusses incorporating an additional set of covariate-adjustment models fit to data from the experimental
subjects themselves.

We will focus on the case in which the treatment condition in the remnant is constant, irrelevant, or
just unobserved. For instance, in the TestBed dataset the RCTs typically test an experimental intervention
against “business as usual,” and subjects in the remnant were all exposed to the control condition. Extension
to cases in which T is observed in the remnant is straightforward, and will be discussed briefly in Section 5.

3.1 Covariate Adjustment Using the Remnant

Design based covariate adjustment requires imputation models ŷc(·) and ŷt(·); Aronow and Middleton [2013]
suggests training those models using “auxiliary data” such as the remnant. In the TestBed, there is no basis
for separate imputation of yc and yt; instead, we use data from the remnant to train an algorithm ŷr(·) to
predict (generic) outcomes as a function of covariates. In some cases ŷr(·) may be interpreted as predicting
control outcomes, but in other cases the interpretation may be more opaque.

Regardless of the interpretation, the logic of Section 2.2 would suggest using ŷr(·) to construct the
estimator τ̂ (6), by setting m̂i = ŷr(xi), where ŷr(xi), i = 1, . . . N denotes predictions obtained by applying
ŷr(·) to members of the RCT.3 This estimator is equivalent to the IPW estimator τ̂ IPW (1), but with observed
outcomes Y replaced by residuals Ri ≡ Yi − ŷr(xi), that is,

∑
i UiRi/N . Along similar lines, Sales et al.

[2018b] proposes conditioning on nc and nt and using a difference in means estimator (also see Deng et al.
[2013] for a similar suggestion):

τ̂RE =
1

nt

∑
i∈T

Ri −
1

nc

∑
i∈C

Ri = R̄T − R̄C (12)

In what follows we will refer specifically to (12) as “the remnant estimator.”
The remnant estimator τ̂RE and its IPW variant work because Ri is itself an outcome variable, with

its own potential outcomes rci = yci − ŷr(xi) and rti = yti − ŷr(xi), and because ŷr(xi) is invariant to
treatment assignment. Thus, treatment effects on the original outcomes are equal to treatment effects on
the residualized outcomes, i.e.,

rti − rci =
[
yti − ŷr(xi)

]
− [yc − ŷr(xi)] = yti − yci = τi.

3This estimator was also suggested by an anonymous reviewer.
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and τ̂RE—a difference-in-means estimate of this effect—is therefore an unbiased estimate of τ̄ . This property
holds regardless of whether ŷr(·) itself is unbiased, consistent, or “correct” in any sense; indeed, as suggested
above, it may not even be clear precisely what ŷr(·) is estimating.

The goal of residualization is to improve precision. Since τ̂RE is a difference-in-means estimator, its
sampling variance can be conservatively estimated in a similar way as τ̂DM (4), but, again, with R replacing
Y :

V̂(τ̂RE) =
S2(RC)

nc
+
S2(RT )

nt
(13)

Comparing this expression to V̂(τ̂DM) given in (4), we see that the residualized estimator will have a lower
variance than τ̂DM if S2(RC) < S2(YC) and S2(RT ) < S2(YT ). In other words, we wish for ŷr(x) to capture
at least some of the variation in Y , so that R is less variable than Y . This will be achieved in practice when
ŷr(·) does indeed successfully predict outcomes in the RCT—or, more generally, when the sample covariances
between ŷr and Y for subjects with T = 0 and T = 1, respectively, are sufficiently large.

Importantly for practitioners, as long as only remnant data is used, ŷr(·) may be trained and assessed
in any way. This process can be iterative, so that an analyst may train a candidate model, assess its per-
formance (perhaps with k−fold cross-validation), modify the algorithm, and repeat until achieving suitable
performance. Any modeling approach may be taken, so long as no data from the RCT is used. Post-selection
inference, which would be a serious concern if model selection were done used the RCT data (especially when
the dimension of x is large and the sample size is small), does not apply here.

Unfortunately, in some cases (see, e.g., Section 4) the remnant estimator may have greater sampling
variance than the τ̂DM. This will be the case if ŷr(·), trained in the remnant, extrapolates poorly to the
experimental sample—for instance, if the distribution of Y conditional on x differs substantially between the
remnant and the RCT. To make matters worse, the performance of ŷr(·) in the experimental sample—where
it counts—may not be checked directly to select a best model, since when fitting ŷr(·) outcomes from the
RCT can not be touched.4

Thus, residualizing with ŷc−i(xi)—i.e., replacing Y with R in an unbiased estimator of τ̄—will result in
an unbiased, design-based estimator that may be substantially more precise than τ̂DM, but may also be less
precise. In other words, covariate adjustment using the remnant in this way is potentially fruitful, but risky.

3.2 Flexibly Incorporating Remnant-Based Imputations

Consider a “generalized remnant estimator”

τ̂GR(b) ≡ 1

nt

∑
i∈T

[Yi − bŷr(xi)]−
1

nc

∑
i∈C

[Yi − bŷr(xi)] (14)

where b is some prespecified constant. Note that in the special case b = 1 this is the remnant estimator τ̂RE,
and in the special case b = 0 it is the simple difference-in-means τ̂DM. Thus, following the discussion above,
when ŷr(·) extrapolates well to the RCT, we wish to set b = 1, and when ŷr(·) extrapolates poorly to the
RCT, we wish to set b = 0. More typically, an intermediate value for b may be optimal.

The challenge is that we do not know a priori how well ŷr(·) extrapolates to the RCT, and therefore do
not know the optimal choice for b. We will use sample splitting to overcome that challenge. First define
xr ≡ ŷr(x). That is, we compute the remnant-based predictions of RCT outcomes as above (i.e., ŷr(x)),
but now regard these predictions simply as a covariate to be used within the sample splitting estimator (i.e.,
xr). Then we construct a sample splitting estimator τ̂SS using the following imputation method:

ŷc−i(x
r
i ) =ac−i + bc−ix

r
i

ŷt−i(x
r
i ) =at−i + bt−ix

r
i

(15)

4However, one may use covariate data from the RCT to anticipate ŷr(·)’s performance; Appendix D describes our (unfortu-
nately unsuccessful) attempt to do so. Future research may result in improved methods.
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where we obtain ac−i, b
c
−i, a

t
−i, and bt−i by ordinary least squares, i.e., let

(ac−i, b
c
−i) = arg min

(a,b)

∑
j∈C\i

[
Yj −

(
a+ bxrj

)]2
(16)

and similarly for (at−i, b
t
−i). We denote the resulting estimator τ̂SS[xr,LS].

The estimator τ̂SS[xr,LS] will typically be preferable to the remnant estimator τ̂RE because, for each
observation i, the remaining N−1 observations of the RCT help determine the best use of xri in constructing
m̂i. For example, suppose that the xr are highly accurate imputations of the yc in the RCT. In this case, we
might expect ac−i ≈ 0 and bc−i ≈ 1 so that ŷc−i(x

r
i ) ≈ xri , or in other words, the remnant based predictions

would “pass through” the linear regression largely unmodified, so that τ̂SS[xr,LS] ≈ τ̂RE. However, in
contrast to the remnant estimator, poor imputations xr will not necessarily harm precision in τ̂SS[xr,LS].
Consider the extreme case in which the xr are pure noise. We would then expect ac−i ≈ ȲC\i and bc−i ≈ 0 so
that ŷc−i(x

r
i ) ≈ ȲC\i. That is, we would revert approximately to mean-imputation, so that τ̂SS[xr,LS] ≈ τ̂DM.

In other words, the role of xr may be tempered according to the prediction accuracy of ŷr(·) in the RCT.
We might therefore expect τ̂SS[xr,LS] to nearly always outperform, or at least perform no worse than, τ̂RE

and τ̂DM. This intuition is formalized in the following proposition:

Proposition 1. Let (yc1, y
t
1, x

r
1), . . . , (ycN , y

t
N , x

r
N ) be IID samples from a population in which yc, yt, and xr

have finite fourth moments, and where −1 < corr(yc, xr) < 1 and −1 < corr(yt, xr) < 1. Let b be a fixed

constant. Let V̂[τ̂GR(b)] denote the estimated variance of τ̂GR(b), defined analogously to (4) and (13). Let

V̂
{
τ̂SS[xr,LS]

}
denote the estimated variance of τ̂SS[xr,LS], defined as in (9). Then as N →∞,

V̂
{
τ̂SS[xr,LS]

}
V̂[τ̂GR(b)]

p→ φ(b) ≤ 1

where φ(b) is some constant that depends on b.

Proof. See Appendix B.

Notably, although this proposition is asymptotic in nature, we expect it to be relevant even in relatively
small samples, given that τ̂SS[xr,LS] effectively only requires estimating two more parameters than τ̂GR(b)
(i.e., the slope coefficients bc−i and bt−i). The ASSISTments experiments we analyze in Section 4 appear to
generally support this intuition; τ̂SS[xr,LS] nearly always outperforms τ̂DM. Indeed, we see the greatest
performance gain in the RCT with the smallest sample size.

Importantly, because the xr are used only as a covariate, they do not necessarily need to accurately
impute the potential outcomes in the RCT; rather, it suffices that they are merely predictive. If the RCT is
systematically different from the remnant, e.g., the potential outcomes in the RCT differ in scale from those
in the remnant, the xr will still be useful as long as they are correlated with the experimental potential
outcomes. Indeed, counterintuitively, it is even possible for τ̂SS[xr,LS] to achieve precision gains if the xr

are anticorrelated with outcomes in the RCT.
In any event, regardless of the properties of ŷr(·) or quality of the data in the remnant, τ̂SS[xr,LS]

remains unbiased, and its associated variance estimator remains conservative, because it relies on τ̂SS, which
has both of those properties, and because xr is a covariate, and invariant to treatment assignment.

3.3 Combining Remnant-Based and Within-RCT Covariate Adjustment

The estimator τ̂SS[xr,LS] effectively solves the remnant estimator’s main deficiencies. However, τ̂SS[xr,LS]
largely neglects the RCT covariates, except to the extent that xr depends on x through ŷr(·). Neglecting
the RCT covariate data may be suboptimal, especially when ŷr(·) is poorly predictive of outcomes in the
RCT, perhaps due to systematic differences between the RCT and the remnant. Our goal in this section is
to augment the strategy of the previous section, so that the RCT covariate data may be more fully exploited.

Define
x̃i ≡ (xi1, xi2, ..., xip, x

r
i ) (17)

or in other words, x̃i is xi augmented with xri . We may now compute τ̂SS using the augmented set of
covariates x̃ instead of x. The hope is that by including xr we can exploit information in the remnant in
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much the same way that τ̂SS[xr,LS] does, while simultaneously performing a more standard within-RCT
covariate adjustment. For example, we might use random forests and compute τ̂SS[x̃,RF].

In general, the precision of the estimator will depend on the performance of the imputation strategy,
and in particular, its ability to integrate information from the remnant, via xr, with information from other
covariates x. On the one hand, xr is a function of the other covariates and thus, in at least some sense,
does not contain any additional information. However, the function ŷr(·) is fitted on the remnant, which
may be much larger than the experimental sample, and thus ŷr(·) may be a more accurate imputation
function than what we would be able to obtain using the RCT data alone. In this sense, xr does contain
additional information, which can be exploited by the imputation method by heavily weighting xr over the
other covariates.

On the other hand, if the xr are highly accurate, using them as a covariate within a nonlinear model like
a random forest may be statistically inefficient compared to a linear model, as in τ̂SS[xr,LS]. Therefore, it
may not always be clear whether a highly flexible method such as τ̂SS[x̃,RF] will outperform τ̂SS[xr,LS];
it depends on the quality of the imputations xr as well as the predictive power of the covariates in the
experimental sample.

This suggests imputing potential outcomes using a specialized ensemble learner Opitz and Maclin [1999]:
a weighted average of linear regression using just xri , as in τ̂SS[xr,LS], and random forests using x̃, as in

τ̂SS[x̃,RF]. More specifically, let ŷc,LS−i (x̃i) be the least squares imputation defined in (15) and (16), i.e., the

imputation used within τ̂SS[xr,LS]; note in particular that ŷc,LS−i (x̃i) ignores all of the entries of x̃i except

xri . Let ŷc,RF
−i (x̃i) denote the imputation from a random forest regression of YC\i on x̃C\i. We then define an

ensemble imputation
ŷc,EN
−i (x̃i) = γci ŷ

c,LS
−i (x̃i) + (1− γci )ŷ

c,RF
−i (x̃i) (18)

which is an interpolation between ŷc,LS−i (x̃i) and ŷc,RF
−i (x̃i), where the interpolation parameter γci is such that

0 ≤ γci ≤ 1 and is given by

γci = arg min
γ∈[0,1]

∑
j∈C\i

{
Yj −

[
γŷc,LS−i,j (x̃j) + (1− γ)ŷc,RF

−i,j (x̃j)
]}2

where ŷc,LS−i,j (x̃j) is defined analogously to ŷc,LS−i (x̃i), but with both observations i and j removed, and similarly

for ŷc,RF
−i,j (x̃j). That is, the interpolation parameter γci is obtained empirically to minimize mean squared error,

and is obtained from a leave-one-out procedure, which ensures that γci ⊥⊥ Ti, and thus ŷc,EN
−i (x̃i) ⊥⊥ Ti. We

denote the resulting ensemble-based estimator τ̂SS[x̃,EN]. The imputation strategy (18) allows τ̂SS[x̃,EN]
to triangulate between τ̂SS[xr,LS] and τ̂SS[x̃,RF], and therefore combines the advantages of both, at the
cost of estimating only one additional parameter (i.e., γci ).

4 Estimating Effects in 33 Online Experiments

4.1 Data from the ASSISTments TestBed

We apply and evaluate the methods described in this work to a set of 33 randomized controlled experiments
run within the ASSISTments TestBed, described in the Introduction. These A/B tests contrast a variety of
pedagogical conditions in modules teaching 6th, 7th, and 8th grade mathematics content. For our purposes,
the outcome of interest was completion of the module, a binary variable.

In general, once a TestBed proposal is approved, based on Institutional Review Board and content quality
criteria, its experimental conditions are embedded into an ASSISTments assignment. This is then assigned
to students, either by a group of teachers recruited by the researcher or, more commonly, by the existing
population of teachers using ASSISTments in their classrooms. As an example, consider an experiment
comparing text-based hints to video hints. The proposing researcher would create the alternative hints and
embed them into particular assignable content, a “problem set.” Then, any time a teacher assigns that
problem set to his or her students, those students are randomized to one of the conditions, and, when they
request hints, receive them as either text or video.
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There are several types of problem sets that researchers can utilize when developing their experiments. In
the case of the 33 experiments observed in this work, the problem sets are mastery-based assignments called
“skill builders.” As opposed to more traditional assignments requiring students to complete all problems
assigned, skill builders require students to demonstrate a sufficient level of understanding in order to complete
the assignment. By default, students must simply answer three consecutive problems correctly without the
use of computer-provided aid such as hints or scaffolding (a type of aid that breaks the problem into smaller
steps). In this way, completion acts as a measure of knowledge and understanding as well as persistence and
learning, as students will be continuously given more problems until they are able to reach the completion
threshold. ASSISTments also includes a “daily limit” of ten problems to encourage students to seek help if
they are struggling to reach the threshold.

After the completion of a TestBed experiment, the proposing researcher may download a dataset which
includes students’ treatment assignments and their performance within the skill builder, including an indica-
tor for completion. Additionally, the dataset includes aggregated features that describe student performance
within the learning platform prior to random assignment for each respective experiment. Summary statistics
for the nine covariates we used in our analyses, pooled across experiments, are displayed in Table 1. These
include the numbers of problems worked, and assignments and homework assigned, percent of problems
correct on first try, assignments completed, and homework completed at the student and class level, and
students’ genders, as guessed by an internal ASSISTments algorithm based on first names. We imputed
missing covariate values separately within each experiment. When possible, we used the mean of observed
values from students in the same classroom; otherwise we used the grand mean. We combined this data with
disaggregated log data from students’ individual prior assignments.

Mean SD % Missing
Problem Count 601.13 784.45 2
Percent Correct 0.68 0.13 2

Assignments Assigned 104.25 413.94 13
Percent Completion 0.89 0.21 13

Class Percent Completion 0.90 0.13 22
Homework Assigned 25.97 29.90 50

Homework Percent Completion 0.93 0.16 59
Class Homework Percent Completion 0.93 0.09 56

Guessed Gender Male: 36% Female: 36% Unknown: 28%

Table 1: Summary statistics for aggregate prior ASSISTments performance used as within-sample covariates:
number of problems worked, and assignments and homework assigned, percent of problems correct on first
try, assignments completed, and homework completed at the student and class level, and students’ genders,
as guessed by ASSISTments based on first names.

4.2 Imputations from the Remnant

We also gathered analogous data from a large remnant of students who did not participate in any of the 33
experiments we analyzed. Ideally, the remnant would consist of previous ASSISTments students who had
worked on the skill builders on which the 33 experiments had been run. If that were the case, we would
have considered 33 outcomes of interest, say Ys, denoting completion of skill builder s. Unfortunately, due
to labeling conventions in the ASSISTments database, this was only feasible for 11 of the 33 experiments.
Instead, for all 33 experiments, we used prior ASSISTments data to impute one outcome, completion of a
generic skill builder.

Rather than use the entire set of past ASSISTments users to build a remnant, we selected students
who resembled those who participated in the 33 experiments. For the 11 experiments that we were able to
match to other prior work, the remnant consisted of previous students who had worked on at least one of
the skill builders in the experiments. For the remaining 22 experiments, we first observed the collection of
problem sets given to students in the experiments before being assigned. The remnant consisted of all other
ASSISTments users who had been assigned to at least one of those assignments. In other words, the remnant
consisted of students who did not participate in any of the 33 experiments, but had worked on some of the
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Figure 1: A dotplot showing sample size multipliers (i.e. sampling variance ratios) comparing τ̂DM, τ̂RE, and
τ̂SS[xr,LS] on the 33 ASSISTments TestBed experiments.

same content as those who did. In all, the remnant consisted of 141,039 distinct students. Sample sizes and
skill builder completion rates in the 33 experiments are given in an online appendix in Table 2.

We gathered records of up to ten assigned skill builders for each student in the remnant, and for each skill
builder recorded the number of problems the student started, completed, requested help on, and answered
correctly, the total amount of time spent, and assignment completion (i.e., skill mastery). Then, we fit
a type of recurrent neural network [Williams and Zipser, 1989] called Long-Short Term Memory (LSTM)
[Hochreiter and Schmidhuber, 1997] to the resulting panel data. The model attempts to detect within-
student trends in assignment completion and speed (i.e., the number of problems needed for skill mastery);
please see Appendix C for further details. Using 10-fold cross validation within the remnant, we estimated
the area under the ROC curve as 0.82 and a root mean squared error of 0.34 for the dependent measure of
next assignment completion.

After fitting and validating the model in the remnant, we used it to predict skill builder completion for
each subject in each of the 33 experiments. To do so, we gathered log data for each student from up to
ten previous assigned skill builders. (Students in the experiments with no prior data were dropped from all
analyses.) Using the model fit in the remnant, we predicted whether each student would complete his or her
next assigned skill builder. The resulting predictive probabilities were used as xr in the following analyses.

4.3 Results

In each of the 33 experiments, we calculated five different unbiased ATE estimates: [1] the simple difference-
in-means estimator τ̂DM (equation 3); [2] the remnant estimator τ̂RE (equation 12); [3] τ̂SS[xr,LS] (Section
3.2); [4] τ̂SS[x; RF] (Section 2.3) where x denotes only those covariates supplied within the TestBed, as listed
in Table 1; and [5] τ̂SS[x̃,EN] (Section 3.3), using both xr and the provided TestBed covariates x. These
five methods are all design-based and unbiased, but they differ in their adjustment for covariates—both in
the data they use for the adjustment, and in how the adjustment is effected. Notably, in this application
the remnant-based predictions xr are not functions only of x. The covariates in x are limited to aggregated
data that summarize a student’s previous performance (Table 1), whereas the predictions xr are based on a
more fine-grained longitudinal analysis of each student’s log data.

Since each of these estimates is unbiased, we will focus on their estimated sampling variances. To aid
interpretability, we will express contrasts between the sampling variances of two methods in terms of sample
size. The estimated sampling variance of each estimator we consider is inversely proportional to sample size
(see, e.g., equation 9). Therefore, reducing the sampling variance of an estimator by, say, 1/2 is equivalent
to doubling its sample size. Under that reasoning, the following discussion will refer to the ratio of estimated
sampling variances as a “sample size multiplier.”

13



V̂(τ̂SS[xr,LS])

V̂(τ̂SS[x̃,EN])

V̂(τ̂SS[x,RF])

V̂(τ̂SS[x̃,EN])

V̂(τ̂DM)

V̂(τ̂SS[x̃,EN])

1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5

Relative Ratio of Sample Variances

Figure 2: A dotplot showing sample size multipliers (i.e. sampling variance ratios) comparing τ̂SS[x̃,EN] to
τ̂SS[xr,LS] τ̂SS[x; RF], and τ̂DM, respectively, on the 33 ASSISTments TestBed experiments.

4.3.1 Remnant-Based Adjustment: Comparing τ̂RE and τ̂SS[xr,LS]

Figure 1 compares τ̂DM, τ̂RE, and τ̂SS[xr,LS] on the 33 ASSISTments TestBed experiments. Each dot in the
figure corresponds to a sample size multiplier comparing two estimated sampling variances in a particular
experiment. The vertical line at 1.0 indicates experiments in which the two methods gave approximately
equal sampling variances. Dots to the right of the line correspond to experiments in which the variance in
the denominator of the fraction was lower, and dots to the left of the line correspond to experiments in which
the variance in the numerator was lower.

The leftmost plot contrasts τ̂RE with τ̂DM. In four experiments, the variances of τ̂RE and τ̂DM were
approximately equal, and in 27 experiments τ̂RE outperformed τ̂DM. Notably, in one case (experiment #33)
the adjustment provided by τ̂RE was equivalent to a roughly 85% increase in sample size, and in another
(experiment #27) the adjustment was equivalent to a roughly 50% increase. On the whole, τ̂RE offers
substantial gains in precision relative to τ̂DM. On the other hand, in two experiments the sampling variance
of τ̂RE was higher than that of τ̂DM. Most notably, in one experiment (#2) the adjustment given by τ̂RE

was equivalent to a roughly 45% decrease in sample size. In this case, apparently, the imputations from the
model fit to the remnant were particularly inaccurate in the experimental sample. Because experimental
outcomes played no role in determining the adjustment provided by τ̂RE, the adjustment was blind to this
inaccuracy, and was unable to anticipate the resulting increase in variance in those cases.

In contrast, the τ̂SS[xr,LS] estimator incorporates information on imputation accuracy into its covariate
adjustment. The middle panel of Figure 1 shows that across the board, τ̂SS[xr,LS] variances were smaller
or roughly equal to those of τ̂DM. That is, τ̂SS[xr,LS] successfully avoided the risk that poor imputations
pose to τ̂RE, and never increased variance relative to τ̂DM. Moreover, in those cases in which τ̂RE performed
well, τ̂SS[xr,LS] tended to perform even better. For instance, in experiment #33, the adjustment provided
by τ̂SS[xr,LS] was equivalent to a roughly 100% increase in sample size (relative to τ̂DM).

The rightmost panel of Figure 1 compares τ̂RE to τ̂SS[xr,LS] explicitly: τ̂SS[xr,LS] sample variances
dominated those of τ̂RE. In roughly half of the experiments, τ̂RE and τ̂SS[xr,LS] performed similarly, and
in the remaining half τ̂SS[xr,LS] improved upon τ̂RE. Proposition 1, above, guarantees that τ̂SS[xr,LS] will
dominate both τ̂DM and τ̂RE in the limit as N → ∞; Figure 1 gives examples of this property in finite
samples.

4.3.2 Incorporating Standard Covariates

Figure 2 compares τ̂SS[x̃,EN] to τ̂SS[xr,LS], τ̂SS[x; RF], and τ̂DM, respectively, on the same 33 ASSISTments
TestBed experiments. The left panel, comparing τ̂SS[xr,LS] to τ̂SS[x̃,EN], shows the impact of including
standard covariates, incorporating them as described in the ensemble approach of Section 3.3. In all but
one case, the sampling variance of τ̂SS[x̃,EN] was less than or roughly equal to that of τ̂SS[xr,LS]—that
is, including standard covariates improved precision. In sixteen cases, this improvement was equivalent to
increasing the sample size by more than 10%; in eight of those cases the improvement was more than 25%
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and in one experiment, it was more than 80%.
The middle panel compares the sampling variances of τ̂SS[x̃,EN] and τ̂SS[x; RF], showing the extent to

which including xr improved precision relative to using only standard covariates. In all but two experiments
the sampling variance of τ̂SS[x̃,EN] was less than or roughly equal to the sampling variance of τ̂SS[x; RF].
In six experiments the improvement was equivalent to an increase in sample size of more than 10%, and in
one of those cases, experiment #33, the improvement was equivalent to an over 65% increase in sample size.

The rightmost panel compares the sampling variances of τ̂SS[x̃,EN] and the simple difference-in-means
estimator, showing the total impact of covariate adjustment on statistical precision. Across every one of
the 33 experiments, the estimated sampling variances for τ̂SS[x̃,EN] were lower or roughly equal to those of
τ̂DM. In 28 experiments the improvement was equivalent to increasing the sample size by more than 10%;
in 15 of those the improvement was equivalent to a more than 25% increase in sample size, and in the case
of experiment #33, the improvement was equivalent to a 175% increase in sample size.

4.3.3 Covariate Adjustment with ANCOVA

The methodological development in Section 3 focused on the covariate-adjusted estimator τ̂SS, which can
incorporate nearly any imputation method—including least squares regression, random forests, and ensemble
methods such as (18)—while maintaining the advantages of design-based estimation, namely unbiased effect
estimation and conservative standard error estimation. However, the strategy of covariate adjustment using
xr or x̃ is compatible with any covariate-adjusted estimator. For instance, an anonymous reviewer suggested
estimating τ̄ via ancova—that is, fitting the model

Yi = µ+ βTi + γTXi + εi (19)

with ordinary least squares, where Xi = xri or x̃i and estimating τ̄ with the estimated coefficient β̂, which we

will denote as β̂[xr] or β̂[x̃], respectively (also see Walsh et al. [2022]). Ancova estimators β̂[·] are typically
slightly biased, but consistent, with bias decreasing with 1/N [Freedman, 2008].

Figure 3 compares the estimated sampling variances of τ̂DM, τ̂SS[xr,LS], τ̂SS[x̃,EN], β̂[xr] and β̂[x̃]
when applied to the 33 TestBed experiments. (The ancova standard errors were estimated using the HC2
sandwich formula [c.f. MacKinnon and White, 1985], the default for the lm robust() routine of the estimatr
package in R Blair et al. [2021], R Development Core Team [2011].) For the sake of comparison, the top
panels of Figure 3 reproduce results from Figures 1 and 2, comparing τ̂DM to τ̂SS[xr,LS] and τ̂SS[x̃,EN].

The middle two panels contrast the sampling variances of β̂[xr] and β̂[x̃] to τ̂DM. Like τ̂SS[xr,LS] and
τ̂SS[x̃,EN], the ancova estimates are, in many cases, much more precise than τ̂DM. On the other hand,

in some cases β̂[x̃] had a noticeably higher sampling variance than τ̂DM—in one case, the effect of ancova
adjustment was roughly equivalent to reducing the sample size by about 15%.

Across the board, the precision gains afforded by β̂[x̃] were typically slightly less than those afforded by
τ̂SS[x̃,EN]. This is displayed in the bottom row of Figure 3, which compares the ancova estimators directly

to τ̂SS[xr,LS] and τ̂SS[x̃,EN]. While τ̂SS[xr,LS] and β̂[xr] tend to have very similar sampling variances,

τ̂SS[x̃,EN] is often (but not always) much more precise than β̂[x̃]. Presumably, this advantage is due to the
flexibility of the ensemble learner in τ̂SS[x̃,EN], which is in contrast to the linear additive adjustment of
ancova.

5 Discussion

Randomized experiments and observational studies have complementary strengths. Randomized experiments
allow for unbiased estimates with minimal statistical assumptions, but often suffer from small sample sizes.
Observational studies, by contrast, may offer huge sample sizes, but typically suffer from confounding biases
which must be adjusted for, often through statistical modeling with questionable assumptions. In this paper
we have attempted to combine the strengths of both. More specifically, we have sought to improve the
precision of randomized experiments by exploiting the rich information available in a large observational
dataset.

Our approach may be summarized as “first, do no harm.” A randomized experiment may be analyzed
by taking a simple difference in means, which on its own provides a valid design-based unbiased estimate.
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Figure 3: A dotplot showing sample size multipliers (i.e. sampling variance ratios), from contrasts between
the difference-in means estimator τ̂DM, sample-splitting estimators τ̂SS[xr,LS] and τ̂SS[x̃,EN], and ancova

estimators β̂[xr] and β̂[x̃] with HC2 standard errors, on the 33 ASSISTments TestBed experiments.
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The rationale for a more complicated analysis would be to improve precision. Our goal has therefore been
to ensure that, in attempting to improve precision by incorporating observational data, we have not actually
made matters worse. In particular, we have sought to ensure that (1) no biases in the observational data may
“leak” into the analysis, (2) we can reasonably expect to improve precision, not harm it, and (3) inference
may be justified by the experimental randomization, without the need for additional statistical modeling
assumptions.

In this paper, we focused on covariate adjustment using τ̂SS, which is exactly unbiased; if a different
covariate adjustment method were used instead of τ̂SS, such as those proposed by Lin [2013] or Guo and
Basse [2021], then the resulting estimator would inherit its properties, instead. We focus on the sample
splitting estimator for two reasons. First, because we believe that a guarantee of exact unbiasedness will
remove barriers to the method’s adoption. Incorporating observational data into the analysis of RCTs may
appear to be inherently risky, or to undermine the rationale for randomization. A general guarantee that
effect estimates are unbiased, even in finite samples, may alleviate those concerns. Second, τ̂SS is compatible
with nearly any imputation algorithm, and this flexibility may be especially valuable when incorporating
xr. The analysis in Section 4.3.3 provides a nice illustration of this: while there is little difference between
the standard errors of τ̂SS[xr,LS] and analogous ancova estimates, τ̂SS[x̃,EN]—which uses an ensemble
imputation algorithm including random forests—tended to perform substantially better than an ancova
estimator using the same data.

The results from the 33 A/B tests we analyzed suggest that incorporating information gleaned from the
remnant of an experiment can indeed improve causal inference—but it does not always do so. The extent
to which the remnant can help improve precision depends on the quality of the remnant-based predictions,
and this in turn depends on both the quality of the remnant data and the algorithm ŷr(·). It is therefore
important to include observational data judiciously—our methods dynamically adapt, taking advantage of
observational data when it is useful and minimizing its role when it isn’t.

The focus of this paper was to show that these methods can improve statistical precision without incurring
a statistical cost—i.e. without potentially increasing bias or standard errors. However, gathering remnant
data and using it to train an algorithm may require substantial human and/or computational resources.
Therefore, it is crucial for applied researchers to be able to anticipate in advance the extent to which our
methods will outperform estimators that use only RCT data. These cost benefit calculations can take place
at two different points in the research process: before collecting any remnant data, and after collecting
data from the remnant but before using it to train a predictive algorithm. Before collecting data from the
remnant, researchers may be able to use observed properties of RCT data, along with anticipated, but yet
unobserved, properties of the remnant to decide whether to proceed. For instance, some initial empirical
results, currently under review, suggest that our methods have the potential to improve statistical precision
across a wide range of RCT sample sizes, but that the most dramatic improvements tend to occur when
the RCT sample size is small or moderate. Intuition suggests that the greatest contribution of auxiliary
data will occur when a large number of covariates are available but there is little prior information on which
covariates are the most important. If remnant data are available, analysts may decide whether to use it to
train a predictive algorithm based on explicit comparisons between covariate distributions in the remnant
and in the RCT (for example Appendix D). Intuition suggests that our methods hold the greatest promise
when covariates in the remnant and RCT are most similar.

These, and other questions will be best answered by applying our methods in a wide variety of contexts.
While we have focused on the ASSISTments platform in this paper, future work will explore what other
sources of auxiliary data, and corresponding prediction algorithms, may be particularly well suited to im-
proving the precision of RCTs typically encountered in education research. Indeed, one of the advantages of
developing models on observational data in this manner is that a wide variety of models may be explored,
tested, and iteratively improved upon before they are applied to an RCT.

In particular, it will be interesting to consider cases in which the experimental condition varies—and
is recorded—in the remnant. For instance, the remnant from an RCT contrasting two common medical
procedures may include medical records from previous patients who underwent one or the other procedure.
In that case, analysts may train remnant models to impute both potential outcomes as, say, ŷrc(x) and
ŷrt(x). Then (following Section 3.1) they may set m̂i = pŷrc(xi) + (1 − p)ŷrt(xi) and estimate average
treatment effects using τ̂ , or (following Sections 3.2–3.3), include ŷrc(x) and ŷrt(x) within a sample-splitting
estimator τ̂SS, perhaps alongside other covariates. We expect that the inclusion of both types of exposures
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in the remnant may enhance remnant-based estimators even further, and hope to explore these possibilities
in future research.
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A Summary of A/B Test Data

Table 2 gives sample sizes and skill builder completion rates in the 33 experiments discussed in the paper.

n % Complete n % Complete

Experiment Trt Ctl Trt Ctl Experiment Trt Ctl Trt Ctl

1 956 961 94 93 18 165 170 92 89
2 329 363 98 96 19 259 246 82 85
3 649 610 86 88 20 199 213 85 88
4 201 228 97 95 21 258 276 82 80
5 910 887 73 72 22 188 193 89 85
6 931 900 61 64 23 242 266 81 76
7 360 344 88 88 24 279 235 72 69
8 492 463 79 81 25 269 288 65 59
9 215 211 93 92 26 225 232 73 74

10 231 197 92 91 27 267 256 63 62
11 607 578 68 63 28 228 244 68 64
12 370 384 83 82 29 239 258 54 48
13 338 289 88 84 30 74 92 91 84
14 478 476 76 73 31 69 67 91 87
15 193 209 89 93 32 76 81 62 70
16 404 451 73 69 33 15 11 73 55
17 264 274 84 85

Table 2: Sample sizes and % homework completion—the outcome of interest—by treatment group in each
of the 33 A/B tests.

B Proof of Proposition

Proposition 1. Let (yc1, y
t
1, x

r
1), . . . , (ycN , y

t
N , x

r
N ) be IID samples from a population in which yc, yt, and xr

have finite fourth moments, and where −1 < corr(yc, xr) < 1 and −1 < corr(yt, xr) < 1. Let b be a fixed

constant. Let V̂[τ̂GR(b)] denote the estimated variance of τ̂GR(b), defined analogously to (4) and (13). Let

V̂
{
τ̂SS[xr,LS]

}
denote the estimated variance of τ̂SS[xr,LS], defined as in (9). Then as N →∞,

V̂
{
τ̂SS[xr,LS]

}
V̂[τ̂GR(b)]

p→ φ(b) ≤ 1

where φ(b) is some constant that depends on b.

Proof. We first explicitly define V̂[τ̂GR(b)]. Let RGR
i = Yi − bxri and define

V̂[τ̂GR(b)] =
S2(RGR

C )

nc
+
S2(RGR

T )

nt
. (20)

Comparing (20) to (10) we see that in order to prove the desired result, it is sufficient to show that

Ê2
c/S

2(RGR
C )

p→ φc(b) ≤ 1 and Ê2
t /S

2(RGR
T )

p→ φt(b) ≤ 1 where φc(b) and φt(b) are constants that depend

on b. We will show Ê2
c/S

2(RGR
C )

p→ φc(b) ≤ 1; the argument for Ê2
t /S

2(RGR
T )

p→ φt(b) ≤ 1 is analogous.

Let Ẽ2
c be defined similarly to Ê2

c , except that Ẽ2
c does not use leave-one-out predictions, and instead

uses predictions based on all of the data. That is,

Ẽ2
c =

1

nc

∑
i∈C

[ỹc(xri )− yci ]
2

(21)
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where ỹc(xri ) = ãc + b̃cxri and where ãc and b̃c are the intercept and slope coefficients, respectively, from a
univariate regression of YC on xrC (not dropping observation i). Now note the following: (a) both S2(RGR

C )
and Ẽ2

c converge to finite constants; (b) the constant to which S2(RGR
C ) converges is not 0; and (c) Ẽ2

c ≤
S2(RGR

C ) for all nc ≥ 2. (a) is ensured by the moment conditions. (b) is ensured by the condition −1 <

corr(yc, xr) < 1. (c) follows from the fact that Ẽ2
c = 1

nc
min(a,b)

∑
j∈C

[
Yj −

(
a+ bxrj

)]2
whereas S2(RGR

C ) =
1

nc−1
∑
j∈C

[
Yj − bxrj − Yj − bxrj

]2
= 1

nc−1 mina
∑
j∈C

[
Yj −

(
a+ bxrj

)]2
for a fixed value of b, and thus the

minimization problem of the former is less constrained than the latter. As a result of (a), (b), and (c), it

follows that Ẽ2
c/S

2(RGR
C )

p→ φ̃c(b) ≤ 1.

To complete the proof, it suffices to show that Ê2
c

p→ Ẽ2
c . After some algebra,

Ê2
c =

1

nc

∑
i∈C

[ỹc(xri )− yci ]
2
/(1− hi)2 (22)

where

hi =
1

(nc − 1)S2(xrC)

[
(xrC)

2 − 2xrCx
r
i + (xri )

2
]
. (23)

Here, the hi are the diagonal entries of the hat matrix from the regression of YC on xrC and we use the well-
known shortcut formula for calculating leave-one-out residuals Seber and Lee [2012]. Note that 0 < hi ≤ 1.
Thus,

|Ê2
c − Ẽ2

c | ≤
[

1

(1− h∗)2
− 1

]
Ẽ2
c (24)

where h∗ = maxC hi. However, because of the moment conditions on xr, it is straightforward to show that

h∗
p→ 0, and therefore Ê2

c
p→ Ẽ2

c .
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C Deep Learning in the Remnant to Impute Completion

We used the remnant to train a variant of a recurrent neural network [Williams and Zipser, 1989] called
a Long-Short Term Memory (LSTM) network [Hochreiter and Schmidhuber, 1997] to predict students’
assignment completion. Deep learning models, and particularly LSTM networks, have been previously
applied successfully to model similar temporal relationships in various areas of educational research [Piech
et al., 2015, Botelho et al., 2017].

Neural networks, including recurrent networks such as those explored here, are universal function ap-
proximators [Hornik et al., 1989, Schäfer and Zimmermann, 2006]. These models are commonly represented
as “layers” of neurons; these feed from a set of inputs, through one or more “hidden” layers, to an output
layer, where, in the basic case, the output of each layer is determined by Equation 25. In that equation,
W is a set of learned weights, comparable to the coefficients learned in a regression model. The activation
function a(.) is commonly a non-linearity that is applied to each layer in the network.

h` = a(W ∗ h`−1 + b) (25)

where h0 is the input vector X.
Recurrent networks build upon this formulation to add layers that utilize not only the outputs of preceding

layers, but also incorporate values from previous time steps within a supplied series; in time series data, the
model estimates for a particular time step may be better informed by information from previous time steps,
and a recurrent network structure is designed to take advantage of this likelihood. The LSTM networks
explored here incorporate a set of “gates” that regulate the flow of data from both preceding layers and a
“cell memory” that is calculated through previous time steps. The output of this LSTM layer is given by
Equations 26-31.

ft = σ(Wf ∗ [ht−1, xt] + bf ) (26)

it = σ(Wi ∗ [ht−1, xt] + bi) (27)

ot = σ(Wo ∗ [ht−1, xt] + bo) (28)

C̃t = tanh(WC ∗ [ht−1, xt] + bC) (29)

Ct = ft ∗ Ct−1 + it ∗ C̃t (30)

ht = ot ∗ tanh(Ct) (31)

where t is given as recurrent layer ` on the given timestep.
In the above equations, gates ft and it inform the cell memory Ct how much of the previously-computed

memory should be forgotten and updated with the output of the previous time step and preceding layer,
respectively.

As a recurrent network, the model is trained by iteratively updating the weight matrices (W in the above
equations) through a procedure known as backpropagation through time [Werbos, 1990] combined with
a stochastic gradient descent method called Adam [Kingma and Ba, 2014]. These methods are informed
by a cost function (sometimes called a loss function) that is calculated through the comparison of model
predictions with supplied ground truth labels. In this work, we adopted a network structure that incorporates
multi-task learning [Caruana, 1997] as a means of regularization. In other words, our model ultimately
produces two sets of predictions corresponding with two outcomes of interest: student completion and
inverse mastery speed, each on the subsequent assignment. By optimizing model weights in regard to these
two outcomes, the process helps prevent the model from overfitting to either outcome; as student completion
of their next assignment is the outcome explored in this work, the second outcome of inverse mastery speed
is used only for this regularization purpose and is not utilized in subsequent analyses. Given that student
completion is binary and inverse mastery speed is a continuous measure, the formula of which is described in
Table 3, the cost function for our model training was calculated as a linear combination of two separate cost
functions. Binary cross-entropy is used in the case of next assignment completion, as shown in Equation 32,
while RMSE (Equation 33) is used in the case of inverse mastery speed on the next assignment. The final
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cost function is then given as Equation 34, which is calculated over smaller smaller “batches” of samples
over multiple training cycles known as epochs.

BCE = −(y ∗ log(ŷ) + (1− y) ∗ log(1− ŷ)) (32)

RMSE =

√
1

n

∑
(y − ŷ)2 (33)

Costbatch =
BCEbatch + RMSEbatch

2
(34)

The training of the model continues by calculating the cost and iteratively updating model weights over
multiple epochs until a stopping criterion is met. In this regard, we hold out 30% of the training data
as a validation set. Model performance is calculated on this validation set after each epoch of training.
Training ceases once the model performance on this validation set stops improving (i.e., the difference of
model performance from one epoch to the next falls below a designed threshold). To avoid stopping the
training process too early due to small fluctuations in model performance on the validation set early in the
training procedure, a 5-epoch moving average of validation cost is used as the stopping criterion.

The specific model structure used in this work observed an LSTM network comprised of 3 layers. We
used 16 covariates to describe each single time step, which then feeds into a hidden LSTM layer of 100
nodes, which is used to inform an output layer of two units corresponding with the previously described two
outcomes of interest. The input features used in this model, described in Table 3, represent transformed and
non-transformed versions of several metrics that describe different aspects of student performance within a
single assignment. We considered sequences of at most ten worked skill builder assignments (c.f. Section 4.1),
to predict student completion on a subsequent skill builder assignment.

We specified the LSTM model’s hyperparameters (e.g., number of LSTM nodes, delta of stopping cri-
terion, weight update step size) based on previously successful model structures and training procedures
within the context of education. We evaluated the model using a 10-fold cross validation within the remnant
to gain a measure of model fit (leading to an ROC area under the curve of 0.82 and root mean squared error
of 0.34 for the dependent measure of next assignment completion). After this evaluation, the model is then
re-trained using the full set of remnant data. This trained model is then used within the analyses described
in Section 4.

D Comparing Covariates in the Remnant to the RCT

The requirement (5) that imputations ŷc(xi) and ŷt(xi) are independent of treatment assignment Ti precludes
any use of RCT outcomes in training the imputation algorithm ŷr(·). This is due to the fact that, if there is
indeed a treatment effect for any RCT subject, RCT outcomes are a function of T . This restriction includes
the use of Y to select between competing ŷr(·) algorithms, or to decide whether to use remnant-based
predictions ŷr for covariate adjustment at all. That is, so long as analysts use only remnant outcomes, they
may assess and modify ŷr(·) without restriction without violating (5), they may not use outcome data from
the RCT.

This restriction, however, does not extend to covariate data x from the RCT. An anonymous reviewer
suggested developing a method comparing covariate distributions between the RCT and the remnant that
may indicate the gain in precision an analyst may expect from including ŷr in a covariate adjustment
estimator.

Here we discuss a technique we attempted, although we do not believe that it achieved its aim.
The intuition behind our approach is based roughly on “K-Nearest Neighbors” classification—if a subject

in the RCT closely resembles other subjects in the remnant, an algorithm trained on the remnant may be
able to predict that subject’s outcome accurately, whereas if an RCT subject is unlike many other remnant
subjects, the prediction is not likely to be accurate. Formally, let K > 0 be an integer, and D(·, ·) be a
distance measure. Then, for subject i in the RCT and subject j in the remnant, let dij = D(xi,xj), then,

for each i, sort these distances so that di(1) ≤ di(2) ≤ . . . . Finally, compute d̄ki =
∑K
k=1 di(k)/K, the average

distance between xi and it’s K nearest neighbors. The thought is that outcomes for subjects with low d̄Ki
should typically be easier to predict than subjects with larger d̄Ki . Distances within the remnant may form
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Input Feature Description
Problems Started The number of problems started by the student. (Untrans-

formed & Sq.Root)

Problems Completed The number of problems completed by the student. (Un-
transformed & Sq.Root)

Inverse Mastery Speed The inverse of the number of problems needed to complete
the mastery assignment, or 0 where the student did not
complete. (Untransformed & Sq.Root)

Percent Correct The percentage of problems answered correctly on the
first attempt without the use of hints. (Untransformed
& Sq.Root)

Assignment Completion Whether the current assignment was completed by the stu-
dent.

Attempts Per Problem The number of attempts taken to correctly answer each
problem. (Avg. & Sq.Root)

First Response Time The time taken per problem before making the first action.
(Avg.)

Problem Duration The time, in seconds, needed to solve each problem. (Avg.)

Days with Activity The number of distinct days on which the student worked
on each problem in the assignment. (Avg.)

Attempted Problem
First

Whether, on each problem, the first action was an attempt
to answer (as opposed to a help request). (Avg.)

Requested Answer Hint Whether, on each problem, the student needed to be given
the answer to progress. (Avg.)

Table 3: Assignment-level features in LSTM Model

a reasonable basis of comparison—that is, one may compare d̄ki to the distribution of average distances
between remnant subjects and their K nearest neighbors.

To calculate this measure for TestBed A/B tests, we first flattened each subject’s covariate data by
averaging their assignment-level statistics and also including a covariate equal to the number of included
assignments. Then, we chose K = 5 and D(·, ·) to be the Mahalanobis distance, with the covariance matrix
estimated using the remnant.

Figure 4 shows the results. Each panel corresponds to a different A/B test, and displays a boxplot of d̄Ki
for subjects in the RCT next to an analogous boxplot for the remnant. Note that across the 33 experiments,
there were two distinct remnants, corresponding to two separate data draws. The panels are sorted lowest
to highest according to the ratio V̂(τ̂DM)/V̂(τ̂SS[xr,LS]).

Unfortunately, no pattern is apparent, suggesting that d5i is not a useful indicator of the variance reduction
potential of algorithms trained in the remnant. Future research may lead to modifications of dKi or another
measure entirely that may better anticipate ŷr(·)’s out-of-sample performance. Fortunately, estimators
τ̂SS[xr,LS] and τ̂SS[x̃,EN] often perform well, and (in our examples) never harm precision, even when ŷr(·)
performs poorly in the RCT.
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Figure 4: Boxplots comparing the distribution of d̄5i for each ASSISTments TestBed A/B test against the
analogous distribution for the corresponding remnant. Panels are ordered lowest to highest according to
V̂(τ̂DM)/V̂(τ̂SS[xr,LS])
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