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Understanding equivalence is fundamental to STEM disciplines, yet misunderstandings and misconcep-
tions inhibit students from fully appreciating or leveraging the concept. Using the game-based algebraic
notation system, From Here to There! (FH2T), students explore ideas of equivalence by dynamically
transforming expressions or equations among mathematically equivalent states. In the fall of 2019, 475
middle-school students participated in a randomized control trial where they worked in either FH2T or
online problem sets with hints and feedback in ASSISTments over four 30-min sessions during their math
class. We found that (a) students in both conditions improved their understanding of mathematical
equivalence from pretest to posttest, (b) students in the FH2T condition performed better on posttest
compared to students in the problem set condition, and (c) the condition effect was comparable between
students with high versus low prior knowledge. Together, the findings suggest that FH2T is an effective
intervention for improving middle-school students’ understanding of mathematical equivalence. The
implications for research and practice on the usefulness of digital environments in mathematics education
are discussed.

Educational Impact and Implications Statement
This study provides evidence that From Here to There!, a freely available game-based math
technology, can improve mathematical understanding of equivalence in 6th- and 7th-grade students.
From Here to There! integrates perceptual learning with mathematical puzzles, allows students to
dynamically transform mathematical expressions and equations, and is designed to promote students’
understanding of mathematical equivalence. Results reveal that FH2T improves learning for all
students regardless of their prior knowledge, suggesting that it is a low-cost and effective math
intervention for students.

Keywords: algebra and algebraic thinking, technology, instructional activities, middle-school math-
ematics

Student misconceptions about equivalence and the equal sign
have been noted as inhibiting success in upper-level mathemat-
ics and other STEM disciplines (Kieran, 2007; Knuth et al.,
2006; Stephens et al., 2013; U.S. Department of Education,
2008). Equivalence is a foundational concept of mathematics

involving the understanding that two mathematical objects,
such as sets (e.g., 2 � 2), values (e.g., 2/3 � 4/6), or expres-
sions (e.g., (x – 1)(x � 1) � x2 – 1), represent the same value
and are interchangeable. It is often formally represented by the
equal sign, denoting that the two sides of an equation have the
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same value, so there is an equivalence relation between the
expressions on each side of the equal symbol (e.g., 2 � 3 � 5;
Kieran, 1981, 1992, 2007). Although there has been an abun-
dance of work that has explored interventions for improving
students’ understanding of equivalence in elementary grades
(e.g., Alibali et al., 2018; Blanton et al., 2015; McNeil et al.,
2012), students continue to struggle with equivalence beyond
elementary school years (McNeil et al., 2006). However, there
is less work examining different approaches of training or
improving students’ conceptual understanding of equivalence at
the middle-school level.
In this study, we conduct a randomized controlled trial with 475

middle-school students, and test the effects of two different learn-
ing technologies, From Here to There! (FH2T) and an active
control of online problem sets with hints and immediate feedback,
on students’ understanding of mathematical equivalence. In FH2T,
we explore a novel approach of asking students to transform a
perceptually different expression (e.g., 24 � y � 6 � 13) to match
a mathematically equivalent goal state (e.g., 13 � y � 30). Instead
of involving the equal sign, mathematical equivalence is implicitly
embedded in the task; students can experience the transformation
of the starting expression changing into the goal state and the
equivalent relation between the two expressions. Here, we com-
pare student performance on mathematical equivalence items be-
fore and after the intervention to examine whether FH2T improves
students’ understanding of mathematical equivalence, and whether
this effect varies based on students’ initial levels of prior knowl-
edge.

Mathematical Equivalence and Students’ Struggles

Although children as young as four years of age have some
understanding of numerical equivalence—whether two sets have
equal quantities of items (e.g., Mix, 1999; Rittle-Johnson et al.,
2011), students continue to struggle with the concept of equiva-
lence well into college as the notation becomes more complex and
involves larger numbers, more operations, and generalized forms
with variables (Crooks & Alibali, 2013). One common miscon-
ception many students have is holding an operational view, or
viewing the equal sign as calling for computation. This view leads
students to interpret “2 � 3 � 5” as two and three makes five, or
judge “2 � 3 � 4 � 1” as an invalid equation because it does not
follow the typical “operation � answer” format (Kieran, 1981;
Knuth et al., 2006). Furthermore, when an equation involves
operations on both sides (e.g., 2 � 3 � 4 � __), some elementary
students may add up all the numbers to generate the answer, __ �
9, instead of balancing two sides of the equation and fill in __ �
1 (e.g., McNeil & Alibali, 2005; Perry et al., 1988). When asked
to compare two arithmetic expressions (e.g., 10 – 2 � 4 and 10 �
4 – 2), middle-school students were inconsistent at parsing
the expressions (i.e., knowing that “–” should go with “2” in the
expressions above) and some students incorrectly judged the
equivalence of the two expressions, especially when they involved
large numbers (Chaiklin & Lesgold, 1984). These misconceptions
of arithmetic equivalence have negative impacts on learning alge-
bra in which letters represent unknown values (Kieran, 1992;
Küchemann, 1980) and students need to understand the relations
between variables (Usiskin, 1988) and the structure of algebraic
expressions (Kieran, 1989). Together, these misconceptions about

equivalence are associated with difficulty in equation solving and
have ramifications for algebra and higher-level mathematics.
Past work has shown that students, especially in elementary

school, struggle with mathematical equivalence (e.g., McNeil &
Alibali, 2000), thus most of the intervention studies on mathemat-
ical equivalence are with elementary school students and focus on
students’ understanding of the equal sign (Alibali et al., 2018;
Knuth et al., 2006; Rittle-Johnson et al., 2011). In one study with
second- and third-graders, students who received intervention on
practicing arithmetic problems organized by equivalent sums (e.g.,
2 � 3 � 5, 1 � 4 � 5, etc.) showed more improvement on solving
mathematical equivalence problems (e.g., 2 � 3 � 4 � __)
compared to students who practiced arithmetic problems organized
by the first addend (e.g., 2 � 3 � 5, 2 � 4 � 6, etc.) or students
who did not practice solving arithmetic problems at all (McNeil et
al., 2012). Furthermore, a sustained, comprehensive early algebra
intervention involving relational understanding of the equal sign
and principles of identity (e.g., 2 � 0 � 2), inverse (e.g., 2 – 2 �
0), and commutative (e.g., 2 � 0 � 0 � 2) properties in third grade
leads to improvement in students’ understanding of mathematical
equivalence and equations (Blanton et al., 2015). The improve-
ments in these studies reflect aspects of the relational view of the
equal sign, where two sides of the equal sign calculate to the same
value, and a particular expression is just one of myriad ways to
represent that quantity (Stephens et al., 2013).
The importance of equivalence extends well into middle school

and these concepts are critically important for success in prealge-
bra and algebra (Fyfe et al., 2018; Jacobs et al., 2007; Kieran,
1989; McNeil et al., 2006). However, studies have found that
almost half of middle-school students in the United States held an
operational view of the equal sign (Alibali et al., 2007; Booth &
Davenport, 2013; Knuth et al., 2006), indicating the need for
equivalence intervention in middle school. Whereas most elemen-
tary students struggle with mathematical equivalence and students
across aptitude levels benefit from the equivalence interventions,
the understanding of equivalence varies between middle-school
students. Therefore, the differences in middle-school students’
level of understanding may moderate intervention effects, resulting
in aptitude-by-treatment interactions.
Previous studies have revealed two competing hypotheses on

how students’ prior knowledge may moderate mathematical learn-
ing. First, students with high prior knowledge may be more
equipped to benefit from the instruction or intervention and im-
prove more on mathematical performance compared to students
with low prior knowledge (e.g., Swanson et al., 2008; Wood et al.,
2020). Second, students with low prior knowledge may have more
room for improvement and learn more from an intervention com-
pared to students with high prior knowledge (e.g., Murphy et al.,
2020; Ramani & Siegler, 2011). Understanding whether students
with high or low prior knowledge gain more from an intervention
is important to provide effective and efficient instruction that
supports all students.
Given that developing a formal understanding of mathematical

equivalence is crucial to algebra learning, identifying effective
interventions that promote these equivalence skills in students is
critical. Previous interventions have focused on the meaning of the
equal sign (that both sides of equations equal the same amount)
and the principles of arithmetic operations around the equal sign.
However, students also need to be able to encode the location of
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symbols and operators, notice the arithmetic relations between
numbers within equations, recognize that quantities can be repre-
sented in many ways, and transform equations following mathe-
matical principles. In the current study, we test the efficacy of a
perceptual learning intervention—FH2T—on middle-school stu-
dents’ understanding of equivalence and explore the potential
interaction between prior knowledge and intervention on students’
learning of mathematical equivalence.

Perceptual Learning and Conceptual Understanding of
Equivalence

Substantial empirical work has demonstrated that perceptual
processes are involved in learning (e.g., Catley & Novick, 2008;
Goldstone et al., 2010; Patsenko & Altmann, 2010) and mathe-
matics specifically (e.g., Kellman et al., 2010; Kirshner, 1989;
Kirshner & Awtry, 2004; Landy & Goldstone, 2007a). Perceptual
features of symbols influence mathematics performance (e.g., Mc-
Neil et al., 2009), and humans adapt their perceptual-motor sys-
tems to organize these perceptual features to fit the needs in
mathematical tasks. For instance, proximity is often used as a cue
to group symbols in a way that aligns with mathematical princi-
ples. Adults tend to spontaneously group terms in ways that align
with the order of operations: They write numbers around the
multiplication sign closer together, and numbers around the addi-
tion sign further apart (e.g., 3 � 4�5; Landy & Goldstone, 2007a).
When the symbols are spaced incongruent to the mathematical
principles (e.g., 3�4 � 5), even adults solve expressions incor-
rectly (i.e., add before multiplying in this example; Landy &
Goldstone, 2010). These kinds of perceptual biases are thought to
emerge with experience, and we rely on these perceptual processes
to effectively and efficiently perform sophisticated cognitive tasks
(Goldstone et al., 2010).
Since “what students notice mathematically has consequences

for their subsequent reasoning” (Lobato et al., 2013, p. 809),
training one’s perceptual and sensorimotor systems in symbolic
notation may result in effective reasoning about the relationships
represented by the symbols. Principles of grounded and embodied
cognition suggest that successful perceptual training of algebraic
structures engages cognitive systems that correctly embody math-
ematical rules and turn actions into meaning (Dourish, 2004).
Grounding one’s mathematical knowledge and reasoning in action
and perception has also been shown to support the transfer of
knowledge to new situations (Goldstone et al., 2010; Goldstone et
al., 2008; Landy & Goldstone, 2007b).
There is increasing evidence that using perceptual features or

engaging perceptual-motor systems in mathematical contexts can
have a positive influence on learning (Kellman et al., 2010; Landy
& Goldstone, 2007b; Ottmar et al., 2012; Ottmar et al., 2015). For
instance, providing perceptual support by highlighting the equal
sign in red leads to using new and correct strategies for solving
mathematical equivalence problems in fourth-grade students (e.g.,
2 � 3 � 4 � 2 � __; Alibali et al., 2018). Furthermore, students
show improvement in simplifying algebraic expressions after a
2-hr intervention that engages their perceptual-motor systems (Ott-
mar et al., 2012). In this intervention, eighth-grade students prac-
ticed simplifying algebraic expressions using gesture-actions (e.g.,
moving, combining, and substituting symbols) that apply dynamic
transformations to expressions on screens. The system records all

student actions, enacts valid transformations on the screen (e.g.,
turning 2 � 7x into 7x � 2 when “2” is dragged to the right), and
provides clear visual feedback on invalid transformations. As an
example, in 2 � 7x, when students attempt to add 2 and 7x by
tapping “�”, the expression shakes; when students attempt to
transform 2 � 7x into 2x � 7 by dragging “x” next to “2”, “x”
snaps back to its original location. Because x is an unknown in 2 �
7x, adding 2 and 7x or moving x next to 2 are invalid, and the only
valid actions the system enacts are commuting 7 and x around the
multiplication sign (i.e., 2 � x·7) or 2 and 7x around the addition
sign (7x � 2). Following this intervention, students showed sig-
nificant improvement on simplifying complicated expressions
(e.g., �5 � 4x � 2 – 6x – 8y � 2y). Together, the findings suggest
that learners leverage perceptual-motor features and feedback in
mathematical learning and problem-solving, and that turning alge-
braic notations into tangible objects that enforce mathematical
rules through physical movements may help improve mathematics
learning.

Theoretical and Empirical Support for FH2T

FH2T (freely available online at https://graspablemath.com/
projects/fh2t) is a dynamic research-based game application that
implements perceptual learning theories to address cognitive and
affective factors that lead to low proficiency in mathematics.
Although algebra instruction in school often focuses on memoriz-
ing and retrieval of abstract and arbitrary rules (Henry & Brown,
2008; Kirshner & Awtry, 2004), FH2T leverages and builds on
students’ knowledge of arithmetic for algebra learning. FH2T aims
to help students identify how algebraic expressions are structured
and think more flexibly about mathematical operations and prop-
erties, which in turn may improve students’ proficiency and flu-
ency in algebra (Ottmar et al., 2012). In particular, FH2T engages
the perceptual-motor system to externalize the hierarchical struc-
ture of algebraic formalisms. In FH2T, the implicit structure of
mathematics is made into explicit and interactive virtual objects so
that students can touch and move symbols according to mathemat-
ical principles in a virtual environment. By reifying mathematical
symbols as movable physical objects, students can realize that
mathematical transformations are more dynamic, rather than pro-
cedural steps or a static recopying of lines.
One of the important features of FH2T is that students learn

algebra through discovery-based puzzles, rather than procedural
steps. In each problem in FH2T, students are presented with two
expressions: a starting expression, which is active and transform-
able, and a target goal state, which is mathematically equivalent to
the starting expression (see Figure 1). Students’ objective is to
transform the starting expression (“24 � y � 6 � 13”) into the
target goal state (“13 � y � 30” in a white box) using algebraically
permissible actions and learned gestures. It is important to note
that there is no equal sign linking those two expressions; however,
equivalence is an integral aspect of the game that the starting
expression (and any subsequent state of the active expression) is
mathematically equivalent to the goal state, and the transformation
process demonstrates this equivalence. For instance, adding 24 to
6 transforms “24 � y � 6 � 13” into “y � 30 � 13”, and
commuting 13 to the left transforms “y � 30 � 13” into “13 � y �
30”. Equivalence was preserved in all steps between the starting
expression (24 � y � 6 � 13) and the goal state (13 � y � 30).
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In FH2T, students apply and build upon their arithmetic knowl-
edge (e.g., 24 � 6 � 30) to efficiently reach the goal, receive
perceptual feedback on their actions, and uncover transformation
paths between the two equivalent expressions.
Another important feature of FH2T is that students can dynam-

ically manipulate and transform mathematical expressions by us-
ing various gesture-actions on the screen (e.g., dragging, tapping)
to perform operations, break apart parts of the expression, and
reach the goal state of the problem. Learning technologies, partic-
ularly dynamic systems that utilize motion, may offer a promising
new approach to teaching mathematics that is not possible with
traditional instruction (Arzarello et al., 2014; Byers & Hadley,
2013; McEwen & Dubé, 2015; Sinclair & Heyd-Metzuyanim,
2014). Turning algebraic notations into tangible, movable objects
that follow mathematical principles shows promise for transform-
ing many of the traditional distinctions between abstract and
concrete knowledge (Alibali & Nathan, 2012; Kaminski et al.,
2008; Uttal et al., 2008). Indeed, preliminary evidence suggests
that the use of dynamic symbols in a game-based environment can
increase students’ engagement and learning of algebraic concepts
(Ottmar & Landy, 2017; Siew et al., 2016). The program also
responds to student actions, and the student receives immediate
feedback on the validity of their actions. From a perceptual learn-
ing perspective, the experience of moving and transforming alge-
braic objects on the screen, reinforced by the visual feedback of
changes to the expressions, may help students generalize notation
mechanics and attend to relevant details.
Prior work using an earlier version of FH2T has shown positive

results that the system may be effective in decreasing structural
errors (e.g., incorrectly adding the 3 and 5 to make 8 in 3 � 5 �
4) and improving mathematical understanding for elementary and
middle-school students. For instance, one preliminary study with
85 sixth- and seventh-grade students showed that those in the
condition similar to FH2T, referred to in the study as the fluid
visualizations condition, experienced more gains on mathematics
than students in both the manual calculations and control condi-

tions (Ottmar et al., 2015). Moreover, the students who completed
more problems in the fluid visualizations condition scored higher
on the posttest than students who completed fewer problems in the
app (Cohen’s d � .48), and this effect was significant above and
beyond students’ prior knowledge.
Similarly, another study with 185 second-grade students (Hulse

et al., 2019) also found that, controlling for pretest performance,
students who completed more problems within the game scored
higher on the posttest compared to students who completed fewer
problems. A further investigation revealed a significant interaction
between in-game progress and students’ prior knowledge on the
posttest performance. Among students with low prior knowledge,
those who solved more problems were more likely to have larger
learning gains compared to those who solved fewer problems;
among students with high prior knowledge, in-game progress was
not related to posttest scores. The findings suggest that solving
more problems in the game was more beneficial for students with
low, as opposed to high, prior knowledge. In sum, the prior
evidence suggests that FH2T may prove effective at improving
mathematics performance in elementary and middle-school stu-
dents, and perhaps be more beneficial for students with low prior
knowledge, warranting a larger-scale randomized controlled trial
to evaluate its effectiveness in middle school.

The Current Study

We conducted a pretest–intervention–posttest randomized con-
trolled trial in the fall of 2019, where students were assigned to one
of two intervention conditions: FH2T and an online problem set
control with hints and immediate feedback in ASSISTments (Hef-
fernan & Heffernan, 2014). ASSISTments is an online assignment
platform where teachers can monitor student performance and
progress, and students can request hints during problem-solving
and receive immediate correctness feedback on their answers.
A previous randomized controlled trial has revealed that
ASSISTments was beneficial for student learning and increased

Figure 1
An Example of From Here to There! Problem Consisting of a Starting Expression and a Target
Goal State

Note. See the online article for the color version of this figure.
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students’ mathematics performance compared to business-as-usual
homework practice (Roschelle et al., 2016). As such, in this study,
we used problem sets in ASSISTments as an active comparison
group, rather than a true business-as-usual control, to examine the
effects of playing FH2T on students’ understanding of mathemat-
ical equivalence above and beyond an effective technology-based
intervention (What Works Clearinghouse, 2020). Our specific re-
search questions were

1. Do students make gains in understanding of mathemati-
cal equivalence after a 2-hr intervention?

2. Do students in the FH2T condition show a greater un-
derstanding of mathematical equivalence at posttest com-
pared to students in the active problem set control con-
dition?

3. Does the condition effect vary depending on students’
prior knowledge?

To address our research questions, we first conducted a prelim-
inary series of paired sample t tests to examine gains from pretest
to posttest (RQ1); we then used hierarchical linear modeling
(HLM) to estimate the effects of condition on posttest scores,
controlling for pretest and other student characteristics, as well as
classroom-level nesting (RQ2); and we explored the interaction
between condition and pretest scores, using HLM (RQ3). We
hypothesized that students in both conditions might experience
gains from pretest to posttest, but students in the FH2T condition
might show a greater understanding of mathematical equivalence
at posttest compared to students in the problem set condition. We
explored the potential moderating effect of students’ prior knowl-
edge on the effect of condition in order to examine whether
students with high or low prior knowledge benefit more from
FH2T, but we did not have an a priori hypothesis regarding the
direction of the interaction.

Method

Participants

Ten teachers from six middle schools were recruited from a
large, urban district in the Southeastern United States. Together,
they taught 29 mathematics classes with a total of 689 students.
Most students were in sixth grade (609 students, 88.4%), and the
remaining 80 students (11.6%) were in seventh grade. All students
in our study were placed in one of three levels of mathematics
classrooms by the district: advanced (525 students, 76.2%), on-
level (111 students, 16.1%), or support (53 students, 7.7%). The
majority of students in our sample were advanced sixth-grade
students. Random assignment of the intervention condition oc-
curred at the student-level, with the 689 students from the 29
classes randomly assigned to FH2T (n � 348) or problem set (n �
341) conditions.
Because of scheduling constraints, 19 students from one class-

room did not participate in the study and 183 students did not
complete at least 50% of the items on the pretest or posttest, thus,
we excluded these students in the following analyses. The 50%
cutoff on pretest and posttest was determined during preliminary

analysis prior to testing the intervention effects. The students who
completed less than 50% of items spent an average of 9 min on the
pretest (range � 0–12 min out of 45 min), and 2 min on the
posttest (range � 0–13 min out of 40 min), suggesting that they
did not spend appropriate amount of time and dropped out of the
assessments. Using the 50% cutoff on pretest and posttest allowed
us to only include students with whom we had more accurate
estimates of their equivalence understanding and learning. In ad-
dition, we obtained access to data on student characteristics from
the school district and excluded 12 students who had missing
demographic and past achievement information (i.e., gender, race,
overall academic achievement status). The total number of ex-
cluded participants was 214 (FH2T: 121; problem set: 93). The
final sample included the remaining 475 students: 227 (47.8%)
were in the FH2T condition, and 248 (52.2%) were in the active
control problem set condition.
The student demographics and pretest scores of the final sample

(N � 475) were comparable between conditions (see Table 1). The
study was approved by and conducted in accordance with the
human subjects guidelines of the Institutional Review Board.

Procedure

This study consisted of a 45-min pretest, four 30-min interven-
tion sessions, and a 40-min posttest in a span of 6 weeks. Teachers
were asked to have their students complete one or two sessions a
week, and the session assignments for that week were made
available to the teachers and students each Sunday. Individual
teachers decided the days that their students would work on the
study assignments in class.

Table 1
Students’ Demographic Information by Condition and Their
Pretest Scores

Variable

All
(n � 475)

FH2T
(n � 227)

Problem set
(n � 248)

n % n % n %

Gender
Male 261 54.9 127 55.9 134 54.0
Female 214 45.1 100 44.1 114 46.0

Race
White 165 34.7 81 35.7 84 33.9
Asian 260 54.7 120 52.9 140 56.5
Hispanic 23 4.8 10 4.4 13 5.2
African American 10 2.1 6 2.6 4 1.6
Native American 5 1.1 1 0.4 4 1.6
Pacific Islander 1 0.2 1 0.4 0 0.0
Multi-racial 11 2.3 8 3.5 3 1.2

Grade
Sixth 453 95.4 217 95.6 236 95.2
Seventh 22 4.6 10 4.4 12 4.8

Class
Advanced 400 84.2 192 84.6 208 83.9
On-level 34 7.2 14 6.2 20 8.1
Support 41 8.6 21 9.3 20 8.1

Student achievement level
Above grade 248 52.2 119 52.4 129 52.0
Not above grade 227 47.8 108 47.6 119 48.0

Pretest scores (M, SD) 3.80 1.61 3.86 1.60 3.75 1.62

Note. FH2T � From Here to There!
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In Week 1, all students received a brief assessment on their
equivalence understanding, an experimenter-designed task that
measured students’ sensitivity to perceptual differences in alge-
braic expressions, and questionnaires on their mathematics anxiety
and mathematics self-efficacy. Students were then assigned two
intervention sessions in Week 2 and another two intervention
sessions in Week 3. The mathematical content was aligned be-
tween the two conditions, and all students solved problems involv-
ing four operations, negative numbers, fractions, and order of
operations during their intervention sessions using their assigned
technology. The posttest was given on Week 4, and it consisted of
the mathematical equivalence assessment, the experimenter-
designed task, and the questionnaire on mathematics anxiety. All
study assignments remained available to students and teachers
until the end of Week 6, allowing students additional time to
complete any outstanding assignments.
All study assignments were administered online in mathematics

classrooms during instructional periods, and students worked individ-
ually at their own pace using their own school-issued Chromebooks in
the classroom. Although the pretest and posttest were designed to take
approximately 40 min, students could take as long as they needed to
complete the assessment and the questionnaires. A countdown timer
was embedded in the FH2T and problem set conditions to ensure that
students in the two conditions were allotted a comparable amount of
time with each learning technology.
The assessments and all study sessions in both conditions were

delivered to students using ASSISTments (Heffernan & Heffernan,
2014), an online platform that allows teachers to assign problem
sets to students. To be clear, we used the ASSISTments platform
in two different ways in this study: a platform to implement the
randomized controlled trial, and as the technology used in the
active problem set control condition. ASSISTments was designed
to be used not only as a homework tutoring and feedback system

for teachers and students, but also as a tool to help researchers
efficiently conduct randomized controlled trials, collect finely
grained data about student interactions, and analyze and share
results within an existing data infrastructure (Heffernan & Heffer-
nan, 2014). Thus, we used ASSISTments as the platform for
administering pretest and posttest, providing instructions for the
intervention sessions, maintaining intervention condition within
students across sessions, and recording timing and fidelity data for
both conditions.
Although it may appear that using the system in this dual way

may unfairly benefit students in the problem set control condition,
we feel that any advantage the control students may have makes it
an even stronger comparison condition for testing FH2T. That is,
if the familiarity and experience of the technological environment
contribute to student performance on posttest, students in the
problem set control condition should outperform students in FH2T
condition. However, if we detect positive effects for FH2T above
and beyond the active control, the findings provide clear evidence
that the improvement may be due to aspects of FH2T experience
and cannot be attributed to students’ familiarity with the learning
technologies.

The Measure of Mathematical Equivalence
Understanding

Although the pretest and posttest also included several mea-
sures on perception of algebraic expressions and attitude toward
mathematics, the current analyses focused on the mathematical
equivalence assessment consisting of six items from previously
validated measures of performance (Rittle-Johnson et al., 2011:
Cronbach’s alpha � .94�.95; Star et al., 2015; Cronbach’s
alpha � .89). Questions are listed in Table 2. Within the six
items, Items 1 and 2 focused on balancing two sides of the

Table 2
The Mathematical Equivalence Items in Pretest

Item Question Correct answer Reference

1 8�__ � 8 � 6 � 4. Enter the number that goes in the blank. 10 Rittle-Johnson et al., 2011
2 898 � 13 � 896 � __. What number goes in the blank? 15 Rittle-Johnson et al., 2011

You can try to find a shortcut, so you don’t have to do all the adding.
3 3 � 4 � 7 b Star et al., 2015

1 What does this symbol mean?
a. the total
b. two quantities on either side have the same value
c. what the answer is
d. the problem has been solved

4 If 10x � 12 � 17, which of the following must also be true? a Star et al., 2015
a. 10x � 12 – 12 � 17 – 12
b. 10x – 10 � 12 – 10 � 17
c. �10x – 12 � 17
d. 5x � 6 � 17

5 Which of the following is equivalent to (the same as) (n � 3) � (n � 3) � (n � 3) � (n � 3)? d Star et al., 2015
a. n � 12
b. 4n � 3
c. n4 � 12
d. 4(n � 3)

6 Which of the following is NOT equivalent to 19(73 – 15)? d Star et al., 2015
a. 19 (58)
b. 19 (73) – 19(15)
c. 19 (�15 � 73)
d. 19 (73) – 15
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equation; Item 3 assessed students’ definition of the equal sign;
Item 4 involved arithmetic operation on both sides of the equal
sign; Items 5 tapped into students’ understanding of the rela-
tions between addition and multiplication in equivalent expres-
sions; and Item 6 involved transforming equivalent expressions
by applying order of operations and distribution. Although
limited in measuring students’ comprehensive understanding of
algebra, these six items together assessed a range of students’
conceptual knowledge in mathematical equivalence. Isomor-
phic posttest questions were created by substituting numbers of
similar magnitudes in the pretest questions and the response
options. Each item was scored as correct (1) or incorrect (0),
and the total score out of 6 on the posttest was included as the
outcome and the pretest score was included as a covariate in the
analyses. The reliability of these six items was KR-20 � .63 at
pretest and KR-20 � .64 at posttest. Because the reliability on
these assessments was within the acceptable range but lower
than the preferred .80, likely due to the limited number of items
and binary scoring, we reported descriptive findings of the
individual items to further explore how the intervention may
impact students’ understanding of equivalence.
The assessments were administered using the test-mode in

ASSISTments, where hints and correctness feedback were not
available during or after the assessments. The questions were
presented one at a time, and students entered their answers via
the keyboard or selected a response option using a mouse. After
entering or selecting an answer, students clicked the “Submit
Answer” button for the system to record their response, and
then clicked the “Next Problem” button to move on to the next
question (see Figure 2).

Intervention Conditions

In both conditions, students accessed their assigned learning
technology through the ASSISTments platform. Each day, stu-
dents logged in to the platform using a username and password.
The assignment of the day was presented using a clickable link that

directed students to their assigned learning technology—further
work in ASSISTments or FH2T. A countdown timer was embed-
ded into each intervention session to ensure that both conditions
were matched on time.

From Here to There! (FH2T)

As described earlier, FH2T is a research-based technology
game, where students transform mathematical expressions from an
initial state to a specified mathematically equivalent goal state. In
FH2T, numbers and mathematical symbols become virtual objects
that students can pick up and move. Students acquire new gesture-
actions (e.g., using a mouse cursor to tap the addition sign to add)
through brief video demonstrations, and use these gesture-actions
to transform expressions from one state to another.
A sample FH2T problem with a series of gesture-actions to the

goal state is illustrated in Figure 3. In this example, the objective
is to transform 7 � 2 � 10 � 8 into 5 � 2 � 5 � 15 (Figure 3a).
The student first dragged the 7 on top of 8 (Figure 3b) to produce
the sum of 15 (addition; Figure 3c). Then, the student turned on the
keypad (Figure 3d) and selected 10 (Figure 3e) to substitute 10
with 5 � 5 (decomposition; Figure 3f). Last, the student dragged
a 5 to the left to commute it with 2 (commuting; Figure 3g). When the
active expression matches the goal state (Figure 3h), a clover board
appears showing the number of clovers awarded based on the number
of steps taken to solve the problem (Figure 3i). Students receive more
clovers for solving the problem using fewer steps. It is important to
note that the problems do not simply ask students to click and solve
for the answer. Rather, students need to attend to the similarities and
differences between the initial and the goal states in order to success-
fully and efficiently complete the problem.
Beyond combining terms and dragging to commute, gesture-

actions in FH2T allow users to enact most forms of symbolic
manipulation, including each of the four basic operations, number
decomposition, distribution, factoring, and properties of equality
(e.g., performing arithmetic operations to both sides). The system also
provides immediate feedback on invalid mathematical transforma-

Figure 2
The Basic Layout and Procedure in ASSISTments

Note. See the online article for the color version of this figure.
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tions. When students make a mathematical error or attempt an invalid
transformation (e.g., trying to turn 2 � 7x into 9x or 5 � 3 � 4 into
8 � 4), the expression automatically shakes and snaps back to the
starting expression, which signifies that it was an invalid mathemat-
ical transformation, without indicating the correct action.
FH2T consists of 14 worlds that focus on different mathe-

matical concepts, and each world contains 18 problems (a total
of 252 problems). Students start from simple topics and build
up their knowledge and skills throughout the game. In this
study, all students in the FH2T condition started from World 1:
Addition, and worked their way through the game (World 2:
Multiplication, World 3: Order of Operations � and �, World
4: Subtraction and Negative Numbers, World 5: Mixed Practice
of � and �, World 6: Division, World 7: Order of Operations,
World 8: Equation � and �, World 9: Inverse Operations �
and �, World 10: Distribution, World 11: Factoring, World 12:
Equation �, �, �, and �, World 13, Inverse Operations, and
World 14: Final Review).
All students were given 30 min to play FH2T for each

session. After 30 min, the system would log students out of the
game and save their progress. When students returned by click-

ing the assignment link in each subsequent session, they were
able to start where they left off. Because students worked
through the problems on their own devices at their own pace,
the progress within the game varied across individuals. On
average, students solved 104.7 distinct problems (SD � 31.96,
Min. � 31, Max. � 173) in FH2T across four intervention
sessions. Among the 227 students in the FH2T condition, about
half (48.9%) reached World 8 (Equation � and �) or higher;
only 19 students (8.4%) reached World 11 (Factoring) or be-
yond. Mapping to the assessments, Worlds 1 (Addition), 2
(Multiplication), and 3 (Order of Operations � and �) corre-
spond to the concepts tested in Items 1, 2, 3, and 5; Worlds 4
(Subtraction and Negative Number) and 8 (Equation � and �)
correspond to Item 4; Worlds 7 (Order of Operation) and 10
(Distribution) correspond to Item 6.

Problem Sets With Hints and Immediate Feedback in
ASSISTments

Students in the problem set condition solved traditional mathe-
matics problems in ASSISTments, a free online tutoring system for

Figure 3
A Sample Problem in From Here to There! (a) and a Potential Transformation Process Involving Three Steps (b, c, d, e, f, g) to
Reach the Goal State (h, i)

Note. See the online article for the color version of this figure.
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homework and problem-solving (Heffernan & Heffernan, 2014).
Problem sets in ASSISTments were selected as an active control
condition because it bookends different aspects of FH2T. Problem
sets in ASSISTments cover mathematical content well-aligned
with traditional instruction and offer hints and immediate feedback
(i.e., the correctness of the answers) to students. However, unlike
FH2T, the system does not include perceptual learning features
and that the problems are presented with a static textbook format.
Moreover, it does not have game design elements, such as rewards,
level, and challenge, to motivate student learning.
The problems in ASSISTments were selected and adapted from

three open-source middle-school mathematics curricula: Utah
Math Project (2016); Illustrative Mathematics (2017), and Engage
NY (2014), so that the problems aligned with traditional instruc-
tion and the topics covered in FH2T. The topics covered in the
problem sets included addition and multiplication, subtraction and
negative numbers, division and fractions, and order of operations.
Four problem sets each consisting of 24 to 39 questions were
developed for the four mathematical topics in this study, and
students started on the first question of a problem set at the
beginning of each intervention session. On average, the students
answered 115 questions (SD � 17.47, Min. � 25, Max. � 129) in
the problem set condition across four intervention sessions.
Among the 248 students in the problem set condition, 245 students
(98.8%) completed all problems in Assignment 1: addition and
multiplication, 237 (95.6%) completed Assignment 2: subtraction
and negative number, 229 (92.3%) completed Assignment 3: di-
vision and fraction, and 236 (95.2%) completed Assignment 4:
order of operations (note that students did not have to complete the
previous assignments to move forward). Mapping to the assess-
ments, Assignment 1 (addition and multiplication) corresponds to
the concepts tested in Items 1, 2, 3, and 5; Assignment 2 (subtrac-
tion and negative number) corresponds to Item 4; Assignment 4
corresponds to Item 6.
A variety of task and answer formats were used. The task

formats included computation, word problems, and representation
interpretations; the answer types included numbers, algebraic ex-
pressions, multiple choice, and open response. The questions were
presented one at a time (Figure 4a), and the majority of the answer
types were numbers, algebraic expressions, or multiple choice that
were automatically graded. Students had the opportunity to request
three hints and the correct answer at any time (Figure 4b). Students
received immediate correctness feedback after each answer sub-
mission (i.e., “Correct!” or “Sorry, try again. [Student answer] is
not correct.”), and they had to enter the correct answer to move on
to the next problem. If students answered the problem correctly on
the first attempt without requesting any hints, they received a green
check on the problem. If students attempted the problem multiple
times or used hints, they received an X mark on the problem. A
green X was given if students answered a problem correctly after
using one to three attempts or hints. A red X was given if students
answered a problem correctly after using more than three attempts
or hints. A red X with a yellow box was given if students requested
all hints and the correct answer. Less than 15% of the questions
were in the open-response format and they were included to gauge
students’ reasoning during problem-solving. Students did not re-
ceive correctness feedback or hints on these questions. Instead,
students saw the “Answer Recorded” message when they submit-
ted their responses and moved on to the next question. The open

responses were recorded for later analyses but not automatically
graded by the system.
Students solved traditional mathematics problems in

ASSISTments for 25 min and then were directed to their assign-
ment report to review their performance on each problem for the
remaining 5 min (Figure 4c). Students were instructed to spend as
much time as needed to review the problems and their answers. It
is important to note that although ASSISTments provides addi-
tional functions for teachers to build their own problems, assign
problem sets, monitor student progress, and review student per-
formance, the current study only uses the student-focused features,
including hints, immediate correctness feedback, and performance
reports in ASSISTments.

Results

Descriptive statistics, correlations, t tests, and standard multiple
regressions were conducted using IBM SPSS Statistics Version 25.
Hierarchical linear models were conducted using HLM Version
8.0 (Raudenbush et al., 2019). Means, standard deviations, mini-
mum and maximum values, and correlation coefficients for all
variables are presented in Table 3. Pretest scores ranged from 0 to
6, with a mean of 3.80 (SD � 1.61); posttest scores also ranged
from 0 to 6, with a mean of 4.14 (SD � 1.56). Although the pretest
and posttest scores were somewhat skewed (pretest � �0.31,
posttest � �0.58), the entire range was reflected in the data. At
pretest 23% of students scored two or below, 38% scored three or
four, and 39% scored five or six; at posttest, 16% scored two or
below, 36% scored three or four, and 48% scored five or six.
Because the pretest and posttest scores were distributed throughout
the entire range, they were treated as continuous variables in the
analyses.
We conducted a Pearson correlation analysis for the pair of

continuous variables (e.g., pretest–posttest scores) and computed
the point-biserial correlation coefficients for the pairs of continu-
ous and dichotomous variables (e.g., posttest scores—condition).
For the pairs of dichotomous variables (e.g., gender—condition),
phi coefficients were computed. As shown in Table 3, two vari-
ables showed statically significant, strong positive associations with
the posttest scores: pretest scores, r(473) � .65, p � .001 and being
in the advanced-level classes, rpb(473) � .56, p � .001. Being
identified as above grade level, rpb(473) � .45 (p � .001), or Asian,
rpb(473) � .35 (p � .001) was also associated with higher posttest
scores. The correlation analyses indicated potential associations
among classroom level, student achievement level, ethnicity, and
student performance, therefore we included these variables as
covariates when estimating intervention effects in the following
models.

RQ 1: Do Students Make Gains in Understanding of
Equivalence After a Two-Hour Intervention?

First, we examined whether students in the two conditions
performed comparably on the pretest. An independent sample t test
on the pretest revealed that the baseline scores did not significantly
differ between students in FH2T (M � 3.86, SD � 1.60) and
problem set (M � 3.75, SD � 1.62) conditions, p � .477; nor were
they significant in a two-level HLM analysis based on students
nested within classroom, � � 0.05, t(448) � 0.39, p � .699.
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Figure 4
A Sample Question (a), Three Hints and the Correct Answer in Yellow Boxes (b), and the Assignment Report (c) in ASSISTments

Note. See the online article for the color version of this figure.
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Next, to examine the overall effects of intervention on students’
performance, regardless of their intervention condition, we con-
ducted a paired-sample t test comparing the scores at pretest and
posttest. Ignoring condition, students improved their performance
from pretest (M � 3.80, SD � 1.61) to posttest (M � 4.14, SD �
1.56), t(474) � 5.56, p � .001. When each condition was exam-
ined separately, both were found to experience significant gains—
FH2T: posttest � 4.30, gain � 0.44, t(226) � 5.06, p � .001, and
problem set: posttest � 4.00, gain � 0.25, (t(247) � 2.92, p �
.004).

RQ 2: Do Students in FH2T Condition Show Greater
Understanding of Equivalence at Posttest Compared to
Students in the Problem Set Condition?

We used HLM to examine differences in posttest scores, con-
trolling for pretest performance and other student characteristics. A
two-level model (students nested within classrooms) was used on
all analyses moving forward. We considered a three-level model
(classrooms nested within schools) but chose not to use it due to
the small amount of variance at the school-level. Although not
reported here, the three-level results were consistent with the
two-level model. In a preliminary, null model with no predictors,
52.2% of the variance in posttest scores was at Level 1, whereas
47.8% was at Level 2.
An initial model then examined the classroom (i.e., grade,

instruction level) and student (i.e., gender, race, student achieve-
ment level, pretest) covariates, without considering the condition
(FH2T vs. control) indicator. Robust standard errors were used to
evaluate all effects, and multiparameter hypothesis tests were used
to examine student race and instruction-level of the classroom as
both of these constructs were reflected in two dummy variables.
Not surprisingly, as seen in the first set of columns in Table 4,
student pretest scores were highly related to posttest performance,
� � 0.39, t(444) � 10.77, p � .001, as was identification of
“above grade level” on academic achievement, � � 0.31, t(444) �
3.15, p � .002. In contrast, neither student gender, � � �0.14,

t(444) � �1.10, p � .270, nor race, 	2(2, N � 475) � 3.21, p �
.199, were found to have a statistically significant effect on post-
test scores. At Level 2, both the grade-level of the class, � � 0.53,
t(22) � 2.48, p � .021, and instruction-level (advanced/sup-
ported), 	2(2, N � 475) � 95.23, p � .001, were related to posttest
scores in expected directions, with relatively higher performance
among students in advanced classes, � � 1.13, t(22) � 5.03, p �
.001, and relatively lower performance in supported classes,
� � �0.57, t(22) � �3.23, p � .004, compared to those in

Table 3
Descriptive Statistics and Correlations for the Overall Sample

Variable 1 2 3 4 5 6 7 8 9 10

1. Posttest —
2. Pretest .65�� —
3. Condition .09� .03 —
4. Grade �.27�� �.26�� �.01 —
5. Class-Adv .56�� .49�� .01 �.51�� —
6. Class-Sup �.47�� �.46�� .02 .68�� �.71�� —
7. Gender �.08 �.06 �.02 .04 �.07 .04 —
8. Asian .35�� .45�� �.04 �.22�� .27�� �.31�� .09� —
9. White �.30�� �.38�� .02 .09� �.21�� .22 �.08 �.80�� —

10. Stud level .45�� .49�� .00 �.21�� .43�� �.31�� .05 .28�� �.20�� —
M 4.14 3.80 .48 6.05 .84 .09 .45 .55 .35 .52
SD 1.56 1.61 .50 .21 .37 .28 .50 .50 .48 .50
Min. .00 .00 0 6 0 0 0 0 0 0
Max. 6.00 6.00 1 7 1 1 1 1 1 1

Note. Condition (0 � problem set, 1 � From Here to There! [FH2T]); Class-Adv � class instruction level-advanced (0 � not advanced, 1 � advanced);
Class-Sup � class instruction level-support (0 � not support, 1 � support); Gender (0 � male, 1 � female); Asian � race-Asian (0 � not Asian, 1 �
Asian); White � race-White (0 � not White, 1 � White); Stud level � student achievement level (0 � not above grade level, 1 � above grade level).
� p � .05. �� p � .01.

Table 4
Result of HLM Analyses

Effect

Initial model Final model

Coef t df p Coef t df p

Intercept �1.61 �1.19 22 .248 �1.92 �1.37 22 .185
Grade 0.53 2.48 22 .021 0.57 2.56 22 .018
Class-Adv 1.13 5.03 22 �.001 1.11 4.61 22 �.001
Class-Sup �0.57 �3.23 22 .004 �0.62 �3.04 22 .006
Gender �0.14 �1.10 444 .270 �0.14 �1.10 443 .271
Asian 0.15 1.09 444 .278 0.17 1.27 443 .205
White �0.05 �0.36 444 .719 �0.04 �0.30 443 .762
Stud Level 0.31 3.15 444 .002 0.31 3.21 443 .001
Pretest 0.39 10.77 444 �.001 0.38 �11.16 443 �.001
FH2T 0.25 3.81 443 �.001

Random effects Var 	2 df p Var 	2 df p

Level 1 1.167 1.155
Level 2 0.032 31.4 22 0.088 0.030 30.7 22 0.103

Note. HLM � hierarchical linear modeling. Grade � grade in school;
Class-Adv � class instruction level-advanced (0 � not advanced, 1 �
advanced); Class-Sup � class instruction level-support (0 � not support,
1 � support); Gender � student gender (0 � male, 1 � female); Asian �
race-Asian (0 � not Asian, 1 � Asian); White � race-White (0 � not
White, 1 � White); Stud Level � student achievement level (0 � not
above grade level, 1 � above grade level); Pretest � pretest score; FH2T �
intervention condition-FH2T (0 � problem set, 1 � From Here to There!
[FH2T]).
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on-level classes. It should be noted that the Level 2 variance no
longer met a strict “p � .05” significance level, raising the ques-
tion of switching to a traditional multiple regression; however, the
decision was made to remain with an HLM approach for theoret-
ical and conceptual grounds, as well as to reflect the original
design and analytic plan (Raudenbush & Bryk, 2002).
The intervention condition was then added as a Level 1 predic-

tor in the final model (see the second set of columns in Table 4).
Reflecting the student-level random assignment, coefficients and
statistical tests for the covariates were largely unchanged, however
intervention condition was highly statistically significant (FH2T
posttest: estimated M � 4.27; problem set posttest: estimated M �
4.02), � � 0.25, t(443) � 3.81, p � .001. In terms of group mean
differences, this translated to a Hedge’s g of 0.16 between the
FH2T and active control problem set condition.
To help readers judge the practical importance of this interven-

tion effect, we translated this effect size into the What Works
Clearing House Improvement Index (Appendix E in What Works
Clearinghouse, 2020), which can be interpreted as the expected
change in percentile rank for average students in a comparison
group if the students had received the intervention. To calculate
this value, we first converted the effect size (Hedges’ g) to Cohen’s
U3 index. An effect size of 0.16 corresponds to a U3 of 56.4%,
indicating that an average student in the FH2T group would rank
at the 56.4 percentile in the control group. To calculate the im-
provement index, representing the difference in percentile rank of
an average student in FH2T compared to an average student in the
comparison group, we then subtracted 50 from the U3 (56.4 –
50 � 6.4). Practically speaking, the improvement index of 6.4
suggests that teachers and administrators can expect an average
student to improve 6.4% rank (from 50 to 56.4%) after using the
FH2T intervention for 2 hr, compared to using other effective
programs like problem sets in ASSISTments.

RQ 3: Does the Effect of Intervention Vary Depending
on Students’ Prior Knowledge?

A final analysis examined the possible interaction between
intervention condition and students’ prior knowledge on students’
posttest performance. The analysis revealed that the interaction
between intervention condition and pretest scores was not signif-
icant, � � �0.02, t(442) � �0.57, p � .556, suggesting that the
FH2T effects were consistent for students who began the program
performing at both higher and lower levels.

Performance on Individual Assessment Items

Because the pretest and posttest assessments only included six
items, and the reliability was suboptimal, we explored changes in
students’ pretest and posttest performance on each item by inter-
vention conditions (see Table 5). We found that students’ perfor-
mance on Items 1, 2, 3, and 4 showed minimal change from pretest
to posttest. In both conditions, students showed the largest gains on
Item 5, which focused on their understanding of equivalent ex-
pressions for addition and multiplication with the prompt, “Which
of the following is equivalent to (the same as) (n � 3) � (n � 3) �
(n � 3) � (n � 3)?”. In particular, 27% of students in FH2T
condition improved on this item, whereas only 19% of students in
the problem set condition improved from pretest to posttest. Fewer

students (FH2T: 9% and problem set: 6%) improved on Item 6
(order of operations and distribution), and the difference between
the conditions were small. The findings suggest that some of the
features in FH2T (e.g., dynamically transform expressions into
visually different yet equivalent states) may have a positive influ-
ence on students’ understanding of equivalent expressions.

Discussion

In summary, we found that (a) students in both conditions
improved their performance of mathematical equivalence from
pretest to posttest, (b) students in the FH2T condition showed
higher performance on the posttest compared to students in the
problem set with hints and feedback condition, even after control-
ling for students’ prior knowledge and mathematics instruction
level, and (c) the condition effects were similar for all students,
regardless of their prior knowledge. Together, the findings suggest
that FH2T is an effective intervention for improving middle-school
students’ understanding of mathematical equivalence.

FH2T and Problem Set Conditions Improve Students’
Understanding of Equivalence

In this study, we found that students in FH2T and problem set
conditions both improved their understanding of mathematical
equivalence after four 30-min intervention sessions. Although the
problem set condition was included to serve as a control in the
current study, the ASSISTments learning platform was an estab-
lished and effective educational technology that has been recom-
mended without reservation by the What Works Clearinghouse
(2020; Roschelle et al., 2016). Therefore, it was not surprising
that solving textbook problems on arithmetic operations in
ASSISTments with some student features of the platform, specif-
ically hints on problem-solving and immediate correctness feed-
back during assignments, had positive effects on students’ under-
standing of mathematical equivalence. This finding extends
previous studies demonstrating ASSISTments efficacy (Murphy et
al., 2020; Roschelle et al., 2016) and suggests that even imple-
menting only the student aspects of ASSISTments (and not the
teacher supports) in a brief intervention may lead to improvements
in student learning.
We also found that students in the FH2T condition had better

understanding of mathematical equivalence at posttest compared

Table 5
Percent of Students Responded Correctly on Each Item of the
Pretest and Posttest, and the Percent of Students Improved on
the Items by Intervention Condition

Item

FH2T (n � 227) Problem sets (n � 248)

Pretest Posttest Gain Pretest Posttest Gain

1 91% 93% 2% 91% 91% 0%
2 86% 87% 1% 84% 81% �3%
3 54% 57% 3% 49% 54% 5%
4 57% 58% 1% 53% 52% �1%
5 51% 78% 27% 52% 71% 19%
6 47% 56% 9% 46% 52% 6%

Note. FH2T � From Here to There!
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to students in the problem set condition. This aligns with previous
findings demonstrating the effectiveness of FH2T in elementary
(Hulse et al., 2019) and middle-school classrooms (Ottmar et al.,
2015) on improving procedural knowledge. This study extends the
prior work by suggesting that playing FH2T also improves stu-
dents’ understanding of mathematical equivalence. Importantly,
the effect of the condition was significant and positive, suggesting
that students in the FH2T condition had better understanding of
mathematical equivalence at posttest compared to students in the
problem set active control. Although the condition effect may be
modest (Hedge’s g � .16) in comparison to other extensive math-
ematics interventions (e.g., Blanton et al., 2015), it is worth noting
that the intervention was brief (2 hr) and the comparison condition
itself was a robustly effective evidence-based intervention with an
Improvement Index of 7 (What Works Clearinghouse, 2020; Ro-
schelle et al., 2016). The added benefit of FH2T above and beyond
the significant improvement found in the active ASSISTments
control condition suggests that the condition effect may underes-
timate the true efficacy of FH2T, if compared to a true business-
as-usual control.

The Impact of FH2T on Understanding of Equivalence

Despite major efforts in research, curricula development, and
policy, many students continue to struggle with understanding
equivalence. The results showed that using FH2T improved per-
formance on mathematical equivalence and conceptual assessment
items compared to a control condition of online problem sets with
hints and feedback in ASSISTments. Similar to previous equiva-
lence interventions (Alibali et al., 2018; Blanton et al., 2015;
McNeil et al., 2012), FH2T guides students’ attention to expres-
sion structures (24 � y � 6 � 13 and 13 � y � 30) and provides
ample practice on equivalent expressions that build on arithmetic
and mathematical properties. The findings extend previous re-
search on equivalence interventions with elementary students and
show that middle-school students may also benefit from interven-
tions targeting equivalence understanding.
Different from the previous interventions, FH2T uses a dynamic

algebra notation system that allows students to concretely trans-
form expressions and receive immediate visual feedback on their
actions. Although this study does not tease apart the mechanisms
through which FH2T leads to improved learning, there are several
plausible explanations. One possible explanation is that the per-
ceptual learning (i.e., being able to dynamically manipulate alge-
braic symbols and experience mathematical transformations) af-
forded in the game provides students with explicit and dynamic
ways to productively explore abstract mathematics concepts.
These findings are consistent with other research which found
utilizing perceptual features or engaging perceptual-motor systems
in mathematics learning contexts had a positive influence on
learning (Hulse et al., 2019; Kellman et al., 2010; Landy &
Goldstone, 2007b; Ottmar et al., 2012; Ottmar et al., 2015). These
are also in line with the theory that algebra reasoning comprises
perceptual-motor routines (Goldstone et al., 2008; Landy & Gold-
stone, 2007b). In FH2T, the symbols are treated as virtual objects
and are constrained to mathematically appropriate behaviors, re-
sulting in fast feedback about possible transformations, and fluid
continuous visualizations. It may be that these affordances in
FH2T provide students with ample opportunities to explore and

learn which dynamic actions and mathematical properties are
appropriate and allowed in different mathematical contexts (De
Lima & Tall, 2008; Dörfler, 2003; Goldstone et al., 2010; Landy
& Goldstone, 2009). This study provides further evidence that
technology-based perceptual interventions, like FH2T, may pro-
vide students with conceptually rich opportunities to explore al-
gebraic formalisms.
The FH2T intervention may also benefit students by providing

practice with various structures of expressions (e.g., transform
24 � y � 6 � 13 to 13 � y � 30) and equations (e.g., transform
23 � y – 13 � 10 � y to 3 � 3) that deviate from a more
traditional operations-equals-answer structure (e.g., 24 � 6 �
13 � 43; Fyfe et al., 2018). Attending to mathematical relations in
a variety of structures and enacting procedures appropriately are
important for success in algebra (Kieran, 1989). The problems in
FH2T are uniquely designed to present students with perceptually
different structures of expressions and equations, and ask students
to enact algebraic transformations that prove their equivalence.
Giving students opportunities to explore different problem struc-
tures with varying perceptual features may improve their flexibil-
ity and expand their definitions of what equivalence means. Fur-
ther, it is also plausible that the connected sensorimotor experience
between the gesture-actions and resulting mathematical transfor-
mations in FH2T guide students’ attention to the fluid visualization
of equivalent transformations, reduce the cognitive demands of
rewriting and computing complex expressions, and allow students
to focus on the conceptual understanding of the links between the
steps in a derivation and the high-level structure of equations.
The procedural advantages of moving symbols that seamlessly

integrate with conceptually challenging expression transformation
tasks in the FH2T system may help students become more familiar
with algebraic notations, acquire perceptual and conceptual flu-
ency in algebraic principles, and increase their confidence and
comfort in dealing with equations. This increase in algebra famil-
iarity and proficiency, grounded in perceptual learning of proce-
dural fluency and conceptual understanding, may improve learning
outcomes in more advanced areas of algebra that assume the
ability to read and manipulate equations.
Alternatively, the condition effect may be driven by other dif-

ferences between FH2T and the problem set conditions. For in-
stance, the game-based mathematics puzzles, such as FH2T, may
be more engaging for students and students may be more moti-
vated to solve problems in FH2T compared to traditional answer-
based online problem sets. Further, the higher posttest perfor-
mance in FH2T may be due to the fact that half of the students in
FH2T had the opportunity to transform linear equations as they
progressed through the game, whereas students in the problem set
condition only completed the assigned problem sets relevant to the
four arithmetic operations and the order of operations. Although
the exposure to more challenging content in FH2T may contribute
to the condition effect we observed, students made the largest
improvement on Item 5 of the assessment (equivalent expressions
of addition and multiplication; FH2T: 27% of students improved,
problem set condition: 19%). This item did not involve linear
equations and students in both conditions had the opportunity to
practice solving problems relevant to this item. Therefore, it is
unlikely that the differences in the content exposure between the
two conditions drive the condition effect.
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Another potential account for the condition effect is that stu-
dents in FH2T practice transforming expressions into other equiv-
alent forms that are visually and structurally different. The expres-
sion transformation task in FH2T may explicitly highlight
mathematical equivalence for students. On the contrary, students
in the problem set condition solve a variety of traditional textbook
problems with the goal of simplifying to a correct answer. These
textbook problems may seem more like a simplifying task to
students and do not explicitly emphasize equivalence concepts.
Future studies should explore these alternative hypotheses and
further delineate the mechanisms through which FH2T promotes
mathematical learning.

FH2T and Prior Knowledge

The lack of an interaction effect between the intervention con-
dition and pretest scores suggests that FH2T may be benefiting
students to the same degree regardless of their prior knowledge.
Different from the two competing hypotheses presented in prior
work (Murphy et al., 2020; Swanson et al., 2008), we found that
neither students with higher nor lower prior knowledge benefitted
more from the FH2T intervention. Instead, we found that the effect
of intervention was comparable for students with high and low
prior knowledge. Further, extending our previous study in which
we showed that elementary students with low prior knowledge
improved more on mathematics performance when they completed
more problems in FH2T (Hulse et al., 2019), we found that simply
receiving FH2T intervention, without considering the in-game
progress, did not benefit middle-school students with low prior
knowledge more than students with high prior knowledge. Repli-
cating these findings with different samples (e.g., elementary vs.
middle school), content covered, analytic approaches (e.g., influ-
ences of FH2T progress vs. impact of FH2T intervention regard-
less of progress), and mathematical outcomes (e.g., mathematics
achievement vs. perception of algebraic expressions) may help
further examine the potential effects of these factors on the rela-
tions between prior knowledge, FH2T intervention, and mathemat-
ical performance.

Limitations and Future Directions

Although this study suggests that FH2T is a promising inter-
vention for improving understanding of mathematical equivalence,
our current study is limited in a few ways. First, given the popu-
lation of our sample, the results may not be representative or
generalizable to different populations in the United States. The
sample in this study had a high number of Asian and above grade
level students. Although the composition of our sample based on
race and prior performance is not generalizable to the demograph-
ics of the United States as a whole, student-level random assign-
ment within classrooms ensures comparable performance between
FH2T and control students at pretest. Despite the fact that 84% of
the sample were in an advanced mathematics class, many students
were not at ceiling on the pretest and the average pretest score was
only 3.89 (out of 6; 65%), providing room for improvement on
equivalence understanding. Further, there was adequate distribu-
tion and variability in pretest and posttest assessments, allowing
for the examination of the improvement and intervention effects.
Future work should aim to replicate these findings in more diverse
populations.

Next, because this study was conducted in the classroom, the
administration of our pretest and posttest assessments relied on
teachers allocating appropriate classroom time for the intervention
and assessments. However, because the study took place immedi-
ately prior to a holiday break, several teachers did not provide their
students with adequate class time to complete the full intervention
sessions or posttest, which resulted in a high number of students
missing data at posttest. This challenge highlights the tradeoffs
of conducting applied experimental work in authentic class-
rooms. Future studies should include other distal measures
(e.g., state standardized mathematics assessments) so that the
student outcome does not depend on the fidelity of the teachers.
This would also afford testing of the sustained effects of the
intervention.
Further, the results presented here, although significant, do not

provide insights into what components of the FH2T intervention
lead to improved learning. Future directions include adding prox-
imal measures (e.g., an expression matching task) to delineate the
effects of FH2T on equivalence understanding and examining
plausible mechanisms by which progress through the FH2T game
leads to improved mathematical performance. The availability of
clickstream data from the FH2T game also provides opportunities
to explore the relations between student behaviors within each
FH2T problem and mathematical learning. We hypothesize that
greater engagement with and exposure to the problems in FH2T
will lead to greater gains in perceptual learning, understanding of
algebraic principles, and flexible problem-solving. Additional
studies will explore these hypotheses.
Finally, FH2T is designed to guide students’ attention to math-

ematical notations and structures through perception and action.
Rather than relying on language-based instruction and students’
English proficiency, FH2T uses gesture-action videos to dynami-
cally demonstrate mathematical principles and provides a fluid
interface for students to experience mathematical transformations.
Providing perceptual-motor pathways to mathematical learning
may help bridge the achievement gap for English language learn-
ers. Future studies should explore the accessibility and usability of
FH2T in students from more diverse backgrounds, including Eng-
lish language learners, and such findings will contribute to the
efforts of promoting diversity, equity, and inclusion in mathemat-
ics education.

Conclusion

Overall, this study supports the efficacy of the FH2T interven-
tion for improving students’ mathematics performance, above and
beyond solving traditional textbook problems in ASSISTments, a
well-studied and effective active control. FH2T is a promising
intervention that addresses a relatively untapped area of practice-
focused, perceptually guided instructional technology, designed
based on cognitive theories. This study has implications for edu-
cators. It provides evidence that perceptually focused, gamified
learning platforms may help students develop perceptual fluency
through dynamic interactions with algebraic objects. The platforms
may also serve as a useful learning environment for students to
explore mathematical ideas and improve their mathematical un-
derstanding.
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