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Abstract 

For students to advance beyond arithmetic, they must learn how to attend to the structure of 

math notation. This process can be challenging due to students' left-to-right computing 

tendencies. Brackets are used in mathematics to indicate precedence but can also be used 

as superfluous cues and perceptual grouping mechanisms in instructional materials to direct 

students’ attention and facilitate accurate and efficient problem solving. This online study 

examines the impact of operator position and superfluous brackets on students’ performance 

solving arithmetic problems. A total of 528 students completed a baseline assessment of 

math knowledge, then were randomly assigned to one of six conditions that varied in the 

placement of higher-order operator and the presence or absence of superfluous brackets: 1) 

brackets-left (e.g., (5 * 4) + 2 + 3), 2) no brackets-left (e.g., 5 * 4 + 2 + 3), 3) brackets-center 

(e.g., 2 + (5 * 4) + 3), 4) no brackets-center (e.g., 2 + 5 * 4 + 3), 5) brackets-right (e.g., 2 + 3 

+ (5 * 4)), and 6) no brackets-right (e.g., 2 + 3 + 5 * 4). Participants simplified expressions in 

an online learning platform with the goal to “master” the content by answering three 

questions correctly in a row. Results showed that, on average, students were more accurate 

in problem solving when the higher-order operator was on the left side and less accurate 

when it was on the right compared to the center. There was also a main effect of the 

presence of brackets on mastery speed. However, interaction effects showed that these 

main effects were driven by the center position: superfluous brackets only improved 

accuracy when students solved expressions with brackets with the operator in the center. 

This study advances research on perceptual learning in math by revealing how operator 

position and presence of superfluous brackets impact students’ performance. Additionally, 

this research provides implications for instructors who can use perceptual cues to support 

students during problem solving. 
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%(&'*"$/(&0(,#$1'#2/$1'2/$03/4#2'/(0(,#+6#notations as well as the appropriate rules and 

operations to apply within expressions. 1) the detachment of a math term from its indicated 

operation (e.g., mistaking 4 + n – 2 + 5 as equivalent to 4 + n – 7), and 2) incorrectly linking 

operations to non-adjacent terms (e.g., in the equation 115 – n + 9 = 61, ignoring “n” to 

subtract 9 and create 106 – n = 61; Linchevski & Livneh, 1999; Papadopoulos & 

Gunnarsson, 2020). Importantly, developing structure sense is dependent on students 

understanding the mathematical meaning of notations as well as the appropriate rules and 

operations to apply within expressions. 

Aside from structure sense, the position of terms within a math expression may play 

a role in how students reason about mathematics. Students may also struggle to resist the 

urge to solve math problems from left to right. Early middle school students have a strong 

tendency to adhere to the left-to-right principle when solving problems, which may lead them 

to overlook and violate the order of operations (Banerjee & Subramaniam, 2005; Blando et 

al., 1989; Gunnarsson et al., 2016; Kieran, 1979). For instance, Kieran (1979) found that 

when solving 5 + 2 * 3, many middle school students added 5 and 2 first, indicating that they 

overlooked the order of operations and instead evaluated math notations in a left-to-right 

sequence. By following the left-to-right tendency in the equation 5 + 2 * 3, students reached 

the wrong answer; however, when those students solved for 4 * 2 – 3, they correctly 

identified that they had to first multiply 4 and 2 (Kieran, 1979). This observation suggested 

that the position of higher-order operators (e.g., multiplication and division) within a math 

expression may influence students’ reasoning and performance in problem solving. To 

extend this research, our study aims to uncover the isolated effects of higher-order operator 

position (hereafter referred to as HOO) on students’ performance on order-of-operations 

problems.  

One potential way to support students’ structure sense and help them notice the 

order of operations when solving math problems is to increase the visual salience of 

important cues in an expression. Brackets are often used in mathematics to group numbers 
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together, to emphasize, and/or to identify precedence. In some cases, brackets are 

necessary to indicate precedence (i.e., (a + b) * c + d) and in other times, brackets are used 

only for emphasis, or are superfluous–meaning they do not change the meaning of the 

mathematical expression when removed (i.e., a + (b * c) + d). Prior research has found that, 

even in cases where brackets are not present or necessary, students have a natural 

inclination to use mental brackets to interpret arithmetic and algebraic expressions (e.g., 

Papadopoulos & Gunnarsson, 2020; Papadopoulos & Thoma, 2022). Many students are 

taught the acronyms BEDMAS (Brackets, Exponents, Division, Multiplication, Addition, and 

Subtraction) or PEMDAS (depending on the country) to remember as a set of rules for 

applying operations. Due to this emphasis, students may be relying on and using 

superfluous brackets mentally as a failsafe way to remember their precedence rules. An 

alternative explanation is that superfluous brackets may be used by students as a perceptual 

grouping cue that could be used to make crucial mathematical structures like HOO more 

salient to students and help with encoding during problem solving. Regardless of the 

mechanism, these studies indicate that the presence of superfluous brackets-—brackets that 

do not change the meaning of notation, can guide learners’ attention to the correct 

procedures and improve performance.  

A number of previous studies have investigated how superfluous brackets influence 

mathematical problem solving (e.g., Hoch & Dreyfus, 2004; Marchini & Papadopoulos, 

2011). For example, Linchevski and Linveh (1999) found that students who lacked structure 

sense (and were therefore likely to focus on surface structures over systemic structures of 

math terms and operations) would struggle with expressions of the type 𝑎 ± 𝑏 × 𝑐, as 

students would need to understand that b should be connected with the c, not a, due to 

order of precedence. The authors also suggested that inserting superfluous brackets around 

𝑏 × 𝑐 could help students understand that the multiplication operation should be calculated 

first, followed by addition, making the order of operation rules (i.e., BEDMAS or PEMDAS) 

more salient and explicit. Other research exploring the role of superfluous brackets as a 

perceptual cue has found that students are more accurate at algebraic problem solving when 
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equations included superfluous brackets to emphasize structures compared to equations 

that did not (e.g., Hoch & Dreyfus, 2004; Marchini & Papadopoulos, 2011). In other work, 

superfluous brackets have been shown to help students achieve higher success rates 

solving problems (Hoch & Dreyfus, 2004; Marchini & Papadopoulos, 2011; Papadopoulos & 

Gunnarsson, 2018, 2020). For instance, in a study with elementary school students in Italy 

and Greece, Marchini and Papadopoulos (2011) found that when students completed math 

expressions with superfluous brackets, they were more likely to calculate some expressions 

correctly and were more likely to recognize important expression structures (i.e., the order of 

operations). This finding suggests that superfluous brackets can highlight the structural 

elements of an expression for students; in turn, attending to important problem elements 

may improve students’ structure sense and consequently, support their math problem 

solving. However, in other work, adding superfluous brackets have been found to have no 

effect (Gunnarsson et al., 2016) and can lead to misinterpretations and procedural errors 

(e.g., Ayres, 2000; Hewitt, 2005; Kieran, 1979; Okazaki, 2006).  

Given these mixed results, it is important for researchers and educators to better 

understand how adding superfluous brackets could be used to help support student 

performance and learning. In addition to understanding superfluous brackets’ influences on 

outcomes, it is also important to better understand how brackets and HOO position within a 

math expression influence students’ performance to identify the situations where these 

brackets may help versus hinder students. Our current study aims to advance understanding 

of how operator position and superfluous brackets within a math expression can affect 

students’ problem-solving performance in an online learning environment. 

The goals of our study are threefold. First, we aim to examine the isolated impact of 

HOO position on students’ performance on simple arithmetic problems in an online activity. 

Second, we aim to extend prior research by testing whether the presence of superfluous 

brackets can support student performance. Third, we assess if the presence of superfluous 

brackets moderates the impact of HOO position. Specifically, we examine how the presence 
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of superfluous brackets and the position of HOOs (i.e., multiplication and division) within an 

expression independently and simultaneously influence student performance.  

Theoretical Framework 

Perceptual Learning and Mathematical Structure 

Learning math is naturally dependent on our perceptual processes; the way that we 

perceive incoming stimuli informs the way we think about it (Gibson, 1969; Marghetis et al., 

2016). Perceptual learning theory suggests that learning and reasoning in math does not 

only depend on our perceptual processes, but that we actually develop perceptual-motor 

routines over time to direct our attention towards salient perceptual cues in math notation 

(Goldstone et al., 2017; Jacob & Hochstein, 2008; Kellman et al., 2010; Kirshner & Awtry, 

2004; Patsenko & Altmann, 2010). In particular, the visual features of math notation (e.g., 

spacing, symbols, color) act as perceptual cues that can highlight information and influence 

the way we reason and act on notation. Incidentally, intentional changes to the presentation 

of notation, even very subtle, can be used as perceptual scaffolding to impact students’ 

performance on tasks such as simple arithmetic and equation solving.  

Prominent Visual and Perceptual Grouping Mechanisms 
 

While multiple visual features may have no bearing on the mathematical meaning of 

notation, they can direct individuals’ attention towards structures within the notation and act 

as perceptual grouping mechanisms, impacting learners’ performance on problem solving. 

For example, visual features that are proximal, as opposed to distal, to one another are more 

likely to be perceptually grouped together by our visual systems according to the Gestalt 

principles of perceptual grouping (Hartmann, 1935; Wertheimer, 1938). For instance, the 

spatial proximity between symbols in expressions and equations impacts how individuals 

solve math problems. Individuals solve problems more quickly and accurately when the 

spatial proximity in notation supports the order of operations (e.g., 6*3  +  4). However, 
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individuals struggle more to solve problems (i.e., taking more time to solve and making more 

errors) when the spatial proximity between symbols does not support the order of operations 

(e.g., 6  *  3+4). This finding is true for grade school and college students alike (e.g., 

Braithwaite et al., 2016; Gómez, Bossi, & Dartnell, 2014; Gómez, Benavides-Varela et al., 

2014; Harrison et al.,, 2020; Landy & Goldstone, 2007, 2010; Rivera & Garrigan, 2016). In 

fact, the effects of spatial proximity on students’ performance have been shown to increase 

with students’ age from grade two to six (Braithwaite et al., 2016), and do not decline among 

secondary students (Harrison et al., 2020). These findings suggest that the reliance on 

spatial proximity as a perceptual grouping mechanism is pervasive across developmental 

stages as well as ranges in math knowledge. 

In addition to the spatial proximity of symbols, several other visual features can also 

serve as attentional cues in math notation. For example, strategic coloring can be used as a 

perceptual grouping mechanism to support students’ generation of problem-solving 

strategies (Alibali et al., 2018). Alibali and colleagues (2018) found that fourth-grade 

students who received instructional materials that highlighted relevant features to encode 

with different colored ink than the rest of an equation during a practice session were more 

likely to generate correct problem-solving strategies and improve from pretest to posttest 

than their counterparts who received materials without highlighting or with irrelevant equation 

features highlighted (Alibali et al., 2018). Landy and Goldstone (2007), in a sample of college 

students, found the same effect by manipulating the alphanumeric proximity of terms within 

an expression to be congruent or incongruent with the order of operations (i.e., students 

performed better on problems such as “a + p * q + z = a + q * p + z” and worse on problems 

such as “r + s * b + c = r + s * b + c”). Together, this research demonstrates the robust effect 

of perceptual grouping mechanisms on problem solving in math for a wide range of students 

and ages, suggesting that the ways in which we reason about math notation is highly 

dependent on our visual perception.  

Brackets as a Visual and Perceptual Grouping Mechanism 
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In arithmetic, brackets can be used in several ways. First, within math expressions, 

brackets typically signify grouping in which the math content in the group takes precedence 

over its surroundings based on the order of operations (e.g., in “10 ÷ (2 + 3)). Second, 

brackets can be used superfluously to visually highlight the structural elements of an 

expression without changing the mathematical meaning of the expression (Gunnarsson et 

al., 2016). For example, when students write ("	$	%)
('	$	()

, the brackets preserve the structure of 

the initial rational expression and highlight the relation between the numerator and the 

denominator of the fraction. In this case, like spatial proximity and color highlighting, 

superfluous brackets serve as a perceptual grouping mechanism that can prime students to 

attend to the HOO.   

 One explanation for why superfluous brackets could work as a visual grouping 

mechanism is that they create a common visual region within math expressions that draws 

students’ attention to a specific area of math notation (Landy & Goldstone, 2007). According 

to the common visual region principle, individuals tend to group together visual elements that 

are located within the same bounded visual region (Palmer, 1992). These visual regions can 

be demarcated using color shifts, visual separators, or, in the case of brackets, object 

boundaries. For instance, when seeing “(6 * 3) + 4”, students tend to quickly group “(6*3)” 

together because those terms are bound together by brackets. In fact, an eye-tracking study 

by Schneider and colleagues (2012) showed that adults were drawn to notation presented 

within a pair of brackets. For example, when presented with two math expressions, “(3 – 2) + 

4” and “4 + (3 – 2)”, adults spent more time fixating on “(3 – 2)” than “+ 4”, showing that 

superfluous brackets serve as perceptual cues to capture attention. Hoch and Dreyfus 

(2004) also found similar grouping and attention-directing effects of superfluous brackets. 

Eleventh-grade students solved math problems more efficiently with the presence of 

superfluous brackets (e.g., 1 - )
*	$	)

	- (1 - )
*	$	)

) = )
))+
) than without (e.g., 1 - )

*	$	(
	- 1 + )

*	$	(
	= )

,-
). 

This finding suggests that superfluous brackets focus students’ attention and alert them to 

the possibility of like terms, leading them to more efficient problem-solving strategies. 
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Research on the use of superfluous brackets as a visual cue has been primarily 

conducted in classrooms (Gunnarsson et al., 2016; Hoch & Dreyfus, 2004; Marchini & 

Papadopoulos, 2011; Papadopoulos & Gunnarsson, 2018, 2020). Some of this research 

provides evidence that superfluous brackets positively impact students’ math performance 

through more accurate problem solving, higher performance on posttests, and better student 

understanding of the math expression’s structure (e.g., Hoch & Dreyfus, 2004; Marchini & 

Papadopoulos, 2011; Papadopoulos & Gunnarsson, 2018, 2020). However, other results 

have been contradictory. For example, Gunnarsson and colleagues (2016) found that the 

use of superfluous brackets did not enhance students’ performance as they learned the 

order of operations and even led to lower performance at posttest. However, that study 

consisted of a short intervention on the order of operations. It is possible that those findings 

might be impacted by the quality of the intervention, rather than by the presence of the 

superfluous brackets itself, motivating further work on the impact of superfluous brackets as 

a perceptual visual grouping mechanism.  

The Present Study 

The current study aims to provide additional empirical evidence about how 

superfluous brackets affect student performance with two important extensions of past work. 

First, this work explores the differential impacts of higher-order operator position on math 

performance. Second, much of the prior work has been conducted using paper and pencil 

tasks. Online learning and use of technology platforms in the math classroom has grown 

significantly and become more centric to education due to the COVID-19 pandemic, 

motivating us to explore the impact of superfluous brackets in problem sets implemented in 

an authentic online educational technology-based learning environment. Thus, our study 

aims to provide insights on how superfluous brackets may act as visual and perceptual 

support for students while solving problems in an online learning environment.  

In this study, we compare performance on simple arithmetic problems among fifth- to 

seventh-grade students. Students completed math problems that were presented in one of 
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six different ways varying the presence or absence of brackets and the position of the HOO. 

Based on previous findings on students’ weak structure sense, we hypothesize that when 

solving math problems related to the order of operations, students will be more likely to 

subscribe to the left-to-right tendency in computing. Thus, students will perform better when 

they see the HOO on the left, compared to when the operator is in the center or on the right 

side of the expression. In line with perceptual learning theory, we also hypothesize that 

superfluous brackets will act as a perceptual cue that primes students and draws their 

attention to the HOO; thus, students will perform better on problems with (as opposed to 

without) superfluous brackets. Finally, we hypothesize that students will perform the highest 

on math expressions that contain both, left side HOOs and superfluous brackets. 

Specifically, we pose the following research questions: 

1) Does the position of a HOO (i.e., multiplication or division) impact student 

performance on simple arithmetic problems in an online homework assignment, as 

measured by student mastery speed and average response time?  

2) Does the presence of superfluous brackets impact student performance, as 

measured by student mastery speed and average response time?  

3) Is there an interaction between the effects of operator position and superfluous 

brackets on student performance, as measured by student mastery speed and 

average response time?  

Methods 

We received approval from our university’s ethics committee for this research project.  

Additionally, we pre-registered the study design and data analysis plan for this project on 

Open Science Framework at 

https://osf.io/xnps6/?view_only=4f8c8d97ec574ca2b3403b67659ce6ac.  
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Participants 

We recruited students by advertising this study to existing fifth- to seventh-grade 

teacher-users of ASSISTments (Heffernan & Heffernan, 2014), the educational technology 

platform in which the study was deployed. Participating teachers assigned a link to the study 

activity to their class through the ASSISTments platform. Based on the information available 

in ASSISTments and in order to comply with the ASSISTments IRB, no demographic data 

from the platform is recorded or available on participants. Therefore, we were not able to 

receive or report participants’ demographics data. 

A total of 690 students from 24 middle school classrooms in the U.S. initially opened 

the assignment. Of those students, 19 students were immediately dropped from the sample 

because they did not complete the pretest and were therefore not assigned to a condition. 

An additional 71 students were dropped from the sample because they took an older and 

longer version of the pretest or had data not logged due to an error. A total of 600 students 

completed the three-item baseline assessment, were randomly assigned to a condition, and 

were included in our preliminary analysis examining mastery. Of the 600 students, 46 

students quit the assignment before completion, meaning they did not reach content 

“mastery”. These students were included in preliminary analyses then dropped from the 

sample for the primary analysis. We then checked the distribution of average response time 

and mastery speed to identify outliers. Of the 554 students who did reach “mastery”, 17 

students had average response times well over five minutes per problem and nine additional 

students had mastery speeds that exceeded three standard deviations from the sample 

mean; these 26 students were dropped from the sample. These exclusions resulted in a final 

sample of 528 students for the primary analysis.  

A post hoc power analysis in G*Power showed that a sample size of 528 students  

would provide 78.59% power to detect a small-to-medium effect size of f =.12 as detected in 

related previous work on perceptual cues in arithmetic problems (Harrison et al., 2020).  

Study Procedures 



13 
 

We created this randomized controlled trial as a problem set in ASSISTments, an 

online tutoring system with free K-12 content that focuses on math (Heffernan & Heffernan, 

2014). Teachers assigned the problem set as a class-wide assignment to their students to 

be completed individually in students’ web browsers using their own device as a 30-minute 

in-class or homework activity.  

Once students clicked the link to open the problem set, they completed a three-item 

baseline assessment on simplifying order-of-operations expressions (Figure 1). Each 

expression consisted of four numbers and three operators; further, the problems varied the 

position of the HOO (i.e., left: 6 / 3 + 2 – 1; center: 7 + 8 * 4 – 2; right: 7 + 2 + 5 * 3). 

Students did not receive any accuracy feedback on these problems. 

 
Figure 1. Student View in ASSISTments for the Three-item Baseline Assessment 

 

After completing the baseline assessment, students were randomly assigned to one 

of six conditions, described below. Within condition, students simplified order-of-operations 

expressions that were presented in a randomized order within an ASSISTments’ Skill 

Builder, where the goal was to “master” the content by answering three questions correctly in 

a row (Kelly et al., 2015). In the Skill Builder, once students correctly answered three 

problems in a row, they were considered to have “mastered” the topic and received a 

message indicating that they completed the assignment.  

Study Design and Conditions 

We used a 3 (HOO position: left, center, or right) × 2 (Presence of brackets: 

superfluous brackets vs. no brackets) between-subjects design consisting of six 

experimental conditions (Figure 2). 
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Figure 2. Example Problem Presentations within the 3×2 Study Design 

 

 Each condition varied in the placement of the HOO and the presence or absence of 

superfluous brackets in math expressions (Table 1). Importantly, the presence of the 

superfluous brackets did not alter the mathematical meaning of, or answer to, the math 

expressions in any conditions. Notably, it was mathematically valid to solve expressions in 

the brackets-left and no brackets-left conditions from left to right, whereas problems in the 

other four conditions required students to attend to the order of operations in order to 

correctly solve each problem. Additionally, the problems designed for each condition 

mirrored one another with the same terms and answers (e.g., in Figure 2, the simplified 

answer to the example expression is 32 in all six conditions). 

Table 1 

Problem Structures and Sample Problem by Condition 

Condition Name Structure HOO 
Position 

Presence 
of Brackets 

Example 

Brackets-Position Left *++ Left Yes (1 * 6) + 2 + 5 

No Brackets- Position Left *++ Left No 1 * 6 + 2 + 5 

Brackets-Position Center +*+ Center Yes 2 + (1 * 6) + 5 

No Brackets-Position Center +*+ Center No 2 + 1 * 6 + 5 

Brackets- Position Right ++* Right Yes 2 + 5 + (1 * 6) 

No Brackets-Position Right ++* Right No 2 + 5 + 1 * 6 
 

Materials 
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 The problems used in this study were based on the Common Core Standards for fifth 

grade content on “Operations and Algebraic Thinking” (National Governors Association 

Center for Best Practices, 2010). Our team designed 49 order-of-operations problems and 

adapted them for each of the described conditions. All problems consisted of four single-digit 

numbers (1 - 9) and three operators: one of the three operators was either multiplication or 

division and the two other operators were either addition or subtraction (e.g., Table 1). 

Single-digit numbers were evenly used across all problems in the problem set. 

Approximately half of the problem solutions were of magnitudes under 20 (n=26) and half 

were equal to, or over, 20 (n = 23).  

 

Figure 3. Example of a Student’s View in ASSISTments in the No Brackets-Right Condition  

Measures 

Pretest Completion and Performance. ASSISTments recorded whether each 

student completed the pretest as a binary measure and calculated their performance on the 

pretest as the number of correct answers across the three items. 

Mastery Status. ASSISTments provided a binary measure of whether students 

reached “mastery” as defined by correctly answering three problems in a row. Students may 

have dropped out of the assignment before reaching mastery. This measure was used as 

the outcome in the preliminary analysis to check attrition rates by condition. 

Mastery Speed. For each student that achieved mastery, the system recorded their 

assignment mastery speed, which was measured as the count of problems that a student 

saw (after the pretest) to successfully complete three problems in a row. For example, 
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Figure 3 shows a problem in ASSISTments after a student answered the first two problems 

in the Skill Builder correctly. If the student were to answer the third problem correctly, their 

mastery speed would be three problems. However, if the student were to answer the third 

problem incorrectly, followed by submitting three correct responses in a row, their mastery 

speed would be six problems. In the context of this study, a slower mastery speed (i.e., 

solving more problems to get three problems correct in a row) is an indicator of higher error 

and lower math performance. Mastery speed has been used as an outcome measure of 

student performance in previous ASSISTments studies (e.g., Botelho et al., 2015; Harrison 

et al., 2020; Walkington et al., 2019). Here, we consider students’ mastery speed to be a 

measure of their problem-solving accuracy. 

Average Response Time. For each experimental problem in the ASSISTments Skill 

Builder, the system recorded the time from which the problem window opened until the 

student submitted the correct answer to the problem. Students’ response time for each 

problem was summed and divided by the number of problems that they solved to calculate 

each student’s average response time per problem. Previous studies have explored 

response time as an outcome variable of student performance during math problem solving 

(Kellman et al., 2008; Landy & Goldstone; 2010; Mayer, 1982). In this study, we used 

average response time per problem as a proxy for efficiency to evaluate if students in one 

condition simplified math expressions faster than those in other conditions.  

Approach to Analysis 

Preliminary Analyses- Rate of Mastery by Condition 

 Prior to conducting primary analyses, we checked for differential mastery rates 

across conditions to see whether one condition may have been significantly more 

challenging for students to the point of not completing the assignment. Figure 4 shows the 

mean mastery rate by condition. We then conducted a logistic regression to examine 

whether students were more likely to have mastered the assignment when assigned to a 

condition with superfluous brackets and/or a particular operator position (left, center, or 
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right). The logistic regression model, controlling for pretest, was statistically significant, 𝟀2 (5, 

593) = 26.29, p < .001 (Table 2). The model explained 10.3% (Nagelkerke R2) of the 

variance in mastery and correctly classified 93.1% of cases. Presence of brackets was not 

associated with achieving mastery (OR = 2.49, 95%CI [-0.55, 2.38); however, students who 

were in a right position condition were significantly less likely to achieve mastery compared 

to students who were in a left position condition (OR = 0.27, 95%CI [-2.33, -0.26]). Higher 

pretest scores did not predict the likelihood of achieving mastery and no interactions were 

significant.  

 

Figure 4. Percentage of Students Who Achieved Mastery by Condition  

Note: Error bars represent one standard error from the mean.  

 

Figure 5. Percentage of Students Who Achieved Mastery by HOO Position 
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Note: Error bars represent one standard error from the mean.  

Table 2 

Logistic Regression Predicting Mastery by Condition 

      95% CI 

 Estimate SE 
Odds 
Ratio z 

Wald 
Statistic 

Lower 
bound 

Upper 
bound 

(Intercept) 2.31** 0.57 10.03 4.04 16.32 1.19 3.42 

Pretest correct 0.21 0.16 1.23 1.31 1.71 -0.10 0.52 

Brackets 0.91 0.75 2.49 1.23 1.50 -0.55 2.38 

Position- Center -0.55 0.57 0.58 -0.97 0.93 -1.67 0.57 

Position- Right -1.30** 0.53 0.27 -2.45 5.99 -2.33 -0.26 
Brackets * 
Position- Center 0.15 0.96 1.17 0.16 0.03 -1.74 2.04 
Brackets * 
Position-Right 0.57 0.91 1.76 0.62 0.39 -1.122 2.36 
Note: * p < .05; **p < .01; *** p < .001  
 
Primary Analyses 

      To answer our first and second research questions, we investigated how the position 

of the HOO and the presence of superfluous brackets may have separately impacted 

students’ performance among those who completed the problem set. Using the analytic 

sample of 528 students, we compared differences across conditions in students’ mastery 

speed and average response time as two indicators of student performance. Specifically, we 

conducted a Poisson regression to predict mastery speed and a linear regression to predict 

average response time. We used students’ pretest scores as a covariate to control for prior 

knowledge. We chose to conduct a Poisson regression for mastery speed since the variable 

represents count data. We did not use a multilevel model accounting for the nesting of 

students in teachers (n = 20) because the intraclass correlation was only 0.022, well below 

the 0.07 threshold that is recommended for the use of hierarchical linear modeling (Lee, 
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2000; Neihaus et al., 2014). The HOO position predictor was dummy coded, with the HOO in 

the center position as the reference group to allow comparisons to both left and right 

positions. We used R Studio with the lme4 package for all analyses.  

For each analysis, we analyzed the main effect of operator position (left and right 

compared to the center), the main effect of superfluous brackets (superfluous brackets vs. 

no brackets), and two Operator Position * Presence of Bracket interactions. The main effect 

of operator position (left and right compared to center) revealed whether and how the 

position of the HOO (i.e., multiplication or division) in math expressions impacted student 

performance on simple arithmetic. The main effect for the presence of brackets (superfluous 

brackets vs. no brackets) informed us whether and how superfluous brackets impacted 

student performance. Lastly, the interactions indicated whether there was an interaction 

between the impact of operator position (left and right compared to the center) and the 

presence of superfluous brackets on student performance.  

Results 

Descriptive Statistics 

 All students who were included in the primary analyses achieved “mastery” (i.e., 

answering three problems correctly in a row) at some point in the study assignment (M = 

4.49 problems, SD = 2.66 problems). See Table 3 below for details on numbers of students, 

average pretest score, average mastery speed, and average response time for the overall 

sample and by condition. Figure 6 shows average mastery speed by condition.  

Table 3 

Descriptive Statistics on Student Performance by Condition 

Condition n Average Pretest 
Performance 

(SD) 

Average Mastery 
Speed (SD) 

Average 
Response 
Time (SD) 

Overall 528 2.15 (0.93) 4.49 (2.66) 38.57 (34.31) 

No Brackets- Left 78 2.28 (0.91) 3.68 (1.55) 34.29 (26.23) 
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Brackets- Left 109 2.15 (0.93) 3.92 (2.13) 36.15 (30.90) 

No Brackets- Center 83 2.08 (0.90) 5.17 (3.17) 35.04 (29.37) 

Brackets- Center 99 2.18 (0.90) 3.66 (1.53) 40.13 (37.95) 

No Brackets-Right 77 2.20 (1.01) 5.60 (3.64) 46.84 (41.29) 

Brackets-Right 82 2.02 (0.96) 5.29 (2.82) 39.77 (37.58) 
Note: Average Pretest Performance and Average Mastery Speed are reported by problem 

count. Average Response Time is reported in seconds. 

 

Figure 6. Mean Mastery Speed as a Function of Condition  

Note: Error bars represent one standard error from the mean.  

Main Effects Predicting Mastery Speed  

To first examine the effects of brackets and HOO position on students’ mastery 

speed, we conducted a Poisson regression controlling for students' pretest performance, 

with the center position as the reference group (Table 4, Model 1).  

Table 4 

Main and Interaction Effects of Two Predictors on Mastery Speed 

 Model 1 Model 2 

Predictor Beta St. E T value Beta St. E T value 
 

Intercept 1.74*** 0.06 29.02 1.83*** 0.06 28.83 
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Pretest -0.10*** 0.02 -4.54 -0.09*** 0.02 -4.28 

Brackets -0.12** 0.04 -2.99 -0.34*** 0.07 -4.77 

Position-Left -0.11* 0.05 -2.22 -0.32*** 0.08 -4.29 

Position-Right 0.24*** 0.05 4.90 0.11 0.07 1.66 

Left*Brackets    0.26** 0.10 2.70 

Right*Brackets    0.40*** 0.10 3.87 
 

The results revealed a significant effect of superfluous brackets presence on 

students' mastery speed, B = -0.12, p = .002**(Figure 7). Specifically, students who did not 

have superfluous brackets had slower mastery speeds than those who saw superfluous 

brackets.  

 

Figure 7. Mean Mastery Speed as a Function of Brackets Condition  

Note: Error bars represent one standard error from the mean. 

Second, the results revealed a significant effect of HOO positions on students' 

mastery speed. Specifically, the mastery speed of students who solved expressions with the 

HOO on the left was significantly lower compared to those who solved problems with the 

operator in the center (B = -0.11, p < .05*). Further, students who solved problems with the 

HOO in the center had significantly quicker mastery speeds than students with the HOO on 

the right (B = 0.24, p < .001***; Figure 8).  
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Figure 8. Mean Mastery Speed as a Function of HOO Position Condition  

Note. Mean number of problems students completed to reach mastery as a function of HOO 

position condition with error bars reporting one standard error of the mean.  

Interaction Effects Predicting Mastery Speed  

Next, to examine whether the effects varied by condition, we added two interaction 

terms with bracket and position to the model (Table 4, Model 2). Results indicate significantly 

different patterns of effects with and without brackets in the center position, The first 

interaction of brackets by left position was statistically significant (B = 0.26, p = .01). As 

shown in Figure 9a, students in the two left conditions performed similarly, regardless of the 

presence or absence of brackets. While the center position was not related to higher 

mastery speed compared to the left position in the presence of brackets, the students who 

were in the center-no brackets condition did perform significantly worse (higher mastery 

speeds) than students in the left position conditions and the brackets-center position. 

The second interaction comparing brackets and no brackets and the center and right 

HOO position on mastery speed was also statistically significant (B = 0.40, p = .001). 

Students who were in the brackets center condition had significantly lower mastery speeds 

(indicating higher performance) compared to the right positions, but students’ mastery 

speeds in the no brackets center condition did not significantly differ from students in both of 

the right conditions (Figure 9b).  
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Additionally, after including the two interaction terms pretest performance remained a 

significant predictor of mastery speed (B = -0.09, p < .001), where students who performed 

higher on the pretest demonstrated quicker mastery speeds. Further, the main effects for 

brackets and the left compared to center position remained significant (p < 0.01); however, 

the main effect for the center vs right position was no longer significant (p = 0.09).  

 

Figure 9. Interaction Graphs of Average Mastery Speed by (a) Left and (b) Right Position 

and Presence of Brackets. Note. Reference group is Center position 

 

Main Effects Predicting Average Response Time 

Figure 10 shows the average response times per condition.  

    

Figure 10. Descriptive Graph of Average Response Time Per Problem by Condition 



24 
 

Note. Mean number of seconds students took to respond to each problem by condition with 

error bars reporting one standard error of the mean on each side. 

Next, we conducted a regression predicting average response time and controlling 

for students' pretest performance (Table 5, Model 3). First, there was no significant effect of 

HOO position on students' average response time, both p’s > .50. Similarly, there was no 

significant effect of superfluous brackets on average response time, p = 0.46. Lastly, there 

was no significant interaction effect between the position of HOO (both left and right 

compared to center) and the presence of superfluous brackets on students' average 

response time, both p’s > 0.20 (Table 5, Model 4). Pretest performance was not a significant 

predictor of average response time, p = 0.87.  

Table 5 

Main and Interaction Effects of Two Predictors on Average Response Time 

 Model 3 Model 4 

Predictor Beta St. E t value Beta St. E T value 

Intercept 238.80 789.70 0.30 601.50 860.40 0.70 

Pretest -69.60 276.20 -0.25 -46.20  277.10 -0.17 

Brackets 379.50 518.30 0.73 -387.80  879.40 0.44 

Position-Left  327.80 616.80 0.53 -116.00  932.90  0.12 

Position-Right 398.50   641.90  0.62  -440.10 934.90  -0.47 

Left*Brackets    818.00 1289.20  0.66 

Right*Brackets    1590.40 1289.20 1.23 
 

Discussion 

 The goal of this study was to explore whether the position of higher-order operator 

and the presence of superfluous brackets within math expressions may separately and 

simultaneously impact student performance on order-of-operations problems in an online 

tutoring system. Three notable findings emerged from this study. First, students were more 
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likely to not complete (i.e., “not master”) the assignment if they were in a condition that had 

the HOO on the right, suggesting that this presentation of arithmetic expressions may have 

posed more challenges to students during problem solving than the other position 

conditions. Second, main effects show that, on average, students who were assigned 

conditions where the HOO was in the center of the expressions had slower mastery speeds 

than when it was on the left, but quicker mastery speeds than students who solved 

expressions with the HOO on the right. Further, students who saw expressions with brackets 

tended to have quicker mastery speeds than those who did not see brackets. Third, 

interaction effects revealed that these main effects were largely driven by the presence of 

superfluous brackets on the center position which moderated the impacts of HOO position 

on mastery speed. Among students in the two conditions with the HOO in the center, 

students who solved expressions with superfluous brackets achieved mastery more quickly 

(comparable to students who were in the left position conditions) than students who solved 

expressions without brackets (comparable to the right position conditions).  

Right Operator Position Impacted Students’ Assignment 

Completion 

 Based on previous work on perceptual cues within ASSISTments (AUTHOR, 2020), 

we anticipated that operator position and superfluous brackets would impact students’ 

performance but not their completion rates on an online homework assignment. However, 

preliminary analyses found that students who were assigned to the right conditions were less 

likely to reach mastery compared to those in the left conditions. These results show that the 

position of HOO did impact students’ likelihood of achieving mastery, or generally, 

completing the assignment. This finding suggests that the impacts of operator position may 

be greater than anticipated or evidenced in prior work by impacting students’ participation in 

an assignment and not just their performance. 

In our pre-registration, we predicted that the brackets-left condition would be the 

easiest for students to solve arithmetic problems, and that the no brackets-right condition 
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would be most difficult, as indicated by students’ higher (i.e., slower) mastery speeds. The 

logistic regression showing that students assigned to the right position condition were 

significantly less likely to complete the assignment provides support for this hypothesis. We 

interpret this finding to mean that the position of the HOO may be very influential in how 

people reason about math; in particular, solving expressions may seem more difficult when 

the position of the HOO is on the right side of the expression. One plausible explanation for 

students dropping out more often in this condition may be that they became frustrated by the 

difficulty of the assignment or getting more problems incorrect. 

Since the primary analyses conducted only included students who did achieve 

mastery in the study activity, the findings on mastery speed and average response time 

need to be interpreted with the context that there was differential attrition between our six 

conditions. However, we contend that by dropping students who did not achieve mastery 

from the analytic sample, the findings may actually present a more conservative estimate of 

how the position and presence of perceptual cues within an arithmetic expression impact 

student performance. Future research should explore item-level data to better understand 

factors such as time on task, accuracy of initial responses, and students’ behaviors while 

problem solving to unpack the mechanisms behind why students might have dropped out of 

the assignment before reaching mastery.  

Main Effects of Higher-Order Operator Position on Students’ 

Mastery Speed  

 We predicted that solving math expressions with the HOO on the left and 

expressions with superfluous brackets would lead to (a) quicker mastery speeds and (b) 

quicker response times than solving expressions with the operator in the center or on the 

right and expressions without superfluous brackets. The main effect result supports the first 

hypothesis: seeing math expressions with the HOO on the left was, on average, related to 

quicker mastery speeds (i.e., higher accuracy rates) than the center. The presence of 

superfluous brackets also independently impacted students’ mastery speed during simple 
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arithmetic. However, these variables did not significantly predict response times. Students 

had comparable response times across conditions, suggesting that neither operator 

condition nor superfluous brackets impacted students’ problem-solving speed.  

The main effect finding that HOO position impacted student performance aligned with 

previous research showing that students have a left-to-right tendency during math problem 

solving (Banerjee & Subramaniam, 2005; Blando et al., 1989; Gunnarsson et al., 2016; 

Kieran, 1979). For instance, Kieran (1979) found that when solving 5 + 2 * 3, students tend 

to complete the addition operation first; however, when solving 4 * 2 – 3, students came to 

the correct answer by following their tendency to compute from left to right (Kieran, 1979). 

This strong adherence to the left-to-right principle in computing may explain the differences 

in mastery speed that we saw in our study. In the two operator-left conditions, the math 

expressions were presented in ways that benefited students' left-to-right tendency: students 

did not have to effortfully attend to the problem’s structure or the order of operations of 

expressions to reach the correct answer, leading to fewer errors and higher accuracy during 

problem solving. On the other hand, students who solved expressions with the operator on 

the right consistently had the slowest mastery speeds, regardless of superfluous brackets 

(e.g., 4 + 7 + 2 * 5, 3 + 8 + (2 * 7)). In these two operator-right conditions, the presentation of 

math expressions required students to notice the problem’s structure and inhibit their left-to-

right tendency in order to answer correctly, leading to more errors and lower accuracy. This 

is especially notable as the students in the no brackets-right condition who were in this 

analytic sample were likely a higher performing subset of those initially assigned to this 

condition, as students in the no brackets-right condition were more likely to drop out of the 

study before achieving mastery or completing the assignment.  

This study advances research on the roles of perceptual factors in math notation by 

isolating the effect of higher-operator position on students’ performance. While the effects of 

superfluous brackets and HOO position on student performance are much smaller than we 

anticipated based on prior work (Harrison et al., 2020), this finding suggests that varying the 

positions of HOOs and presence or absence of superfluous brackets may provide noticeable 
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differences in perceptual structures that affect students’ performance in the context of our 

study. While previous research has demonstrated the left-to-right tendency in problem 

solving (e.g., Banerjee & Subramaniam, 2005; Blando et al., 1989; Gunnarsson et al., 2016; 

Kieran, 1979), to the best of our knowledge, no previous study had strategically tested 

whether and how HOO position impacts different aspects of student performance. As we 

found that students who solved problems with the HOO on the right performed significantly 

worse than those in the left and center conditions, our study provides empirical evidence that 

students have a strong tendency to solve math problems from left to right. This finding 

contributes to the literature on students’ weak structure sense and may have implications for 

classroom instruction to identify and support students who tend to solve problems from left to 

right. 

Superfluous Brackets in the Center Operator Position Increase 

Performance 

The most notable finding is that the presence of superfluous brackets moderated the 

effect of HOO position, specifically when students solved math expressions with the operator 

in the center. While students, on average, demonstrated the quickest mastery speeds in the 

left conditions, students in the center position with brackets condition performed comparably 

well to the two operator-left conditions, suggesting that superfluous brackets may increase 

students' accuracy on problems when the HOO is in the center. Conversely, students in the 

no brackets-center position condition had comparable mastery speeds to students in the 

right position conditions, suggesting that the absence of brackets with the HOO in the center 

posed challenges to students.  

One possible interpretation of these results is that position of HOO might be a type of 

visual and perceptual feature that works congruously with left-to-right calculating tendency to 

impact students’ problem solving: left-sided HOOs facilitate higher accuracy, while center- 

and right-sided HOO (without brackets) elicit more errors. Students were highest performing 

when they were able to apply a left-to-right solving strategy. In cases when they could not 
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(i.e., center and right position conditions), their performance (mastery speed) dropped. The 

exception to this trend was for students who saw brackets in the center position, suggesting 

that in cases when students could not apply a left-to-right solving strategy, the superfluous 

brackets may have naturally and visually grouped the numbers to prevent a left to right 

calculation, or shifted their attention and helped them identify the groupings to apply the first 

steps for problem solving. The brackets could have prevented students from compulsively 

performing left-to-right calculations by visually and physically breaking up the structure of the 

math expressions. Specifically, brackets around the center terms may be the most impactful 

because, in that position, it breaks up the structures into three distinct parts, where the 

brackets naturally block the flow of left to right computations (i.e. 1+ (7 * 5) – 4).  

When solving order-of-operations problems, students seem to rely on both HOO 

position and superfluous brackets presented in the expressions; however, this work 

suggests that operator position, particularly when placed in the center, may play a strong 

attention-guiding role. Aligned with our findings, HOO position seemed to be a salient factor 

that impacted students’ performance when calculating left to right. Superfluous brackets, 

while significant, specifically seemed to impact students’ performance when the operator 

position was in the center. Having brackets on the left or right did not seem to impact 

performance. Thus, if students relied on left to right calculations, they would use more 

inaccurate problem solving when the operators were not located on the left side of the 

expressions. However, when the operators were in the center of the expressions, the 

presence of the brackets could have helped students attend the HOO first, breaking up the 

expression into chunks, and helping to facilitate more accurate problem solving.   

Harrison and colleagues (2020) suggested that perceptual features may impact 

student performance in a hierarchical structure. In particular, the operator position may act 

as a first-order perceptual structure, while physical spacing between symbols in expressions 

might have acted as a second-order perceptual cue to influence how students interpreted 

and acted on math notation (Harrison et al., 2020). Aligned with this perspective, we posit 

that students may attend to operator positions first, with a compulsion to compute from left to 
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right. The presence of brackets may have helped guide students' attention to the operator in 

the center, nudging them to notice the order-of-operations structure of the problem, and 

facilitating more accurate problem solving. Consequently, students may be more likely to 

notice superfluous brackets when they are used to group symbols that are not on the left-

most side of expressions and break up this natural flow. While we cannot be certain of the 

mechanism of this finding, the helpful effects of superfluous brackets in the center of the 

expressions is consistent with prior studies indicating the usefulness of brackets to help 

students see structure and support math performance (e.g., Hoch & Dreyfus, 2004; Marchini 

& Papadopoulos, 2011). However, this work contradicts Gunnarsson and colleagues’ prior 

work (2016) that showed that the use of superfluous brackets was not helpful.  

Another alternative explanation of this finding is that, for students who have not yet 

conceptually mastered the order of operations, they may have memorized a simpler 

procedural rule that parentheses must be computed before other operations (i.e., PEMDAS). 

Therefore, it is plausible that the brackets may not be serving solely as a visual perceptual 

cue, but rather students could be relying on the PEMDAS (or BEDMAS) rule that parenthesis 

must be calculated first as a foolproof way for students to perform simple procedures without 

understanding. However, this explanation is challenged by the finding that the presence of 

brackets when in the left or right positions did not help students perform more accurately 

than without brackets in those positions.  

Performance vs. Learning: Creating Desirable Difficulties 

 The findings from this study demonstrate how operator position and superfluous 

brackets may impact students’ participation in, and performance on, order-of-operations 

problems in an online homework environment. Importantly, this work provides considerations 

for designing stand-alone assignments: using problems with left-most HOO may increase 

students’ performance while using right-most HOOs in expressions may decrease students’ 

likelihood of finishing the assignment. We posit that variations in perceptual features like 

HOO position and superfluous brackets (particularly in the center position) may help 
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students quickly infer which operations to address in a given expression, similar to creating 

semantic alignment in the structure of word problems (Gros et al., 2020). Based on the word 

structure of problems, students map connections to the underlying mathematical properties: 

for example, problems stating to “place [objects] in [locations]'' create analogies for using 

division (Bassok, 2001). This quick encoding of information may lead to increased 

performance solving problems. However, we did not administer a posttest so we are unable 

to draw any conclusions about how completing the assignment with perceptual cues like 

brackets in varying positions may transfer to students’ strategies and performance in 

subsequent problem solving. We consider this study to be a first step to explore long-term or 

transfer effects of using perceptual cues in instructional materials. For example, are the 

perceptual cues that increase performance also those that promote learning, problem-

solving flexibility, and efficiency?  

Several decades of research on desirable difficulties has shown that learning 

conditions which are more difficult in the moment and decrease individuals’ performance 

improve long-term learning and retention (Bjork, 1994; Bjork & Bjrok, 2011). For example, 

perceptually (Diemand-Yauman et al., 2011) or conceptually (in terms of organizational 

structure, McNamara et al., 1996) creating conditions that decrease students’ in-the-moment 

fluency encourages them to pause before engaging with the material. Work on algebraic 

equivalency has also shown that students who pause longer before acting on a problem 

show higher problem-solving efficiency than their peers who do not pause to think before 

solving (Chan et al., 2022). More broadly, instructional and study tactics such as varied 

practice (Smith et al., 1978) and interleaving (Kornell & Bjork, 2008) help learners develop 

flexibility across time and context to improve problem solving. Interleaved and varied 

practice train learners to identify distinguishing problem features like the way that perceptual 

cues can help students see important structures of notation that may influence their decision 

on which strategy to apply to a problem.  

Taken together, we consider the possibility that variations in expression structures 

and perceptual cues that lend themselves to higher problem-solving performance (i.e., left-
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most HOO, superfluous brackets) may not be the same features that lead to long-term 

learning, retention, and flexibility or efficiency. Instead, more difficult mathematical structures 

or the presence or absence of perceptual cues that challenge students to pause and reflect 

on procedural or more conceptual rules like the order of operations before acting (i.e., right-

most HOO, no superfluous brackets in center, incongruent spacing) may seem 

counterintuitive but could create desirable difficulties and promising interventions for 

improved long-term outcomes. This area of inquiry is a focus of our future work.  

Limitations and Future Directions 

 This study had multiple limitations. First, the differential attrition (i.e., students who 

achieved mastery was different by condition) can be seen as problematic as the attrition was 

not random. However, although more students were dropped from the analytic sample in the 

no brackets-right condition, the findings of this study are notable, especially given that the 

negative effects of no brackets-right were still present, even when dropping those who did 

not achieve mastery.  

Second, given the current data, it is difficult to specify who is impacted by  

superfluous brackets and HOO position and when. While we intentionally recruited teachers 

of incoming fifth- to seventh-grade students, the online platform used to deploy the study 

does not permit collecting any individual participants’ demographic information (e.g., gender, 

race, age, grade, in-person vs. remote learning status) due to privacy concerns. While we 

acknowledge that the lack of demographic information is not ideal and limits our ability to 

understand individual differences, it is a tradeoff for using open educational platforms like 

ASSISTments for conducting educational research at scale. Further, teachers were aware of 

the content targeted in the study and may have assigned the content to students in other 

grades if the content was appropriate for their knowledge levels (e.g., in advanced lower 

grades or remedial higher grades). Additionally, conducting this study in an online platform 

provided ecological validity by testing how these experimental manipulations impacted 

students’ performance on an online class or homework assignment.  
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Third, the focal dependent variable in this study, mastery speed, is specific to the 

type of problem set built in ASSISTments. As a result, these findings are not directly 

generalizable to other online tutoring platforms or contexts. However, estimating treatment 

effects on students’ mastery speed provides suggestions for another measure for accuracy 

and a unique analysis of how perceptual cues may impact students’ performance at a 

granular level.   

Looking ahead, future research may consider collecting more demographic 

information from participants to control for individual differences among students that may 

affect their susceptibility to perceptual cues. This approach would help uncover when, and 

for whom, perceptual scaffolding may be the most effective. Further, this approach may be 

most effective when paired with other theoretical perspectives that explain cognitive and 

developmental factors of math performance and learning. Additionally, future research may 

consider replicating this work with students in classrooms or using additional methodologies 

to tease out the mechanisms and practical significance of presenting and implementing 

perceptual supports to facilitate enhanced problem solving in everyday math learning. 

Current work utilizing eye tracking is underway by our team to identify whether students who 

are presented with brackets do in fact look at the brackets and HOO first or fixate longer 

within expressions in various positions. This can help confirm or challenge more procedural 

or perceptual/attentional explanations for why students demonstrate improved performance 

with brackets in the center position.  

Implications and Practical Contributions 

Broadly, this study adds to the growing body of literature on the importance of 

perceptual grouping, and variations in structures for developing structure sense and 

reasoning in mathematics (Kirshner, 1989; Landy & Goldstone, 2007, 2010) and the 

potential benefits of using superfluous brackets in simplifying expressions (Hoch & Dreyfus, 

2004; Marchini & Papadopoulos, 2011). Our study suggests that superfluous brackets may 

be a helpful perceptual cue for students, especially when the HOO is placed in the center. 
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Superfluous brackets may provide additional support to students when learning order of 

operations, thus adding more to the literature about how presenting superfluous brackets in 

different positions of math expressions may serve as an effective intervention to support 

students during problem solving.  

These findings support that adding visual information in notation, such as 

manipulating the position of HOOs and adding superfluous brackets, may act as perceptual 

supports that can positively influence students’ reasoning and performance in math. Our 

findings also highlight the importance of helping students develop structure sense in math 

learning and identifying students who may be underperforming due to a left-to-right solving 

tendency. Regarding the implications of this work, instructors and educators may be able to 

intentionally make changes to the visual presentation of notation, such as adding 

superfluous brackets, to guide students' attention to relevant features of math problems, lead 

them to correct solution strategies, and enhance their performance on tasks. Since students 

tend to solve math problems from left to right, which might lead to inaccurate solutions, it 

may be useful for teachers to utilize superfluous brackets in the center position to improve 

students' weak structure sense in arithmetic by helping inhibit their compulsion to compute 

from left to right. A second possible way to support students' development of structure sense 

may be to introduce them to superfluous brackets early and slowly in instructional practice. 

As students first learn how to solve problems with HOOs in an expression (e.g., 2 + (1 * 6) + 

3), guiding them to notice the higher order operator by using superfluous brackets or 

instructing them to put the brackets around the multiplication or division to break up structure 

and signs might help students gradually build an understanding that these brackets serve as 

a visual cue to highlight important elements of math problems. From frequent exposure to 

superfluous brackets as a perceptual cue, students might better understand the importance 

of finding significant elements within a math expression and comprehending the overall 

structure of a problem prior to solving. As students become more comfortable with 

simplifying order-of-operation expressions with different structures, the need for those 

supports may become less necessary.  
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Conclusions 

 The current study applies and integrates work from cognitive science, math 

education, and educational technology to explore the impact of superfluous brackets and 

HOO position on students’ math performance simplifying expressions. We found that, 

generally, students tend to demonstrate the highest performance on expressions with the 

HOO on the left but performance decreases as the HOO moves to the right. However, we 

found that adding superfluous brackets in the center position supports learning, while having 

brackets on the right or left does not provide additional impacts for students. Overall, this 

study highlights the importance of providing variation in subtle structural and perceptual 

variations in mathematics, showing that the position and presence of perceptual grouping 

structures, such as superfluous brackets, impacts students’ completion and performance on 

online assignments.  
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