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Abstract

For students to advance beyond arithmetic, they must learn how to attend to the structure of
math notation. This process can be challenging due to students' left-to-right computing
tendencies. Brackets are used in mathematics to indicate precedence but can also be used
as superfluous cues and perceptual grouping mechanisms in instructional materials to direct
students’ attention and facilitate accurate and efficient problem solving. This online study
examines the impact of operator position and superfluous brackets on students’ performance
solving arithmetic problems. A total of 528 students completed a baseline assessment of
math knowledge, then were randomly assigned to one of six conditions that varied in the
placement of higher-order operator and the presence or absence of superfluous brackets: 1)
brackets-left (e.g., (5 * 4) + 2 + 3), 2) no brackets-left (e.g., 5 * 4 + 2 + 3), 3) brackets-center
(e.g., 2 + (5 *4)+ 3), 4) no brackets-center (e.g., 2 + 5 * 4 + 3), 5) brackets-right (e.g., 2+ 3
+ (5 * 4)), and 6) no brackets-right (e.g., 2 + 3 + 5 * 4). Participants simplified expressions in
an online learning platform with the goal to “master” the content by answering three
questions correctly in a row. Results showed that, on average, students were more accurate
in problem solving when the higher-order operator was on the left side and less accurate
when it was on the right compared to the center. There was also a main effect of the
presence of brackets on mastery speed. However, interaction effects showed that these
main effects were driven by the center position: superfluous brackets only improved
accuracy when students solved expressions with brackets with the operator in the center.
This study advances research on perceptual learning in math by revealing how operator
position and presence of superfluous brackets impact students’ performance. Additionally,
this research provides implications for instructors who can use perceptual cues to support

students during problem solving.
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Introduction

As students progress beyond arithmetic in middle school, they are challenged to
learn to attend to the structure of math notation (Hoch & Dreyfus, 2004; Kieran, 1989;
Linchevski & Livneh, 1999). However, there is growing evidence that students struggle with
noticing and understanding the structure of math notation (Hoch & Dreyfus, 2004; Linchevski
& Livneh, 1999; Papadopoulos & Gunnarsson, 2020). Linchevski and Livheh (1999) first
introduced the term “structure sense” to describe students’ ability to grasp arithmetic
structures. Examples of having a strong structure sense include being able to identify
equivalent forms of a math expression (e.g., 3 (x + 2) + 5 is equivalent to 5 +3 (x + 2) as well
as 3x + 11) and to discriminate expression forms that are relevant to the task from those that
are not (Hoch & Dreyfus, 2004). Students often have weak structure sense, which is shown
through two widespread misunderstandings: the detachment of a math term from its
indicated operation (e.g., mistaking 4 + n—2 + 5 as equivalentto 4 + n-7), and 2)
incorrectly linking operations to non-adjacent terms (e.g., in the equation 115 - n + 9 = 61,

ignoring “n” to subtract 9 and create 106 — n = 61; Linchevski & Livheh, 1999; Papadopoulos

& Gunnarsson, 2020). Importantly, developing structure sense is dependent on students



understanding the mathematical meaning of notations as well as the appropriate rules and

operations to apply within expressions. 1) the detachment of a math term from its indicated
operation (e.g., mistaking 4 + n — 2 + 5 as equivalent to 4 + n — 7), and 2) incorrectly linking
operations to non-adjacent terms (e.g., in the equation 115 —n + 9 = 61, ignoring “n” to
subtract 9 and create 106 — n = 61; Linchevski & Livneh, 1999; Papadopoulos &
Gunnarsson, 2020). Importantly, developing structure sense is dependent on students
understanding the mathematical meaning of notations as well as the appropriate rules and
operations to apply within expressions.

Aside from structure sense, the position of terms within a math expression may play
a role in how students reason about mathematics. Students may also struggle to resist the
urge to solve math problems from left to right. Early middle school students have a strong
tendency to adhere to the left-to-right principle when solving problems, which may lead them
to overlook and violate the order of operations (Banerjee & Subramaniam, 2005; Blando et
al., 1989; Gunnarsson et al., 2016; Kieran, 1979). For instance, Kieran (1979) found that
when solving 5 + 2 * 3, many middle school students added 5 and 2 first, indicating that they
overlooked the order of operations and instead evaluated math notations in a left-to-right
sequence. By following the left-to-right tendency in the equation 5 + 2 * 3, students reached
the wrong answer; however, when those students solved for 4 * 2 — 3, they correctly
identified that they had to first multiply 4 and 2 (Kieran, 1979). This observation suggested
that the position of higher-order operators (e.g., multiplication and division) within a math
expression may influence students’ reasoning and performance in problem solving. To
extend this research, our study aims to uncover the isolated effects of higher-order operator
position (hereafter referred to as HOO) on students’ performance on order-of-operations
problems.

One potential way to support students’ structure sense and help them notice the
order of operations when solving math problems is to increase the visual salience of

important cues in an expression. Brackets are often used in mathematics to group numbers



together, to emphasize, and/or to identify precedence. In some cases, brackets are
necessary to indicate precedence (i.e., (a + b) * ¢ + d) and in other times, brackets are used
only for emphasis, or are superfluous—meaning they do not change the meaning of the
mathematical expression when removed (i.e., a + (b * ¢) + d). Prior research has found that,
even in cases where brackets are not present or necessary, students have a natural
inclination to use mental brackets to interpret arithmetic and algebraic expressions (e.g.,
Papadopoulos & Gunnarsson, 2020; Papadopoulos & Thoma, 2022). Many students are
taught the acronyms BEDMAS (Brackets, Exponents, Division, Multiplication, Addition, and
Subtraction) or PEMDAS (depending on the country) to remember as a set of rules for
applying operations. Due to this emphasis, students may be relying on and using
superfluous brackets mentally as a failsafe way to remember their precedence rules. An
alternative explanation is that superfluous brackets may be used by students as a perceptual
grouping cue that could be used to make crucial mathematical structures like HOO more
salient to students and help with encoding during problem solving. Regardless of the
mechanism, these studies indicate that the presence of superfluous brackets-—brackets that
do not change the meaning of notation, can guide learners’ attention to the correct
procedures and improve performance.

A number of previous studies have investigated how superfluous brackets influence
mathematical problem solving (e.g., Hoch & Dreyfus, 2004; Marchini & Papadopoulos,
2011). For example, Linchevski and Linveh (1999) found that students who lacked structure
sense (and were therefore likely to focus on surface structures over systemic structures of
math terms and operations) would struggle with expressions of the type a = b x ¢, as
students would need to understand that b should be connected with the ¢, not a, due to
order of precedence. The authors also suggested that inserting superfluous brackets around
b x ¢ could help students understand that the multiplication operation should be calculated
first, followed by addition, making the order of operation rules (i.e., BEDMAS or PEMDAS)
more salient and explicit. Other research exploring the role of superfluous brackets as a
perceptual cue has found that students are more accurate at algebraic problem solving when
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equations included superfluous brackets to emphasize structures compared to equations
that did not (e.g., Hoch & Dreyfus, 2004; Marchini & Papadopoulos, 2011). In other work,
superfluous brackets have been shown to help students achieve higher success rates
solving problems (Hoch & Dreyfus, 2004; Marchini & Papadopoulos, 2011; Papadopoulos &
Gunnarsson, 2018, 2020). For instance, in a study with elementary school students in Italy
and Greece, Marchini and Papadopoulos (2011) found that when students completed math
expressions with superfluous brackets, they were more likely to calculate some expressions
correctly and were more likely to recognize important expression structures (i.e., the order of
operations). This finding suggests that superfluous brackets can highlight the structural
elements of an expression for students; in turn, attending to important problem elements
may improve students’ structure sense and consequently, support their math problem
solving. However, in other work, adding superfluous brackets have been found to have no
effect (Gunnarsson et al., 2016) and can lead to misinterpretations and procedural errors
(e.g., Ayres, 2000; Hewitt, 2005; Kieran, 1979; Okazaki, 2006).

Given these mixed results, it is important for researchers and educators to better
understand how adding superfluous brackets could be used to help support student
performance and learning. In addition to understanding superfluous brackets’ influences on
outcomes, it is also important to better understand how brackets and HOO position within a
math expression influence students’ performance to identify the situations where these
brackets may help versus hinder students. Our current study aims to advance understanding
of how operator position and superfluous brackets within a math expression can affect
students’ problem-solving performance in an online learning environment.

The goals of our study are threefold. First, we aim to examine the isolated impact of
HOO position on students’ performance on simple arithmetic problems in an online activity.
Second, we aim to extend prior research by testing whether the presence of superfluous
brackets can support student performance. Third, we assess if the presence of superfluous

brackets moderates the impact of HOO position. Specifically, we examine how the presence



of superfluous brackets and the position of HOOs (i.e., multiplication and division) within an

expression independently and simultaneously influence student performance.

Theoretical Framework

Perceptual Learning and Mathematical Structure

Learning math is naturally dependent on our perceptual processes; the way that we
perceive incoming stimuli informs the way we think about it (Gibson, 1969; Marghetis et al.,
2016). Perceptual learning theory suggests that learning and reasoning in math does not
only depend on our perceptual processes, but that we actually develop perceptual-motor
routines over time to direct our attention towards salient perceptual cues in math notation
(Goldstone et al., 2017; Jacob & Hochstein, 2008; Kellman et al., 2010; Kirshner & Awtry,
2004; Patsenko & Altmann, 2010). In particular, the visual features of math notation (e.g.,
spacing, symbols, color) act as perceptual cues that can highlight information and influence
the way we reason and act on notation. Incidentally, intentional changes to the presentation
of notation, even very subtle, can be used as perceptual scaffolding to impact students’
performance on tasks such as simple arithmetic and equation solving.

Prominent Visual and Perceptual Grouping Mechanisms

While multiple visual features may have no bearing on the mathematical meaning of
notation, they can direct individuals’ attention towards structures within the notation and act
as perceptual grouping mechanisms, impacting learners’ performance on problem solving.
For example, visual features that are proximal, as opposed to distal, to one another are more
likely to be perceptually grouped together by our visual systems according to the Gestalt
principles of perceptual grouping (Hartmann, 1935; Wertheimer, 1938). For instance, the
spatial proximity between symbols in expressions and equations impacts how individuals
solve math problems. Individuals solve problems more quickly and accurately when the

spatial proximity in notation supports the order of operations (e.g., 6*3 + 4). However,



individuals struggle more to solve problems (i.e., taking more time to solve and making more
errors) when the spatial proximity between symbols does not support the order of operations
(e.g., 6 * 3+4). This finding is true for grade school and college students alike (e.g.,
Braithwaite et al., 2016; Goémez, Bossi, & Dartnell, 2014; Gémez, Benavides-Varela et al.,
2014; Harrison et al.,, 2020; Landy & Goldstone, 2007, 2010; Rivera & Garrigan, 2016). In
fact, the effects of spatial proximity on students’ performance have been shown to increase
with students’ age from grade two to six (Braithwaite et al., 2016), and do not decline among
secondary students (Harrison et al., 2020). These findings suggest that the reliance on
spatial proximity as a perceptual grouping mechanism is pervasive across developmental
stages as well as ranges in math knowledge.

In addition to the spatial proximity of symbols, several other visual features can also
serve as attentional cues in math notation. For example, strategic coloring can be used as a
perceptual grouping mechanism to support students’ generation of problem-solving
strategies (Alibali et al., 2018). Alibali and colleagues (2018) found that fourth-grade
students who received instructional materials that highlighted relevant features to encode
with different colored ink than the rest of an equation during a practice session were more
likely to generate correct problem-solving strategies and improve from pretest to posttest
than their counterparts who received materials without highlighting or with irrelevant equation
features highlighted (Alibali et al., 2018). Landy and Goldstone (2007), in a sample of college
students, found the same effect by manipulating the alphanumeric proximity of terms within
an expression to be congruent or incongruent with the order of operations (i.e., students
performed better on problems suchas“a+p*q+z=a+q*p+ z"and worse on problems
suchas‘r+s*b+c=r+s*b+c"). Together, this research demonstrates the robust effect
of perceptual grouping mechanisms on problem solving in math for a wide range of students
and ages, suggesting that the ways in which we reason about math notation is highly
dependent on our visual perception.

Brackets as a Visual and Perceptual Grouping Mechanism



In arithmetic, brackets can be used in several ways. First, within math expressions,
brackets typically signify grouping in which the math content in the group takes precedence
over its surroundings based on the order of operations (e.g., in “10 + (2 + 3)). Second,
brackets can be used superfluously to visually highlight the structural elements of an

expression without changing the mathematical meaning of the expression (Gunnarsson et

E: :: :; the brackets preserve the structure of

al., 2016). For example, when students write

the initial rational expression and highlight the relation between the numerator and the
denominator of the fraction. In this case, like spatial proximity and color highlighting,
superfluous brackets serve as a perceptual grouping mechanism that can prime students to
attend to the HOO.

One explanation for why superfluous brackets could work as a visual grouping
mechanism is that they create a common visual region within math expressions that draws
students’ attention to a specific area of math notation (Landy & Goldstone, 2007). According
to the common visual region principle, individuals tend to group together visual elements that
are located within the same bounded visual region (Palmer, 1992). These visual regions can
be demarcated using color shifts, visual separators, or, in the case of brackets, object
boundaries. For instance, when seeing “(6 * 3) + 47, students tend to quickly group “(6*3)”
together because those terms are bound together by brackets. In fact, an eye-tracking study
by Schneider and colleagues (2012) showed that adults were drawn to notation presented
within a pair of brackets. For example, when presented with two math expressions, “(3 — 2) +
4” and “4 + (3 — 2)”, adults spent more time fixating on “(3 — 2)” than “+ 4”, showing that
superfluous brackets serve as perceptual cues to capture attention. Hoch and Dreyfus
(2004) also found similar grouping and attention-directing effects of superfluous brackets.

Eleventh-grade students solved math problems more efficiently with the presence of

superfluous brackets (e.g., 1 - ﬁ -(1- ﬁ) =1—10) than without (e.g., 1 - ﬁ -1+ ~ Jlr 5= 712).

This finding suggests that superfluous brackets focus students’ attention and alert them to

the possibility of like terms, leading them to more efficient problem-solving strategies.



Research on the use of superfluous brackets as a visual cue has been primarily
conducted in classrooms (Gunnarsson et al., 2016; Hoch & Dreyfus, 2004; Marchini &
Papadopoulos, 2011; Papadopoulos & Gunnarsson, 2018, 2020). Some of this research
provides evidence that superfluous brackets positively impact students’ math performance
through more accurate problem solving, higher performance on posttests, and better student
understanding of the math expression’s structure (e.g., Hoch & Dreyfus, 2004; Marchini &
Papadopoulos, 2011; Papadopoulos & Gunnarsson, 2018, 2020). However, other results
have been contradictory. For example, Gunnarsson and colleagues (2016) found that the
use of superfluous brackets did not enhance students’ performance as they learned the
order of operations and even led to lower performance at posttest. However, that study
consisted of a short intervention on the order of operations. It is possible that those findings
might be impacted by the quality of the intervention, rather than by the presence of the
superfluous brackets itself, motivating further work on the impact of superfluous brackets as

a perceptual visual grouping mechanism.

The Present Study

The current study aims to provide additional empirical evidence about how
superfluous brackets affect student performance with two important extensions of past work.
First, this work explores the differential impacts of higher-order operator position on math
performance. Second, much of the prior work has been conducted using paper and pencil
tasks. Online learning and use of technology platforms in the math classroom has grown
significantly and become more centric to education due to the COVID-19 pandemic,
motivating us to explore the impact of superfluous brackets in problem sets implemented in
an authentic online educational technology-based learning environment. Thus, our study
aims to provide insights on how superfluous brackets may act as visual and perceptual
support for students while solving problems in an online learning environment.

In this study, we compare performance on simple arithmetic problems among fifth- to

seventh-grade students. Students completed math problems that were presented in one of
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six different ways varying the presence or absence of brackets and the position of the HOO.
Based on previous findings on students’ weak structure sense, we hypothesize that when
solving math problems related to the order of operations, students will be more likely to
subscribe to the left-to-right tendency in computing. Thus, students will perform better when
they see the HOO on the left, compared to when the operator is in the center or on the right
side of the expression. In line with perceptual learning theory, we also hypothesize that
superfluous brackets will act as a perceptual cue that primes students and draws their
attention to the HOO,; thus, students will perform better on problems with (as opposed to
without) superfluous brackets. Finally, we hypothesize that students will perform the highest
on math expressions that contain both, left side HOOs and superfluous brackets.
Specifically, we pose the following research questions:

1) Does the position of a HOO (i.e., multiplication or division) impact student
performance on simple arithmetic problems in an online homework assignment, as
measured by student mastery speed and average response time?

2) Does the presence of superfluous brackets impact student performance, as
measured by student mastery speed and average response time?

3) Is there an interaction between the effects of operator position and superfluous
brackets on student performance, as measured by student mastery speed and

average response time?

Methods

We received approval from our university’s ethics committee for this research project.
Additionally, we pre-registered the study design and data analysis plan for this project on
Open Science Framework at

https://osf.io/xnps6/?view only=4f8c8d97ec574ca2b3403b67659cebac.
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Participants

We recruited students by advertising this study to existing fifth- to seventh-grade
teacher-users of ASSISTments (Heffernan & Heffernan, 2014), the educational technology
platform in which the study was deployed. Participating teachers assigned a link to the study
activity to their class through the ASSISTments platform. Based on the information available
in ASSISTments and in order to comply with the ASSISTments IRB, no demographic data
from the platform is recorded or available on participants. Therefore, we were not able to
receive or report participants’ demographics data.

A total of 690 students from 24 middle school classrooms in the U.S. initially opened
the assignment. Of those students, 19 students were immediately dropped from the sample
because they did not complete the pretest and were therefore not assigned to a condition.
An additional 71 students were dropped from the sample because they took an older and
longer version of the pretest or had data not logged due to an error. A total of 600 students
completed the three-item baseline assessment, were randomly assigned to a condition, and
were included in our preliminary analysis examining mastery. Of the 600 students, 46
students quit the assignment before completion, meaning they did not reach content
“mastery”. These students were included in preliminary analyses then dropped from the
sample for the primary analysis. We then checked the distribution of average response time
and mastery speed to identify outliers. Of the 554 students who did reach “mastery”, 17
students had average response times well over five minutes per problem and nine additional
students had mastery speeds that exceeded three standard deviations from the sample
mean; these 26 students were dropped from the sample. These exclusions resulted in a final
sample of 528 students for the primary analysis.

A post hoc power analysis in G*Power showed that a sample size of 528 students
would provide 78.59% power to detect a small-to-medium effect size of f=.12 as detected in

related previous work on perceptual cues in arithmetic problems (Harrison et al., 2020).

Study Procedures
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We created this randomized controlled trial as a problem set in ASSISTments, an

online tutoring system with free K-12 content that focuses on math (Heffernan & Heffernan,

2014). Teachers assigned the problem set as a class-wide assignment to their students to

be completed individually in students’ web browsers using their own device as a 30-minute

in-class or homework activity.

Once students clicked the link to open the problem set, they completed a three-item

baseline assessment on simplifying order-of-operations expressions (Figure 1). Each

expression consisted of four numbers and three operators; further, the problems varied the

position of the HOO (i.e., left: 6 /3+2—1; center: 7+ 8 *4 - 2; right: 7+ 2 + 5* 3).

Students did not receive any accuracy feedback on these problems.

Total problems completed: 1

Problems completed: 1/4
This problem set.... @
S 1349982

More to come...

Comment on this
problem

Problem ID.
PRABRK24

6+3+2-1

Submit Answer )

jll Total problems completed:
Problems completed: 2/4
This problem set... @
1349982 @

1349983

Assignment: Order of Operations
5.0A.A.1 EX

Problem ID: Comment on this
PRABRK25 problem

7+8x4-2

Submit Answer |

Rl Total problems completed: 3

This problem set... @

1349982 @

1349983 @
1349984

Assignment: Order of Operations
5.0A.A.1 EX

Probtem ID: mme
PRABRK26

7+2+5x%x3

nt on thi
problem

Submit Answer

Figure 1. Student View in ASSISTments for the Three-item Baseline Assessment

After completing the baseline assessment, students were randomly assigned to one

of six conditions, described below. Within condition, students simplified order-of-operations

expressions that were presented in a randomized order within an ASSISTments’ Skill

Builder, where the goal was to “master” the content by answering three questions correctly in

a row (Kelly et al., 2015). In the Skill Builder, once students correctly answered three

problems in a row, they were considered to have “mastered” the topic and received a

message indicating that they completed the assignment.

Study Design and Conditions

We used a 3 (HOO position: left, center, or right) x 2 (Presence of brackets:

superfluous brackets vs. no brackets) between-subjects design consisting of six

experimental conditions (Figure 2).
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Operator Position

Left Center Right
No Brackets 7x5+1-4 1+7x5-4 1-4+7x5
Superfluous
Brackets (7x5)+1-4 1+(7x5)-4 1-4+(7x5)

Figure 2. Example Problem Presentations within the 3%x2 Study Design

Each condition varied in the placement of the HOO and the presence or absence of

superfluous brackets in math expressions (Table 1). Importantly, the presence of the

superfluous brackets did not alter the mathematical meaning of, or answer to, the math

expressions in any conditions. Notably, it was mathematically valid to solve expressions in

the brackets-left and no brackets-left conditions from left to right, whereas problems in the

other four conditions required students to attend to the order of operations in order to

correctly solve each problem. Additionally, the problems designed for each condition

mirrored one another with the same terms and answers (e.g., in Figure 2, the simplified

answer to the example expression is 32 in all six conditions).

Table 1

Problem Structures and Sample Problem by Condition

Condition Name Structure  HOO Presence Example
Position of Brackets

Brackets-Position Left *++ Left Yes (1*6)+2+5
No Brackets- Position Left *++ Left No 1*"6+2+5
Brackets-Position Center +*+ Center Yes 2+(1*6)+5
No Brackets-Position Center +5+ Center No 2+1*6+5
Brackets- Position Right ++* Right Yes 2+5+(1*6)
No Brackets-Position Right ++* Right No 2+5+1%6

Materials
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The problems used in this study were based on the Common Core Standards for fifth
grade content on “Operations and Algebraic Thinking” (National Governors Association
Center for Best Practices, 2010). Our team designed 49 order-of-operations problems and
adapted them for each of the described conditions. All problems consisted of four single-digit
numbers (1 - 9) and three operators: one of the three operators was either multiplication or
division and the two other operators were either addition or subtraction (e.g., Table 1).
Single-digit numbers were evenly used across all problems in the problem set.
Approximately half of the problem solutions were of magnitudes under 20 (n=26) and half

were equal to, or over, 20 (n = 23).

Total problems completed: 6 Assignment: PS2021

Problem ID: PRABRKRW Comment on this problem
This problem set... @@ 2 + 5 + 1 X 6
1349982 @
1349983 @
1349984 @
—
1349704 ‘/ I I
1349734 Submit Answer Show answer
=) 1349697

Figure 3. Example of a Student’s View in ASSISTments in the No Brackets-Right Condition

Measures

Pretest Completion and Performance. ASSISTments recorded whether each
student completed the pretest as a binary measure and calculated their performance on the
pretest as the number of correct answers across the three items.

Mastery Status. ASSISTments provided a binary measure of whether students
reached “mastery” as defined by correctly answering three problems in a row. Students may
have dropped out of the assignment before reaching mastery. This measure was used as
the outcome in the preliminary analysis to check attrition rates by condition.

Mastery Speed. For each student that achieved mastery, the system recorded their
assignment mastery speed, which was measured as the count of problems that a student

saw (after the pretest) to successfully complete three problems in a row. For example,
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Figure 3 shows a problem in ASSISTments after a student answered the first two problems
in the Skill Builder correctly. If the student were to answer the third problem correctly, their
mastery speed would be three problems. However, if the student were to answer the third
problem incorrectly, followed by submitting three correct responses in a row, their mastery
speed would be six problems. In the context of this study, a slower mastery speed (i.e.,
solving more problems to get three problems correct in a row) is an indicator of higher error
and lower math performance. Mastery speed has been used as an outcome measure of
student performance in previous ASSISTments studies (e.g., Botelho et al., 2015; Harrison
et al., 2020; Walkington et al., 2019). Here, we consider students’ mastery speed to be a
measure of their problem-solving accuracy.

Average Response Time. For each experimental problem in the ASSISTments Skill
Builder, the system recorded the time from which the problem window opened until the
student submitted the correct answer to the problem. Students’ response time for each
problem was summed and divided by the number of problems that they solved to calculate
each student’s average response time per problem. Previous studies have explored
response time as an outcome variable of student performance during math problem solving
(Kellman et al., 2008; Landy & Goldstone; 2010; Mayer, 1982). In this study, we used
average response time per problem as a proxy for efficiency to evaluate if students in one

condition simplified math expressions faster than those in other conditions.
Approach to Analysis

Preliminary Analyses- Rate of Mastery by Condition

Prior to conducting primary analyses, we checked for differential mastery rates
across conditions to see whether one condition may have been significantly more
challenging for students to the point of not completing the assignment. Figure 4 shows the
mean mastery rate by condition. We then conducted a logistic regression to examine
whether students were more likely to have mastered the assignment when assigned to a

condition with superfluous brackets and/or a particular operator position (left, center, or
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right). The logistic regression model, controlling for pretest, was statistically significant, x? (5,
593) = 26.29, p < .001 (Table 2). The model explained 10.3% (Nagelkerke R?) of the
variance in mastery and correctly classified 93.1% of cases. Presence of brackets was not
associated with achieving mastery (OR = 2.49, 95%CI [-0.55, 2.38); however, students who
were in a right position condition were significantly less likely to achieve mastery compared
to students who were in a left position condition (OR = 0.27, 95%CI [-2.33, -0.26]). Higher
pretest scores did not predict the likelihood of achieving mastery and no interactions were

significant.

Percentage of Students to Achieve Mastery by
Condition

0.9
0.8
0.7
0.6
0.5
04
0.3
0.2
0.1

Percentage of Students to Achieve
Mastery

Left No Left Brackets Center No Center RightNo Right
Brackets (n=118) Brackets Brackets Brackets Brackets
(n=84) (n=97) (n=107) (n=98) (n=96)

Figure 4. Percentage of Students Who Achieved Mastery by Condition
Note: Error bars represent one standard error from the mean.

1

I
0.9
0.8
0.7
0.6
g
% 0.5
=
0.4
0.3
0.2
0.1
0

Left (n=202) Center (n=204) Right (n=194)

Percentage of Students to Achieve

Figure 5. Percentage of Students Who Achieved Mastery by HOO Position
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Note: Error bars represent one standard error from the mean.
Table 2

Logistic Regression Predicting Mastery by Condition

95% CI
Odds Wald Lower Upper
Estimate SE Ratio z Statistic bound bound
(Intercept) 2.31** 0.57 10.03 4.04 16.32 1.19 3.42
Pretest correct 0.21 0.16 1.23 1.31 1.71 -0.10 0.52
Brackets 0.91 0.75 2.49 1.23 1.50 -0.55 2.38
Position- Center -0.55 0.57 0.58 -0.97 0.93 -1.67 0.57
Position- Right -1.30** 0.53 0.27 -2.45 5.99 -2.33 -0.26
Brackets *
Position- Center 0.15 0.96 1.17 0.16 0.03 -1.74 2.04
Brackets *
Position-Right 0.57 0.91 1.76 0.62 0.39 -1.122 2.36

Note: * p <.05; **p < .01; *** p < .001

Primary Analyses

To answer our first and second research questions, we investigated how the position
of the HOO and the presence of superfluous brackets may have separately impacted
students’ performance among those who completed the problem set. Using the analytic
sample of 528 students, we compared differences across conditions in students’ mastery
speed and average response time as two indicators of student performance. Specifically, we
conducted a Poisson regression to predict mastery speed and a linear regression to predict
average response time. We used students’ pretest scores as a covariate to control for prior
knowledge. We chose to conduct a Poisson regression for mastery speed since the variable
represents count data. We did not use a multilevel model accounting for the nesting of
students in teachers (n = 20) because the intraclass correlation was only 0.022, well below

the 0.07 threshold that is recommended for the use of hierarchical linear modeling (Lee,
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2000; Neihaus et al., 2014). The HOO position predictor was dummy coded, with the HOO in
the center position as the reference group to allow comparisons to both left and right
positions. We used R Studio with the Ime4 package for all analyses.

For each analysis, we analyzed the main effect of operator position (left and right
compared to the center), the main effect of superfluous brackets (superfluous brackets vs.
no brackets), and two Operator Position * Presence of Bracket interactions. The main effect
of operator position (left and right compared to center) revealed whether and how the
position of the HOO (i.e., multiplication or division) in math expressions impacted student
performance on simple arithmetic. The main effect for the presence of brackets (superfluous
brackets vs. no brackets) informed us whether and how superfluous brackets impacted
student performance. Lastly, the interactions indicated whether there was an interaction
between the impact of operator position (left and right compared to the center) and the

presence of superfluous brackets on student performance.

Results

Descriptive Statistics

All students who were included in the primary analyses achieved “mastery” (i.e.,
answering three problems correctly in a row) at some point in the study assignment (M =
4.49 problems, SD = 2.66 problems). See Table 3 below for details on numbers of students,
average pretest score, average mastery speed, and average response time for the overall
sample and by condition. Figure 6 shows average mastery speed by condition.

Table 3

Descriptive Statistics on Student Performance by Condition

Condition n  Average Pretest Average Mastery Average
Performance Speed (SD) Response
(SD) Time (SD)
Overall 528 2.15(0.93) 4.49 (2.66) 38.57 (34.31)
No Brackets- Left 78 2.28 (0.91) 3.68 (1.55) 34.29 (26.23)
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Brackets- Left 109 2.15 (0.93) 3.92 (2.13) 36.15 (30.90)

No Brackets- Center 83 2.08 (0.90) 5.17 (3.17) 35.04 (29.37)
Brackets- Center 99 2.18 (0.90) 3.66 (1.53) 40.13 (37.95)
No Brackets-Right 77 2.20 (1.01) 5.60 (3.64) 46.84 (41.29)
Brackets-Right 82 2.02 (0.96) 5.29 (2.82) 39.77 (37.58)

Note: Average Pretest Performance and Average Mastery Speed are reported by problem

count. Average Response Time is reported in seconds.
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Left No Brackets Left Brackets Center No Brackets ~ Center Brackets RightNo Brackets Right Brackets
(n=78) (n=109) (n=83) (n=99) (n=77) (n=82)

Average Mastery Speed (problem count)
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Figure 6. Mean Mastery Speed as a Function of Condition

Note: Error bars represent one standard error from the mean.

Main Effects Predicting Mastery Speed

To first examine the effects of brackets and HOO position on students’ mastery
speed, we conducted a Poisson regression controlling for students' pretest performance,
with the center position as the reference group (Table 4, Model 1).

Table 4

Main and Interaction Effects of Two Predictors on Mastery Speed

Model 1 Model 2
Predictor Beta St. E T value Beta St. E T value
Intercept 1.74%** 0.06 29.02 1.83*** 0.06 28.83
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Pretest -0.10***
Brackets -0.12**
Position-Left -0.11*
Position-Right 0.24***
Left*Brackets
Right*Brackets

0.02
0.04
0.05
0.05

-4.54
-2.99
-2.22
4.90

-0.09***
-0.34***
-0.32***
0.11
0.26**
0.40***

0.02
0.07
0.08
0.07
0.10
0.10

-4.28
-4.77
-4.29
1.66
2.70
3.87

The results revealed a significant effect of superfluous brackets presence on

students' mastery speed, B = -0.12, p = .002**(Figure 7). Specifically, students who did not

have superfluous brackets had slower mastery speeds than those who saw superfluous

brackets.

6

Mastery Sped (problem count)
[s*] w FS ¥
—

(=]

No Brackets (n=238)

Figure 7. Mean Mastery Speed as a Function of Brackets Condition

Brackets (n=290)

Note: Error bars represent one standard error from the mean.

Second, the results revealed a significant effect of HOO positions on students'

mastery speed. Specifically, the mastery speed of students who solved expressions with the

HOO on the left was significantly lower compared to those who solved problems with the

operator in the center (B = -0.11, p < .05%). Further, students who solved problems with the

HOO in the center had significantly quicker mastery speeds than students with the HOO on

the right (B = 0.24, p < .001***; Figure 8).
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Figure 8. Mean Mastery Speed as a Function of HOO Position Condition
Note. Mean number of problems students completed to reach mastery as a function of HOO

position condition with error bars reporting one standard error of the mean.

Interaction Effects Predicting Mastery Speed

Next, to examine whether the effects varied by condition, we added two interaction
terms with bracket and position to the model (Table 4, Model 2). Results indicate significantly
different patterns of effects with and without brackets in the center position, The first
interaction of brackets by left position was statistically significant (B = 0.26, p = .01). As
shown in Figure 9a, students in the two left conditions performed similarly, regardless of the
presence or absence of brackets. While the center position was not related to higher
mastery speed compared to the left position in the presence of brackets, the students who
were in the center-no brackets condition did perform significantly worse (higher mastery

speeds) than students in the left position conditions and the brackets-center position.

The second interaction comparing brackets and no brackets and the center and right
HOO position on mastery speed was also statistically significant (B = 0.40, p = .001).
Students who were in the brackets center condition had significantly lower mastery speeds
(indicating higher performance) compared to the right positions, but students’ mastery
speeds in the no brackets center condition did not significantly differ from students in both of

the right conditions (Figure 9b).
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Additionally, after including the two interaction terms pretest performance remained a
significant predictor of mastery speed (B =-0.09, p < .001), where students who performed
higher on the pretest demonstrated quicker mastery speeds. Further, the main effects for
brackets and the left compared to center position remained significant (p < 0.01); however,

the main effect for the center vs right position was no longer significant (p = 0.09).

a) b)

Brackets

Brackets
*- No

Mastery Speed
Mastery Speed

* Yes

Center Operator Position Left Center Right
Operator Position

Figure 9. Interaction Graphs of Average Mastery Speed by (a) Left and (b) Right Position

and Presence of Brackets. Note. Reference group is Center position

Main Effects Predicting Average Response Time

Figure 10 shows the average response times per condition.
60
50
40
30

20

Average Response Time Per Problem
(seconds)

Left No Left Brackets Center No Center RightNo Right
Brackets (r=109) Brackets Brackets Brackets Brackets
(n=T8) (n—=83) (r=99) (r=T77) (n—=82)

Figure 10. Descriptive Graph of Average Response Time Per Problem by Condition
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Note. Mean number of seconds students took to respond to each problem by condition with

error bars reporting one standard error of the mean on each side.

Next, we conducted a regression predicting average response time and controlling

for students' pretest performance (Table 5, Model 3). First, there was no significant effect of

HOO position on students' average response time, both p’s > .50. Similarly, there was no

significant effect of superfluous brackets on average response time, p = 0.46. Lastly, there

was no significant interaction effect between the position of HOO (both left and right

compared to center) and the presence of superfluous brackets on students' average

response time, both p’s > 0.20 (Table 5, Model 4). Pretest performance was not a significant

predictor of average response time, p = 0.87.

Table 5

Main and Interaction Effects of Two Predictors on Average Response Time

Predictor Beta
Intercept 238.80
Pretest -69.60
Brackets 379.50
Position-Left 327.80

Position-Right 398.50
Left*Brackets
Right*Brackets

The goal of this study was to explore whether the position of higher-order operator
and the presence of superfluous brackets within math expressions may separately and

simultaneously impact student performance on order-of-operations problems in an online

Model 3

St. E t value Beta

789.70 0.30 601.50

276.20 -0.25 -46.20

518.30 0.73 -387.80

616.80 0.53 -116.00

641.90 0.62 -440.10
818.00
1590.40

Discussion

Model 4

St. E

860.40
27710
879.40
932.90
934.90
1289.20
1289.20

T value

0.70
-0.17
0.44
0.12
-0.47
0.66
1.23

tutoring system. Three notable findings emerged from this study. First, students were more
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likely to not complete (i.e., “not master”) the assignment if they were in a condition that had
the HOO on the right, suggesting that this presentation of arithmetic expressions may have
posed more challenges to students during problem solving than the other position
conditions. Second, main effects show that, on average, students who were assigned
conditions where the HOO was in the center of the expressions had slower mastery speeds
than when it was on the left, but quicker mastery speeds than students who solved
expressions with the HOO on the right. Further, students who saw expressions with brackets
tended to have quicker mastery speeds than those who did not see brackets. Third,
interaction effects revealed that these main effects were largely driven by the presence of
superfluous brackets on the center position which moderated the impacts of HOO position
on mastery speed. Among students in the two conditions with the HOO in the center,
students who solved expressions with superfluous brackets achieved mastery more quickly
(comparable to students who were in the left position conditions) than students who solved

expressions without brackets (comparable to the right position conditions).

Right Operator Position Impacted Students’ Assignment

Completion

Based on previous work on perceptual cues within ASSISTments (AUTHOR, 2020),
we anticipated that operator position and superfluous brackets would impact students’
performance but not their completion rates on an online homework assignment. However,
preliminary analyses found that students who were assigned to the right conditions were less
likely to reach mastery compared to those in the left conditions. These results show that the
position of HOO did impact students’ likelihood of achieving mastery, or generally,
completing the assignment. This finding suggests that the impacts of operator position may
be greater than anticipated or evidenced in prior work by impacting students’ participation in
an assignment and not just their performance.

In our pre-registration, we predicted that the brackets-left condition would be the

easiest for students to solve arithmetic problems, and that the no brackets-right condition
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would be most difficult, as indicated by students’ higher (i.e., slower) mastery speeds. The
logistic regression showing that students assigned to the right position condition were
significantly less likely to complete the assignment provides support for this hypothesis. We
interpret this finding to mean that the position of the HOO may be very influential in how
people reason about math; in particular, solving expressions may seem more difficult when
the position of the HOO is on the right side of the expression. One plausible explanation for
students dropping out more often in this condition may be that they became frustrated by the
difficulty of the assignment or getting more problems incorrect.

Since the primary analyses conducted only included students who did achieve
mastery in the study activity, the findings on mastery speed and average response time
need to be interpreted with the context that there was differential attrition between our six
conditions. However, we contend that by dropping students who did not achieve mastery
from the analytic sample, the findings may actually present a more conservative estimate of
how the position and presence of perceptual cues within an arithmetic expression impact
student performance. Future research should explore item-level data to better understand
factors such as time on task, accuracy of initial responses, and students’ behaviors while
problem solving to unpack the mechanisms behind why students might have dropped out of

the assignment before reaching mastery.

Main Effects of Higher-Order Operator Position on Students’

Mastery Speed

We predicted that solving math expressions with the HOO on the left and
expressions with superfluous brackets would lead to (a) quicker mastery speeds and (b)
quicker response times than solving expressions with the operator in the center or on the
right and expressions without superfluous brackets. The main effect result supports the first
hypothesis: seeing math expressions with the HOO on the left was, on average, related to
quicker mastery speeds (i.e., higher accuracy rates) than the center. The presence of

superfluous brackets also independently impacted students’ mastery speed during simple
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arithmetic. However, these variables did not significantly predict response times. Students
had comparable response times across conditions, suggesting that neither operator
condition nor superfluous brackets impacted students’ problem-solving speed.

The main effect finding that HOO position impacted student performance aligned with
previous research showing that students have a left-to-right tendency during math problem
solving (Banerjee & Subramaniam, 2005; Blando et al., 1989; Gunnarsson et al., 2016;
Kieran, 1979). For instance, Kieran (1979) found that when solving 5 + 2 * 3, students tend
to complete the addition operation first; however, when solving 4 * 2 — 3, students came to
the correct answer by following their tendency to compute from left to right (Kieran, 1979).
This strong adherence to the left-to-right principle in computing may explain the differences
in mastery speed that we saw in our study. In the two operator-left conditions, the math
expressions were presented in ways that benefited students' left-to-right tendency: students
did not have to effortfully attend to the problem’s structure or the order of operations of
expressions to reach the correct answer, leading to fewer errors and higher accuracy during
problem solving. On the other hand, students who solved expressions with the operator on
the right consistently had the slowest mastery speeds, regardless of superfluous brackets
(e.g.,4+7+2*5 3+8+(2*7)). Inthese two operator-right conditions, the presentation of
math expressions required students to notice the problem’s structure and inhibit their left-to-
right tendency in order to answer correctly, leading to more errors and lower accuracy. This
is especially notable as the students in the no brackets-right condition who were in this
analytic sample were likely a higher performing subset of those initially assigned to this
condition, as students in the no brackets-right condition were more likely to drop out of the
study before achieving mastery or completing the assignment.

This study advances research on the roles of perceptual factors in math notation by
isolating the effect of higher-operator position on students’ performance. While the effects of
superfluous brackets and HOO position on student performance are much smaller than we
anticipated based on prior work (Harrison et al., 2020), this finding suggests that varying the
positions of HOOs and presence or absence of superfluous brackets may provide noticeable
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differences in perceptual structures that affect students’ performance in the context of our
study. While previous research has demonstrated the left-to-right tendency in problem
solving (e.g., Banerjee & Subramaniam, 2005; Blando et al., 1989; Gunnarsson et al., 2016;
Kieran, 1979), to the best of our knowledge, no previous study had strategically tested
whether and how HOO position impacts different aspects of student performance. As we
found that students who solved problems with the HOO on the right performed significantly
worse than those in the left and center conditions, our study provides empirical evidence that
students have a strong tendency to solve math problems from left to right. This finding
contributes to the literature on students’ weak structure sense and may have implications for
classroom instruction to identify and support students who tend to solve problems from left to

right.

Superfluous Brackets in the Center Operator Position Increase

Performance

The most notable finding is that the presence of superfluous brackets moderated the
effect of HOO position, specifically when students solved math expressions with the operator
in the center. While students, on average, demonstrated the quickest mastery speeds in the
left conditions, students in the center position with brackets condition performed comparably
well to the two operator-left conditions, suggesting that superfluous brackets may increase
students' accuracy on problems when the HOO is in the center. Conversely, students in the
no brackets-center position condition had comparable mastery speeds to students in the
right position conditions, suggesting that the absence of brackets with the HOO in the center
posed challenges to students.

One possible interpretation of these results is that position of HOO might be a type of
visual and perceptual feature that works congruously with left-to-right calculating tendency to
impact students’ problem solving: left-sided HOOs facilitate higher accuracy, while center-
and right-sided HOO (without brackets) elicit more errors. Students were highest performing

when they were able to apply a left-to-right solving strategy. In cases when they could not
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(i.e., center and right position conditions), their performance (mastery speed) dropped. The
exception to this trend was for students who saw brackets in the center position, suggesting
that in cases when students could not apply a left-to-right solving strategy, the superfluous
brackets may have naturally and visually grouped the numbers to prevent a left to right
calculation, or shifted their attention and helped them identify the groupings to apply the first
steps for problem solving. The brackets could have prevented students from compulsively
performing left-to-right calculations by visually and physically breaking up the structure of the
math expressions. Specifically, brackets around the center terms may be the most impactful
because, in that position, it breaks up the structures into three distinct parts, where the
brackets naturally block the flow of left to right computations (i.e. 1+ (7 * 5) — 4).

When solving order-of-operations problems, students seem to rely on both HOO
position and superfluous brackets presented in the expressions; however, this work
suggests that operator position, particularly when placed in the center, may play a strong
attention-guiding role. Aligned with our findings, HOO position seemed to be a salient factor
that impacted students’ performance when calculating left to right. Superfluous brackets,
while significant, specifically seemed to impact students’ performance when the operator
position was in the center. Having brackets on the left or right did not seem to impact
performance. Thus, if students relied on left to right calculations, they would use more
inaccurate problem solving when the operators were not located on the left side of the
expressions. However, when the operators were in the center of the expressions, the
presence of the brackets could have helped students attend the HOO first, breaking up the
expression into chunks, and helping to facilitate more accurate problem solving.

Harrison and colleagues (2020) suggested that perceptual features may impact
student performance in a hierarchical structure. In particular, the operator position may act
as a first-order perceptual structure, while physical spacing between symbols in expressions
might have acted as a second-order perceptual cue to influence how students interpreted
and acted on math notation (Harrison et al., 2020). Aligned with this perspective, we posit
that students may attend to operator positions first, with a compulsion to compute from left to
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right. The presence of brackets may have helped guide students' attention to the operator in
the center, nudging them to notice the order-of-operations structure of the problem, and
facilitating more accurate problem solving. Consequently, students may be more likely to
notice superfluous brackets when they are used to group symbols that are not on the left-
most side of expressions and break up this natural flow. While we cannot be certain of the
mechanism of this finding, the helpful effects of superfluous brackets in the center of the
expressions is consistent with prior studies indicating the usefulness of brackets to help
students see structure and support math performance (e.g., Hoch & Dreyfus, 2004; Marchini
& Papadopoulos, 2011). However, this work contradicts Gunnarsson and colleagues’ prior
work (2016) that showed that the use of superfluous brackets was not helpful.

Another alternative explanation of this finding is that, for students who have not yet
conceptually mastered the order of operations, they may have memorized a simpler
procedural rule that parentheses must be computed before other operations (i.e., PEMDAS).
Therefore, it is plausible that the brackets may not be serving solely as a visual perceptual
cue, but rather students could be relying on the PEMDAS (or BEDMAS) rule that parenthesis
must be calculated first as a foolproof way for students to perform simple procedures without
understanding. However, this explanation is challenged by the finding that the presence of
brackets when in the left or right positions did not help students perform more accurately

than without brackets in those positions.
Performance vs. Learning: Creating Desirable Difficulties

The findings from this study demonstrate how operator position and superfluous
brackets may impact students’ participation in, and performance on, order-of-operations
problems in an online homework environment. Importantly, this work provides considerations
for designing stand-alone assignments: using problems with left-most HOO may increase
students’ performance while using right-most HOOs in expressions may decrease students’
likelihood of finishing the assignment. We posit that variations in perceptual features like

HOO position and superfluous brackets (particularly in the center position) may help
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students quickly infer which operations to address in a given expression, similar to creating
semantic alignment in the structure of word problems (Gros et al., 2020). Based on the word
structure of problems, students map connections to the underlying mathematical properties:
for example, problems stating to “place [objects] in [locations]" create analogies for using
division (Bassok, 2001). This quick encoding of information may lead to increased
performance solving problems. However, we did not administer a posttest so we are unable
to draw any conclusions about how completing the assignment with perceptual cues like
brackets in varying positions may transfer to students’ strategies and performance in
subsequent problem solving. We consider this study to be a first step to explore long-term or
transfer effects of using perceptual cues in instructional materials. For example, are the
perceptual cues that increase performance also those that promote learning, problem-
solving flexibility, and efficiency?

Several decades of research on desirable difficulties has shown that learning
conditions which are more difficult in the moment and decrease individuals’ performance
improve long-term learning and retention (Bjork, 1994; Bjork & Bjrok, 2011). For example,
perceptually (Diemand-Yauman et al., 2011) or conceptually (in terms of organizational
structure, McNamara et al., 1996) creating conditions that decrease students’ in-the-moment
fluency encourages them to pause before engaging with the material. Work on algebraic
equivalency has also shown that students who pause longer before acting on a problem
show higher problem-solving efficiency than their peers who do not pause to think before
solving (Chan et al., 2022). More broadly, instructional and study tactics such as varied
practice (Smith et al., 1978) and interleaving (Kornell & Bjork, 2008) help learners develop
flexibility across time and context to improve problem solving. Interleaved and varied
practice train learners to identify distinguishing problem features like the way that perceptual
cues can help students see important structures of notation that may influence their decision
on which strategy to apply to a problem.

Taken together, we consider the possibility that variations in expression structures
and perceptual cues that lend themselves to higher problem-solving performance (i.e., left-
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most HOO, superfluous brackets) may not be the same features that lead to long-term
learning, retention, and flexibility or efficiency. Instead, more difficult mathematical structures
or the presence or absence of perceptual cues that challenge students to pause and reflect
on procedural or more conceptual rules like the order of operations before acting (i.e., right-
most HOO, no superfluous brackets in center, incongruent spacing) may seem
counterintuitive but could create desirable difficulties and promising interventions for

improved long-term outcomes. This area of inquiry is a focus of our future work.
Limitations and Future Directions

This study had multiple limitations. First, the differential attrition (i.e., students who
achieved mastery was different by condition) can be seen as problematic as the attrition was
not random. However, although more students were dropped from the analytic sample in the
no brackets-right condition, the findings of this study are notable, especially given that the
negative effects of no brackets-right were still present, even when dropping those who did
not achieve mastery.

Second, given the current data, it is difficult to specify who is impacted by
superfluous brackets and HOO position and when. While we intentionally recruited teachers
of incoming fifth- to seventh-grade students, the online platform used to deploy the study
does not permit collecting any individual participants’ demographic information (e.g., gender,
race, age, grade, in-person vs. remote learning status) due to privacy concerns. While we
acknowledge that the lack of demographic information is not ideal and limits our ability to
understand individual differences, it is a tradeoff for using open educational platforms like
ASSISTments for conducting educational research at scale. Further, teachers were aware of
the content targeted in the study and may have assigned the content to students in other
grades if the content was appropriate for their knowledge levels (e.g., in advanced lower
grades or remedial higher grades). Additionally, conducting this study in an online platform
provided ecological validity by testing how these experimental manipulations impacted

students’ performance on an online class or homework assignment.
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Third, the focal dependent variable in this study, mastery speed, is specific to the
type of problem set built in ASSISTments. As a result, these findings are not directly
generalizable to other online tutoring platforms or contexts. However, estimating treatment
effects on students’ mastery speed provides suggestions for another measure for accuracy
and a unique analysis of how perceptual cues may impact students’ performance at a
granular level.

Looking ahead, future research may consider collecting more demographic
information from participants to control for individual differences among students that may
affect their susceptibility to perceptual cues. This approach would help uncover when, and
for whom, perceptual scaffolding may be the most effective. Further, this approach may be
most effective when paired with other theoretical perspectives that explain cognitive and
developmental factors of math performance and learning. Additionally, future research may
consider replicating this work with students in classrooms or using additional methodologies
to tease out the mechanisms and practical significance of presenting and implementing
perceptual supports to facilitate enhanced problem solving in everyday math learning.
Current work utilizing eye tracking is underway by our team to identify whether students who
are presented with brackets do in fact look at the brackets and HOO first or fixate longer
within expressions in various positions. This can help confirm or challenge more procedural
or perceptual/attentional explanations for why students demonstrate improved performance

with brackets in the center position.
Implications and Practical Contributions

Broadly, this study adds to the growing body of literature on the importance of
perceptual grouping, and variations in structures for developing structure sense and
reasoning in mathematics (Kirshner, 1989; Landy & Goldstone, 2007, 2010) and the
potential benefits of using superfluous brackets in simplifying expressions (Hoch & Dreyfus,
2004; Marchini & Papadopoulos, 2011). Our study suggests that superfluous brackets may

be a helpful perceptual cue for students, especially when the HOO is placed in the center.
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Superfluous brackets may provide additional support to students when learning order of
operations, thus adding more to the literature about how presenting superfluous brackets in
different positions of math expressions may serve as an effective intervention to support
students during problem solving.

These findings support that adding visual information in notation, such as
manipulating the position of HOOs and adding superfluous brackets, may act as perceptual
supports that can positively influence students’ reasoning and performance in math. Our
findings also highlight the importance of helping students develop structure sense in math
learning and identifying students who may be underperforming due to a left-to-right solving
tendency. Regarding the implications of this work, instructors and educators may be able to
intentionally make changes to the visual presentation of notation, such as adding
superfluous brackets, to guide students' attention to relevant features of math problems, lead
them to correct solution strategies, and enhance their performance on tasks. Since students
tend to solve math problems from left to right, which might lead to inaccurate solutions, it
may be useful for teachers to utilize superfluous brackets in the center position to improve
students' weak structure sense in arithmetic by helping inhibit their compulsion to compute
from left to right. A second possible way to support students' development of structure sense
may be to introduce them to superfluous brackets early and slowly in instructional practice.
As students first learn how to solve problems with HOOs in an expression (e.g., 2 + (1 *6) +
3), quiding them to notice the higher order operator by using superfluous brackets or
instructing them to put the brackets around the multiplication or division to break up structure
and signs might help students gradually build an understanding that these brackets serve as
a visual cue to highlight important elements of math problems. From frequent exposure to
superfluous brackets as a perceptual cue, students might better understand the importance
of finding significant elements within a math expression and comprehending the overall
structure of a problem prior to solving. As students become more comfortable with
simplifying order-of-operation expressions with different structures, the need for those
supports may become less necessary.
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Conclusions

The current study applies and integrates work from cognitive science, math
education, and educational technology to explore the impact of superfluous brackets and
HOO position on students’ math performance simplifying expressions. We found that,
generally, students tend to demonstrate the highest performance on expressions with the
HOO on the left but performance decreases as the HOO moves to the right. However, we
found that adding superfluous brackets in the center position supports learning, while having
brackets on the right or left does not provide additional impacts for students. Overall, this
study highlights the importance of providing variation in subtle structural and perceptual
variations in mathematics, showing that the position and presence of perceptual grouping
structures, such as superfluous brackets, impacts students’ completion and performance on

online assignments.
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