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The importance of dissolved Fe (dFe) in regulating ocean primary production and the
carbon cycle is well established. However, the large-scale distribution and temporal
dynamics of dFe remain poorly constrained in part due to incomplete observational
coverage. In this study, we use a compilation of published dFe observations (n=32,344)
with paired environmental predictors from contemporaneous satellite observations and
reanalysis products to build a data-driven surface-to-seafloor dFe climatology with 1°×1°
resolution using three machine-learning approaches (random forest, supper vector
machine and artificial neural network). Among the three approaches, random forest
achieves the highest accuracy with overall R2 and root mean standard error of 0.8 and 0.3
nmol L- 1, respectively. Using this data-driven climatology, we explore the possible
mechanisms governing the dFe distribution at various depth horizons using statistical
metrics such as Pearson correlation coefficients and the rank of predictors importance in
the model construction. Our results are consistent with the critical role of aeolian iron
supply in enriching surface dFe in the low latitude regions and suggest a far-reaching
impact of this source at depth. Away from the surface layer, the strong correlation
between dFe and apparent oxygen utilization implies that a combination of regeneration,
scavenging and large-scale ocean circulation are controlling the interior distribution of dFe,
with hydrothermal inputs important in some regions. Finally, our data-driven dFe
climatology can be used as an alternative reference to evaluate the performance of
ocean biogeochemical models. Overall, the new global scale climatology of dFe achieved in
our study is an important step toward improved representation of dFe in the
contemporary ocean and may also be used to guide future sampling strategies.
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1 INTRODUCTION

Iron (Fe) is an essential micronutrient with a profound imprint on
global ecology and biogeochemistry (Cassar et al., 2007; Boyd and
Ellwood, 2010; Tagliabue et al., 2017; Marchetti, 2019). In the
modern oxygenated ocean, Fe is relatively insoluble, resulting in
dissolved Fe (dFe) often regulating the extent and the dynamics of
phytoplankton growth in many oceanic regions. This is particularly
the case in “High Nutrient Low Chlorophyll” (HNLC) regions
which cover >20% of the global ocean (e.g., equatorial Pacific,
Southern Ocean, subarctic Pacific, subpolar North Atlantic, and
California Current System) (Martin et al., 1990; Coale et al., 1996;
Hutchins et al., 1998; Boyd et al., 2007; Cassar et al., 2007). With this
in mind, dFe has been incorporated in Earth system models to
project climate across multiple time scales (Watson et al., 2000;
Tagliabue et al., 2009; Hain et al., 2010; Lambert et al., 2015; Jaccard
et al., 2016). Because substantial uncertainties result from different
representations of dFe in these models (Kohfeld and Ridgwell, 2009;
Bopp et al., 2013; Tagliabue et al., 2016a), a better understanding of
the biogeochemistry of dFe in the ocean is critical.

The exponential growth in dFe measurements in the last three
decades, in great part thanks to the GEOTRACES program
(www.geotraces.org) (Anderson and Henderson, 2005), has
provided an unprecedented insight into the distribution of dFe
in the ocean (Johnson et al., 1997; Bergquist and Boyle, 2006;
Pollard et al., 2009; Saito et al., 2013; Rijkenberg et al., 2014;
Resing et al., 2015; Twining et al., 2015). Such observations
provide a unique opportunity to evaluate biogeochemical
models. For example, Tagliabue et al. (2016a) compiled the
dFe distributions from 13 global ocean biogeochemistry
models and conducted a comparison against recent oceanic
sections from the GEOTRACES program. This exercise
highlighted that models struggle to reproduce the observed
spatial pattern, because of poor skills in representing intricate
dFe cycling processes such as input fluxes, biological
consumption, and complex chemical processes (i.e., scavenging
and production of iron-binding ligands). However, the limited
number of observations in some regions and at some times of the
year (e.g., harsh winter in the Southern Ocean) makes it
challenging to evaluate model performance. One way to
circumvent the sparsity of observations is to upscale field
observations using data-driven statistical models.

Machine learning (ML) methods are rapidly gaining interest
across the geosciences for their adaptability and ability to capture
complex relationships without prior knowledge of underpinning
mechanisms (Li et al., 2016; Mattei et al., 2018; Rafter et al., 2019;
Tang et al., 2019; Wang et al., 2020; Chen et al., 2020; Huang
et al., 2021). In addition to being used to evaluate biogeochemical
models, they can also be used to guide sampling strategies, and
infer mechanisms through statistical inferences (Li and Cassar,
2016; Roshan and DeVries, 2017; Mattei et al., 2018; Chen et al.,
2020; Huang et al., 2021).

In this study, we construct a global data-driven climatology of
dFe by upscaling a global dataset of dFe using ML algorithms
with satellite observations and reanalysis products as predictors.
We compare the trade-offs among three ML techniques and
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explore possible mechanisms governing the distribution from the
statistically inferred dFe distribution. Finally, we evaluate the
distribution of dFe in Earth system models using our data-driven
dFe products as a reference.

2 DATA S OU R C E S  AND METHODS

2.1 Data Sources
2.1.1 Global Observational dFe Dataset
To build our data-driven model of oceanic dFe, we merged the
dataset in Tagliabue et al. (2012) and a recently released dataset
from the GEOTRACES program (IDP2021, GEOTRACES
Intermediate Data Product Group, 2021, doi:10.5285/cf2d9ba9-
d51d-3b7c-e053-8486abc0f5fd). A list of references for the
original observations is available in the aforementioned
compilation efforts. The newly added data in the updated
Tagliabue et al. (2012) dataset include the samples from
the following studies: Fitzsimmons et al. (2013); Ussher et al.
(2013); Fitzsimmons et al. (2014); Marsay et al. (2014); Grand
et al. (2015b); Gerringa et al. (2015b); Fitzsimmons Jessica et al.
(2014); Fitzsimmons et al. (2015); Grand et al. (2015a). The
GEOTRACES database includes quality control flags. In our
study, only data with “flag=1” (equivalent to good data) was used.
In total, we obtained more than 32,000 dFe concentration
measurements spanning from 1978 to 2014 with a sampling
depth ranging from 0 to 7200 m (Figure 1). A more detailed
description of the observational dataset is provided in Section 3.1.

2.1.2 Environmental Predictors
A suite of environmental predictors was selected, including basic
sampling information (i.e., locations, sampling depth and time),
physicochemical and biological parameters from contemporaneous
satellite observations, reanalysis products and other model outputs.
The data sources and resolution of these environmental predictors
are listed in Table 1. The environmental parameters were matched
with the dFe measurements according to the sampling day
and location.

In light of our limited understanding of the intricate interplay
of factors influencing dFe cycling, we intentionally include a large
number of predictors and allow the statistical models to identify
the most important ones. Properties such as temperature,
salinity, macronutrients, dissolved oxygen concentration and
composite biogeochemical tracers, such as apparent oxygen
utilization (AOU), N*, and Si* (see below), link to the
underlying processes that affect the distribution of dFe in the
ocean (e.g., via biology and chemistry such as precipitation and
scavenging by particles, complexation with organic ligands and
redox transformations, large-scale ocean circulation) (Tagliabue
et al., 2014c; Resing et al., 2015). AOU integrates information
about water ventilation, remineralization, water age and ocean
circulation (Ito et al., 2004). Nð¼ ½NO− − PO3− + 2:90 0:87)
represents the distribution of denitrification and N2 fixation in the
global ocean (Gruber and Sarmiento, 1997). The process of N2

fixation may be linked to dFe distribution because of its high
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FIGURE 1 | Distribution of compiled global observation dataset of dissolved Fe with the respect to surface ocean (A), main ocean basin (B), longitude (C), latitude (D), sampling
year (E), sampling depth (F) and month (G, H). The Southern Ocean is defined as the region south of 40°S. The delineation of each ocean basin is shown in Figure S3.

TAB L E  1 | Environmental predictors used for the model construction.

Predictors

Longitude (°E)
Latitude (°N)
Month
Depth (m)

Product/Reference

Sampling information

Resolution

—

Temperature (°C)
Salinity

Density (kg m-3)

NO3 (mmol kg-1)

SiO2− (mmol kg-1)

PO3−  (mmol kg-1)
Dissolved oxygen (mmol kg-1)

AOU (mmol kg-1)

Si* (mmol kg-1)

N* (mmol kg-1)

Wind speed (m s-1)
Mixed layer depth (m)

Particulate organic carbon (mg C  m-3)
Chlorophyll-a (mg m-3)

Rrs (l)

Aerosol optical depth

Net primary production_VGPM (mg C  m-2 d-1)
Helium (‰)
Distance to the bottom depth (m)
Distance to the coast (m)

World Ocean Atlas 2018

Sarmiento et al. (2004)

Gruber and Sarmiento, 1997

NCEP reanalysis_II
Hycom

Ocean Color

Ocean productivity Behrenfeld and Falkowski (1997)
Bianchi et al. (2010)
Ifremer

1°, depth profile, monthly climatology

2°, surface data, daily scale
2°, monthly climatology

0.083°, surface, 8-day average

0.083°, depth integration, 8-day average
1°, depth profile, annual mean
0.025°

AOU, apparent oxygen utilization; Rrs (l), remote sensing reflectance above the water surface at the spectral bands of 412, 442, 488, 555 and 667 nm.
Nð¼ ½NO3 − PO3− + 2:90*0:87) (Gruber and Sarmiento, 1997); Si* = SiO2− − NO− (Sarmiento et al., 2004).
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demand for Fe (Kustka et al., 2002; Dutkiewicz et al., 2012).
Si*, defined as Si* = SiO2− − NO−, traces the transport of
the iron-limited subantarctic mode waters to the subantarctic
front and impacts surface plankton communities (Sarmiento
et al., 2004).

Wind speed and mixed layer depth provide some insight into
the role of surface forcing and the strength of vertical mixing in
driving dFe patterns (Tagliabue et al., 2014b). Because dFe is a
micronutrient, biological properties partly reflect their dFe status.
Therefore, we included a wide spectrum of remotely-sensed
biological metrics such as chlorophyll-a, particulate organic
carbon (a proxy of biomass), and net primary production
(Behrenfeld and Falkowski, 1997). Optical properties (Rrs) were
also included because they provide some information about
plankton community characteristics (Li et al., 2013). Given the
importance of Fe sources from aeolian (Conway and John, 2014;
Cassar et al., 2007; Hamilton et al., 2020; Tang et al., 2021),
hydrothermal (Tagliabue et al., 2010; Resing et al., 2015; Roshan
et al., 2020), coastal, riverine and benthic inputs in some regions
(Elrod et al., 2004; Lam and Bishop, 2008), we also incorporated
satellite estimates of the aerosol optical depth, model-simulated
helium concentration (Bianchi et al., 2010), and distance to the
coast and from the seafloor.

Modeling Global Dissolved Fe

2.2 Data-Driven Model Construction and
Validation
2.2.1 Data Processing

The overall workflow for the data processing, model construction
and statistical analyses is illustrated in Figure 2. To avoid spatial
autocorrelation and the overfitting induced by using near-neighbor
values, measured dFe data and paired environmental parameters
were gridded onto 1° × 1° horizontal grid with 31 vertical levels
following the PISCES model [Aumont et al. (2015)]: 5, 15, 25, 35, 45,
55, 65, 75, 85, 95, 106, 117, 129, 142, 159, 181, 216, 271, 362, 508,
730, 1030, 1404, 1830, 2289, 2768, 3257, 3752, 4250, 4750, 5250 m.
The sampling coordinates (longitude and latitude) and months were
converted to periodic functions using sine and cosinece data (Eq. 1-
Eq. 2) (Gade, 2010):

2

6                    
Coordinates = 6sin lattiude 

180 
, sin longitude 

18 
cos latitude 

18 
,

cos longitude 
10 

cos latitude 
180

      

Time = cos month 
12 

, sin month 
12

Eq: 2

All the data were log-transformed to ensure a normal distribution.

FIGURE 2 | Workflow for the data processing, model construction and statistical analyses.
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2.2.2 Model Construction and Validation
The processed dataset was randomly divided into training (70 %)
and validation datasets (30 %). For training, we used the ML
techniques of random forest (RF), super vector machining
(SVM), and artificial neural network (ANN). While the three
techniques differ in how they find the optimal predictand
solution from predictors, their general objective is to minimize
the error between the observed and predicted dFe.

Briefly, RF is an ensemble algorithm composed of multiple
individual decision trees which are constructed by a bootstrap
sampling of the training dataset (Liaw and Wiener, 2002). Each
individual tree splits out a class prediction and the class with the
most votes become the model’s prediction. RF was implemented
using the function ‘randomForest’ in the R package
‘randomForest’. The number of decision trees and minimum
leaf size in our study were set to 300 and 20, respectively. SVM
is a supervised learning model that searches for the hyperplane
from the observations used for the classification or regression
(Noble, 2006). SVM was performed using the function ‘svm’ in the
R package ‘e1071’. The Kernel used in training and predicting is
set to radial basis, with epsilon, gamma and the cost of constraints
violation set to 0.2, 0.1, and 3, respectively. ANN is a nonlinear
system using hyperbolic tangent as its activation function between
the input and hidden layer (Wu and Feng, 2018). To reduce the
dynamic range (Rafter et al., 2019; Wang et al., 2020), the dataset
used to train the ANN was further standardized to their z-scores
using Gaussian kernel (Z = (C − C)=s where C, C and s
represent the predictor’s individual concentration, mean
concentration and standard deviation, respectively). ANN was
trained using the R package ‘keras’. The architecture of our ANN
consists of one input layer with node numbers equivalent to the
number of environmental predictors (n=26), two hidden layers
with nodes of 50 for both, and an output layer with a single node
corresponding to the predicted dFe (n=1). The epoch, activation
function and learning rate were set to 300, ‘rlu”, and 0.001,
respectively. The optimizer of “Adam” was adopted to fit the
model. In order to assess the added-value of using ML to model
the complex distribution of dFe in the ocean, we compared the
accuracy of our predictions to the more traditional statistical
approach of multiple linear regression (MLR). The MLR was
implemented using the function ‘lm’ in the R package ‘stats’.

The model performance was evaluated using the regression
coefficients (R2) and root mean standard errors (RMSE) between
predicted dFe and observed dFe from the validation dataset. To
further assess the robustness of our predictions and dependence
on the training dataset, we used a bootstrap approach to
repeatedly reconstruct the training dataset and then calculated
the coefficient of variation of the predicted dFe from 1000
iterations (c.v.= standard deviation/mean × 100 %). An
attempt to build a data-driven algorithms for specific depth
ranges (0-200 m, 200-1000 m, 1000-2500 m and >2500 m) did
not improve the model accuracy compared to ML trained on the
entire dataset (Figure S1). Finally, we used the RF algorithm
(given its better performance, see section 3.2) to map the global
climatology of dFe with a 1°×1° resolution at 31 vertical intervals
as aforementioned.

Modeling Global Dissolved Fe

2.3 Insight Into Mechanisms
Governing dFe
We adopted two approaches to identify factors potentially
influencing the spatial and temporal variability of dFe. First, we
calculated the Pearson correlation coefficient between the field
collected dFe samples and environmental predictors. Second, we
sought the most important factors in predicting dFe concentrations
by extracting the predictors that persistently ranked in the top three
in relative importance during the repeated reconstruction of the
training dataset used in the RF algorithm development. We applied
these two statistical inferences in the subsets of the multiple depth
intervals. We also derived the ferricline depth by extrapolating our
data-driven predictions to profiles with 1m resolution. The ferricline
is defined as the depth with the steepest vertical gradient in dFe
Tagliabue et al. (2014b).

2.4 Comparison With dFe From Process-
Based Models
We used our global dFe climatology as a reference to compare the
performance of 13 ocean biogeochemistry models (OBM) compiled
by Tagliabue et al. (2016a). Some of these OBMs have been used to
specifically study global patterns of dFe cycling, and others have
more broadly been used to simulate coupled climate-carbon systems
as part of the recent Intergovernmental Panel on Climate Change
(IPCC) report for studies. The OBM features and settings are
summarized in Table 1 of Tagliabue et al. (2016a). For our
comparisons, the dFe simulations from the OBM were temporally
and spatially matched to our global Fe projections. While we use
data-driven climatology as a reference in this study, we note that
statistical models, just like process-driven models, have drawbacks
and carry uncertainties, as discussed in section 3.5.

3 R E S U L T S  AND DISCUSSION
3.1 Global Distribution of Observational
dFe Dataset
The global compilation dataset consists of over 32,000 measured
dFe at the discrete depth intervals, covering the main ocean
domains, and longitude and latitude bands (Figure 1). The
Pacific and the Atlantic Ocean encompass the most dFe
measurements among the basins, partly due to their large area
(Figure 1B). The number of dFe measurements increase from
around 1995 (Figure 1E) and with the start of the GEOTRACES
program in 2010 (Anderson and Henderson, 2005). 70 % of samples
were collected in the upper 500 m (Figure 1F). Compared to the
relatively homogenous distribution of sampling months in the
northern hemisphere, the striking feature in the southern
hemisphere is the scarce number of measurements in the austral
winter (Figures 1G, H).

3.2 Model Performance
The algorithms trained by ML approach outperform conventional
linear regressions as reflected by the R2 and RMSE (~0.8 vs. 0.5
and ~0.5 vs. 0.3 nmol L-1, respectively, Figure 3). RF tends to
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A B C D
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FIGURE 3 | Model performance evaluated with the validation dataset. (A–D) show model accuracy for the different algorithms; (E, F) display the model errors
alongside the magnitude of dissolved Fe (dFe) and sampling depth. RMSE, root mean standard error.

overestimate in the lower range and underestimate in the higher
range of dFe concentrations (Figure 3B). The SVM and ANN
appear to do a better job in predicting endmembers, results in
more scatter than the RF algorithm relative to observations
(Figures 3C–E). All ML-based projections display larger errors at
shallower depths and none of the models show stronger predictive

skills at specific depth intervals (Figure 3F). The c.v. of the projected
dFe from the data-driven model obtained from 1000 repeated
reconstructions of the training dataset using a bootstrap approach
(Figure 4) suggests that the RF algorithm was less sensitive to the
selection of the training dataset (generally less than 20 %). The
higher c.v. of SVM and ANN suggests that they may not be as stable

FIGURE 4 | Coefficient of variation of projected dissolved Fe calculated from 1000 reconstruction of the training dataset using three machine-learning algorithms.
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(Figure 4). Hereafter, we focus our analyses on the global dFe
climatology obtained using the RF algorithm given its greater
stability with respect to the training dataset and the capability to
rank the features importance.

3.3 Global Climatology of Projected dFe
and Potential Underlying Mechanism
The new global scale estimates of dFe achieved from our data-driven
model can be used to advance our understanding of the regional
magnitude and temporal dynamics of dFe in the contemporary
ocean. Furthermore, the global patterns of dFe climatology and
predictors provide an opportunity to assess the underlying
mechanisms potentially governing the global dFe distribution at
various depth horizons.

3.3.1 Surface Layer
dFe is a limiting nutrient in many regions of the surface ocean
(Martin, 1990; Tagliabue et al., 2017). As expected, our data-driven
model projects a prevalence of low surface dFe concentrations in
many regions of the world ocean (typically less than 0.3 nmol L-1,
Figures 5A–C). Elevated surface dFe concentrations are found in
the low latitude regions of the Arabian Sea, tropical Atlantic and
continental margins, consistent with prior studies (Johnson et al.,
1997; Rijkenberg et al., 2014).

In the upper ocean, our analysis suggests that remotely-sensed
aerosol optical depth is the best predictor of dFe (r=0.37, p<0.05,
Table 2), with elevated surface dFe coinciding with high aerosol
optical depth (Figures 5A–C and 6A, B). The pattern also holds for
the seasonal cycle of both properties with surface dFe varying
seasonally by a factor of two or more. The relation of surface dFe
and aerosol optical depth supports the important role of aeolian
dust in regulating the spatial and temporal variability in dFe
concentrations in the tropical ocean (Johnson et al., 1997;
Hamilton et al., 2020; Conway and John, 2014), with the caveat
that remotely sensed AOD does not necessarily directly translate
into aerosol deposition.

The correlation of dissolved oxygen concentration with
surface dFe is as high as for aerosol optical depth but negative
(r=-0.33, p<0.05, Table 2). This negative correlation likely is not
causal, and more likely results from low dFe generally being
observed in the high latitudes, where O2 solubility is high because
of the cold water temperatures (Garcia and Gordon, 1992). In
addition, satellite-retrieved surface ocean reflectance [i.e., Rrs
(448/412)] is identified as an important feature in RF model
construction (r=-0.32, p<0.05, Table 2). Water reflectance is
impacted by intrinsic water properties, community structure,
dissolved organic matter and detritus (Li et al., 2013; Dutkiewicz
et al., 2019). The elevated surface dFe in the ultra-oligotrophic
South Pacific Gyre align with the higher Rrs(412) signal
(Figures 6C, D). It is unclear if the elevated dFe reflects
accumulation of surface dFe due to the unique ecological
characteristics of the region [weak biological activity under
ultra-oligotrophic conditions, Yang et al. (2019); Quay et al.
(2020)], or alternatively if it can be attributed to the
misrepresentation of dFe in our data-driven model due to the
limited number of observations in this region.

Modeling Global Dissolved Fe

Another feature in the surface projection worth pointing out
is that our model exhibited a higher surface dFe during
summertime as opposed to winter in the Southern Ocean [as
noted in prior compilations, Tagliabue et al. (2012)], which
appears to contrast with a common axiom that active
biological drawdown of dFe in the growing season (austral
summer) and subsequent enrichment of dFe via the winter
mixing. Combined with some high summer dFe (probably
collected from regions with higher iron due to the island mass
effect, e.g., Kerguelen and Crozet plateau), the uneven
distribution of the training data is likely responsible for
distorting the seasonal pattern of dFe in the Southern Ocean.

3.3.2 Subsurface and Intermediate Layers
In the subsurface layer (here shown as 271 m in Figure 5D), high
dFe are observed in the tropics and subpolar Pacific. At this depth
horizon, AOU emerges as the top predictor of dFe distribution as
demonstrated by the Pearson correlation coefficient to individual
field dFe observations (r=0.62, p<0.05, Table 2) and the spatial
patterns (Figures 5D and 7A). The relationship between deep dFe
and AOU has been documented in previous studies (Martin and
Michael Gordon, 1988; Tagliabue et al., 2010; Tagliabue et al.,
2019). AOU reflects local remineralization and spatiotemporally
accumulated oxygen consumption due to the ocean circulation,
with the latter tending to be predominant in the deeper layer (Ito
et al., 2004). The correlation between dFe and AOU is known to be
confounded by the removal of remineralized dFe via scavenging as
reflected by observed Fe:O ratios diverging from those expected
from sinking particulate material (Tagliabue et al., 2019). The
generally elevated subsurface dFe in equatorial and high latitude
regions is a result of mesopelagic respiration fueled by upper layer
organic matter export in these productive regions. In addition, the
upwelling in the equatorial Pacific (Wyrtki, 1981) can bring deep
dFe to the subsurface depth. The highest subsurface AOU and dFe
are found in the Arabian Sea and southeast tropical Pacific
(Figures 5D and 7A), which are well-known oxygen minimum
zones (OMZs). The mesopelagic respiration occurring at OMZs
(Tiano et al., 2014), potentially coupled with reduced scavenging
and oxidation of dFe under low oxygen condition (Tagliabue et al.,
2019), may thus drive the high dFe in these regions.

In addition to AOU, the aerosol optical depth also shows a high
correlation with the observed subsurface dFe (r=0.54, p<0.05,
Table 2). From vertical distributions in the Pacific and Atlantic
(Figures 5G, H), and mean profiles (Figure 8), we observe high dFe
penetrating deeper in the water column (up to 2000-3000 m) in
these dust-impacted regions. Studies have shown that Fe-rich dust
can impact the entire column (Bruland et al., 1994; Johnson et al.,
1997) via a range of processes such as dissolution of aeolian iron,
enhanced mesopelagic remineralization through an increase in
particle flux from the surface ocean thereby altering the deep
organic complexing-ligands (Wozniak et al., 2015) or not being
consumed by phytoplankton in the upper layer due to other
nutrients being limiting (Bruland et al., 1994; Wu and Luther,
1994). In the subtropical gyres of the North Atlantic, higher dFe
concentrations at the subsurface than in overlaying waters is
perhaps driven by equatorward subduction and transport of
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FIGURE 5 | The global modeled dissolved Fe using the random forest approach. (A–F) show global maps of modeled dissolved Fe at various depth horizons;
(G, H) display the corresponding dissolved Fe transects across the Atlantic and Pacific.

TAB L E  2 | Most important environmental predictors based on Pearson correlation and importance in the construction of the random forest (RF) algorithm (only top
three are shown; the comprehensive results for all the predictors are provided in Table S1 and Figure S2).

Depth

Surface (0-140 m)
n=7434

Subsurface (260-340 m)
(n=863)

Intermediate depth (700-1200 m)
(n=754)

Deep depth (3200-3500 m)
(n=366)

Order Pearson correlation

First Aerosol optical depth (0.37)
Second O2 (-0.33)
Third Rrs(488) (-0.32)

First AOU (0.62)
Second O2 (-0.61)
Third Aerosol Optical depth (0.54)

First AOU (0.50)
Second O2 (-0.47)
Third Aerosol Optical depth (0.44)

First                                                        Month (-0.40)
Second                                                  Helium (0.30)
Third Longitude/Latitude (0.28)

Importance in R F

Rrs(488/412)
Aerosol Optical depth
O2

AOU
O2

NA

AOU
O2

NA

Helium
NA
NA

The numbers in brackets in the first and third columns denote the number of samples and Pearson correlation coefficient between the environmental predictors and dissolved Fe,
respectively. NA denotes results that are not robust and change with the repeated reconstruction of the training dataset (see method 2.3).

excess dFe and organic Fe ligands from the more northern latitudes
(Tagliabue et al., 2019).

The distribution of dFe in the subsurface also provides a
qualitative insight into the potential for vertical entrainment. We
compare the depth difference between annual deepest mixed layer
and ferricline, which provide information about the potential of
vertical dFe supply from the subsurface to the surface via the
seasonal entrainment. We find that the deepest winter mixed
layer depths rarely extend to the ferricline in the tropical Pacific

and subpolar Pacific (Figures 6F–H). In contrast, the deep mixed
layers in the subpolar Atlantic and some regions of Southern Ocean
(e.g., subantarctic zone) extend to the ferricline (Figure 6).
However, we note that entrainment supply of dFe is not only
controlled by the ferricline depth. Entrainment input of dFe is
determined by the volume of water being entrained during winter
and detrainmented in the subsequent spring, together
with the concentration difference of dFe between the mixed layer
and underlying waters. These processes vary regionally
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A B

C D

E F

G H

FIGURE 6 | Global distributions of remotely-sensed aerosol optical depth (A, B), surface optical reflectance,Rrs(412) (C, D), seasonal variability of dissolved Fe
represented as the percentage of the annual variance relative to the annual mean, (E) ferricline depth, (F), annual deepest mixed layer (MLDmax) (G) and the
difference in ferricline and MLDmax (H).

A B

C D

FIGURE 7 | Global distribution of apparent oxygen utilization (AOU) at 271 m (A), 730 m (B), 3257m (C), and helium concentration at 3257 m (D).

(Rigby et al., 2020). For example, the persistently-low subsurface
dFe in the subpolar Atlantic and subantarctic zone (Figure 5D) may
limit the total amount of dFe that can be pumped via winter mixing
even when mixing reaches the ferricline. In principle, the amount of

dFe supply via vertical entrainment can be quantified by a
combination of our modeled monthly dFe profile and seasonally
varying mixed layer depth. Yet, we are cautious about
overinterpretation of the present results because the global map of
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A B

FIGURE 8 | Mean profile of dissolved Fe (dFe) with the shading representing the standard deviation (A), and mean dFe concentration (±standard deviation) at the
depth between 3000 m and 3500 m (B) in the main ocean basin.

the ferricline depth obtained from our data-driven model is coarse,
especially when it is diagnosed to be deeper than 200 m due to
coarse resolution of vertical grids below 200 m in our projection
(10 m spacing in the upper 200 m and 20-300m spacing between
200 m and 1000 m).

In the intermediate layers (here shown as 730 m in
Figure 5E), AOU is still the top predictor of the dFe variability
(Table 2, r=0.50, p<0.05). dFe generally increases equatorward in
the southern hemisphere (Figure 5E). Water masses at these
depths are generally composed of mode waters originating from
the subantarctic (Herraiz-Borreguero and Rintoul, 2011). The
increasing dFe likely reflects an accumulated remineralization
signal along the Subantarctic Mode Water and Antarctic
Intermediate Water pathways, reinforced by similar trends in
AOU (Table 2 and Figure 7C) (Tagliabue et al., 2019).

3.3.3 Deep Layer
The variability of dFe at depth is relatively small, ranging from
0.4-0.7 nmol L-1 (Figures 5E, 8). This has been hypothesized to
result from relatively uniform concentrations of organic iron-
complexing ligands in the ocean interior that act as a buffer on
dFe concentrations (Gledhill and van den Berg, 1994; Johnson
et al., 1997), although recent studies reveal more spatial
heterogeneity than previously thought (Tagliabue et al., 2014c;
Buck et al., 2015; Gerringa et al., 2015a). Despite the small
variability, the deep layer still displays some distinct features,
with the highest dFe in the subpolar and equatorial Pacific and
the lowest dFe in the Southern Ocean. As the end of the
overturning circulation, the subpolar Pacific preserves the
footprint of dFe signals accumulated alongside the circulation.
The Southern Ocean receives the lowest input of aeolian and
sedimentary dFe (Hamilton et al., 2020). Moreover, due to the
high levels of major nutrients, dFe is often strongly depleted by
the end of the upper ocean growing season. Deep water masses,
like Antarctic Bottom Water, form in the region and transport
these low dFe values to the ocean interior. These younger water
masses have had little chance to accumulate additional dFe from
regeneration and hence deep water dFe values are the lowest in

the global ocean. The lowest dFe observed in the Southern Ocean
is aligned with the lowest d15N found in the abyssal Southern
Ocean among global ocean basin, suggesting a correlation to
remineralization (Rafter et al., 2019). Such a pattern is also
confirmed by the relatively low amount of sinking particles
exported to depth in the Southern Ocean as estimated from
sediment trap observations and satellite-based models (Elrod
et al., 2004; Lam et al., 2008).

In line with a number of recent studies showing the importance
of hydrothermal dFe sources along mid-ocean ridges (Tagliabue
et al., 2010; Tagliabue et al., 2014a; Resing et al., 2015; Roshan et al.,
2020), helium concentration, a tracer of hydrothermal activity,
ranked as one of the important predictors for deep dFe distribution
(r=0.30, p<0.05, Table 2). However, no consistent pattern was
observed between the global distribution of helium and projected
dFe at depth (Figures 5F and 7D). This is probably due to the
different water column chemistry that decouples Fe from helium
(Tagliabue and Resing, 2016b), as well as the impact of other local
iron sources, such as sedimentary input (Elrod et al., 2004; Lam
et al., 2008). Additionally, some patches of dFe emerge in the
Northern Atlantic and South Pacific Gyre (Figure 5F). These
patches are in regions with high bootstrap c.v. (Figure 4),
implying that the dFe predictions in these regions are sensitive to
the selection of the training dataset and therefore may not be robust.

3.4 Comparison With Process
Model Simulations
We assess the OBM performance using our reference climatology
from our data-driven model, building upon the previous effort of
Tagliabueetal. (2016a)whouseddiscreteobservations. In theupper
200 m, while the correlation of dFe between the thirteen process-
based models versus the data-driven model converge to 0.4, the
RMSE vary widely from 0.15 to 0.5 nmol L-1 (Figure 9A). This
implies consistency in relative variability in dFe distribution at the
surface but some differences in the absolute magnitude of dFe.
Tagliabue et al. (2016a) found that most OBM reproduced the
predicted enhancement in surface dFe in the tropical Atlantic,
Arabian Sea and continental margins, but that some models’
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A B

C D

FIGURE 9 | Taylor diagrams comparing global modeled dissolved Fe from thirteen existing process-based models against the random forest data-driven model at
the depth different depth intervals (A–D). The models simulated dFe spatial variability, Pearson correlation coefficients and RMSE between process-based and the
data-driven models are shown on the blue, black and green axes, respectively.

representation of surface sources and biological uptake resulted in
varying surface dFe concentrations. At depth, the OBMs skills were
more variable, with Pearson correlation coefficients ranging from
-0.4 to 0.6 (Figures 9B–D), depending on whether the models
include or properly represent important Fe cycling processes
occurring in the deep ocean, including organic blinding ligand,
hydrothermal vents and scavenging (Gledhill and Buck, 2012;
Tagliabue et al., 2016a; Tagliabue et al., 2010). Even OBM models
with high Pearson correlation coefficients (up to 0.6) tend to
underrepresent the degree of spatial variability in dFe
concentration at depth (Figure 9D).

3.5 Caveats and Limitations
Our study carries limitations and caveats that need to be
considered. First, biases may be present in the dFe dataset due
to differences in sampling protocols and analytical techniques
(Achterberg et al., 2001; Johnson et al., 2007), particularly for
data collected before the implementation of the GEOTRACES
program. For example, the filter pore size used as a cut-off for the
dissolved phase differs between some historical studies, ranging
from 0.2-0.45 um (Tagliabue et al., 2012).

Second, despite substantial progress in observations, the
coverage of our training observational dataset remains uneven.
For example, the winter season in the Southern hemisphere
remains undersampled (Figure 1H). Extrapolation of projections
from the data-driven model to under-represented regions or
periods may be of acceptable quality if the algorithm captures the
full range of relationships between predictors and predictants.
However, because the factors regulating dFe differ among ocean
regimes and timescales (Tagliabue et al., 2014a), our ML may not
capture the full range of predictor-predictant relationships, and
may as importantly not include some important predictors (e.g.,
properties important to dFe distribution not observable from
space). The low c.v. obtained from repeated reconstructions of
the training dataset using the bootstrap approach (Figure 4A)

suggests that our results are relatively insensitive to the dataset
selected used for training the algorithms, and that the subset of
the entire data covers variability in the functional relationships
between predictors and predictant dFe. However, the
performance of our data-driven model is expected to improve
as the number of observations grows.

Third, the environmental properties used as predictors also
carry uncertainties. Because concurrent field measurements of
environmental parameters are limited, we were forced to rely on
reanalysis products (i.e., World Ocean Dataset 2018 or NCEP
reanalysis-II), satellite observations and other model outputs.
Some of these estimates carry substantial intrinsic uncertainties
and errors associated with temporal and spatial mismatch to
paired dFe observations. The ML approach may provide accurate
projections if uncertainties in the predictors are systematic biases
that can be captured by the algorithm. However, such biases
would misrepresent the true relation between environmental
factors and dFe and the mechanisms governing dFe cycling.
Finally, as with more traditional statistical approaches, because
the information provided by such analyses is inferential,
conclusions about potential causation should be interpreted
with caution and require field campaigns to further look into
these patterns and underlying mechanisms. For example, our
model yielded a unique vertical structure of dFe in the data-poor
tropical eastern Pacific, with low surface dFe, but elevated dFe a
few hundred meters beneath the surface. The relation between
dFe and remotely sensed reflectance in the utra-oligotrophic
South Pacific Gyre is another intriguing result that merits further
exploration regarding the potential underlying mechanisms.

4 CONCLUSION

By leveraging a compilation of published data and a novel ML
approach, we derived a global dFe climatology and explored
possible mechanisms governing the dFe distribution using
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statistical inferences. Our study emphasizes the importance of dust
input in enriching the dFe inventory at low latitudes. The
correlation between AOU and dFe highlights the role of net
regeneration and large-scale ocean circulation pathways as key
mediators of the global dFe distribution at depth. Finally, we
present a general assessment of existing OBMs using our data-
driven model as reference. The uneven geographic distribution of
observational dataset and uncertainty in environmental predictors
remain important caveats for data-driven climatological maps.
Further expansion in dFe observations together with parallel
measurements of comprehensive environmental parameters, as
conducted in the ongoing GEOTRACES program, will improve
model simulations. While our approach carries uncertainties, our
next data-based climatology may provide an independent mean to
assess, evaluate, and ultimately improve the new generation of
ocean iron models.
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