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Requirements on the Spatial Distribution of Elastic
Components Used in Compliance Realization

Shuguang Huang and Joseph M. Schimmels

Abstract—In this letter, necessary conditions on the locations and
orientations of elastic components in a compliant mechanism used
to realize anygiven spatial compliance are identified.The topologies
considered are either fully parallel or fully serial mechanisms hav-
ing an arbitrary number of lumped elastic components. It is shown
that the requirements on elastic components are characterized by
a sphere for the location distribution and by three cones for the
orientation distribution. The easy to assess conditions on the set of
components can be used to achieve amore desirablemechanism ge-
ometry when used in conjunction with existing spatial compliance
synthesis procedures.

Index Terms—Compliant joints and mechanisms, compliance
realization, mechanical design, spatial stiffness and compliance.

I. INTRODUCTION

IN ROBOTIC manipulation, some form of compliance is
needed to improve the accuracy of constrained relative po-

sitioning and to provide force regulation [1], [2]. Stable con-
strained manipulation can be obtained by a passive elastic sus-
pension of the end-effector. If small deflection is considered, a
compliance is described by a linear mapping between the force
applied to the object and the resulting relative motion of the
object. For the spatial case, the relationship can be expressed
as [3]:

w = Kt, or t = Cw, (1)

where w ∈ R6 is the applied wrench (force and moment), t ∈
R6 is the motion twist (translation and rotation) of the object,
andwhereK ∈ R6×6 andC ∈ R6×6 are the stiffnessmatrix and
compliance matrix, respectively. If the wrenchw and twist t are
described in Plücker’s ray and axis coordinates (or vice versa)
respectively, bothK andC are symmetric positive semidefinite
(PSD).
Many researchers have investigated general spatial compliant

behaviors. In spatial compliance analysis, screw theory [3], [4],
[5], [6] and Lie groups [7], [8] have been used. In prior work on
compliance realization, compliant mechanisms are designed to
attain a given elastic behavior. Most early synthesis procedures
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for fully parallel and fully serial mechanisms were based on an
algebraic decomposition of the stiffness/compliance matrix [9],
[10], [11], [12], [13], [14], [15], [16]. Others addressed the
analysis, modeling and synthesis of compliance associated with
mechanisms composed of distributed elastic components [17],
[18], [19], [20], [21].
In [22], geometric construction based synthesis procedures

were developed for general spatial elastic properties realized
using either fully parallel or fully serial mechanisms having
lumped elastic components, and the concept of dual elastic
mechanisms in parallel and serial construction was introduced.
A parallel mechanism and a serial mechanism at given config-
urations are elastic duals if they are capable of achieving the
exact same space of compliant behaviors when the mechanisms
have infinite variation in spring stiffness and joint compliance.
In [23], the concept of dual elastic mechanisms was extended to
rank-deficient cases.
Although geometric construction-based synthesis procedures

to realize a given spatial compliance with the minimum number
of elastic components have been already identified [22], gen-
eral guidance for the overall design in the early stages of the
process is needed. In the synthesis process, the allowable space
of remaining components depends on the previously selected
elastic components. Guidance to judiciously select the elastic
components in the first one or two steps to ensure the obtained
mechanismhas desirable geometry is an important issue. In [24],
elastic component distribution relative to the stiffness center and
compliance center was identified. However, the requirements on
the distribution in location and direction of elastic components
were not identified.
This letter addresses the distribution conditions on mecha-

nisms used to realize an arbitrary compliance. The topologies
considered are either fully parallel or fully serial mechanisms
having an arbitrary number of elastic components. Each mech-
anism is composed of rigid links connected by lumped elastic
components. The physical implications of these conditions are
provided.
The paper is outlined as follows. Section II provides the

technical context needed for the development of the distribution
theory. In Section III, a set of necessary conditions on the elastic
component distribution is presented for both parallel mecha-
nisms and serial mechanisms. In Section IV, an extremal prop-
erty associated with the distribution theory is identified. In Sec-
tionV, discussion on the physical significance and application of
the distribution theory is provided. A brief summary appears in
Section VI.
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II. BACKGROUND

In compliance realization, fully parallelmechanisms and fully
serial mechanisms have the simplest topology. In this section,
screw descriptions of the geometry of these two types of mech-
anisms and their use in the realization of spatial compliance are
reviewed. To realize a full-rank elastic behavior, the number of
elastic components in a mechanism must be no less than 6.

A. Parallel Mechanisms

Consider a parallelmechanismwithm ≥ 6 springs. To realize
a general stiffness matrixK, screw springs (springs that provide
force along and torque about in the same axis) must be used [11].
The geometry of each spring i is described by a unit screw
wrench wi defined as the spring wrench having the form:

wi =

[
ni

pini + ri × ni

]
, (2)

where ni is a unit 3-vector indicating the direction of the spring
i axis, pi is the pitch of the screw, and ri is the minimum-length
vector from the coordinate origin (perpendicular) to the spring
axis. If ki > 0 is the spring rate associatedwithwi, the Cartesian
stiffness associated with them-spring mechanism is [11]:

K = k1w1w
T
1 + k2w2w

T
2 + · · ·+ knwmwT

m. (3)

Conversely, if a Cartesian stiffness matrix in the partitioned
form

K =

[
A B
BT D

]
(4)

is decomposed into the form of (3), the stiffness is realized
with a parallel mechanism havingm springs described by spring
wrenches wis.
If the pitch pi = 0 in (2), then wi represents a conventional

line spring. As shown in [9], a full-rank stiffness K can be
realized with a set of simple springs (conventional line springs
and torsional springs) if and only if the off-diagonal block of (4)
satisfies

trace(B) = 0. (5)

B. Serial Mechanisms

Theduality betweenparallelmechanisms used for stiffness re-
alization and serial mechanisms used for compliance realization
was identified in [14] and was used in the synthesis of compliant
behaviors with serial mechanisms [25], [26]. As shown in [14],
in the realization of a general compliance with an m ≥ 6 joint
serial mechanism, helical joints must be used. The geometry of
each joint i is described by a unit screw twist ti defined as the
joint twist having the form:

ti =

[
pini + ri × ni

ni

]
, (6)

where ni is a unit 3-vector indicating the direction of the joint
i rotation axis, pi is the pitch of the helical joint, and ri is the
perpendicular vector from the coordinate origin to the twist axis.
If ci > 0 is the joint compliance associated with ti, the Carte-
sian compliance matrix associated with them-joint mechanism

is [14]:

C = c1t1t
T
1 + c2t2t

T
2 + · · ·+ cntmtTm. (7)

Conversely, if a compliance matrix in the partitioned form

C =

[
G H
HT Q

]
(8)

is decomposed into the form of (7), the compliance matrix is
realized with a serial mechanism having m joints described by
joint twists tis.
If the pitch pi = 0 in (6), then ti represents a conventional

revolute joint. As shown in [27], a full-rank compliance matrix
C can be realized with a serial mechanism having conventional
revolute and prismatic joints if and only if the off-diagonal block
of (8) satisfies

trace(H) = 0. (9)

In this letter, the realization of a desired elastic behavior with
either a fully parallel or a fully serial mechanism is considered.
In each case, the elastic behavior is readily described by the
screws associated with its elastic primitives, either as spring
wrenches (3) or joint twists (7). Below, we show that a given
elastic behavior imposes conditions on the spatial distribution
of the mechanism screws.

III. ELASTIC COMPONENT DISTRIBUTION IN A MECHANISM

In this section, elastic component distribution conditions for
a parallel mechanism and for a serial mechanism are developed.
First, the distribution conditions on spring locations and orien-
tations in a parallel mechanism are derived. Then, by duality, the
distribution conditions on joint axis locations and orientations
in a serial mechanism are obtained.

A. Parallel Mechanisms

In the following, distribution conditions on spring locations
are first derived. Then, distribution conditions on spring direc-
tions are developed.
In [24], the distribution of springs relative to the stiffness

center was addressed. It was shown that, to realize a given
stiffness matrix with a parallel mechanism, the springs must
surround the stiffness center. Specifically, it was shown that the
stiffness weighted average distance from the stiffness center to
the spring axes is zero. The conditions on the distribution of
spring locations and directions derived below are more restric-
tive and are independent from that presented in [24].
1) Spring Location Distribution: Consider a parallel mecha-

nism with spring wrenches described in an arbitrary coordinate
frame as (w1,w2, . . .,wm), where each wrench has the form
of (2). If ki is the spring rate associated with wi, the rank-1
stiffness matrix associated with a single spring is:

Ki = kiwiw
T
i =

[
Ai Bi

BT
i Di

]
, (10)

where

Ai = kinin
T
i , (11)
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Bi = ki
[
pinin

T
i + ni(ri × ni)

T
]
, (12)

Di = ki(pini + ri × ni)(pini + ri × ni)
T . (13)

The stiffnessmatrixK realizedwith them-springmechanism
is:

K =
m∑

i=1

kiwiw
T
i =

m∑

i=1

Ki. (14)

IfK is partitioned in the form of (4), then

A =
m∑

i=1

kinin
T
i , (15)

and

D =
m∑

i=1

ki(pini + ri × ni)(pini + ri × ni)
T . (16)

Expanding (16) yields:

D =
m∑

i=1

ki[p
2
inin

T
i + pi(ri × ni)n

T
i + pini(ri × ni)

T

+ (ri × ni)(ri × ni)
T ]. (17)

Denote

ui = ri × ni, i = 1, 2, . . .,m, (18)

then the 3× 3 block matrix D in (4) is expressed as:

D =
m∑

i=1

ki
[
p2inin

T
i + piuin

T
i + piniu

T
i + uiu

T
i

]
. (19)

Since ni is a unit 3-vector and ni ⊥ ri,

‖ui‖ = ‖ri × ni‖ = ‖ri‖, (20)

uT
i ui = rTi ri, (21)

trace(nin
T
i ) = nT

i ni = 1, (22)

trace(niu
T
i ) = trace(uin

T
i ) = uT

i ni = 0. (23)

Thus,

trace(D) =
m∑

i=1

kitrace
(
p2inin

T
i + piuin

T
i +piniu

T
i +uiu

T
i

)

=
m∑

i=1

ki
[
p2i trace(nin

T
i ) + trace(uiu

T
i )

]

=
m∑

i=1

ki
(
p2i + r2i

)
, (24)

where ri = ‖ri‖ = ‖ui‖ is the perpendicular distance from the
origin to spring wrench wi. If we denote

di =
√

r2i + p2i , i = 1, 2, . . .,m, (25)

then, (24) can be written as

trace(D) = k1d
2
1 + k2d

2
2 + · · ·+ kmd2m. (26)

Fig. 1. Distribution of spring locations. At least one Ti (Tα) must be outside
sphere Sk and at least one Tj (Tβ ) must be inside sphere Sk .

For a givenK realized by a specificm-springmechanism, denote

dmax = max{d1, d2, . . ., dm}, (27)

dmin = min{d1, d2, . . ., dm}, (28)

then,
(

m∑

i=1

ki

)
d2min ≤ trace(D) ≤

(
m∑

i=1

ki

)
d2max. (29)

Since [from (15) and (22)]
m∑

i=1

ki = trace(A), (30)

inequality (29) can be expressed as:

dmin ≤

√
trace(D)

trace(A)
≤ dmax. (31)

Denote

ρk =

√
trace(D)

trace(A)
(32)

as the radius of a sphere Sk centered at the coordinate frame:

x2 + y2 + z2 = ρ2k. (33)

Then, inequality (29) becomes

dmin ≤ ρk ≤ dmax. (34)

Since ρk is effectively the stiffness weighted average distance
di from the origin, the equality holds in (34) if and only if dmin =
dmax, which means all dis in (26) have the same value. Thus, in
the generic case,

dmin < ρk < dmax. (35)

Let Pi be the point on the axis of the ith spring wrench wi

associated with the perpendicular position vector ri, and Ti

be the point on the axis of wi determined by |PiTi| = |pi| as
shown in Fig. 1 for i = α,β, then the position vector of Ti in a
coordinate frame at O is:

di = ri + pini, i = 1, 2, . . .,m. (36)
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It can be seen that vector di has the length di defined in (25).
Consider the vector dα defined in (36) that has the maximum
length dmax = ‖dα‖, then by inequality (35), dα > ρk, which
means the distance to point Tα from the origin is greater than
the radius of sphere Sk (the average distance from the origin).
Thus, Tα must be outside the sphere as illustrated in Fig. 1.

Similar reasoning applies to the point Tβ that has minimum
distance dmin from the origin. Inequality (35) requires that Tβ

is inside sphere Sk.
2) Spring Direction Distribution: Now consider the sym-

metric 3× 3 block matrix A in (4). The three eigenvalues
ki and the corresponding eigenvectors (in the direction of the
wrench-compliant axes [6]) are invariant. In a coordinate frame
aligned with the wrench-compliant axes, matrixA has diagonal
form:

Aλ = diag(λ1, λ2, λ3). (37)

Suppose that in the same coordinate frame the direction unit
vectors nj for each spring j are:

nj = [nj1, nj2, nj3]
T , j = 1, 2, . . .,m. (38)

By (15) and (38), along each eigenvector i,

λi = k1n
2
1i + k2n

2
2i + · · ·+ kmn2

mi, i = 1, 2, 3. (39)

For i = 1, 2, 3, denote

ni,max = max{|n1i|, |n2i|, . . ., |nmi|}, (40)

ni,min = min{|n1i|, |n2i|, . . ., |nmi|}, (41)

then,



m∑

j=1

kj



n2
i,min ≤ λi ≤




m∑

j=1

kj



n2
i,max. (42)

Since
m∑

j=1

kj = trace(Aλ) =
3∑

i=1

λi = trace(A), (43)

ni,min ≤

√
λi

trace(A)
≤ ni,max. (44)

Denote

ηi =

√
λi

trace(A)
, i = 1, 2, 3, (45)

which is effectively the stiffness weighted average orientation
of the spring wrenches with respect to the i direction. Then the
angle defined by

θi = cos−1 ηi (46)

indicates the stiffness weighted average angle of the spring axes
with respect to the i-axis (i = 1, 2, 3).

Let θji (0 ≤ θji ≤ π/2) be the angle between nj and the
i-axis, then,

|nji| = cos θji, j = 1, 2, . . .,m; i = 1, 2, 3. (47)

Fig. 2. Spring direction distribution constrained by cone Λ1. Among all the
direction vectors, at least one direction vector (nξ) must be outside coneΛ1 and
at least one direction vector (nν ) must be inside cone Λ1.

Thus, ni,min and ni,max correspond to the 2 direction vectors
that have the largest and smallest angles with respect to the ith
axis, θi,max and θi,min, i.e.,

ni,min = cos θi,max, ni,max = cos θi,min. (48)

Inequality (44) requires:

θi,min ≤ θi ≤ θi,max, i = 1, 2, 3. (49)

The equality holds if and only if θi,min = θi,max, which means
all spring wrench axes have the same angle with respect to the
ith axis. Thus, in the generic case,

θi,min < θi < θi,max, i = 1, 2, 3. (50)

The physical meaning of this condition can be represented
geometrically by the following.
In a coordinate frame along the wrench-compliant axes, let

Λi be the cone formed by lines that pass through the origin
and have angle θi in (46) with respect to the axis associated with
eigenvalue λi. There are 3 conesΛ1,Λ2 andΛ3 symmetric about
the 3 coordinate axes (in the directions of wrench-compliant
axes), respectively. Consider the direction vector nξ that has the
maximum angle θi,max with respect to axis i. By inequality (50),
the angle must be greater than the angle θi between the edges
of cone Λi and the ith axis. Thus, nξ must be outside cone Λi.
Similar reasoning applies to direction vector nν that has the
minimum angle with respect to the ith axis. Thus, nν must be
inside cone Λi.
Therefore, among all direction vectors, at least one must be

inside cone Λi and at least one must be outside cone Λi. Fig. 2
illustrates the direction distribution condition associated with
cone Λ1. The same condition holds for the other two cones Λ2

and Λ3.
Since

cos2 θ1 + cos2 θ2 + cos2 θ3 =
3∑

i=1

λi

trace(A)
= 1, (51)

cos2 θi + cos2 θj < 1 for i (= j. Hence,

θ1 + θ2 >
π

2
, θ1 + θ3 >

π

2
, θ2 + θ3 >

π

2
. (52)
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Thus, every two cones of Λ1, Λ2 and Λ3 intersect at an infinite
number of points, and

R3 = Λ1 ∪ Λ2 ∪ Λ3. (53)

Thus, any direction vector n must lie in one of these 3 cones.
In summary, for a parallel mechanism used to realize a given

stiffness matrixK, we have:
Proposition 1. If a given stiffness matrix is realized with a

parallel mechanism, then,
1) At least one point Ti (at the end of vector di) must be

outside sphere Sk (Tα in Fig. 1) and at least one point
must be inside the sphere (Tβ);

2) For each cone Λi defined by angle θi in (46), at least one
spring direction nj must be outside Λi (nξ in Fig. 2) and
at least one spring direction must be inside Λi (nν).

B. Serial Mechanisms

As shown in [24], to realize a given compliance matrix with a
serial mechanism, the joint axes must surround the compliance
center. The conditions identified below further restrict the dis-
tributions of joint locations and axes and are independent from
that presented in [24].
By duality, the spring distribution conditions for parallel

mechanisms in the realization of stiffness can be modified for
serial mechanisms in the realization of compliance.
Suppose a serial mechanism has joint twists ti in the form of

(6) and a compliance matrix C in (8) is realized with the serial
mechanism. Then, a sphere Sc with radius ρc is defined by:

x2 + y2 + z2 = ρ2c , (54)

where

ρc =

√
trace(G)

trace(Q)
. (55)

If γ1, γ2 and γ3 are the three eigenvalues of Q, similar to (46),
three angles are determined by:

φi = cos−1

(√
γi

trace(Q)

)
, i = 1, 2, 3. (56)

Three cones Φi (i = 1, 2, 3) having angles φi with respect to
the coordinate axes aligned with the twist-compliant axes [6]
are defined. Similar to Proposition 1 for parallel mechanisms
and with an equivalent definition of vectors di and Ti in (36) for
joint twists of (6), we have:
Proposition 2. If a given compliance matrix is realized with a

serial mechanism, then,
1) At least one point Ti (at the end of di) must be outside

sphere Sc and at least one point must be inside the sphere;
2) For each cone Φi defined by angle φi in (56), at least one

joint axis direction nj must be outside Φi and at least one
joint axis direction must be inside the cone.

IV. MINIMUM RADIUS OF THE RESTRICTIVE SPHERES

Note the spring distribution requirements hold for an arbitrary
coordinate frame. It is known that the trace of the block matrix
A is invariant to coordinate transformation, but the trace of the

block matrixD is not. Thus, in different coordinate frames, the
center of sphere Sk is always located at the frame origin, but
the radius of the sphere, ρk, depends on the coordinate frame
selected. Below, it is proved that ρk has a minimum value when
the coordinate frame is located at the center of stiffness.
The center of stiffness is the location where the stiffness

matrix has a symmetric off-diagonal block [7]. Thus, at the
stiffness center, the stiffness matrixKc has the form:

Kc =

[
Ac Bc

Bc Dc

]
. (57)

Then, by definition (32), the radius of the restrictive sphere Sc
k

centered at the stiffness center is:

ρck =

√
trace(Dc)

trace(Ac)
. (58)

Let K̃ be the stiffness matrix describing the same elastic
behavior expressed in a coordinate frame at an arbitrary location
Õ having the form:

K̃ =

[
Ã B̃
B̃T D̃

]
. (59)

The radius of the restrictive sphere S̃k centered at this location
is:

ρ̃k =

√
trace(D̃)

trace(Ã)
. (60)

Below we prove that ρck ≤ ρ̃k.
Since a rotational transformation does not change the trace

of any block matrix in (57), only translational transformations
ofKc are considered. LetT be the translational transformation
from the stiffness center to the location Õ:

T =

[
I 0
P I

]
, (61)

where I is the 3× 3 identity matrix and P is the 3× 3 skew
symmetric matrix associated with the translation. Then,

K̃ =

[
Ã B̃
B̃T D̃

]
= TKcT

T

=

[
I 0
P I

] [
Ac Bc

Bc Dc

] [
I PT

0 I

]

=

[
Ac AcPT +Bc

PAc +Bc PAcPT +BcPT +PBc +Dc

]
.

(62)

The lower diagonal 3× 3 block in K̃ is:

D̃ = PAcP
T +BcP

T +PBc +Dc. (63)

Since Bc is symmetric and P is skew-symmetric,

trace(PBc) = trace(BcP
T ) = 0. (64)

Thus,

trace(D̃) = trace
(
PAcP

T +BcP
T +PBc +Dc

)

= trace(PAcP
T ) + trace(Dc). (65)
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Since Ac is positive definite, by Sylvester’s law of inertia,
PAcPT must be positive semidefinite. Hence,

trace(PAcP
T ) ≥ 0, (66)

and the equality holds if and only if P = 0. Therefore,

trace(D̃) ≥ trace(Dc) (67)

for all translational transformations. The equality holds if and
only if the coordinate frame is located at the center of stiffness.
This proves that the trace of the 3× 3 lower diagonal block in the
stiffness matrix takes the minimum value at the stiffness center.
Since the trace of Ac is invariant for coordinate transforma-

tions, trace(Ac) = trace(Ã). Comparing (58) and (60),wehave:

ρck ≤ ρ̃k, (68)

which proves that the radius of sphereSk has theminimumvalue
at the center of stiffness.
Similarly, the radius ρc of sphere Sc defined in (55) has the

minimum value at the center of compliance.

V. DISCUSSION

In this section, the significance of the distribution conditions
on the design of a compliant mechanism is addressed. The
applications of the results to the special case of zero pitch screws
and the special case of planar mechanisms are also presented.
Use of these conditions in elastic behavior synthesis procedures
is also described.

A. Significance of the Distribution Conditions

In a stiffness matrix K as partitioned in (4), the trace of
A indicates the overall stiffness in translation and the trace
of D indicates the overall stiffness in rotation. The parameter
ρk in (32) indicates the amount of moment generated relative
to the amount of force generated by the springs of a parallel
mechanism. If condition (i) of Proposition 1 is violated, the force
from the mechanism is either excessive or insufficient relative
to the moment required for the compliant behavior.
Since the moment depends on the coordinate frame used to

describe the elastic behavior, ρk has different values in differ-
ent coordinate frames. As proved in Section IV, ρk takes its
minimum value at the center of stiffness, which indicates that
at the stiffness center the translational and rotational aspects of
the stiffness are maximally decoupled as stated in [7]. Since the
sphere Sk has the minimum radius at the stiffness center, the
lower bound of condition (i) of Proposition 1 is most restrictive
when the behavior is described at the center of stiffness. Thus, in
general this condition should be evaluated at the stiffness center.
The three cones defined in Section III-B are about the three

coordinate axes directed along thewrench-compliant axeswhich
constrain the distribution of the spring axis directions. If, in a
parallel mechanism, no spring axis direction is in one cone, the
mechanism is not able to provide sufficient stiffness along the
corresponding wrench-compliant axis, and thus cannot realize
the given behavior.

The significance of the distribution conditions inProposition 2
for serial mechanisms can be similarly interpreted in terms of
the compliance matrix and motions in translation and rotation.

B. Mechanisms With Simple Elastic Components

If, for a given stiffness matrix, the trace ofB is zero [satisfies
(5)], the stiffness matrix can be realized with a set of line springs
(i.e., springs associated with wrenches of zero pitch). Since pi =
0, the position vectordi defined in (36) is only the position vector
ri to the spring axis. Thus, Proposition 1(i) becomes: among all
springs in the parallel mechanism, at least one must intersect
sphere Sk of radius ρk defined in (32) centered at the origin
of the coordinate frame; and at least one must not intersect the
sphere.
As an application of the distribution theory, consider an

object and a desired stiffness matrix K. If the object is inside
the sphere Sk determined by (32), then the stiffness matrix
cannot be achieved by any simple parallel mechanism (pi = 0,
i = 1, 2, . . .,m) regardless of the number of springs and values
of spring rates even if K satisfies (5). This is because, since
the object is inside sphere Sk, all springs connected to the
object must intersect the sphere (Fig. 3(a)), which violates the
distribution condition. In order to realize the desired stiffness
matrix, more complicated elastic components (screw springs)
must be used.
Similarly, any simple serial mechanism with revolute joints

enclosed by the sphere Sc associated with a given compliance
matrix (as shown in Fig. 3(b)) cannot achieve the compliance
regardless of the number of joints and the values of joint stiff-
nesses.
Another example of a serial mechanism that cannot achieve a

given compliancematrix is illustrated in Fig. 3(c). In this case, all
joints are outside the sphere Sc associated with the compliance
matrix and no axes of the joint twists intersect the sphere. For
this case, the distances of the joint axes from the coordinate
origin (the center of the sphere) are all greater than ρc. Thus, the
mechanism cannot realize the compliance matrix even if helical
joints are used.

C. Planar Case

The distribution conditions on elastic component geometry
for the realization of a given elastic behavior are addressed
in [28] for planar parallel mechanisms and in [29] for planar
serial mechanisms. In planar elastic behavior realization, no
screw springs or helical joints are used in these mechanisms.
It can be seen that the distribution conditions of Propositions 1
and 2 apply to planar compliance realization as special cases.
For a 3× 3 planar stiffness matrix K, if K is partitioned in

the form (4), then A ∈ R2×2, B ∈ R2×1 and D ∈ R1×1. The
radius ρk can be determined by (32) and the corresponding Sk

determined by (33) with z = 0, which is a circle in the plane.
For the two eigenvalues of A, the 2 cones symmetric to the
two wrench-compliant axes (along the two eigenvectors) are
represented by the two areas Λ1 and Λ2 bounded by 2 lines
determined by the angle θ1 and θ2 as shown in Fig. 4(a). The
distribution conditions on a planar parallel mechanism used to
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Fig. 3. Compliant behavior that cannot be achieved with a mechanism. (a) Realization of a stiffness matrix with a simple parallel mechanism: the suspended
object is enclosed by sphereSk . (b) Realization of a compliance matrix with a simple serial mechanism: all revolute joints are enclosed by sphereSc. (c) Realization
of a compliance matrix with a serial mechanism: no joint axes intersect sphere Sc.

Fig. 4. Distribution of elastic components in planar mechanisms. (a) Parallel
mechanism: at least one spring must intersect circle Sk and at least one spring
must not intersect Sk; vectors ris must be distributed in both areas Λ1 and Λ2.
(b) Serial mechanism: at least one joint must be located inside circle Sc and
at least one joint must be located outside Sc; at least one joint must be located
within the area Γi and at least one joint must be located outside the area Γi
(i = 1, 2).

realize the stiffness matrix require that (i) at least one spring
axis intersects circle Sk and at least one spring axis does not
intersect the circle; and (ii) the spring position vectors ris must
be distributed in both areas Λ1 and Λ2 as illustrated in Fig. 4(a).

For a 3× 3 planar compliance matrix C, the sphere Sc be-
comes a circle of radius ρc in the plane. Since all joint axes
in a planar serial mechanism are perpendicular to the plane,
there is no constraint on the joint axis directions. Using a similar
process [29], it can be shown that the joint location distribution
is restricted by the two areas Γ1 and Γ2 bounded by two pairs of
lines l±1 and l±2 parallel to the coordinate axes respectively. The
two pairs of lines are defined by

l±1 : y = ±
√

c11
c33

, l±2 : x = ±
√

c22
c33

, (69)

where cii are the diagonal entries of C. The distribution condi-
tions on a planar serialmechanismused to realize the compliance
matrix require that (i) at least one joint must be located inside
circle Sc and at least one joint must be located outside the circle;
and (ii) the joint position vectors ris must be distributed in both
areas Γ1 and Γ2. At least one joint must be located within the

area Γi and at least one joint must be located outside the area Γi

as illustrated in Fig. 4(b).

D. Application of the Distribution Theory

The distribution requirements presented in Section III are only
necessary conditions. A mechanism satisfying those conditions
does not ensure that a given compliance is realized with the
mechanism. To realize a desired compliance, synthesis proce-
dures such as those presented in [9], [10], [11], [12], [14], [15],
[16] could be used. These approaches, however, provide no
or limited control over mechanism geometry. The use of the
distribution theory in conjunction with the existing geometric
construction-based synthesis procedures [22] would make the
process more efficient. As shown in [22], the selection of elastic
components early in the process is arbitrarily. The remaining
components can be selected from an acceptable subspace con-
strained by previously selected components. As the number of
selected components increases, the acceptable subspace shrinks
dramatically. Thus, in the early steps of selecting elastic compo-
nents, the distribution conditions need to be considered so that
the remaining components can be selected from a larger avail-
able subspace, providing the opportunity for a more desirable
mechanism geometry.

VI. SUMMARY

In this letter, an easy to assess set of necessary conditions on
the distribution of elastic components in a compliant mechanism
used to realize an arbitrary compliance is identified. The phys-
ical significance of each condition is presented. This physical
significance provides better understanding of and insight into
general elastic behavior and its realization with either a fully
parallel or a fully serial mechanism. In application, the distri-
bution conditions can be used in existing compliance synthesis
processes to more effectively select elastic components and to
achieve a more desirable mechanism geometry.
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