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Abstract

We consider a vanishing viscosity sequence of weak solutions for the three-
dimensional Navier–Stokes equations of incompressible fluids in a bounded do-
main. In a seminal paper (Kato in Seminar on nonlinear partial differential equa-
tions, Springer, New York, 1983), Kato showed that for sufficiently regular so-
lutions, the vanishing viscosity limit is equivalent to having vanishing viscous
dissipation in a boundary layer of width proportional to the viscosity. We prove
that Kato’s criterion holds for the Hölder continuous solutions with the regularity
index arbitrarily close to Onsager’s critical exponent through a new boundary layer
foliation and a global mollification technique.

1. Introduction

Themotion of an incompressible viscous fluidwith constant density is governed
by the following Navier–Stokes equations:

⎧
⎪⎨

⎪⎩

∂t u
ν + div(uν ⊗ uν) + ∇ Pν = ν�uν,

divuν = 0,

uν(x, 0) = uν
0(x).

(1.1)

Here the constant ν > 0 denotes the viscosity of the fluid, the unknown functions
uν and Pν are the velocity field and pressure, respectively. Here the superscript ν is
used on all the unknowns to emphasize the dependence on the viscosity. TheNavier–
Stokes equations at zero viscosity ν = 0 formally become the Euler equations

⎧
⎪⎨

⎪⎩

∂t u + div(u ⊗ u) + ∇ P = 0,

divu = 0,

u(x, 0) = u0(x),

(1.2)
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where u and P are the velocity and pressure of the inviscid fluid, respectively.
An important problem in the study of incompressible hydrodynamics is the

vanishing viscosity limit from the Navier–Stokes equations (1.1) to the Euler equa-
tions (1.2), which is naturally associated with the physical phenomena of turbu-
lence and of boundary layers. On domains without boundary, such a problem is
well-understood: given a strong Euler solution uE ∈ C1, the Leray–Hopf solutions
uν of (1.1) converge strongly in the energy space L∞

t L2
x to u as ν → 0; see, for

exmple, [3].
In the presence of boundary, on the other hand, systems (1.1) and (1.2) consid-

ered in a bounded domain� are supplemented with the no-slip boundary condition
u|∂� = 0 and slip boundary condition (u · n)|∂� = 0, respectively, with n the unit
outward normal of the boundary ∂�. The mismatch of the boundary conditions
leads to the phenomenon of boundary layer separation. Establishing the vanishing
viscosity limit in the energy space L∞

t L2
x in this case is much less understood.

A well-known result of Kato [26] states that, for a strong Euler solution uE , the
vanishing viscosity limit

uν → uE in L∞(0, T ; L2(�))

holds if and only if

ν

∫ T

0
‖∇uν‖2L2(�cν )

dt → 0 as ν → 0, (1.3)

where �cν is a very thin boundary layer of width proportional to ν.
Kato’s theory is by nature conditional. Many of the known results on strong

inviscid limits are also conditioned on special properties of the solutions [1,3,11,
12,27,28,39,40]. Some unconditional strong convergence results do exist, but with
additional assumptions on the data like real analyticity [7], vanishing of the initial
vorticity near the boundary [34], or special symmetry of the flow [29,32,33,36].
These results are for short time and for laminar flows close to a smooth Euler
solution when there is no boundary layer separation or other characteristic turbulent
behavior.

The vanishing viscosity for turbulent flows faces serious challenges and remains
widely open. Little is known about the inviscid limit even when a strong Euler
solution exists for a short time. Therefore it is natural to consider the weak Euler
solutions for the vanishing viscosity limit. One type of such weak Euler solutions
is the measure valued solutions [17]. In some recent works [14,19] the authors
describe sufficient conditions in terms of interior structure functions under which
the weak (L2

t,x ) solutions uE of the Euler equations can be obtained as weak L2
t,x

limits of uν . In [13], the authors further extend the result of [14] to allow certain
interior vorticity concentration.

The classical result of Kato [26] indicates that the anomalous energy dissipation
leads to the failure of the inviscid limit to a strong (C1) Euler solution; while the
issue that weak Euler solutions may arise from the inviscid limit is closely related
to Onsager’s conjecture (see, for example [5,19] and the references therein). It has
beenmade a precise statement that the criticalOnsager’sHölder regularity exponent
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Table 1. Comparison of results

NS solution uν Euler solution uE boundary layer
Kato [26] Leray–Hopf C1(�) O(ν)

Drivas–Nguyen [18]C1/3+
loc (�) with boundary regularityC1/3+

loc (�) O(ν3/4+)

Our result C1/3+
loc (�) with boundary regularityC1/3+

loc (�) O(ν)

is 1/3, belowwhich the Euler equations become non-conservative [4,15,16,24,25],
while above 1/3 the energy conservation can be justified [9,10,20,22]. In the works
of [2,18] the authors derive sufficient conditions for Cα solutions under which the
global viscous dissipation vanishes in the inviscid limit for Leray–Hopf solutions
uν , with an emphasis on the behavior or solutions near the boundary. In particular
in [18] a Kato-type criterion on the vanishing of the energy dissipation rate in a thin
boundary layer of thickness O(νβ) is proposed, among other regularity conditions,
where β = 3

4 + ε near the critical Onsager threshold α = 1
3 + ε. Note that the

boundary layer in the result of [18] is thicker than that of Kato [26].
The main goal of this paper is to bridge the gap between the original result of

Kato [26] for strong C1 Euler solutions and the result of [18] for weak Cα Euler
solutions. Specifically, wewill show that under certain ν-dependent assumptions on
the family of solutions of (1.1), a Kato-type result with boundary layer of thickness
O(ν) holds for weak Euler solutions up to Onsager-critical spatial regularity α =
1
3+; see Table 1, below.

Let us recall the classical existence results of Leray [31] and Hopf [23]. For
a divergence-free function u0 ∈ L2, problem (1.1) has a weak solution u ∈
C

(
0, T ; L2

) ∩ L2
(
0, T ; H1(�)

)
in a bounded smooth domain � for any T < ∞.

Additionally, u is divergence-free and the following energy inequality holds:

1

2

∫

�

|uν |2dx + ν

∫ t

0

∫

�

|∇uν |2dxds � 1

2

∫

�

|uν
0|2dx, a.e. t ∈ (0, T ). (1.4)

Such a weak solution is called Leray–Hopf weak solution.
Next we introduce some notation. For some (small) h > 0, we define

�h := {x ∈ �, dist(x, ∂�) > h} and �h := �\�h . (1.5)

Also, we introduce the Besov space Bα,∞
p (�) which consists of measurable func-

tions with the norm

‖ f ‖Bα,∞
p (�) := ‖ f ‖L p(�) + sup

y∈R3

‖ f (· + y) − f (·)‖L p(�∩(�−{y}))
|y|α ,

p � 1, α ∈ (0, 1). (1.6)

We further denote H(�) to be the completion in L2(�) of the space {v ∈
C∞

c (�; R
3) : divv = 0}, and recall the following definition of the weak Euler

solutions (see, for example [18]):



R. M. Chen, Z. Liang, and D. Wang

Definition 1.1. Let � ⊂ R
3 be a bounded domain with C2 boundary. We say the

pair (u, P) is a weak Euler solution to (1.2) on �× (0, T ) if u ∈ Cw(0, T ; H(�)),
P ∈ L1

loc(� × (0, T )) and for all test vector fields ϕ ∈ C∞
0 (� × (0, T )) it holds

that
∫ T

0

∫

�

(u · ∂tϕ + u ⊗ u : ∇ϕ + P∇ · ϕ) dxdt = 0.

Our main result is stated in the following theorem:

Theorem 1.2. Let � ⊂ R
3 be a bounded domain with C2 boundary. Let {uν}ν>0 be

a sequence of Leray–Hopf weak solutions to (1.1) with initial data uν
0 and suppose

that uν
0 → u0 in L2(�) as ν → 0. Assume in addition that

uν is uni f ormly in ν bounded in L3 (
0, T ; Bα,∞

3 (�ν)
)

f or some α ∈
(
1

3
, 1

)

,
(1.7)

{
uν is uni f ormly in ν bounded in L4 (

0, T ; L∞ (�4ν)
)
,

Pν is uni f ormly in ν bounded in L2 (
0, T ; L∞ (�4ν)

)
.

(1.8)

Then, if

lim
ν→0

ν

∫ T

0

∫

�4ν

|∇uν |2dxdt = 0, (1.9)

we have that the global viscous dissipation vanishes, i.e.,

lim
ν→0

ν

∫ T

0

∫

�

|∇uν |2dxdt = 0, (1.10)

and moreover, uν converges locally in L3(0, T ; L3(�)), up to some subsequence,
to a weak solution of the Euler equations (1.2).

Remark 1.1. Condition (1.9) recovers Kato’s criterion (1.3), but now in the frame-
work of weak solutions with Cα regularity, where α can be taken arbitrarily close
to Onsager’s critical exponent, cf. (1.7).

Remark 1.2. As pointed out in [18], violation of conditions (1.7) – (1.9) is responsi-
ble for global dissipation to persist in the vanishing viscosity limit. More precisely,
violation of (1.7) corresponds to a failure of uniform interior regularity, which is
required for anomalous dissipation in domains without boundaries; see, for ex-
ample [10]. On the other hand, conditions (1.8)–(1.9) provide new mechanisms
for anomalous dissipation in wall-bounded flows. In fact several numerical inves-
tigations [37,38] have been carefully performed, where formation and shedding
of vortex sheet of width ν at the boundary is confirmed, suggesting the possible
failure of the Kato-type near-wall dissipation criterion (1.9). On the other hand, in
[6] Cadot et al. conduct experiments for flows in Taylor-Couette cells with smooth
walls, and found that for sufficiently large Reynolds number, the energy dissipation
in the boundary layer decreases with Reynolds number which satisfies (1.9), while
the energy dissipation in the bulk becomes dominant and stabilizes to a constant.
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Remark 1.3. Also pointed out in [18], the sufficient conditions (1.7)–(1.9) may still
seem stronger than necessary, especially when a smooth background Euler solution
exists. Instead, in this case the uniform equicontinuity at the boundary alone is
enough to conclude the convergence [18, Theorem 4]. A result like that could give
a more precise description of what sort of objects can cause anomalous dissipation
at the boundary. It would be interesting to know if under the weak regularity setting
the vanishing of the near-wall dissipation (1.9) can be replaced by such a type of
condition, although this is not what we pursue here in this paper.

The basic idea in [18] is separation and regularization: applying a cut-off func-
tion to separate the boundary from the interior domain, and mollifying the interior
velocity field. This introduces two length scales: the thickness h of the boundary
layer and the mollification scale ε. With this localization, the resolved dissipation
is bounded by

νε2(α−1)
∫ t

0
‖uν‖2Bα,∞

3 (�h)
;

see [18, Section 2.1]. Recalling the natural constraint that ε � h, imposing appro-
priate interior regularity assumption on the solution, and setting h ∼ νβ , the above
estimate translates to ν1+2β(α−1). In order for this to vanish at the inviscid limit
ν → 0 one has to require that

1 + 2β(α − 1) > 0, (1.11)

which, at Onsager’s critical regularity α = 1
3+, returns to β = 3

4+.
The obvious obstacle in the above approach to get to the O(ν) boundary layer

thickness lies in the strong constraint between the two scales ε and h. In other
words, if one can find a way to “free up” the choice for ε so as to improve the
mollification, then it is reasonable to hope to obtain a thinner boundary layer.

Motivated by a recent work of the authors [8], where a global mollification
was introduced, we design a new localization technique with additional treatment
near the boundary. In particular, we will start with a boundary layer of the type
as in [18] and perform a further foliation within that boundary layer, mollify the
solution with different scales in each leaf of the foliation, and then glue everything
together by a partition of unity. Such a new type ofmollification generates additional
cancellation effects in estimating the resolved dissipation, allowing one to reach
the O(ν) boundary layer. Moreover, using the same idea, we also show that as
the solution becomes more regular (corresponding to increasing α), the regularity
requirement (1.8) near the boundary can be relaxed, and the the boundary layer in
(1.9) is allowed to be thinner, cf. Theorem 5.1.

The rest of the paper is organized as follows. In Section 2 we briefly recall some
needed analytical results, and introduce the boundary layer foliation. In Section 3
we define the mollification and use that to regularize the system. By testing the
resolved system with suitable test functions we prove the balance of the resolved
energy, from which we proceed in Section 4 to give the proof of Theorem 1.2.
Finally in Section 5 we extend the result of Theorem 1.2 to the case when solutions
are more regular.
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2. Preliminaries

In this section, we recall some commutator and pressure estimates, and intro-
duce the boundary layer foliation.

2.1. Commutator Estimates

Recall the standard mollification for the function f

fε(x) :=
∫

Bε(0)
f (x − y)ηε(y)dy, ∀ x ∈ �ε, (2.1)

with ηε being the standard mollifier of width ε.A straightforward calculation gives

∇ fε(x) = −
∫

Bε(0)
ηε(y)∇y( f (x − y) − f (x))dy

= 1

ε

∫

B1(0)
∇η(y)( f (x − εy) − f (x))dy,

and hence, for f ∈ Bα,∞
r with r ∈ [1,∞],

‖∇ fε‖Lr (�ε) � εα−1‖ f ‖Bα,∞
r (�). (2.2)

Similarly,

‖ fε − f ‖Lr (�ε) � Cεα‖ f ‖Bα,∞
r (�). (2.3)

Lemma 2.1. Let f ∈ Bα,∞
r1 (�), g ∈ Bα,∞

r2 (�), and let 1 � r, r1, r2 < ∞,
1
r1

+ 1
r2

= 1
r . Then there exists some C > 0 such that the following holds:

‖( f ⊗ g)ε − fε ⊗ gε‖Lr (�ε) � Cε2α‖ f ‖Bα,∞
r1 (�)‖g‖Bα,∞

r2 (�). (2.4)

Proof. Inequality (2.4) is nothing but the commutator estimate in [10]. Here we
give an outline of the proof.

Let δ f (x, y) := f (x − y) − f (x). By (2.1) we compute for every x ∈ �ε,

( f ⊗ g)ε − fε ⊗ gε

=
∫

Bε(x)

δ f (x, y) ⊗ δg(x, y)ηε(y)dy

−
(∫

Bε(x)

δ f (x, y)ηε(y)dy

)

⊗
(∫

Bε(x)

δg(x, y)ηε(y)dy

)

�
(∫

Bε(x)

|δ f (x, y)|r1ηε(y)dy

) 1
r1

(∫

Bε(x)

|δg(x, y)|r2ηε(y)dy

) 1
r2

+ ∣
∣ fε − f

∣
∣ |gε − g|.

(2.5)
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Integrating (2.5) over �ε gives
∫

�ε

∣
∣
∣( f ⊗ g)ε − fε ⊗ gε

∣
∣
∣
r
dx

� C

(∫

R3
ηε(y)

∫

�ε

|δ f (x, y)|r1dxdy

) r
r1

(∫

R3
ηε(y)

∫

�ε

|δg(x, y)|r1dxdy

) r
r2

+ C
∥
∥ fε − f

∥
∥r

Lr1 ‖gε − g‖r
Lr2 .

This together with (1.6) and (2.3), conclude the desired (2.4). 
�

2.2. Pressure Estimates

The pressure Pν appeared in (1.1) can be deduced from the velocity uν via the
Poisson equation

−�Pν = divdiv(uν ⊗ uν).

From [21, Lemma 2], we have the following lemmas:

Lemma 2.2. Let p ∈ (1,∞). Assume that uν ∈ L2p(�) and Pν |∂� ∈ L p(∂�).
Then the pressure Pν ∈ L p(�). In addition, the following estimate holds,

‖Pν‖L p(�) � C
(
‖Pν |∂�‖L p(∂�) + ‖uν‖2L2p(�)

)
. (2.6)

Lemma 2.3. (Hardy-type embedding [30]) Let p ∈ [1,∞) and f ∈ W 1,p
0 (�).

Then
∥
∥
∥
∥

f (x)

dist(x, ∂�)

∥
∥
∥
∥

L p(�)

� C‖∇ f ‖L p(�),

where C depends on p and �.

2.3. Boundary Layer Foliation

For α ∈ ( 13 ,
5
6 ), we define the sequence

β∗
0 = 0 and β∗

n = 1

2(1 − α)

(

1 + 1

3
β∗

n−1

)

, n = 1, 2, 3, . . . . (2.7)

Clearly, {β∗
n } is bounded and strictly increasing, and

β∗∞ := lim
n→∞ β∗

n = 3

5 − 6α
> 1 if

1

3
< α <

5

6
.

Hence there exists some finite number

N :=

⎧
⎪⎪⎨

⎪⎪⎩

N (α), α ∈
(
1

3
,
1

2

]

,

1, α ∈
(
1

2
,
5

6

)

,

(2.8)
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Fig. 1. Decomposition of �

such that

0 = β∗
0 < β∗

1 < β∗
2 < · · · < β∗

N−1 � 1 < β∗
N . (2.9)

In light of (2.7)–(2.9),wedefine, for anyα ∈ ( 13 , 1), an increasing sequence {βn}N
n=1

such that

0 = β0 < β1 < β2 < · · · < βN−1 < βN := 1 and (2.10)

βn <
1

2(1 − α)

(

1 + 1

3
βn−1

)

, (2.11)

where N is given in (2.8).
The purpose of introducing the sequence {βn} is to design the following decom-

position of the boundary layer. Note that, when n = 1, (2.11) reads β1 < 1
2(1−α)

,
which agrees with (1.11). Next we decompose the inner region of � as

V1 := �2νβ1
, Vn := �2νβn − �2νβn−1+2νβn

when 2 � n � N ; (2.12)

see Fig. 1.
It is easy to check that, for ν small enough,

meas (Vn) � Cνβn−1 , meas (Vk ∩ Vm) �
{

Cνβmax{k,m} if |k − m| = 1,

0 if |k − m| > 1;
(2.13)

see Fig. 2.
With the above decomposition, we have
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Fig. 2. Foliation of ∂�

Proposition 2.1. Let {ξn}N
n=1 be a C1 partition of unity subordinate to {Vn}N

n=1 such
that

spt ξn ⊂ Vn, 0 � ξn � 1,
N∑

n=1

ξn = 1. (2.14)

Then, it follows that, for 0 � n � N,

∇ (ξn + ξn+1)
2 = 0 if x ∈ Vn ∩ Vn+1, and ∇ξn = 0 if x ∈ Vn\ ∪i �=n Vi ,

(2.15)

where we define

VN+1 :=
(

N⋃

n=1

Vn

)c

and V0 := ∅. (2.16)

Proof. From (2.14) and (2.13) we know that

(ξn + ξn+1)
∣
∣
Vn∩Vn+1

≡ 1, ξn
∣
∣
Vn\∪i �=n Vi

≡ 1.

Therefore (2.15) follows trivially by differentiating the above. 
�

3. Regularization and Resolved Energy Balance

In this section, we define the mollification and regularize the system, and then
derive the balance of the resolved energy.

For n = 1, . . . , N , define

fn(x, t) :=

⎧
⎪⎪⎨

⎪⎪⎩

∫

ηνβn (x − y) f (y, t)dy, x ∈ Vn ∩ V c
n+1,

∫

η
νβn+1 (x − y) f (y, t)dy, x ∈ Vn ∩ Vn+1.

(3.1)

From (2.13) we know that

fn = fn+1 on Vn ∩ Vn+1. (3.2)
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From (2.2)–(2.3), it holds that, for p ∈ [1,∞),

‖∇ fn‖L p(Vn) �

⎧
⎨

⎩

Cνβn(α−1)‖ f ‖Bα,∞
p (�ν), x ∈ Vn ∩ V c

n+1,

Cνβn+1(α−1)‖ f ‖Bα,∞
p (�ν), x ∈ Vn ∩ Vn+1,

(3.3)

and

‖ fn − f ‖L p(Vn) �
{

Cναβn ‖ f ‖Bα,∞
p (�ν), x ∈ Vn ∩ V c

n+1,

Cναβn+1‖ f ‖Bα,∞
p (�ν), x ∈ Vn ∩ Vn+1.

(3.4)

With (3.1), we deduce from (1.1) that

∂t uν
n + div(uν ⊗ uν)n + ∇ Pν

n = ν�uν
n, ∀ x ∈ Vn (n = 1, . . . , N ).

Multiplying it by ξn and summing up imply that

∂t

(
N∑

n=1

ξnuν
n

)

+
N∑

n=1

ξndiv(uν ⊗ uν)n +
N∑

n=1

ξn∇ Pν
n = ν

N∑

n=1

ξn�uν
n, ∀ x ∈ �2ν .

(3.5)

To deal with the boundary contribution, we introduce a smooth cut-off function
θ(x) in � such that,

0 � θ(x) � 1, θ(x) = 1 if x ∈ �4ν, θ(x) = 0 if x /∈ �2ν, and

|∇θ | � 4ν−1. (3.6)

Next we wish to test (3.5) by θ(x)
(∑N

n=1 ξnuν
n

)
to derive the resolved energy

balance. However, this test function fails to be solenoidal, and hence cannot be used
as a legitimate test field for Leray-Hopf solutions. Therefore, to make our argument
work we must appeal to the following theorem:

Theorem 3.1. (Theorem 1, [35]) Assume that � is an open, bounded domain with
C2 boundary ∂�, and u is a Leray–Hopf solution of (1.1). Then there exists a
pressure field P ∈ Lr (0, T ; W 1,s(�)) with

3

s
+ 2

r
= 4,

4

3
< s <

3

2
, (3.7)
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such that for all ϕ ∈ C∞
0 ((0, T ) × �),

∫ T

0

∫

�

(u · ∂tϕ + u ⊗ u : ∇ϕ + Pdivϕ + νu · �ϕ) dxdt = 0.

This way we can multiply (3.5) by θ(x)
(∑N

n=1 ξnuν
n

)
and integrate over � ×

[0, T ], leading to

1

2

∫

�
θ

⎛

⎝
N∑

n=1

ξnuν
n

⎞

⎠

2

(x, T ) dx − 1

2

∫

�
θ

⎛

⎝
N∑

n=1

ξnuν
n

⎞

⎠

2

(x, 0) dx

=
∫ T

0

∫

�
θ

⎛

⎝
N∑

n=1

ξnuν
n

⎞

⎠

⎛

⎝
N∑

n=1

ξnν�uν
n −

N∑

n=1

ξndiv(uν ⊗ uν)n −
N∑

n=1

ξn∇ Pν
n

⎞

⎠ dxdt.

(3.8)

The main result of this section is the following:

Proposition 3.1. (Resolved energy balance) Under the same hypotheses as in The-
orem 1.2, it holds that

lim
ν→0

∫ T

0

∫

�

θ

(
N∑

n=1

ξnuν
n

)

×
(

N∑

n=1

ξnν�uν
n −

N∑

n=1

ξndiv(uν ⊗ uν)n −
N∑

n=1

ξn∇ Pν
n

)

dxdt = 0. (3.9)

Proposition 3.1 is a direct consequence of Lemmas 3.1–3.3 below.

Lemma 3.1. (Resolved dissipation) Under the same hypotheses as in Theorem 1.2,
we have

lim
ν→0

∫ T

0

∫

�

θ

(
N∑

n=1

ξnuν
n

)(
N∑

n=1

ξnν�uν
n

)

dxdt = 0. (3.10)

Proof. Owing to (2.13) and (2.14), we find that

ξkξm = 0 if |k − m| � 2. (3.11)
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Integration by parts then gives

ν

∫ T

0

∫

�

θ

(
N∑

n=1

ξnuν
n

) (
N∑

n=1

ξn�uν
n

)

dxdt

= ν

N∑

k,m=1

∫ T

0

∫

�

θξkξmuν
k�uν

m dxdt

= −ν
∑

|k−m|�1

∫ T

0

∫

�

θξkξm∇uν
k∇uν

m dxdt

− ν
∑

|k−m|�1

∫ T

0

∫

�

∇θξkξmuν
k∇uν

m dxdt

− ν
∑

|k−m|�1

∫ T

0

∫

�

θ∇(ξkξm)uν
k∇uν

m dxdt.

(3.12)

The terms on the right side of (3.12) are treated as follows: first, it follows from
(1.7), (2.13), (2.14), (3.3) that, if |k − m| = 0,

∣
∣
∣
∣ν

∫ T

0

∫

�

θξ2k ∇uν
k∇uν

k dxdt

∣
∣
∣
∣ =

∣
∣
∣
∣
∣
ν

∫ T

0

(∫

Vk∩Vk+1

+
∫

Vk∩V c
k+1

)

θξ2k ∇uν
k∇uν

k dxdt

∣
∣
∣
∣
∣

� Cν

∫ T

0

(
‖ξ2k ‖L3(Vk∩Vk+1)

‖∇uν
k‖2L3(Vk∩Vk+1)

+ ‖ξ2k ‖L3(Vk∩V c
k+1)

‖∇uν
k‖2L3(Vk∩V c

k+1)

)
dt

� Cν

(

ν
1
3 βk+1

∫ T

0
‖∇uν

k‖2L3(Vk∩Vk+1)
dt + ν

1
3 βk−1

∫ T

0
‖∇uν

k‖2L3(Vk∩V c
k+1)

dt

)

� Cν
(
ν

1
3 βk+1+2βk+1(α−1) + ν

1
3 βk−1+2βk (α−1)

) ∫ T

0
‖uν‖2Bα,∞

3 (�ν)
dt

� Cν1+
1
3 βk−1+2βk (α−1). (3.13)

If |k − m| = 1,
∣
∣
∣
∣−ν

∫ T

0

∫

�

θξkξm∇uν
k∇uν

m dxdt

∣
∣
∣
∣

� Cν

∫ T

0
‖∇uν

k‖L3(Vk∩Vm )‖∇uν
m‖L3(Vk∩Vm )‖ξkξm‖L3(Vk∩Vm ) dt

� Cν
1+βmax{k,m}

(
1
3+2(α−1)

) ∫ T

0
‖uν‖2Bα,∞

3 (�ν)
dt

� Cν
1+βmax{k,m}

(
2α− 5

3

)

.

(3.14)

Thanks to (1.7) and (2.10), we know that

1 + 1

3
βk−1 + 2βk(α − 1) > 0, and 1 + βmax{k,m}

(

2α − 5

3

)

> 1

−βmax{k,m} � 0.
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Hence, from (3.13)–(3.14) we conclude that

lim
ν→0

∣
∣
∣
∣
∣
∣

∑

|k−m|�1

ν

∫ T

0

∫

�

θξkξm∇uν
k∇uν

m dxdt

∣
∣
∣
∣
∣
∣

� lim
ν→0

⎛

⎝
∑

|k−m|=0

+
∑

|k−m|=1

⎞

⎠

∣
∣
∣
∣ν

∫ T

0

∫

�

θξkξm∇uν
k∇uν

m dxdt

∣
∣
∣
∣

� C lim
ν→0

∑

|k−m|�1

(

ν1+
1
3βk−1+2βk (α−1) + ν

1+βmax{k,m}
(
2α− 5

3

))

= 0.

(3.15)

Second, observe from (3.6) that θ = 0 if x /∈ �2ν ∩ �4ν . Then, utilizing (3.4),
(1.7), (3.6), and the Hardy-type inequality, it follows that, for small ν,

∑

|k−m|�1

ν

∫ T

0

∫

�

∇θξkξmuν
k∇uν

m dxdt = ν

∫ T

0

∫

�2ν∩�4ν

∇θξ2N uν
N ∇uν

N dxdt

�
(

ν

∫ T

0

∫

�2ν∩�4ν

|∇uν
N |2 dxdt

) 1
2
(

ν

∫ T

0
‖∇θ‖2L6(�2ν∩�4ν )

‖uν
N − uν‖2L3(VN )

+‖uν∇θ‖2L2(�4ν )

) 1
2

�
(

ν

∫ T

0

∫

�

|∇uν
N |2 dxdt

) 1
2
(

ν

∫ T

0
ν2α− 5

3 ‖uν‖2Bα,∞
3 (�ν)

+ ‖∇uν‖2L2(�4ν )

) 1
2

� C

(

ν1+(2α− 5
3 ) + ν

∫ T

0

∫

�4ν

|∇uν
N |2 dt

) 1
2

. (3.16)

Thanks to (1.7) and (1.9), we take ν → 0 in (3.16) to get

lim
ν→0

∣
∣
∣
∣
∣
∣

∑

|k−m|�1

ν

∫ T

0

∫

�

∇θξkξmuν
k∇uν

m dxdt

∣
∣
∣
∣
∣
∣
= 0. (3.17)

Finally, thanks to Proposition 2.1 and (3.2), we infer that

∑

|k−m|�1

ν

∫ T

0

∫

�
θ∇(ξkξm)uν

k∇uν
m dxdt

=
N∑

k=1

ν

∫ T

0

(∫

Vk∩Vk−1

+
∫

Vk∩Vk+1

)

θ∇(ξ2k )uν
k∇uν

k dxdt

+
N−1∑

k=1

ν

∫ T

0

∫

Vk∩Vk+1

θ∇(ξkξk+1)
(

uν
k+1∇uν

k + uν
k∇uν

k+1

)
dxdt

=
N∑

k=1

ν

∫ T

0

(∫

Vk∩Vk−1

θ∇(ξ2k )uν
k∇uν

k dx +
∫

Vk∩Vk+1

θ∇(ξ2k )uν
k+1∇uν

k+1 dx

)

dt
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+
N−1∑

k=1

ν

∫ T

0

∫

Vk∩Vk+1

θ∇(2ξkξk+1)u
ν
k+1∇uν

k+1 dxdt

=
N−1∑

k=1

ν

∫ T

0

∫

Vk∩Vk+1

θ∇
(
ξ2k + ξ2k+1 + 2ξkξk+1

)
uν

k+1∇uν
k+1 dxdt = 0, (3.18)

where the second equality is due to (3.2), and the third equality comes from rela-
beling and (2.15).

As a result of (3.12), (3.15), (3.17) and (3.18), we have (3.10). 
�
Lemma 3.2. (Bulk energy flux) Under the same hypotheses as in Theorem 1.2, we
have

lim
ν→0

∫ T

0

∫

�

θ

(
N∑

n=1

ξnuν
n

) (
N∑

n=1

ξndiv(uν ⊗ uν)n

)

dxdt = 0. (3.19)

Proof. By (3.11), integration by parts leads to

∫ T

0

∫

�

θ

(
N∑

n=1

ξnuν
n

) (
N∑

n=1

ξndiv(uν ⊗ uν)n

)

dxdt

=
∑

|k−m|�1

∫ T

0

∫

�

θξkξmuν
kdiv(u

ν ⊗ uν)m dxdt

=
∑

|k−m|�1

∫ T

0

∫

�

(
uν

m ⊗ uν
m − (uν ⊗ uν)m

)
: ∇(θξkξmuν

k ) dxdt

−
∑

|k−m|�1

∫ T

0

∫

�

uν
m ⊗ uν

m : ∇(θξkξmuν
k ) dxdt.

(3.20)

We claim that

lim
ν→0

∑

|k−m|�1

∫ T

0

∫

�

(
uν

m ⊗ uν
m − (uν ⊗ uν)m

)
: ∇(θξkξmuν

k ) dxdt = 0. (3.21)

In fact, we notice from (1.7), (1.8), (3.6), (1.4), (3.4), and the Hardy-type inequality
that
∣
∣
∣
∣
∣
∣

∑

|k−m|�1

∫ T

0

∫

�

(
uν

m ⊗ uν
m − (uν ⊗ uν)m

)
: (∇θ)ξkξmuν

k dxdt

∣
∣
∣
∣
∣
∣

� C

(∫ T

0

∫

�2ν∩�ν

∣
∣
∣uν

N

∣
∣
∣
4
dxdt

) 1
2
(∫ T

0

∫

�4ν∩�2ν
|∇θ(uν

N − uν + uν)|2 dxdt

) 1
2

� C

(

ν

∫ T

0
‖uν‖4L∞(�4ν ) dt

) 1
2
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×
(∫ T

0
ν− 5

3 ‖uν
N − uν‖2L3 dt +

∫ T

0

∫

�4ν

|∇θuν |2 dxdt

) 1
2

� Cν
1
2

(∫ T

0
ν(2α− 5

3 )‖uν‖2Bα,∞
3 (�ν)

dt +
∫ T

0

∫

�4ν

|∇uν |2 dxdt

) 1
2

� C

(

ν1+(2α− 5
3 ) + ν

∫ T

0

∫

�4ν

|∇uν |2 dxdt

) 1
2

. (3.22)

This, together with (1.7) and (1.9), implies that

lim
ν→0

∑

|k−m|�1

∫ T

0

∫

�

(
uν

m ⊗ uν
m − (uν ⊗ uν)m

)
: (∇θ)ξkξmuν

k dxdt = 0. (3.23)

Next, from (2.14), (1.7), (3.3), and Lemma 2.1 we have

∑

k

∫ T

0

∫

�

(
uν

k ⊗ uν
k − (uν ⊗ uν)k

)
: θξ2k ∇uν

k dxdt

� C
∑

k

∫ T

0
‖uν

k ⊗ uν
k − (uν ⊗ uν)k‖

L
3
2 (Vk∩Vk+1)

‖∇uν
k‖L3(Vk∩Vk+1)

dt

+ C
∑

k

∫ T

0
‖uν

k ⊗ uν
k − (uν ⊗ uν)k‖

L
3
2 (Vk∩V c

k+1)
‖∇uν

k‖L3(Vk∩V c
k+1)

dt

� C
∑

k

∫ T

0

(
ν2βk+1α+βk+1(α−1) + ν2βkα+βk (α−1)

)
‖uν‖3Bα,∞

3 (�ν)
dt

� C
∑

k

νβk (3α−1).

Similarly,
∣
∣
∣
∣
∣
∣

∑

|k−m|=1

∫ T

0

∫

�

(
uν

m ⊗ uν
m − (uν ⊗ uν)m

)
: θξkξm∇uν

k dxdt

∣
∣
∣
∣
∣
∣

� C
∑

|k−m|=1

νβmax{m,k}(3α−1).

The above two inequalities and (1.7) guarantee that

lim
ν→0

∣
∣
∣
∣
∣
∣

∑

|k−m|�1

∫ T

0

∫

�

(
uν

m ⊗ uν
m − (uν ⊗ uν)m

)
: θξkξm∇uν

k dxdt

∣
∣
∣
∣
∣
∣
= 0. (3.24)

By Proposition 2.1, the same deduction as (3.18) yields that

∑

|k−m|�1

∫ T

0

∫

�

(
uν

m ⊗ uν
m − (uν ⊗ uν)m

)
: θ∇(ξkξm)uν

k dxdt
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=
N−1∑

k=1

∫ T

0

∫

Vk∩Vk+1

(
uν

k+1 ⊗ uν
k+1 − (uν ⊗ uν)k+1

)
: θ∇

×
(
ξ2k + ξ2k+1 + 2ξkξk+1

)
dxdt = 0. (3.25)

As a result of (3.23)–(3.25), we conclude (3.21).
It remains to control the last integral appeared in (3.20). By the fact divuν

n = 0,
we deduce that, if |k − m| = 0,

∑

|k−m|=0

∫ T

0

∫

�

uν
m ⊗ uν

m : ∇(θξkξmuν
k ) dxdt = 1

2

N∑

k=1

∫ T

0

∫

�

|uν
k |2uν

k · ∇(θξ2k ) dxdt

= 1

2

N∑

k=1

∫ T

0

∫

Vk

|uν
k |2ξ2k uν

k · ∇θ dxdt + 1

2

N∑

k=1

∫ T

0

∫

Vk

θ |uν
k |2uν

k · ∇(ξ2k ) dxdt

= 1

2

N∑

k=1

∫ T

0

∫

Vk

|uν
k |2ξ2k uν

k · ∇θ dxdt

+ 1

2

N∑

k=1

∫ T

0

∫

Vk−1∩Vk

θ |uν
k |2uν

k · ∇(ξ2k ) dxdt

+ 1

2

N∑

k=1

∫ T

0

∫

Vk∩Vk+1

θ |uν
k+1|2uν

k+1 · ∇(ξ2k ) dxdt

= 1

2

N∑

k=1

∫ T

0

∫

Vk

|uν
k |2ξ2k uν

k · ∇θ dxdt

+ 1

2

N−1∑

k=1

∫ T

0

∫

Vk∩Vk+1

θ |uν
k |2uν

k · ∇(ξ2k + ξ2k+1) dxdt

+ 1

2

∫ T

0

(∫

V0∩V1

θ |uν
1|2uν

1 · ∇(ξ21 ) dx +
∫

VN ∩VN+1

θ |uν
N |2uν

N · ∇(ξ2N ) dx

)

dt

= 1

2

N∑

k=1

∫ T

0

∫

Vk

|uν
k |2ξ2k uν

k · ∇θ dxdt

−
N−1∑

k=1

∫ T

0

∫

Vk∩Vk+1

θ |uν
k |2uν

k · ∇(ξkξk+1) dxdt, (3.26)

where the third equality is due to (3.2) and (2.15); and if |k − m| = 1,

∑

|k−m|=1

∫ T

0

∫

�

uν
m ⊗ uν

m : ∇(θξkξmuν
k ) dxdt

=
N−1∑

k=1

∫ T

0

∫

Vk∩Vk+1

uν
k+1 ⊗ uν

k+1 : ∇(2θξkξk+1uν
k+1) dxdt



Vanishing Viscosity Near Onsager’s Critical Regularity

=
N−1∑

k=1

∫ T

0

∫

Vk∩Vk+1

|uν
k+1|2uν

k+1 · ∇(θξkξk+1) dxdt

=
N−1∑

k=1

∫ T

0

∫

Vk∩Vk+1

(
|uν

k+1|2uν
k+1 · ∇θ(ξkξk+1)

+ θ |uν
k+1|2uν

k+1 · ∇(ξkξk+1)
)
dxdt

=
N−1∑

k=1

∫ T

0

∫

Vk∩Vk+1

(
|uν

k |2uν
k · ∇θ(ξkξk+1) + θ |uν

k |2uν
k · ∇(ξkξk+1)

)
dxdt.

(3.27)

Combining the above calculations together and applying Lemma 2.3, we have
that

∑

|k−m|�1

∫ T

0

∫

�

uν
m ⊗ uν

m : ∇(θξkξmuν
k ) dxdt

= 1

2

N∑

k=1

∫ T

0

∫

Vk

|uν
k |2ξ2k uν

k · ∇θ dxdt

+
N−1∑

k=1

∫ T

0

∫

Vk∩Vk+1

|uν
k |2uν

k · ∇θ(ξkξk+1) dxdt

� C
∫ T

0

∫

�2ν∩�ν

|uν
k |2|uν

k · ∇θ | dxdt

� C

(

ν

∫ T

0
‖uν‖L∞(�4ν ) dt

)1/2 (∫ T

0

∫

�4ν

|∇uν |2 dxdt

)1/2

. (3.28)

From (1.8) and (1.9) we conclude that

lim
ν→0

∑

|k−m|�1

∫ T

0

∫

�

uν
m ⊗ uν

m : ∇(θξkξmuν
k ) dxdt = 0. (3.29)

Taking (3.20)–(3.21), and (3.29) into account,we complete theproof ofLemma3.2.

�

Lemma 3.3. Under the same hypotheses as in Theorem 1.2, we have

lim
ν→0

∫ T

0

∫

�

θ

(
N∑

n=1

ξnuν
n

)(
N∑

n=1

ξn∇ Pν
n

)

dxdt = 0. (3.30)

Proof. The proof is a slight modification of that in Lemma 3.2, and hence we omit
it here. 
�



R. M. Chen, Z. Liang, and D. Wang

4. Proof of Theorem 1.2

In this section we prove Theorem 1.2.

4.1. Vanishing of Global Dissipation

We aim to prove the validity of (1.10). The combination of (1.4) with (3.8)
generates

0 � 2ν
∫ T

0

∫

�

|∇uν |2

�

⎡

⎣

∫

�

|uν
0|2 −

∫

�

θ

(
N∑

n=1

ξn(uν
0)n

)2⎤

⎦ +
⎡

⎣

∫

�

θ

∣
∣
∣
∣
∣

N∑

n=1

ξnuν
n

∣
∣
∣
∣
∣

2

−
∫

�

|uν |2
⎤

⎦

+2
∫ T

0

∫

�

θ

(
N∑

n=1

ξnuν
n

) (
N∑

n=1

ξnν�uν
n −

N∑

n=1

ξndiv(uν ⊗ uν)n −
N∑

n=1

ξn∇ Pν
n

)

= : I + II + III. (4.1)

First, from Proposition 3.1 it follows that

lim
ν→0

III = 0. (4.2)

Next, basic properties of mollifier ηνβ ensure that

∫

�

θξ21 |uν
1|2dx �

∫

V1

|uν
1|2 �

∫

�

|uν |2.

Then,

II =
∑

2<k+m

∫

�

θξkξmuν
k uν

m +
∫

�

θξ21 uν
1
2 −

∫

�

|uν |2

�
∑

2<k+m

∫

�

θξkξmuν
k uν

m

� C

(∫

Vk∩Vm

|uν
k |2

) 1
2
(∫

Vk∩Vm

|uν
m |2

) 1
2

� C
∫

�
2νβ1

|uν |2dx,

(4.3)

and hence the uniform bound of uν in L∞(0, T ; L2) implies that

lim
ν→0

II � C lim
ν→0

∫

�
2νβ1

|uν |2dx = 0. (4.4)
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Finally, since
∣
∣
∣
∣

∫

�

|u0|2 −
∫

�

θξ21 |(uν
0)1|2

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

�

|u0|2 −
∫

�νβ1
ξ21 |(uν

0)1|2
∣
∣
∣
∣

�
∫

�\�νβ1
|u0|2 +

∫

�νβ1
(1 − ξ21 )|(uν

0)1|2 +
∣
∣
∣
∣

∫

�νβ1

(
|u0|2 − |(uν

0)1|2
)∣
∣
∣
∣

� 2‖u0‖L2(�
2νβ1 ) + C‖u0‖L2(�)‖u0 − (uν

0)1‖L2(�νβ1 )

� 2‖u0‖L2(�
2νβ1 ) + C

(
‖u0 − (u0)1‖L2(�νβ1 )

+ ‖u0 − uν
0‖L2(�νβ1 )

)

→ 0 as ν → 0,

then the strong convergence of uν
0 to u0 in L2 guarantees that

lim
ν→0

∣
∣
∣
∣

∫

�

|uν
0|2 −

∫

�

θξ21 |(uν
0)1|2

∣
∣
∣
∣ = 0.

This allows us to deduce that

lim
ν→0

|I | = lim
ν→0

∣
∣
∣
∣
∣
∣

∫

�

|uν
0|2 −

N∑

k,m=1

∫

�

θξkξm(uν
0)k (uν

0)m

∣
∣
∣
∣
∣
∣

� lim
ν→0

∣
∣
∣
∣

∫

�

|uν
0|2 −

∫

�

θξ21 |(uν
0)1|2

∣
∣
∣
∣

+
∑

2<k+m

lim
ν→0

∣
∣
∣
∣

∫

�

θξkξm(uν
0)k (uν

0)m

∣
∣
∣
∣ = 0,

(4.5)

where in the last equality we have used

∑

2<k+m

lim
ν→0

∣
∣
∣
∣

∫

�

θξkξm(uν
0)k (uν

0)m

∣
∣
∣
∣ = 0,

which comes from (4.3)–(4.4). As a result of (4.1)–(4.2) and (4.4)–(4.5), we obtain
the desired (1.10).

4.2. Convergence to Euler Solutions

Under the assumptions in Theorem 1.2 and Lemma 2.2, there exist some func-
tions (u, P) such that, up to some subsequence,

uν ⇀ u in L3(0, T ; Bσ,∞
3 (�ν)) ∩ L∞(0, T ; L2(�)),

Pν ⇀ P in L
3
2 (0, T ; L

3
2 (�)). (4.6)

Thanks to (4.6) and (1.4), we have

∂t u
ν = ν�uν − ∇ Pν − div(uν ⊗ uν) ∈ L

3
2 (0, T ; W −1, 32 (�)),
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and moreover,

uν → u in L3(0, T ; L3(�ν)) ∩ C
(
[0, T ], L2

weak(�)
)

, (4.7)

owing to the compactness results. In addition, it follows from (1.4) that, as ν → 0,

∣
∣
∣
∣

∫ T

0

∫

�

ν∇uν · ∇ϕ

∣
∣
∣
∣ � Cν

1
2

(

ν

∫ T

0
‖∇uν‖2L2(�)

) 1
2

→ 0. (4.8)

Having (4.6)–(4.8) in hand, we easily check that u solves Euler equations (1.2) in
� × (0, T ).

5. Boundary Layers for Smoother Solutions

The boundary layer �4ν in (1.9) of Theorem 1.2 in fact holds for all α >
1
3 . The emphasis of the previous analysis lies in determining the boundary layer
for solutions near the critical Onsager’s regularity. On the other hand, when the
solutions are more regular, the hypotheses in Theorem 1.2 can be relaxed, and the
boundary layer can be even thinner, as is shown in the following theorem:

Theorem 5.1. Let � ⊂ R
3 be a bounded domain with C2 boundary. Let {uν}ν>0 be

a sequence of Leray–Hopf weak solutions to (1.1) with initial data uν
0 and suppose

that uν
0 → u0 in L2(�) as ν → 0. Assume in addition that (1.7) holds, and that

⎧
⎨

⎩

uν is uniformly in ν bounded in L4 (
0, T ; L p (�4ν)

)
,

Pν is uniformly in ν bounded in L2
(
0, T ; L

p
2 (�4ν)

)
,

(5.1)

with p > 6
3α−1 . Let a > 1 be such that

a <
3

5 − 6α
, when

1

3
< α <

5

6
; a < ∞, when

5

6
� α < 1. (5.2)

If

lim
ν→0

ν

∫ T

0

∫

�4νa

|∇uν |2dxdt = 0, (5.3)

then, the global viscous dissipation vanishes, i.e., (1.10) holds true. Moreover, uν

converges locally in L3(0, T ; L3(�)), up to a subsequence, to a weak solution of
Euler equations (1.2).

Remark 5.1. As α → 1
3
+
, Theorem 5.1 recovers Theorem 1.2. But as α increases,

we can relax the regularity requirement on the boundary, cf. (5.1), and the thickness
of the boundary layer becomes νa with a > 1. In particular, as α → 1−, the
thickness becomes arbitrarily small.
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Proof. The idea of the proof is very similar to the one explained before, and hence
we will only focus on the ingredients different from those in the proof of Theo-
rem 1.2.

First of all, we modify the construction of the increasing and finite sequence
{βn}N

n=1 in Section 2.3 as

0 = β0 < β1 < · · · < βN−1 � 1 < βN <

⎧
⎪⎪⎨

⎪⎪⎩

3

5 − 6σ
, if α ∈

(
1

3
,
5

6

)

,

∞, if α ∈
[
5

6
, 1

)

,

(5.4)

and

βn <
1

2(1 − α)

(

1 + 1

3
βn−1

)

.

In fact, here we consider the case of βN = a > 1 which satisfies (5.4), in stead of
βN = 1 defined in (2.10).

The “pealed-off” set VN+1 in (2.16) now becomes

�νa := VN+1 =
(

N⋃

n=1

Vn

)c

. (5.5)

In addition, the near boundary layer cut-off function θ in (3.6) is modified as

0 � θ(x) � 1, θ(x) = 1 if x ∈ �2νa
, θ(x) = 0 if x /∈ �νa

, |∇θ | � 2ν−a .

(5.6)

With the above preparations, to complete the proof of Theorem 5.1, we only
need to check the following:

(a) Inequality (3.16) in Lemma 3.1.
In Theorem 5.1, it can be treated as

∑

|k−m|�1

ν

∫ T

0

∫

�

∇θξkξmuν
k∇uν

m

= ν

∫ T

0

∫

�2νa ∩�4νa

∇θξ2N uν
N ∇uν

N

�
(

ν

∫ T

0

∫

�

|∇uν
N |2

) 1
2

(

ν

∫ T

0
νa(2α− 5

3 )‖uν‖2
Bα,∞
3 (�νa

)
+ ‖∇uν‖2L2(�2νa )

) 1
2

� C

(

ν1+a(2α− 5
3 ) + ν

∫ T

0

∫

�4νa

|∇uν
N |2

) 1
2

→ 0,

(5.7)



R. M. Chen, Z. Liang, and D. Wang

provided

1 + a

(

2α − 5

3

)

> 0,

which is valid, owing to (5.4).
(b) Inequality (3.22) in Lemma 3.2.

In Theorem 5.1, we estimate (3.22) as the follows:

∣
∣
∣
∣
∣
∣

∑

|k−m|�1

∫ T

0

∫

�

(
uν

m ⊗ uν
m − (uν ⊗ uν)m

)
: ∇θξkξmuν

k

∣
∣
∣
∣
∣
∣

� C

(∫ T

0

∫

�4νa ∩�2νa

∣
∣
∣uν

N

∣
∣
∣
4
) 1

2

(∫ T

0
ν− 5

3 a‖uν
N − uν‖2L3 +

∫ T

0

∫

�4νa

|∇θuν |2
) 1

2

� C

(

ν
a(1− 4

p )

∫ T

0
‖uν‖4L p(�8νa )

) 1
2

×
(∫ T

0
νa(2α− 5

3 )‖uν‖2
Bσ,∞
3 (�νa

)
+

∫ T

0

∫

�4νa

|∇uν |2
) 1

2

� C(T )ν
1
2 a(1− 4

p +2α− 5
3 )

+Cν
1
2 (a(1− 4

p )−1)
(

ν

∫ T

0

∫

�4νa

|∇uν |2
) 1

2

→ 0, (5.8)

provided that

a

(

1 − 4

p
+ 2α − 5

3

)

> 0 and a

(

1 − 4

p

)

− 1 � 0,

which holds true due to (5.2) and (5.4).
(c) Inequality (3.28) in Lemma 3.2.

This can be achieved from a similar argument as to that used in deriving (5.8). 
�

Acknowledgements. The work of R. M. Chen is partially supported by National Science
Foundation under grantsDMS-1907584 andDMS-2205910.TheworkofZ.Liang is partially
supported by the fundamental research funds for central universities (JBK 2202045). The
work of D. Wang is partially supported by the National Science Foundation under grants
DMS-1907519 and DMS-2219384. The authors are very grateful to the anonymous referee
for the valuable comments and suggestions, and for pointing out the references [37,38].



Vanishing Viscosity Near Onsager’s Critical Regularity

Data Availability Statement This research does not have any associated data.

Declarations
Conflicts of interest The authors declare that they have no conflict of interest.

Human and Animal Rights This research does not involve Human Participants
and/or Animals. The manuscript complies to the Ethical Rules applicable for the
Archive for Rational Mechanics and Analysis.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publish-
ing agreement with the author(s) or other rightsholder(s); author self-archiving of
the accepted manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

References

1. Bardos, C., Titi, E.: Euler equations for an ideal incompressible fluid. Uspekhi Mat.
Nauk 62, 375, 2007

2. Bardos, C., Titi, E.S.,Wiedemann, E.: Onsager’s conjecture with physical boundaries
and an application to the vanishing viscosity limit.Commun. Math. Phys. 370, 291–310,
2019

3. Bardos, C.W., Titi, E.S.: Mathematics and turbulence: where do we stand? J. Turbul.
14, 42–76, 2013

4. Buckmaster, T., De Lellis, C., Székelyhidi, L., Vicol, V.: Onsager’s conjecture for
admissible weak solutions. Commun. Pure Appl. Math. 72, 229–274, 2019

5. Buckmaster, T., Vicol, V.: Convex integration and phenomenologies in turbulence.
EMS Surv. Math. Sci. 6, 173–263, 2019

6. Cadot, O., Couder, Y., Daerr, A., Douady, S., Tsinober, A.: Energy injection in
closed turbulent flows: Stirring through boundary layers versus inertial stirring. Phys.
Rev. E 56, 427, 1997

7. Caflisch, R., Sammartino, M.: Zero viscosity limit for analytic solutions of the
Navier–Stokes equations on a half-space II: construction of the Navier-Stokes solu-
tion. Commun. Math. Phys. 192, 463–491, 1998

8. Chen, R.M., Liang, Z.,Wang, D.,Xu, R.: Energy equality in compressible fluids with
physical boundaries. SIAM J. Math. Anal. 52, 1363–1385, 2020

9. Cheskidov,A.,Constantin, P.,Friedlander, S.,Shvydkoy,R.: Energy conservation
and Onsager’s conjecture for the Euler equations. Nonlinearity 21, 1233–1252, 2008

10. Constantin, P.,W. E, Titi, E. S.: Onsager’s conjecture on the energy conservation for
solutions of Euler’s equation. Commun. Math. Phys., 165, 207–209 (1994)

11. Constantin, P., Elgindi, T., Ignatova, M., Vicol, V.: Remarks on the inviscid limit
for the Navier–Stokes equations for uniformly bounded velocity fields. SIAM J. Math.
Anal. 49, 1932–1946, 2017

12. Constantin, P., Kukavica, I., Vicol, V.: On the inviscid limit of the Navier–Stokes
equations. Proc. Am. Math. Soc. 143, 3075–3090, 2015

13. Constantin, P., Lopes Filho, M. C., Lopes, H. J. N., Vicol, V.: Vorticity measures
and the inviscid limit. Arch. Ration. Mech. Anal., 234, 575–593, 2019

14. Constantin, P., Vicol, V.: Remarks on high Reynolds numbers hydrodynamics and
the inviscid limit. J. Nonlinear Sci. 28, 711–724, 2018



R. M. Chen, Z. Liang, and D. Wang

15. De Lellis, C., Székelyhidi, L.: Dissipative continuous Euler flows. Invent. Math. 193,
377–407, 2012

16. De Lellis, C., Székelyhidi, L., Jr.: Dissipative Euler flows and Onsager’s conjecture.
J. Eur. Math. Soc. (JEMS) 16, 1467–1505, 2014

17. DiPerna, R.J., Majda, A.J.: Oscillations and concentrations in weak solutions of the
incompressible fluid equations. Commun. Math. Phys. 108, 667–689, 1987

18. Drivas, T.D., Nguyen, H.Q.: Onsager’s conjecture and anomalous dissipation on do-
mains with boundary. SIAM J. Math. Anal. 50, 4785–4811, 2018

19. Drivas, T. D., Nguyen, H. Q.: Remarks on the emergence of weak Euler solutions in
the vanishing viscosity limit. J. Nonlinear Sci., 1–13, 2018

20. Duchon, J., Robert, R.: Inertial energy dissipation for weak solutions of incompress-
ible Euler and Navier–Stokes equations. Nonlinearity 13, 249–255, 1999

21. Escauriaza, L.,Montaner, S.: Some remarks on the L p regularity of second deriva-
tives of solutions to non-divergence elliptic equations and theDini condition,AttiAccad.
Naz. Lincei Rend. Lincei Mat. Appl. 28, 49–63, 2017

22. Eyink, G.L.: Energy dissipation without viscosity in ideal hydrodynamics I. Fourier
analysis and local energy transfer. Physica D 78, 222–240, 1994

23. Hopf, E.: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen.
Math. Nachr. 4, 213–231, 1951

24. Isett, P.: On the endpoint regularity in Onsager’s conjecture. arXiv:1706.01549, 2017.
25. Isett, P.: A proof of Onsager’s conjecture. Ann. Math. 188, 871, 2018
26. Kato, T.: Remarks on zero viscosity limit for nonstationary Navier–Stokes flows with

boundary, in Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983),
vol. 2 of Math. Sci. Res. Inst. Publ. Springer, New York, pp. 85–98, 1984

27. Kelliher, J.P.: On Kato’s conditions for vanishing viscosity. Indiana Univ. Math. J.
56, 1711–1721, 2007

28. Kelliher, J.P.: Vanishing viscosity and the accumulation of vorticity on the boundary.
Commun. Math. Sci. 6, 869–880, 2008

29. Kelliher, J.P.: On the vanishing viscosity limit in a disk. Math. Ann. 343, 701–726,
2009

30. Kufner, A., John, O., Fucík, S.: Function spaces, Noordhoff International Publishing,
Leyden; Academia, Prague, 1977. Monographs and Textbooks on Mechanics of Solids
and Fluids; Mechanics: Analysis Mechanics: Analysis.

31. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63,
193–248, 1934

32. Lopes Filho, M. C., Mazzucato, A. L., Lopes, H. N. , Vanishing viscosity limit for
incompressible flow inside a rotating circle. Phys. D, 237, 1324–1333, 2008.

33. Lopes Filho,M. C.,Mazzucato,A. L.,Lopes, H. N.,Taylor,M., Vanishing viscosity
limits and boundary layers for circularly symmetric 2D flows. Bull. Braz. Math. Soc.
(N.S.), 39, 471–513, 2008

34. Maekawa, Y.: On the inviscid limit problem of the vorticity equations for viscous
incompressible flows in the half-plane. Commun. Pure Appl. Math. 67, 1045–1128,
2014

35. Mauro, J.A.: On the regularity properties of the pressure field associated to a Hopf
weak solution to the Navier–Stokes equations. Pliska Stud. Math. Bulgar. 23, 95–118,
2014

36. Mazzucato, A., Taylor, M.: Vanishing viscosity plane parallel channel flow and
related singular perturbation problems. Anal. PDE 1, 35–93, 2008

37. Nguyen van yen, N., Farge, M., Schneider, K.: Energy dissipating structures pro-
duced by walls in two-dimensional flows at vanishing viscosity. Phys. Rev. Lett., 106,
2011

38. Nguyen van yen, N.,Waidmann, M., Klein, R., Farge, M., Schneider, K.: Energy
dissipation caused by boundary layer instability at vanishing viscosity. J. Fluid Mech.,
849, 676–717, 2018

http://arxiv.org/abs/1706.01549


Vanishing Viscosity Near Onsager’s Critical Regularity

39. Temam, R.,Wang, X.: On the behavior of the solutions of the Navier–Stokes equations
at vanishing viscosity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25, 807–828, 1997,
1998. Dedicated to Ennio De Giorgi.

40. Wang, X.:AKato type theorem on zero viscosity limit of Navier–Stokes flows. Indiana
Univ. Math. J., 223–241, 2001

R. M. Chen, D. Wang
Department of Mathematics,
University of Pittsburgh,

Pittsburgh
PA

15260 USA.
e-mail: mingchen@pitt.edu

e-mail: dwang@math.pitt.edu

and

Z. Liang
School of Mathematics,

Southwestern University of Finance and Economics,
Chengdu

611130 China.
e-mail: liangzl@swufe.edu.cn

(Received May 19, 2022 / Accepted September 16, 2022)
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE, part of Springer

Nature (2022)


	A Kato-Type Criterion for Vanishing Viscosity Near Onsager's Critical Regularity
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Commutator Estimates
	2.2 Pressure Estimates
	2.3 Boundary Layer Foliation

	3 Regularization and Resolved Energy Balance
	4 Proof of Theorem 1.2
	4.1 Vanishing of Global Dissipation
	4.2 Convergence to Euler Solutions

	5 Boundary Layers for Smoother Solutions
	Acknowledgements.
	References


