R. M. Chen et al. (2023) “Stability of Peaked Solitary Waves for a Class of Cubic Quasilinear Shallow-Water
Equations,”

International Mathematics Research Notices, Vol. 2023, No. 7, pp. 6186-6218

Advance Access Publication March 1, 2022

https://doi.org/10.1093/imrn/rnac032

Stability of Peaked Solitary Waves for a Class of Cubic
Quasilinear Shallow-Water Equations

Robin Ming Chen!, Huafei Di**, and Yue Liu®

'Department of Mathematics, University of Pittsburgh, PA 15260, USA,
“School of Mathematics and Information Science, Guangzhou University,
Guangzhou 510006, P. R. China, and *Department of Mathematics,
University of Texas at Arlington, TX 76019, USA

*Correspondence to be sent to: e-mail: dihuafei@gzhu.edu.cn

This paper is concerned with two classes of cubic quasilinear equations, which can
be derived as asymptotic models from shallow-water approximation to the 2D incom-
pressible Euler equations. One class of the models has homogeneous cubic nonlinearity
and includes the integrable modified Camassa-Holm (mCH) equation and Novikov
equation, and the other class encompasses both quadratic and cubic nonlinearities.
It is demonstrated here that both these models possess localized peaked solutions. By
constructing a Lyapunov function, these peaked waves are shown to be dynamically
stable under small perturbations in the natural energy space H!, without restriction on
the sign of the momentum density. In particular, for the homogeneous cubic nonlinear
model, we are able to further incorporate a higher-order conservation law to conclude
orbital stability in H! N W', Our analysis is based on a strong use of the conservation

laws, the introduction of certain auxiliary functions, and a refined continuity argument.

1 Introduction

Solitary waves are solutions to a time-dependent problem that carry finite energy,
remain spatially localized, and evolve by translating at a fixed velocity without altering

their shapes. They arise from precise balance between dispersion and nonlinear
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Stability of Peaked Ways 6187

effects and play a substantial role in the study of more general solutions in the
limit of large time. Their importance is also manifested in the well-known “soliton
resolution conjecture” (see, e.g., [23]), asserting that in general, solutions resolve into
a superposition of weakly interacting solitary waves and decaying dispersive waves.
Hence, it is natural to investigate the stability of solitary waves in order to understand

this asymptotic decomposition.

1.1 Cubic nonlinear shallow-water model equations

We consider two families of quasilinear shallow-water equations recently derived in [4]
as asymptotic shallow-water model equations for the 2D full water wave dynamics.
These two families are derived in a scaling regime corresponding to waves with
relatively large amplitude, which is in contrast with the classical Korteweg—de Vries
(KdV) weakly nonlinear scaling.

To introduce the equations of the present study, let us briefly recall the modeling
process of [4]. The common procedure in the water wave modeling involves relating two

independent nondimensional parameters
a h?
e:h—o<<1, p= <1,
where a, hy, and A are the typical amplitude of the wave, the depth of the water, and
the wavelength, respectively. The balance between the nonlinearity parameter ¢ and
dispersion parameter u responsible for generation of interesting nonlinear phenomena
is usually quantified to be a power law scaling between ¢ and x in the asymptotic regime
&, u < 1. For instance, the KdV weakly nonlinear scaling corresponds to ¢ = O(n), and
the so-called Camassa-Holm (CH) scaling regime for shallow-water waves of moderate
amplitude amounts to asking ¢ = O(u!/?).

The next level of nonlinearity-enhancing scaling proposed in [4] aims at incor-
porating higher-order nonlinearity to capture more pronounced nonlinear behavior,
for example, the curvature blow-up, that is, the 2nd derivative of solution becomes
unbounded in finite time while the solution and its gradient remain bounded.

Setting ¢ = O(u?/%) and expanding the equation for the scaled surface elevation
n, it follows that

5

1 3 3 23
2005+ 1) + M + B8Ny Zsznznx + 583n3nx +en (Enxnxx + Ennxxx)

(1.1)
115 , , 5 (23 29 , 3, s 5
+@8 n nx+8 M(Eﬁ’?;{’?xx‘i‘gﬁ nxxx+ZnX :0+0(8 2 )
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6188 R.M. Chen et al.

We then adapt the idea of [1] to expand 5 in terms of another function u, which is related
to the horizontal velocity of the fluid, together with its derivatives, using the so-called

Kodama transformation [14]. In particular, the expansion takes the following form:
n~u+eA+ uB+euC+ u?D + ¢?E + ¢°K + 6% uG + epu’H, (1.2)
where

A= Aluz, B:=Au E = k3u3, K= A0u4, C:= k4u)2( + AgUlyy,

p.o. ¢4

. . 2 2 . 2
D:= )\‘GuXXXX' G:= )‘7qu + )‘8u Uyxr H:= )"guXuXXX + )‘louuxxxx + )‘lluXX'

This Kodama transformation produces sufficient degrees of freedom to allow one to
derive the desired family of cubic nonlinear asymptotic model equations. For example

(see [4] for more details), setting

A_k1+189 A_k1+179 A_23+k1

1792 " 20" ™76 60" 5 " 4’

L_3 . 13083k2+ 1189081 N 108125767

07 19" " 1520 ! 7600 ! 114000 '

L __ L, 671 56327 1, 67 30437

4 1 1 ’ 5 1 1 ’
6 120 1200 6 15 1200

where A,, Ag are completely free, and Ag, Ag, A1, A1; are uniquely determined from 1, and

Lg, and k; ~ —15.1765 is the unique real root of
2000k3 4 106200k? 4 1871550k, + 10934031 = 0,

one can derive the following model equation consisting of quadratic terms being
characteristic for the Camassa—Holm (CH) equation together with cubic nonlinear terms

known from the Novikov equation and the modified Camassa-Holm (mCH) equation:

w € k,e? , 5
mt—i—uX—ZuXXX—i—5(2uxm+umx)+T u —Euux m N

69¢2 9 5 2
+T(u m, + 3uu,m) =0+ O0(e”, u°),

where m = u — %MuXX is called the momentum density. Via a further scaling

5 B 5 -
u—>25_1u, t— | —u t, XxX—>|—n X,
12 12

and a formal scaling limit consideration ¢t — §~?t and u — §'u then sending § — 0, the

N~
Nl —

quadratic CH terms can be removed, yielding the so-called mCH-Novikov equation
69
m, + ky ((u2 - uf{)m) + ?(uzmx + 3uu,m) =0,
X

where, abusing notation, the momentum density becomes m = u — u,,.
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Stability of Peaked Ways 6189

On the other hand, considering

s 975u2 . 29 wte 1261 L 10373 w2 2382u3 1306708983u4
T=HT %0 20" T Te00 e T 1200 X)) T 10 114000
in (1.2) and performing a similar scaling and formal limit procedure, another cubic

nonlinear equation can be derived as

3 46 (( , 1 ,
M+ Uy — Uy + CQu,m+um,) +— [ U — = (U, Ju) =0.
5 5 4 N
One of the purposes of this work is to investigate some qualitative properties of
the above two equations, while not restricting ourselves with the explicit coefficients of

the cubic and quadratic terms. In particular, we will study the following two equations:
me+ Iy (@2 = udm) + ky@Pm, + 3uu,m) =0, (1.3)
X
and
2 1 5
m; +ky (2u,m+um,) +k, (| u® — 72U Ju) =0, (1.4)
X

where m = u — u,, and k; and k, are two arbitrary constants. Further motivation to

consider (1.4) is explained in Section 3.

1.2 Peaked solitary waves

Mathematically, equation (1.3) can be viewed as a combination of the mCH equation
[8, 21, 22] (corresponding to k; = 1, k, = 0) and the Novikov equation [20] (corresponding
to k; = 0, k, = 1). Equation (1.4) generalizes the well-known CH equation [2, 9] when
k, =1and k, =0.

Like their ancestors—the CH, mCH and Novikov equations, the two equations
(1.3) and (1.4) both exhibit nonlinear dispersion, which enables them to support a
remarkable class of non-smooth soliton-like solutions, namely, the peaked solitary

waves of the form
¢ (x — ct) := ae”x7°;

see Theorem 2.1 and Theorem 3.1. These peaked solitary waves are also a common

characteristics shared by many dual integrable nonlinear systems, like the CH, mCH,
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6190 R. M. Chen et al.

and Novikov equations. Indeed, (1.3) can be put into the form

om SE

am_ g o= 1.5
ot Lsm (1.5)

with the Hamiltonian operator
J, = —k,3,md; md, — 2k,(3mad, + 2m,)(4d, — 33)" 1 (3md, + m,),
and the corresponding Hamiltonian functional

E(w) =/(u2 + u?)dx.
R

In addition, another conserved quantity of (1.3) is F; (u) = [, (u* + 2u?u2 — Ju?) dx (see
Lemma 2.1). For (1.4), it is found that the Hamiltonian functional E(u) is again conserved

quantity. It is also observed that (1.4) can be rewritten as

om OF, . 1 9
8_t ZJZ%' with JZ = —ZBX(I — 8X), (16)

and the corresponding Hamiltonian functional is given by
Fy(u) = 2k I, (uw) + kI, (u), (1.7)
where
I(u) = /R W +uud)dx, I(u) = /R (u* + u?u?) dx. (1.8)

At this point, we have not fully exploited to see if the model equations (1.3) and (1.4) can
be put into a bi-Hamiltonian form, or if they admit a Lax pair, and hence integrable.

This is certainly an interesting direction to go but it is beyond the scope of this paper.

1.3 Orbital stability in H! space

The primary goal of the present paper is to investigate the dynamical stability of the
peaked solutions for these two model equations (1.3) and (1.4). A common strategy for
studying the stability of solitary waves of such systems is to exploit the Hamiltonian
structure. However, many solitary waves are not local minimizers of the energy but are
instead indefinite energy saddles. Fortunately, in a number of cases, the Hamiltonian

system is canonical and the solitary waves can be thought of as local extrema of the
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Stability of Peaked Ways 6191

energy subject to the constraint of a fixed momentum, another conserved quantity
generated by translation symmetry. Such a fact was exploited in two seminal papers
of Grillakis—Shatah-Strauss [10, 11] to develop a powerful tool to determine stability
or instability. Among other hypotheses, one crucial assumption needed for application
of the machinery of [10, 11] is that the spectrum of the linearized Hamiltonian at the
solitary wave consists of finitely many negative eigenvalues, zero, and a subset of the

positive real axis separated uniformly away from the origin.

1.3.1 Lyapunov method

Note that the peaked solitary wave ¢, is a global weak solution. Its non-smoothness
property leads to a degeneracy in the linearized Hamiltonian, making the spectral
analysis and hence the approach in [10] difficult to apply. Such a difficulty has been
long observed for many quasilinear dispersive equations admitting peaked solutions.
Constantin-Strauss [7] introduced a new idea in the spirit of the Lyapunov method to
establish the H!-orbital stability of the CH peakons. Their idea relies crucially on two
special conserved quantities E(u) and F(u), one (say, E) being the H!-energy, and the
key observation is that the H! distance of the perturbed solutions to the peaked wave is
controlled by the difference between the corresponding energies, with an error given by
the pointwise difference between the peaks of the solution u and the peaked wave ¢,

that is

Ew) — E@) = [u = ¢o = D% +4 (u@ - M,

for any z € R, where M, denotes the peak of ¢.. Then a Lyapunov function can be
constructed via the introduction of some suitable auxiliary functions. Through this
Lyapunov function, one obtains an inequality relating the maximum of the perturbed

solution with the conserved quantities
M, - M, | S 1E@ - Be)l + 1P — Feol,

where M, is the peaks of u. Finally since the difference terms on the right-hand side can

be made small according to the initial perturbation,

M, — ch‘ will be small, proving
stability.

The idea of [7] has been successfully applied to many other peakon equations,
like the ones with quadratic nonlinearity including the Degasperis—Procesi (DP) equa-
tion [15] and the u-CH equation [5]; and the cubic nonlinear models, for example, the

Novikov equation [17] and the generalized mCH equation [16].
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6192 R. M. Chen et al.

1.3.2 Signofm

The nonlinear terms in (1.3) are all cubic, leading one to reexamine the approach of
[17]. Among the assumptions of [17] on the initial perturbation, a crucial one is the sign
condition, namely my(x) = (1 — 8§)u0(x) > 0. Such a sign condition will be preserved for
later time, and thus the solution satisfies that u(t,x) > 0. This allows one to find the

required auxiliary function
h(x) = u*(x) F u(x)u x) — Zuix),
and use h to bound the functional F(u) by E(u) and the peak value M,, as
4. _4 2 2 4.2 2
F(u) - M < 7 max(u )(E(u) 2M ) M (E(u) 2Mu), (1.9)

cf. [17, Lemma 9]. One of our goals here is to remove this sign constraint on the initial
data. Indeed, the structure of equation (1.3) suggests us to work with the same auxiliary
function h. But we see that (1.9) still holds if the positivity assumption on u is replaced
by

M, +minu > 0. (1.10)
xeR

On the other hand, since IIllIl ¢c = 0 we know that M,, +m1ﬂ1£ ¢, > 0, and hence (1.10) holds
with a strict inequality at 1n1t1a1 time if the initial data u, is sufficiently close to ¢,.
Continuity then guarantees that this property will propagate for some time, which in
turn ensures stability over that time period. But the H!-orbital stability then implies
that (1.10) holds over this time period as well. This way the same argument repeats, and
so one achieves stability over the entire time of existence, cf. Theorem 2.2.

We would like to point out that our new method in handling equation (1.3) can be
used to treat the Novikov equation (k; = 0) and the mCH equation (k, = 0). As a result,
the assumption on the initial momentum density m, > 0 used in [17] can be removed, at

the price that the global solution in [17, Theorem 1] being replaced by a local one.

1.3.3 A new auxiliary function

Equation (1.4) carries a similar structure as the generalized mCH equation [16] in the
sense that the nonlinearities contain both quadratic and cubic terms. It was discovered
in [16] that the interaction between the quadratic and the cubic terms can be quite subtle
and hence requires a rather delicate analysis. In particular an auxiliary function of the

form h(x) := 2k, u(x) + k, (u?(x) ¥ £ Zux)u, (x) — X(X)) is used and the positivity of the
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Stability of Peaked Ways 6193

initial momentum density m is still needed to ensure an estimate like (1.9). However,
for our equation (1.4), the sign-preservation property of m fails to be true and thus
assuming m, > 0 is never enough to infer the positivity of the solution for later time.
What turns out to make the argument work is that we may consider a different auxiliary

function
h(x) := 2k, u(x) + kyu?(x).

When the two parameters k; and k, are “cooperative”, namely, k;, k, > 0, we can easily
bound h as h < 2k,M, + k,M?2, provided that (1.10) holds. Once such a bound for h
is available, a similar estimate of the form (1.9) can be proved; see Lemma 3.5. As a
result, the orbital stability of the peakons can be established with the help of a similar
continuity argument as before, cf. Theorem 3.2 (1).

On the other hand, when k; and k, are “uncooperative” in the sense that k; > 0
but k, < 0, it becomes less clear whether i can be bounded in terms of M,,. However,
by restricting the wave speed, one can prove that for small perturbations h will be
increasing; see Lemma 3.4 part (2). This immediately implies that h < 2k, M,, + k,M2,
and the orbital stability follows, cf. Theorem 3.2 (2).

1.4 Orbital stability in a finer energy space H! N wl4

The H!-topology used in the above stability results naturally arises from the conser-
vation of the H'-energy E(u) for both equations (1.3) and (1.4). On the other hand,
though not having been explicitly analyzed, traditional characteristics method seems
to indicate that strong solutions of (1.3) and (1.4) can exhibit finite-time wave-breaking
(i.e., derivative blow-up) for well-chosen initial data.(The wave-breaking for (1.3) has
recently been studied in [4].) Such a feature in turn suggests a strong instability
property of the peakons under the Lipschitz metric for perturbations as the strong
solutions. Therefore, it would be interesting to investigate the stability issue under
a certain topology that is between H! and W!*°. We would like to also point out
that the strong W instability for H!-stable peakons under weak-solution perturba-
tions has been confirmed for the CH equation [18, 19] and the Novikov equation [6]
recently.

A natural way to seek an intermediate topology is to examine the higher-order
conservation laws. It turns out that the conserved quantity F;(u) of equation (1.3)

together with the H! conservation gives W!# control of solutions, cf. (2.36). In fact,
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6194 R.M. Chen et al.

one can prove that for a perturbation u of the peaked wave ¢,

IFy (U= 9| S 1F1 () — Fre)] + flu — gllg)

for some polynomial function f, cf. (2.38). From this, one can deduce W!* stability of the
peakons even for initial perturbation that is only H! close to the peaked solitary waves;
see Theorem 2.3.

Applying the same idea to (1.4), on the other hand, would not generate a finer
topology than H!, since the conservation law F, does not provide a stronger norm
than E.

1.5 Organization of the paper

The rest of the paper is organized as follows. In Section 2, we first state the local well-
posedness result of the initial-value problem associated with (1.3) and then establish the
existence of peaked solutions and prove their orbital stability in H! N W', The similar
discussion for equation (1.4) is performed in Section 3 to yield the H!-orbital stability
for the corresponding peaked waves. In the Appendix, we provide some technical details

of existence of the peaked waves.

2 The mCH-Novikov Equation

This section is focused on the existence and stability of peaked solitary waves for the

mCH-Novikov equation (1.3).

2.1 Local well-posedness and conservation laws

A necessary ingredient in our stability analysis is the local well-posedness theory for
the initial-value problem
m; + ky (u? —ud)m)_+ ky(u?m, +3uu,m) =0, t>0, xR,
M= U— Uy, (2.1)
u(0,x) = uy(x), x eR.

2

Recall that the inverse operator (1 — 32)~! can be obtained by convolution with the

corresponding Green's function such that
1
u=01-0)"'m=pxm, where p(x) = Ee*m, (2.2)

and x denotes the convolution product.
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Stability of Peaked Ways 6195
Applying now the operator (1 — 32)~! to equation in (2.1), it follows that

1 2 k
uy +k; (u2 — guﬁ) Uy, +kip, * (§u3 + uui) + ?lp s ud
3 . (2.3)
+ kyu?u, + kyp, * (u3 + Euuf() + ?zp xud=0.

We will start by considering solutions to the above problem (2.1) in Sobolev
spaces with sufficiently high regularity. The precise definition of such solutions is given

below.

Definition 2.1 (Strong solutions). If u € C ([0, T), HS(R)) N C! ([0, T), H*~}(R)) with s > 3
and some T > 0 satisfies (2.1), then u is called a strong solution on [0, T). If u is a strong

solution on [0, T) for every T > 0, then it is called a global strong solution.

Remark 2.1. The regularity requirement that u € H%2* comes from applying transport
theory to (2.3). We see from (2.3) that equation (1.3) can be reformulated in a transport
type with the transport velocity k; (u2 - %u)zf) +k,u?. Standard transport theory requires

a control on |k, (u? — Ju?) + kyu which, by Sobolev embedding, amounts to

2
“ Wl,oo ’
asking u € H%/?*.

The argument for establishing the local well-posedness of strong solutions to
(2.1) is now fairly standard. For example, one can follow the same approach as in [12].
Hence, we will only state the result without proof.
Proposition 2.1. If s > % and u, € H°(R), then there exists a time T > 0 such
that the initial-value problem (2.1) has a unique strong solution u € C ([0, T),HS(IR{)) N
c! ([0, T),HS 1 (R)). Further, the map u, — u is continuous from a neighborhood of u, in
HS(R) into u € € ([0, T), HS(R)) N C* ([0, T), HS"}(R)).

Regarding stability, as explained in the Introduction, certain conserved quanti-
ties of the equation play a crucial role. For this reason, we give the following result. Its

proof can be seen in Appendix A.

Lemma 2.1. For the strong solutions u obtained in Proposition 2.1, the following

functionals

E(u) = /(u2 +u?)dx, F,(w) =/ (u4+2u2u§ — %u;‘;) dx (2.4)
R R

are conserved, that is %E(u) = %Fl (u) =0foralltel0,T).

€202 Iudy €0 U0 Josn HOYNES 1 1Id 40 ALISHIAINN Ad 6£50759/9819/2/€20Z/2101He/UiW/Wod dno"olWaped.//:sd)Y Woly papeojumog



6196 R. M. Chen et al.
2.2 Existence of peaked solitary waves

As is mentioned in the Introduction, the peaked solitary waves have low regularity and
hence cannot be regarded as strong solutions to (2.1).
The following theorem proves the existence of the peaked solutions to equation

(2.3). Details of the proof can be found in Appendix A.

Theorem 2.1. The function
u(t,x) = g (x — ct) := ae ¥, (2.5)

is a peaked solution to (2.3) provided that

(1) 2k, 43k, #0, 325 > 0and a = +,/ 585 # 0; or
(2) 2k;+3k,=c=0anda #0.

Remark 2.2. Note that case (1) in Theorem 2.1 generates a pair of peaked (@ > 0) and
anti-peaked (a < 0) solutions both moving at speed ¢ # 0, whereas case (2) corresponds

to a stationary peaked solution.

Remark 2.3. If one imposes the ansatz that the solution u of equation (2.3) is a linear

superposition of N peakons
N
u(t,x) = Y p(e x40, (2.6)
i=1

then a direct computation shows that the position functions g;(¢) and the amplitude

functions p,(t) satisfy the following dynamical system:

N
P =kyp; D pypy sign(q; — gye 1944,
=1
.2k o 3 ~lgj—qil ~lgj—al < —lq—qil—1g—ail
9= 3 Pi + 2k, Z pipje” VT + 4k, Z pipe” VT + k, ijple 114,
J=1j# 1<j<i, jl=1
i<l<N

2.3 H!-orbital stability

The main goal in this subsection is to prove the orbital stability for the single peaked

solutions obtained in Theorem 2.1 in the natural H! energy space suggested by the

€202 Iudy €0 U0 Josn HOYNES 1 1Id 40 ALISHIAINN Ad 6£50759/9819/2/€20Z/2101He/UiW/Wod dno"olWaped.//:sd)Y Woly papeojumog



Stability of Peaked Ways 6197

conservation law E as in (2.4). We will only discuss the case when a > 0. The case
for anti-peakons (a < 0) can be treated by exploiting the invariance of equation in (2.1)
under the transformation u — —u.

Recall Theorem 2.1. It is obvious that ¢,(x) € H!'(R) has the peak at x = 0 and a

simple computation reveals

3c 3c
N iy 2k, + 3k 0 and =%+ > 0,
max g, (x) = ¢,(0) = a:= | V2+3k 13k # Ta+3kz ~ (2.7)
xeR e R, 2k, + 3k, =c=0,
2 4 4
E(p,) = 2a”, Fi(py) = §a . (2.8)
Define the following functionals:
M(t) = max{u(t, x)}, m(t) = min{u(t, x)}, (2.9)
xeR xeR

for every t € [0, T*), where T* > 0 is the maximal existence time of solutions u to initial-
value problem (2.1).

The H'-orbital stability of the peaked waves is given as follows.

Theorem 2.2 (H!-orbital stability). Let ¢ (x — ct) = ae”*~°!l be the peaked solutions
given in Theorem 2.1. Assume that the initial data u, € H*(R), s > 3. Then ¢, is
H!-orbitally stable in the following sense: 30 < §; < 1 such that if

lug — @ llgn < as, 0<8 <38, (2.10)
then the corresponding solution u(t, x) to (2.1) satisfies

SUp [[u(t, ) — ¢o(- — EO) g < 2 (3a+ Clug)/*) 814, (2.11)
tel0,T*)
where &£(t) is the point at which the solution u(t¢,x) achieves its maximum and the
constant

2+/2a

g e gyl 2. (2.12)

Clug) = =

Remark 2.4. It is easy to check that the mCH-Novikov equation in (2.1) has the

sign-persistence property: if the initial data my = (1 — 32)u, > 0 (or < 0), then the

€202 Iudy €0 U0 Josn HOYNES 1 1Id 40 ALISHIAINN Ad 6£50759/9819/2/€20Z/2101He/UiW/Wod dno"olWaped.//:sd)Y Woly papeojumog



6198 R. M. Chen et al.

corresponding solution satisfies that m(t,x) > 0 (or < 0). Therefore, if one assumes in
addition that m, > 0 (or < 0), then the sign property on m implies that |u,| < |u|. Hence,
in (2.12), we have from (2.17) that

3/2
g 2o 1yl 2 < 2E(ug)?? < 2 (E((pc) n 4a28) < 6a8.
Therefore, C(u) in (2.12) can be replaced by
C(ug) = 4v/2a*.

Remark 2.5. Our stability result is established in the H'-metric, which is below
the regularity index HS for strong solutions as given in Proposition 2.1. The issue of
extending our result to replace the H!-metric by the HS-metric is much more delicate. On
the other hand, one may consider an H!-stability result for suitable weak solutions. One
of the main ingredients in the proof of Theorem 2.1 is the use of the two conservation
laws. Hence, once a weak solution theory is established so that E and F, are conserved,

it seems plausible that the same stability property holds for those weak solutions.
The proof of Theorem 2.2 is approached via a series of lemmas.

Lemma 2.2. For any u € H'(R) and z € R, we have
E(u) — E(p,) = llu— ¢.(- — 2|5 +4a (u(z —a) . (2.13)
Proof. Using integration by parts and (2.8), it follows that

lu — @ — 2112,

— E(w) + E(g,(- — 2)) — 2a / UE)P(x — 2) dx
R

—2a /z U, (X)o(x —z) dx + Za/oo U (x)p(x —z)dx

=E(u) +E(¢,) —4au(z) = E(u) — E(p,) —4a (u(z) —a).

Consequently, we have established the lemma. |

The following lemma is essential to derive the orbital stability of ¢,.
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Stability of Peaked Ways 6199

Lemma 2.3. Assume that u € HS(R), s > g and M, m are defined in (2.9).
(1) If M+ m >0, then F)(u) < sM2E(u) — 2M*.
(2) If M+ m <0, then Fy(u) < 3m?E(u) — sm*.

Proof. (1) Since M + m > 0, then there exists &£ € R such that M = u(¢). Let us define

900 = ux) —uy(x), x<§, 2.14)

U + uy,(x), x>¢,

and a direct computation gives rise to

—00

3 00
/gz(x)dx=/(u2+u§)dx—2/ qud.X+2/ uu, dx
R R 5 (2.15)
= E(u) — 2u?(€) = E(u) — 2M?.

On the other hand, we define h(x) by

2 _2 _ 1.2
hx) = ut(x) — sUu@uy(x) — sux(®), x<§,
ur(x) + Su@u,(x) — tul(x), x> &.

Direct computation yields that
2 44
/Rh(x)g x) dx=F,(u) — §M .

Since M + f > 0 implies that u? < M?, together with h — fu? = —
—1(u=+u,? <0, it follows that

1
3

h(x) < 4.2 < 5ye) (2.16)
3 3
Combining (2.15) and (2.16), we deduce that
4 2 4 ~ 5 8 ~ 4
Fi(u) — —M* = | h(x)g*(x)dx < —E(w)M? — —M?*,
3 R 3 3

thereby concluding part (1) of the lemma.

Part (2) of the lemma can be proved in a similar way. |
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6200 R. M. Chen et al.

Remark 2.6. Note that the functions g and h are zero when u is replaced by —¢,.

Indeed, this requirement is crucial to construct a Lyapunov function for the stability.
Lemma 2.4. Letu € HS(R), s > g and assume ||u — ¢ ll;n < ad, with 0 < § < 1. Then
|E(u) — E(p,)| < 4a®s, (2.17)

IF1(w) — F1(00)] = (Cw +17a%) 3, (2.18)

2+/2a
3

where C(u) = 200ty ll 2

Proof. Using the relation (2.15), for any u € H'(R), it is inferred that

Y

2 1 2
sup [u(x)| < —E( )2 = THUHHM
xeR

with equality holding if and only if u is a multiple of some translate of e~/¥!.

From the assumption on |[u — ¢z, it follows that

|Ew) — E(@p)| = |Ulullg + locllg) (ullg — loglg)]
< (lu = @l + 2l@cllz)lu — @l

< (a8 + 2«/§a) as < 4a’s,

and

|F)(u) — F1(¢C)|—'/ (u + 2u”uf —%u“) dx — /(§00+2(pc(pcx_%(pcx) dX‘
< [t zutud ot - 202k e g [ ful - o ax
f/R\(uz—wﬁ)(u2+2u§>|dx+%/R\u;‘;—wé‘x\dx

+/Rso§|(u2+2u§—¢§—2ng|dx

=L+, +1I,
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We compute I; as follows:

ho=2 [ kg lu - gl @+ ud) dx
< 2 (lulgs + el - = gl [ 2+ ud)de
2.19
< (V2lullgp +2a) Iu - @l - EW 1219
< = gl (Elgo) +40%5) - (V2w — ol +4a)

< 2a%5(4 +V28)(28 + 1).

In a similar manner,

I < az/]R |(U = 00)? + 2(Uy — 9e)? + 20U — ¢) + 4o (Uy — 9y)| dx
(2.20)

= 20? (Ilu = @oliZ + 210l 1t = ¢l ) < 2056 + 2/2).

For the term I,, by the Hélder and Young inequalities, it follows that

1
3

1 1
1 2 2
<3 ( /R (U2 + 92) % (Uy + 9ey)? dx) ( /R (Uy — Pex)? dx) (2.21)

1
22 2
= (/Rmﬁi + 98 dx) lu — @llg-

I /R (U2 + 92 (U + D) (U — 9| dx

A

Since u € HS(R) C W'™®(R), s > 3, we have

2 1
luglize < Ntglzoo lugll s

We also know that ||%X||ge = %aﬁ. Hence, plugging the above into (2.21), there appears

the relation

26 ,

I < (C(u) +tga )8, where C(u) = 2v2a

3

gl 200 |ty |l 2 (2.22)
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6202 R. M. Chen et al.

In view of (2.19), (2.20), and (2.22), we conclude that
IFy () — Fy ()| < (C(u) + 17a4) 5.

This completes the proof of the lemma.

Lemma 2.5. Assume that u(x) € HS(R), s > % which satisfies (2.17) and (2.18) with

0 < § « 1. Then we have the following:
(1) If M(t) + m(t) > 0, then

- 3
|M —a| < \/(21@2 + WC(”)) 5.

(2) If M(t) + m(t) < 0, then

~ 3
im+al <./(21a2 + —C(uw))Sé.
4q2
Proof. (1) If M(t) + m(t) > 0, it then follows from Lemma 2.3 (1) that
~ 3 _
M* + 21w - E(wM? < 0.
Hence, we define the function f,,(y) by
4 3 2
fun) =y + JFw - EWwy?, yeR.
Recalling (2.8), a direct calculation reveals that
foe ) =v* =22y’ +a* =y + )* v - @)®.
From (2.26), there appears the relation
_ _ 3
which, together with (2.25) and (2.27), yields

(77 +a)° (

~ 3
M — a)2 <M?*(E(w) — E(p,)) — 2 (F1(w) — F1(9,)) .

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)
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On the other hand, using the relation
Ewwmw=/f®wza
R
and the assumption (2.17), we discover that
E(u)
2

0<M? < <a®(25+1) < 2a°. (2.29)

Hence, in view of (2.28) and (2.29), we conclude that
- 3
alM—-al < \/(21a4 + ZC(u)) 8,

Part (2) of the lemma can be proved in a similar way and the detail is omitted,

which implies (2.23).
thereby concluding the proof of Lemma 2.5. |
We are now in the position to give a proof of the H!-stability result.

Proof of Theorem 2.2. Applying Lemma 2.1, we see that
E(u(t,-)) = E(ug) and Fy(u(t,-) = F;(uy), tel0,T").

Therefore from assumption (2.10), it is easy to see that the conclusion of Lemma 2.4

holds. Assumption (2.10) implies that
lug — ¢cllip~ < ad KL a.
By (2.7), it follows that
M(0) = max ug(x) = u(0) > ¢,(0) — as = a(1 - 8) > 0.

If m(0) = I)I{lelﬂrg Ug(x) > 0, the obviously

M(0) +m(0) > a(l —§) > 0.
If m(0) < 0, then there exists some 1 € R such that uy(n) = m(0). This way we know that

m(0) = I}(gﬂg Uo(x) = up(m) > ¢.(n) —as > —as.

So we still have

M(0) + m(0) > a(l —8) —asd > 0.
Therefore in any case we know that

M(0) + m(0) > 0.
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Furthermore, by continuity, there exits a T, > 0 such that
M(t) + m(t) > 0, (2.30)

for all t € [0, T;]. In this way, Lemma 2.3 (1) and Lemma 2.5 (1) hold true for ¢ € [0, Tl
Reading off (2.28) and using (2.29), we have

3
alu(t,§(t) —al < \/2612 (E(w) — E(p,)) — 1 (F1(w) — Fy(g,)

3
= / 2a2 (E(ug) — E(g,)) — 2 F1(uo) = Fi(p)) (2.31)

< \/(21(14 + ZC(uo)) s,

for any t € [0, Tyl. Now replacing z by £ in Lemma 2.2, there obtains the equality

lu(t, ) — e — E@D 71 = E(ug) — E(p,) —4a (u(t, £(t) — a) .

This, together with the estimates (2.17) and (2.31) leads to that for ¢ € [0, T],

lut, ) — . — @) < VIE(ug) — E(py)| + 4a |u(t,£(t) — al
(2.32)
<2(3a+ Clup)' ) s¥/4.

An important consequence of (2.32) is that we now claim that (2.30) holds for all
t € [0, T*). If not, then there exists some T € (0, T*) such that (2.30) holds for all ¢ € [0, T),
but

M(T) + m(T) = 0. (2.33)
This implies that (2.32) holds for ¢ € [0, T). So when § is sufficiently small so that
1/4) 174 _ @
2 (3a+C(u0) )8 <
we know that over t € [0, T),
~ ~ a
a

Thus, a continuity argument indicates that M(T) + m(T) > 5 with a > 0, which

contradicts (2.33). Therefore, (2.32) holds for all t € [0, T*), and hence we obtain (2.11).H
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2.4 W!l4-orbital stability

Note that the conservation of F; together with E as in (2.4) provides a control of ||u,||;4;
see, for example, [3]. In fact, we show that the H!-stability obtained in the previous
subsection can be further improved to the stability in the space H! N W'#, Again we

only consider the case a > 0 here.

Theorem 2.3 (W!“*-orbital stability). Let the assumptions of Theorem 2.2 hold. Then
¢, is W'*-orbitally stable in the following sense: 30 < §;, < 1 such that if

lug — @cllgr <as, 0<é <,
then the corresponding solution u(t, x) to (2.1) satisfies

sup u(t, ) — @o- — E@) s < Cp(ug)8* 18 + Cy(ug)s'/4, (2.34)
tel0,T*)

where £(t) is the point at which the solution u(t,x) achieves its maximum and the

constants C; and C, depend on a, ||ug,ll;~ and |[ugyllz2-

Proof. Let us denote

V(tl ) = u(tr -+ S(t)) — Per

where £(¢) is the point at which u(t, x) attains its maximum. In view of Theorem 2.2, we
know that

IVig < K84, (2.35)
Following [3,(2.7)-(2.8)], it is found that

il <3 (Il —FL) s Ivilds < V3Ivign JIVIE, —Fio). (2.36)

Plugging u = v + ¢, into F,(u) and using the fact that || llz0 = ll@gllze = ll@ollz =

loll2 = a yields after a direct computation that
IFy (V)] < [Fy(w) — Fy(g,)|

+2

/R (2V2VX<pCX+ Vzgogx + 2VV§¢C+ AVV, 0. Pcx + 2V<pc<pgx + Vigo? + 2vx¢§¢cx) dx‘

+

1
/ (4V3§DC + 6v2pZ + 4v<p§) dx‘ + 3
R

[ (45300, + 620+ av,8) x|

4
< |Fi(w) — Fy ()| + 3 ‘/R V300 dx‘ + 14a%||[v] g + 20a% (V2. + 12al|v]3,.
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Note that we have

4 3 4a 3 4a 2
3 vawcxdy = Flvelzs = ﬁIIVIIHu/IIVIIHl —Fi(v).

Thus, from (2.35) for § « 1 sufficiently small it follows that

IFy (V)] < [Fy(w) — Fy(pp)| + J—IIVIIHl\/ VI3 — F1(v) + 15a||viiz. (2.37)

On the other hand, from Lemma 2.4, we have

IFy (W) = Fy (9] = IFy (ug) = Fy ()] < (Clug) +17a*) 5.

Plugging the above into (2.37) yields that

1 1
[F1 (V)| = —IIVIIHI\/ VI3 —Fi(») +L < —||V|IH1 EHV”?p t 5P+ L

where L := 15aK8'/* + (C(ug) + 17a*) § < 15aKs'/* + K*5. Hence, we have

16a2
IFy(v)| < IvIZ: + vl + 2L. (2.38)

Therefore from (2.36), it is inferred that

vyl < 16a%(|v]Z, + 6]vIE: + 6L < Cy(ug)8'/* + Cy(ug)8
where C; (uy) := 90aK + 12aK and C,(u,) := 24a’K + 12K*. Moreover, it is noted that
1/4

IViga < IVl < K8

Combining the above leads to (2.34). This completes the proof of Theorem 2.3. |

3 The Extended Cubic CH Equation

We now turn our attention to the stability analysis for the extended cubic CH equation.
It is known that the classical CH equation without the linear terms u, and u,,,
possesses peaked localized solitons. Analogously we will focus on the equation (1.4),
could be

removed by the Galilean transformation u(t, x) — u(t, x—«t) with a suitable parameter «.

which neglects the linear terms u, and u although the linear term u,

XXX XX

3.1 Existence of peaked solitary waves

Consider the initial-value problem

m; + ky (2u,m 4+ um,) + ky (w? - 2@w?),)u), =0, t>0, xeR,
m=u—u (3.1)

p.o. ¢4

u(0,x) = uy(x), x e R.
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Applying the operator (1 — 82)~! to above equation in (3.1) yields the following nonlocal

equation:
1 k k 5
U, + kyuu, + ki py x (u2 - Eui) + Ut + Py (uui + §u3) =0. (3.2)

The following local well-posedness results of strong solutions can be obtained
by applying a Galerkin-type approximation method, which is established by Hilmonas
and Holliman [13]. The proof is thus omitted.

Proposition 3.1. If s > % and u, € H*(R), then there exists T > 0 and a unique
strong solution u e C([0, T), HS(R)) N C'([0, T), H"'(R)) of the initial-value problem
(3.1). Further, the map uy — u is continuous from a neighborhood of u; in H*(R) into
u € C([0, T), HS(R)) N CL([0, T), HS~1(R)).

Similarly as in the previous section, we record the important conservation laws.

Lemma 3.1. For a strong solution u obtained in Proposition 3.1, the following

functionals

E(u) = /R(u2 +ud)dx, F,(u) =2k, /R(u3 + uu?) dx + k, /R(u‘L +u?ud)dx  (3.3)
are conserved, that is, %E(u) = %Fz (u) =0, forallt €0, 7).
Proof. The conservation of E(u) can be proved by multiplying equation in (3.1) by u

and integrating over R and then integrating by parts. The conservation of F,(u) is an

easy consequence of the Hamiltonian structure of equation in (3.1), cf. (1.6). In fact, we

have
dF,(w) SF, 9. 0F, SF, SF, SF,
=\—-—, = 1 —_ 8 -, =\, =\{—-—, J —_—) = 0,
dt su’ ( X)ém e sm' su' "2 su
and this completes the proof of the lemma. |

The existence of the single peaked solutions to equation (3.2) is given below.

Details of the proof can be found in Appendix A.

Theorem 3.1. Assume k, # 0. The equation (3.2) admits the single peakon of the

following forms:

€202 Iudy €0 U0 Josn HOYNES 1 1Id 40 ALISHIAINN Ad 6£50759/9819/2/€20Z/2101He/UiW/Wod dno"olWaped.//:sd)Y Woly papeojumog



6208 R. M. Chen et al.

(1) If ¢ # 0 and kf + 2k,c > 0, then the single peaked solutions have the form

—ky £ /K% + 2k,c

u(t,x) = ¢ (x — ct) == ae ¥ with a= X =:ay #0. (3.4)
2
(2) If c = 0 and k; # 0, then the single peaked solutions take the form
i 2k,
u(t,x) = ap(x) :=ae ', with a= % # 0. (3.5)
2

3.2 H!-orbital stability of ¢c(x — ct)

The focus of this subsection is the stability analysis with peakons of the form (3.4).
For simplicity, we will only consider the case when a = a, > 0, since the other case
can be easily handled by using invariance of the cubic CH equation in (3.1) under the
transformation u - —u and k; - —k;.

It is easy to check that
— 0) = E _ 2 2 2 F _ §k 3 k 4
I;?:lﬂg({(pc(x)} - (p(;( ) - a+l (‘pc) - ”(pcllHl - a+l 2(()0(;) - 3 la’+ + 2a+'
The main result of this subsection is the following:

Theorem 3.2 (H'-orbital stability). Consider ¢, = a, e * ¢ the peaked solutions
defined in (3.4). Then ¢, is orbitally stable in the following sense. Assume that the initial

data ug € H5(R), s > 3. There exists some 0 < §; < 1 such that if
lug — gl <a, s, 0<8 <6y, (3.6)

then

(1) when k; > 0, k, > 0, the corresponding solution u(t) of (3.1) satisfies

sup ”u(tr ) - (pc( - g(t))”Hl < 2a+

86k, + 75k,a. \ /4
(1—2+) sS4 (3.7)
tel0,T*)

8k, +3kya,

2
(2) whenk; >0,k;, <0,and 0 < ¢ < —%, the corresponding solution u(t) of

(3.1) satisfies

(41k1 + 36|k2|a+)1/461/4

sup [lu(t, ) — (- —E@)lp < 2ay T
1

tel0,T*)
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where T* > 0 is the maximal existence time of the solution u(t,x) and &£(t) € R is the

point at which the solution u(t, x) achieves its maximum.
The proof of this theorem is achieved via a series of lemmas.
Lemma 3.2. For any u € H'(R) and z € R, we have
E) —E(p,) = lu—¢.(- —2)I%: +4a, (u@ —a,).
Proof. The proof follows exactly along the same line as for the proof of Lemma 2.2. B
Lemma 3.3. Letu € HS(R), s > % Assume |[u — ¢.llg1 < a8, with 0 < § < 1. Then
[E(w) — E(po)l < €38, |Fa(w) — Fylpp)| = C36, (3.8)
where C, := 4a?, C; := (10/k,| + 8lk,la, ) ad.
Proof. The 1st part of (3.8) is just (2.17). As for the 2nd estimate, it is noted that
|Fp(w) — Fy(po)| < 21k (1 (W) — L (9] + 1Kol (w) — ()],

where the functionals I; and I, are defined in (1.8). In view of [7, Lemma 3], it follows
that

82
1L (W) — I (pp)| < als (3J§+ 38 + ﬁ) <5a3s.

Next, similar to (2.19) and (2.20), a calculation reveals that
(W) = Ty(eo)| < /R 102 = gD + ud)] + g2 + ud - 92 — 03] dx

< a8+ v28)(25 + 1) +at8(8 +2v2) < 8ats.
Putting the above together, we complete the proof of the lemma. |

Lemma 3.4. Assume that u € HS(R), s > %, and lu — ¢ ll;n < a8, with 0 < § < 1.

Furthermore, assume that one of the following two conditions holds:

(1) k, >0,k,>0,and M +m > 0.
2
(2) k1>0,k2<0andO<C§—2kT12.
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Then we have
2k, u + k,u? < 2k, M + k,M?, (3.9
where recall that the constants M = max u(x) > 0 and m = min u(x) € R.
xeR xeR
Proof. (1)Ifk; >0,k, > 0and M + > 0, then it is easy to see that
2k u + k,u? < 2k, M + k, m%({uz(x)} < 2k; M + k, M.
Xe

(2) In this case, we have

Nz ~ky + k] +2kpc
0 < —llgcllm =a, = <—. (3.10)
2 ky LA

Then choosing § small enough, from (3.8), (3.10), and the Sobolev embedding, it

transpires that

V2 1 k
lullgr < - lgclen ++v2a,82 < 1 (3.11)

ullpe = :
L2)

V2
2

On the other hand, define the functional f(u) := 2k, u +k,u?. In view of (3.10) and (3.11),

a direct computation yields that

af

k
= 2k, + 2k,u > 2k; — 2|k,|[u| > 0 for [|ul;~ < @
Hence, it follows that f(u) < f(1\~/I). We thus finish the proof of the lemma. |

Lemma 3.5. Under the conditions of Lemma 3.4, for u € HS(R), s > % we have
~ ~ 4 ~
Fy(u) < (2k; M + k,M?)E(u) — §k1M3 — k,M*. (3.12)
Proof. Taking & € R such that M= u(§) and defining g(x) as in (2.14), it is noted that

/ g% (x) dx = E(u) — 2u?(€) = E(u) — 2M?>. (3.13)
R
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In addition, the auxiliary function h(x) is defined by
h(x) := 2k u(x) + kzuz(x), x eR.
It holds that
2k, / u(x)g?(x) dx = 2k, I; (u) — 871“1\713, k, / u?(x)g%(x) dx = kI, (u) — k,M*.
R R
Thus, we have
2 8k, ~3 7
h(x0g® (x) dx = Fy(u) - =M — k,M*. (3.14)
R

On account of Lemma 3.4, it then follows from (3.13) and (3.14) that

8k ~ _
Fy(u) — T1M3 — k,M* = /Rh(x)gz(x) dx = /R (Zklu + kzuz) g% (x) dx
< (2k11|7[ + k21|7I2) E(u) — 4k, M3 — 2k,M*,
which in turn implies that
~ ~ 4 ~ ~
Fy(w) < (2k1M + kzMz) E(u) - Sk M° — ke,

Hence, we reach the conclusion of Lemma 3.5. [ |

Lemma 3.6. Letk; > 0, k, > 0 and M + m > 0. Assume that u e H5(R), s > %, and

satisfies (3.8). Then
~ 78k, + 72k,a
—a,|< |[BatT2ha, | o
8k, +3kya,

Proof. From (3.12), it follows that
4. ~ ~ ~
k, (§ 3 _ 2E(uw)M + 21, (u)) +k, (M4 — E(u)? + Iz(u)) <o. (3.15)
This motivates us to define the Lyapunov function p,(z) by

p,(2) =k, (ng" — 2E(w)z + 21, (u)) +k, (z4 —E(wz® + Iz(u)) . (3.16)
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Recall that E(g,) = 2a2, I (p,) = 3a3 and I,(¢,) = a}. We have

4 8
Py (2) = k, (§z3 — 2E(p.)z + gai) +k, (24 _ E(<pc)Z2 + ai)
=(z— a+)2 (;—Lkl(z +2a.) + ky(z + a+)2) .
We can also write
P, (M) = p, (M) + 2k, M (E(u) — E(g,)) + k,M? (E(u) — E(9,)) — (Fy(w) — Fy(9,)) ,

which together (3.15) yields

(1\7[ - a+)2 (gkl(fv[—i— 2a,)+ k, (M + a+)2)

(3.17)
< (2k11~VI + szvﬂ) [E(u) — E(¢p)] + |F(w) — Fy(9)] .
Using the conditions k; > 0, k, > 0, it is determined that
4, - _ , 8 )
§k1(M+2a+)+k2(M+a+) z§k1a++kza+. (3.18)
On the other hand, (3.8) implies that
0<< “/;E(u)% < ‘/7§(E(<p,3)+4aia)é —a, (25+1)2. (3.19)

Hence, in view of (3.17), (3.18), and (3.19), we conclude that

- a,|< / 3 (2K, M + kM) |E(u) — Elgo)| +3|Fp ) = F (00|
e 8k a, + 3k,a%

(6K, M + 3k,M2)C,8 + 3C38 78k, + 72k,a., !
< < ~a,dz,
8k,a, + 3k,a? 8k, + 3k,a,

which completes the proof of Lemma 3.6. |
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2
Lemma 3.7. Letk; >0,k; <0Oand0 <c < —%. Assume that u € HS(R), s > 3 and

satisfies (3.8). Then we have

_ 78k, + 72lkyla,
|M—a+|<\/ Ik, a8z,

Proof. Using the similar arguments as Lemma 3.6, we replace (3.17) by

~ 4 ~ ~
(M — a,)? (gkl(M +2a,) + k(M + a+)2)
(3.20)

< (2k11|7[ + |k, |1V12) |E(u) — E(¢p)| + [Fo(w) — Fy(0,)] -

a2
From the conditions k; > 0, k, < 0,and 0 < ¢ < %, a direct calculation yields that

0<2a, < ;‘i]zl . Choosing § sufficiently small, we have from (3.11) that
~ 4k
0<M+a, <2a, +v2a,87 < ——1,
3k,
from which we deduce that
4 - ~ 4k
5kl(M+2a+)+k2(M+a+)2 > T1a+. (3.21)

Hence, in view of (3.19), (3.20), and (3.21), we therefore conclude that

— v V2
i a < \/(leM—l— 81k |B1%)C0 +3C30 _ \/78k1 +72lkyla, oot
4kia 4k,
This completes the proof of Lemma 3.7. ]

Proof of Theorem 3.2. Assume u, € H’(R) with s > % Let u € C([0, T*),H’(R)) N
c([0, T*),H"1(R)) be the corresponding solution of initial-value problem (3.1) on the
line with T* > 0 being the maximal existence time of the solution. From Lemma 3.1, it
is noted that

E(u(t,)) = E(ug) and F,(u(t,-) = Fy(uy), tel0,T"). (3.22)

(1) Applying (3.22) together with (3.6) implies that Lemma 3.3 holds. Further-

more, a similar argument as in the proof of Theorem 2.2 suggests the existence of T, > 0
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such that
M(t) + m(t) > 0, for tel0,T,l,

which allows us to apply Lemma 3.6 to obtain

78k1 + 72k2a+ 1
_ S i s .2
lut &) —a,| < | 8k, T 3ka, a,s?, (3.23)

for any t € [0, Ty], where u(t, £(¢)) = M(t). Moreover, utilizing Lemma 3.2, we have

lut, ) — (- =@l =< \/|E(u0) —E(po)| +4a,|u&@®) —a,l

78k, + 72k2a+)1/481/4 (3.24)

2a 14—
< +( T 8k, 1 3kya,

for t € [0,Tyl. Again a similar continuity argument as is performed in the proof of
Theorem 2.2 implies that T can be pushed all the way until T*, which means that (3.24)
holds for all t € [0, T*). Thus, we complete the proof of part (1) of Theorem 3.2.

(2) Similarly, one can apply Lemma 3.3 here. Moreover, since in this case
2 k2

0<c<—3r = 0O0<c<--—%

9%k, 2k,
Lemma 3.7 can be applied. Then the rest of the proof can be done in a similar approach,

and hence we omit it here. [ |

4 Appendix A

For the readers’ convenience, we provide the details about the proofs of Lemma 2.1,

Theorem 2.1, and Theorem 3.1 in this appendix.

Proof of Lemma 2.1. The conservation of E(u) can be obtained by multiplying equation
in (2.1) by u and integrating over R and then using integration by parts. On the other
hand, taking the inner products between equation in (2.1) and 4(1 — 32)~! ((u? — u2)m),

then we have

0 =4fm,, (1 - 837" (w? - uﬁ)m) ) + 4k, ( ((u2 - uﬁ)m) -0 (w? - uﬁ)m) )
* (4.1)
+ 4ky(u®m, + 3uu,m, (1 — 32)™! ((u2 - ui)m) )=:P, + P, + P;.
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For the terms P, and P,, a direct calculation gives that
2_ 2 d 4 22 1 4
P=4 u,(u”—upymdx=— u® +2u‘u; — -u, | dx, (4.2)
R dt Jr 3

and

P, = 4k, /R ((u2 _ ui)m)x 1 - 27! ((u2 — u§)m) dx

B ) (4.3)
= 2k, /R (((1 — 92)~2 ((u2 - uﬁ)m)) )X dx = 0.
Applying integration by parts, we discover that
P, = 4ky(um,, + 3uu,m, (1 — 92)"! ((u2 - ui)m) )
= 4k, (u?u,, (u? — ud)m) + 2k,((1 — 82)'u?, (u? — u)m)
+4k,((1 — 82719, (u® + 3uu?), w? —udm) =0, (4.4)

where we have used the operator formula (1 — 32)7192 = —1 + (1 — 32)~!. Plugging (4.2)-
(4.4) into (4.1), we deduce that

d 1
E/]R (u4 + 2u?u? — gui) dx =0. (4.5)

This completes the proof of Lemma 2.1. |

Proof of Theorem 2.1. Recall the definition (2.5). For simplicity, we drop the subscript
in ¢,. We have that

1
¢'(x) = —sgn(X)p(x),  p&x) = 24 %%

Plugging in the ansatz (2.5) into (2.3) and computing the convolution terms, we have

2
p * [(ﬁ + kz) o3+ (k1 + 3k2) w(w’)z} + (h + %) px(¢)?

3 2 3
. 1 kl kz ’ 3 2 _4(2k1+3k2) / 3
—5(§+7)(5¢ *@° + @ * (@ so))—T<p * 7.

A direct computation yields that

3a
¢ * ¢ = —(sgn(x)p) * ¢° = ngn(x)go«oz —a?).
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For the local terms in (2.3), we have

1 2k, + 3k
—cp' +ky (sozso’ - g(w’)?’) + kyp?¢' = sgn(x)g (C -~ #wz) -

3

Putting together, we find the equation for ¢ to be

2
sgn(x)e (c — @az) =0, (4.6)

which leads to the two cases (1) a = £,/ Zkf#kz and (2) @ # 0 with 2k, + 3k, = ¢ = 0. This
completes the proof of Theorem 2.1. |

Proof of Theorem 3.1. Similar to the approach in Theorem 2.1, we plug the function ¢

into (3.2). A direct calculation then reveals

k k
—co' + koo + fsozso’ = sgn(x)g (C —kyp — frpz)

and

k k 5 k
/ 2, k1,2 K2 2 9 3) 2 _ R ( 3_ 2
P *(klw +3 ()" + zsa(so) t5¢ ) = sgn(x)k; (sv afp)+Sgn(X) 5 (<p a w),

where use has been made of the equalities ¢’ % ¢? = 2Tasgn(x) . (cpz — ag). In view of the

above two identities, we deduce that the equation for ¢ is

sgn(x) (C —kja— %az) ¢ =0.

—ki1%\/k3+2kzc

Solving the above, we have that (1) ¢ # 0 and a = —F —or (2) ¢ = 0 and
a= —%. ||
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