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This paper is concerned with two classes of cubic quasilinear equations, which can

be derived as asymptotic models from shallow-water approximation to the 2D incom-

pressible Euler equations. One class of the models has homogeneous cubic nonlinearity

and includes the integrable modified Camassa–Holm (mCH) equation and Novikov

equation, and the other class encompasses both quadratic and cubic nonlinearities.

It is demonstrated here that both these models possess localized peaked solutions. By

constructing a Lyapunov function, these peaked waves are shown to be dynamically

stable under small perturbations in the natural energy space H1, without restriction on

the sign of the momentum density. In particular, for the homogeneous cubic nonlinear

model, we are able to further incorporate a higher-order conservation law to conclude

orbital stability in H1 ∩ W1,4. Our analysis is based on a strong use of the conservation

laws, the introduction of certain auxiliary functions, and a refined continuity argument.

1 Introduction

Solitary waves are solutions to a time-dependent problem that carry finite energy,

remain spatially localized, and evolve by translating at a fixed velocity without altering

their shapes. They arise from precise balance between dispersion and nonlinear
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Stability of Peaked Ways 6187

effects and play a substantial role in the study of more general solutions in the

limit of large time. Their importance is also manifested in the well-known “soliton

resolution conjecture” (see, e.g., [23]), asserting that in general, solutions resolve into

a superposition of weakly interacting solitary waves and decaying dispersive waves.

Hence, it is natural to investigate the stability of solitary waves in order to understand

this asymptotic decomposition.

1.1 Cubic nonlinear shallow-water model equations

We consider two families of quasilinear shallow-water equations recently derived in [4]

as asymptotic shallow-water model equations for the 2D full water wave dynamics.

These two families are derived in a scaling regime corresponding to waves with

relatively large amplitude, which is in contrast with the classical Korteweg–de Vries

(KdV) weakly nonlinear scaling.

To introduce the equations of the present study, let us briefly recall the modeling

process of [4]. The common procedure in the water wave modeling involves relating two

independent nondimensional parameters

ε =
a

h0

� 1, μ =
h2

0

λ2
� 1,

where a, h0, and λ are the typical amplitude of the wave, the depth of the water, and

the wavelength, respectively. The balance between the nonlinearity parameter ε and

dispersion parameter μ responsible for generation of interesting nonlinear phenomena

is usually quantified to be a power law scaling between ε and μ in the asymptotic regime

ε, μ � 1. For instance, the KdV weakly nonlinear scaling corresponds to ε = O(μ), and

the so-called Camassa–Holm (CH) scaling regime for shallow–water waves of moderate

amplitude amounts to asking ε = O(μ1/2).

The next level of nonlinearity-enhancing scaling proposed in [4] aims at incor-

porating higher-order nonlinearity to capture more pronounced nonlinear behavior,

for example, the curvature blow-up, that is, the 2nd derivative of solution becomes

unbounded in finite time while the solution and its gradient remain bounded.

Setting ε = O(μ2/5) and expanding the equation for the scaled surface elevation

η, it follows that

2(ηx + ηt) +
1

3
μηxxx + 3εηηx −

3

4
ε2η2ηx +

3

8
ε3η3ηx + εμ

(
23

12
ηxηxx +

5

6
ηηxxx

)

+
115

192
ε4η4ηx + ε2μ

(
23

16
ηηxηxx +

29

8
η2ηxxx +

3

4
η3

x

)
= 0 + O(ε5, μ2).

(1.1)
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6188 R. M. Chen et al.

We then adapt the idea of [1] to expand η in terms of another function u, which is related

to the horizontal velocity of the fluid, together with its derivatives, using the so-called

Kodama transformation [14]. In particular, the expansion takes the following form:

η ∼ u + εA + μB + εμC + μ2D + ε2E + ε3K + ε2μG + εμ2H, (1.2)

where

A := λ1u2, B := λ2uxx, E := λ3u3, K = λ0u4, C := λ4u2
x + λ5uuxx,

D := λ6uxxxx, G := λ7uu2
x + λ8u2uxx, H := λ9uxuxxx + λ10uuxxxx + λ11u2

xx.

This Kodama transformation produces sufficient degrees of freedom to allow one to

derive the desired family of cubic nonlinear asymptotic model equations. For example

(see [4] for more details), setting

λ1 =
k1

2
+

189

20
, λ2 =

k1

6
+

179

60
, λ3 =

23

5
+

k1

4
,

λ0 =
3

19
k3

1 +
13083

1520
k2

1 +
1189081

7600
k1 +

108125767

114000
,

λ4 = −
1

6
k2

1 −
671

120
k1 −

56327

1200
, λ5 = −

1

6
k2

1 −
67

15
k1 −

30437

1200
,

where λ7, λ8 are completely free, and λ6, λ9, λ10, λ11 are uniquely determined from λ7 and

λ8, and k1 ≈ −15.1765 is the unique real root of

2000k3
1 + 106200k2

1 + 1871550k1 + 10934031 = 0,

one can derive the following model equation consisting of quadratic terms being

characteristic for the Camassa–Holm (CH) equation together with cubic nonlinear terms

known from the Novikov equation and the modified Camassa–Holm (mCH) equation:

mt + ux−
μ

4
uxxx +

ε

2
(2uxm + umx) +

k1ε2

4

((
u2 −

5

12
μu2

x

)
m

)

x

+
69ε2

20
(u2mx + 3uuxm) = 0 + O(ε5, μ2),

where m = u − 5
12μuxx is called the momentum density. Via a further scaling

u → 2ε−1u, t →
(

5

12
μ

)− 1
2

t, x →
(

5

12
μ

)− 1
2

x,

and a formal scaling limit consideration t → δ−2t and u → δ−1u then sending δ → 0, the

quadratic CH terms can be removed, yielding the so-called mCH–Novikov equation

mt + k1

(
(u2 − u2

x)m
)

x
+

69

5
(u2mx + 3uuxm) = 0,

where, abusing notation, the momentum density becomes m = u − uxx.
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Stability of Peaked Ways 6189

On the other hand, considering

η = u +
97

20
εu2 +

29

20
μuxx + εμ

(
1261

600
uuxx −

10373

1200
u2

x

)
+

23

10
ε2u3 +

13067089

114000
ε3u4

in (1.2) and performing a similar scaling and formal limit procedure, another cubic

nonlinear equation can be derived as

mt + ux −
3

5
uxxx + (2uxm + umx) +

46

5

((
u2 −

1

4
(u2)xx

)
u

)

x

= 0.

One of the purposes of this work is to investigate some qualitative properties of

the above two equations, while not restricting ourselves with the explicit coefficients of

the cubic and quadratic terms. In particular, we will study the following two equations:

mt + k1

(
(u2 − u2

x)m
)

x
+ k2(u2mx + 3uuxm) = 0, (1.3)

and

mt + k1

(
2uxm + umx

)
+ k2

((
u2 −

1

4
(u2)xx

)
u

)

x

= 0, (1.4)

where m = u − uxx and k1 and k2 are two arbitrary constants. Further motivation to

consider (1.4) is explained in Section 3.

1.2 Peaked solitary waves

Mathematically, equation (1.3) can be viewed as a combination of the mCH equation

[8, 21, 22] (corresponding to k1 = 1, k2 = 0) and the Novikov equation [20] (corresponding

to k1 = 0, k2 = 1). Equation (1.4) generalizes the well-known CH equation [2, 9] when

k1 = 1 and k2 = 0.

Like their ancestors—the CH, mCH and Novikov equations, the two equations

(1.3) and (1.4) both exhibit nonlinear dispersion, which enables them to support a

remarkable class of non-smooth soliton-like solutions, namely, the peaked solitary

waves of the form

ϕc(x − ct) := ae−|x−ct|;

see Theorem 2.1 and Theorem 3.1. These peaked solitary waves are also a common

characteristics shared by many dual integrable nonlinear systems, like the CH, mCH,
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6190 R. M. Chen et al.

and Novikov equations. Indeed, (1.3) can be put into the form

∂m

∂t
= J1

δE

δm
, (1.5)

with the Hamiltonian operator

J1 = −k1∂xm∂−1
x m∂x − 2k2(3m∂x + 2mx)(4∂x − ∂3

x )−1(3m∂x + mx),

and the corresponding Hamiltonian functional

E(u) =
∫

R

(u2 + u2
x) dx.

In addition, another conserved quantity of (1.3) is F1(u) =
∫
R

(
u4 + 2u2u2

x − 1
3u4

x

)
dx (see

Lemma 2.1). For (1.4), it is found that the Hamiltonian functional E(u) is again conserved

quantity. It is also observed that (1.4) can be rewritten as

∂m

∂t
= J2

δF2

δm
, with J2 = −

1

4
∂x(1 − ∂2

x ), (1.6)

and the corresponding Hamiltonian functional is given by

F2(u) = 2k1I1(u) + k2I2(u), (1.7)

where

I1(u) =
∫

R

(u3 + uu2
x) dx, I2(u) =

∫

R

(u4 + u2u2
x) dx. (1.8)

At this point, we have not fully exploited to see if the model equations (1.3) and (1.4) can

be put into a bi-Hamiltonian form, or if they admit a Lax pair, and hence integrable.

This is certainly an interesting direction to go but it is beyond the scope of this paper.

1.3 Orbital stability in H1 space

The primary goal of the present paper is to investigate the dynamical stability of the

peaked solutions for these two model equations (1.3) and (1.4). A common strategy for

studying the stability of solitary waves of such systems is to exploit the Hamiltonian

structure. However, many solitary waves are not local minimizers of the energy but are

instead indefinite energy saddles. Fortunately, in a number of cases, the Hamiltonian

system is canonical and the solitary waves can be thought of as local extrema of the
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Stability of Peaked Ways 6191

energy subject to the constraint of a fixed momentum, another conserved quantity

generated by translation symmetry. Such a fact was exploited in two seminal papers

of Grillakis–Shatah–Strauss [10, 11] to develop a powerful tool to determine stability

or instability. Among other hypotheses, one crucial assumption needed for application

of the machinery of [10, 11] is that the spectrum of the linearized Hamiltonian at the

solitary wave consists of finitely many negative eigenvalues, zero, and a subset of the

positive real axis separated uniformly away from the origin.

1.3.1 Lyapunov method

Note that the peaked solitary wave ϕc is a global weak solution. Its non-smoothness

property leads to a degeneracy in the linearized Hamiltonian, making the spectral

analysis and hence the approach in [10] difficult to apply. Such a difficulty has been

long observed for many quasilinear dispersive equations admitting peaked solutions.

Constantin–Strauss [7] introduced a new idea in the spirit of the Lyapunov method to

establish the H1-orbital stability of the CH peakons. Their idea relies crucially on two

special conserved quantities E(u) and F(u), one (say, E) being the H1-energy, and the

key observation is that the H1 distance of the perturbed solutions to the peaked wave is

controlled by the difference between the corresponding energies, with an error given by

the pointwise difference between the peaks of the solution u and the peaked wave ϕc,

that is

E(u) − E(ϕc) = ‖u − ϕc(· − z)‖2
H1 + 4

(
u(z) − Mϕc

)

for any z ∈ R, where Mϕc
denotes the peak of ϕc. Then a Lyapunov function can be

constructed via the introduction of some suitable auxiliary functions. Through this

Lyapunov function, one obtains an inequality relating the maximum of the perturbed

solution with the conserved quantities
∣∣∣Mu − Mϕc

∣∣∣ � |E(u) − E(ϕc)| + |F(u) − F(ϕc)|,

where Mu is the peaks of u. Finally since the difference terms on the right-hand side can

be made small according to the initial perturbation,
∣∣∣Mu − Mϕc

∣∣∣ will be small, proving

stability.

The idea of [7] has been successfully applied to many other peakon equations,

like the ones with quadratic nonlinearity including the Degasperis–Procesi (DP) equa-

tion [15] and the μ-CH equation [5]; and the cubic nonlinear models, for example, the

Novikov equation [17] and the generalized mCH equation [16].
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6192 R. M. Chen et al.

1.3.2 Sign of m

The nonlinear terms in (1.3) are all cubic, leading one to reexamine the approach of

[17]. Among the assumptions of [17] on the initial perturbation, a crucial one is the sign

condition, namely m0(x) = (1 − ∂2
x )u0(x) ≥ 0. Such a sign condition will be preserved for

later time, and thus the solution satisfies that u(t, x) ≥ 0. This allows one to find the

required auxiliary function

h(x) := u2(x) ∓
2

3
u(x)ux(x) −

1

3
u2

x(x),

and use h to bound the functional F(u) by E(u) and the peak value Mu as

F(u) −
4

3
M4

u ≤
4

3
max
x∈R

(u2)
(
E(u) − 2M2

u

)
=

4

3
M2

u

(
E(u) − 2M2

u

)
, (1.9)

cf. [17, Lemma 9]. One of our goals here is to remove this sign constraint on the initial

data. Indeed, the structure of equation (1.3) suggests us to work with the same auxiliary

function h. But we see that (1.9) still holds if the positivity assumption on u is replaced

by

Mu + min
x∈R

u ≥ 0. (1.10)

On the other hand, since min
x∈R

ϕc = 0 we know that Mϕc
+min

x∈R
ϕc > 0, and hence (1.10) holds

with a strict inequality at initial time if the initial data u0 is sufficiently close to ϕc.

Continuity then guarantees that this property will propagate for some time, which in

turn ensures stability over that time period. But the H1-orbital stability then implies

that (1.10) holds over this time period as well. This way the same argument repeats, and

so one achieves stability over the entire time of existence, cf. Theorem 2.2.

We would like to point out that our new method in handling equation (1.3) can be

used to treat the Novikov equation (k1 = 0) and the mCH equation (k2 = 0). As a result,

the assumption on the initial momentum density m0 ≥ 0 used in [17] can be removed, at

the price that the global solution in [17, Theorem 1] being replaced by a local one.

1.3.3 A new auxiliary function

Equation (1.4) carries a similar structure as the generalized mCH equation [16] in the

sense that the nonlinearities contain both quadratic and cubic terms. It was discovered

in [16] that the interaction between the quadratic and the cubic terms can be quite subtle

and hence requires a rather delicate analysis. In particular, an auxiliary function of the

form h(x) := 2k1u(x) + k2

(
u2(x) ∓ 2

3u(x)ux(x) − 1
3u2

x(x)
)

is used and the positivity of the
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Stability of Peaked Ways 6193

initial momentum density m0 is still needed to ensure an estimate like (1.9). However,

for our equation (1.4), the sign-preservation property of m fails to be true and thus

assuming m0 ≥ 0 is never enough to infer the positivity of the solution for later time.

What turns out to make the argument work is that we may consider a different auxiliary

function

h(x) := 2k1u(x) + k2u2(x).

When the two parameters k1 and k2 are “cooperative”, namely, k1, k2 > 0, we can easily

bound h as h ≤ 2k1Mu + k2M2
u, provided that (1.10) holds. Once such a bound for h

is available, a similar estimate of the form (1.9) can be proved; see Lemma 3.5. As a

result, the orbital stability of the peakons can be established with the help of a similar

continuity argument as before, cf. Theorem 3.2 (1).

On the other hand, when k1 and k2 are “uncooperative” in the sense that k1 > 0

but k2 < 0, it becomes less clear whether h can be bounded in terms of Mu. However,

by restricting the wave speed, one can prove that for small perturbations h will be

increasing; see Lemma 3.4 part (2). This immediately implies that h ≤ 2k1Mu + k2M2
u,

and the orbital stability follows, cf. Theorem 3.2 (2).

1.4 Orbital stability in a finer energy space H1 ∩ W1,4

The H1-topology used in the above stability results naturally arises from the conser-

vation of the H1-energy E(u) for both equations (1.3) and (1.4). On the other hand,

though not having been explicitly analyzed, traditional characteristics method seems

to indicate that strong solutions of (1.3) and (1.4) can exhibit finite-time wave-breaking

(i.e., derivative blow-up) for well-chosen initial data.(The wave-breaking for (1.3) has

recently been studied in [4].) Such a feature in turn suggests a strong instability

property of the peakons under the Lipschitz metric for perturbations as the strong

solutions. Therefore, it would be interesting to investigate the stability issue under

a certain topology that is between H1 and W1,∞. We would like to also point out

that the strong W1,∞ instability for H1-stable peakons under weak-solution perturba-

tions has been confirmed for the CH equation [18, 19] and the Novikov equation [6]

recently.

A natural way to seek an intermediate topology is to examine the higher-order

conservation laws. It turns out that the conserved quantity F1(u) of equation (1.3)

together with the H1 conservation gives W1,4 control of solutions, cf. (2.36). In fact,
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6194 R. M. Chen et al.

one can prove that for a perturbation u of the peaked wave ϕc,

|F1(u − ϕc)| � |F1(u) − F1(ϕc)| + f (‖u − ϕc‖H1)

for some polynomial function f , cf. (2.38). From this, one can deduce W1,4 stability of the

peakons even for initial perturbation that is only H1 close to the peaked solitary waves;

see Theorem 2.3.

Applying the same idea to (1.4), on the other hand, would not generate a finer

topology than H1, since the conservation law F2 does not provide a stronger norm

than E.

1.5 Organization of the paper

The rest of the paper is organized as follows. In Section 2, we first state the local well-

posedness result of the initial-value problem associated with (1.3) and then establish the

existence of peaked solutions and prove their orbital stability in H1 ∩ W1,4. The similar

discussion for equation (1.4) is performed in Section 3 to yield the H1-orbital stability

for the corresponding peaked waves. In the Appendix, we provide some technical details

of existence of the peaked waves.

2 The mCH–Novikov Equation

This section is focused on the existence and stability of peaked solitary waves for the

mCH–Novikov equation (1.3).

2.1 Local well-posedness and conservation laws

A necessary ingredient in our stability analysis is the local well-posedness theory for

the initial-value problem
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

mt + k1

(
(u2 − u2

x)m
)
x

+ k2(u2mx + 3uuxm) = 0, t > 0, x ∈ R,

m = u − uxx,

u(0, x) = u0(x), x ∈ R.

(2.1)

Recall that the inverse operator (1 − ∂2
x )−1 can be obtained by convolution with the

corresponding Green’s function such that

u = (1 − ∂2
x )−1m = p ∗ m, where p(x) =

1

2
e−|x|, (2.2)

and ∗ denotes the convolution product.
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Stability of Peaked Ways 6195

Applying now the operator (1 − ∂2
x )−1 to equation in (2.1), it follows that

ut + k1

(
u2 −

1

3
u2

x

)
ux + k1px ∗

(
2

3
u3 + uu2

x

)
+

k1

3
p ∗ u3

x

+ k2u2ux + k2px ∗
(

u3 +
3

2
uu2

x

)
+

k2

2
p ∗ u3

x = 0.

(2.3)

We will start by considering solutions to the above problem (2.1) in Sobolev

spaces with sufficiently high regularity. The precise definition of such solutions is given

below.

Definition 2.1 (Strong solutions). If u ∈ C
(
[0, T), Hs(R)

)
∩ C1

(
[0, T), Hs−1(R)

)
with s > 5

2

and some T > 0 satisfies (2.1), then u is called a strong solution on [0, T). If u is a strong

solution on [0, T) for every T > 0, then it is called a global strong solution.

Remark 2.1. The regularity requirement that u ∈ H5/2+ comes from applying transport

theory to (2.3). We see from (2.3) that equation (1.3) can be reformulated in a transport

type with the transport velocity k1

(
u2 − 1

3u2
x

)
+k2u2. Standard transport theory requires

a control on
∥∥k1

(
u2 − 1

3u2
x

)
+ k2u2

∥∥
W1,∞ , which, by Sobolev embedding, amounts to

asking u ∈ H5/2+.

The argument for establishing the local well-posedness of strong solutions to

(2.1) is now fairly standard. For example, one can follow the same approach as in [12].

Hence, we will only state the result without proof.

Proposition 2.1. If s > 5
2 and u0 ∈ Hs(R), then there exists a time T > 0 such

that the initial-value problem (2.1) has a unique strong solution u ∈ C
(
[0, T), Hs(R)

)
∩

C1
(
[0, T), Hs−1(R)

)
. Further, the map u0 �→ u is continuous from a neighborhood of u0 in

Hs(R) into u ∈ C
(
[0, T), Hs(R)

)
∩ C1

(
[0, T), Hs−1(R)

)
.

Regarding stability, as explained in the Introduction, certain conserved quanti-

ties of the equation play a crucial role. For this reason, we give the following result. Its

proof can be seen in Appendix A.

Lemma 2.1. For the strong solutions u obtained in Proposition 2.1, the following

functionals

E(u) =
∫

R

(u2 + u2
x) dx, F1(u) =

∫

R

(
u4 + 2u2u2

x −
1

3
u4

x

)
dx (2.4)

are conserved, that is d
dt

E(u) = d
dt

F1(u) = 0 for all t ∈ [0, T).
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6196 R. M. Chen et al.

2.2 Existence of peaked solitary waves

As is mentioned in the Introduction, the peaked solitary waves have low regularity and

hence cannot be regarded as strong solutions to (2.1).

The following theorem proves the existence of the peaked solutions to equation

(2.3). Details of the proof can be found in Appendix A.

Theorem 2.1. The function

u(t, x) = ϕc(x − ct) := ae−|x−ct|, (2.5)

is a peaked solution to (2.3) provided that

(1) 2k1 + 3k2 �= 0, 3c
2k1+3k2

> 0 and a = ±
√

3c
2k1+3k2

�= 0; or

(2) 2k1 + 3k2 = c = 0 and a �= 0.

Remark 2.2. Note that case (1) in Theorem 2.1 generates a pair of peaked (a > 0) and

anti-peaked (a < 0) solutions both moving at speed c �= 0, whereas case (2) corresponds

to a stationary peaked solution.

Remark 2.3. If one imposes the ansatz that the solution u of equation (2.3) is a linear

superposition of N peakons

u(t, x) =
N∑

i=1

pi(t)e
−|x−qi(t)|, (2.6)

then a direct computation shows that the position functions qi(t) and the amplitude

functions pi(t) satisfy the following dynamical system:

ṗi = k2pi

N∑

j,l=1

pjpl sign(ql − qi)e
−|ql−qi|−|qj−qi|,

q̇i =
2k1

3
p2

i + 2k1

N∑

j=1,j �=i

pipje
−|qj−qi| + 4k1

∑

1≤j<i,
i<l≤N

pjple
−|qj−ql| + k2

N∑

j,l=1

pjple
−|ql−qi|−|qj−qi|.

2.3 H1-orbital stability

The main goal in this subsection is to prove the orbital stability for the single peaked

solutions obtained in Theorem 2.1 in the natural H1 energy space suggested by the
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Stability of Peaked Ways 6197

conservation law E as in (2.4). We will only discuss the case when a > 0. The case

for anti-peakons (a < 0) can be treated by exploiting the invariance of equation in (2.1)

under the transformation u → −u.

Recall Theorem 2.1. It is obvious that ϕc(x) ∈ H1(R) has the peak at x = 0 and a

simple computation reveals

max
x∈R

ϕc(x) = ϕc(0) = a :=

⎧
⎨
⎩

√
3c

2k1+3k2
, 2k1 + 3k2 �= 0 and 3c

2k1+3k2
> 0,

∈ R
+, 2k1 + 3k2 = c = 0,

(2.7)

E(ϕc) = 2a2, F1(ϕc) =
4

3
a4. (2.8)

Define the following functionals:

M̃(t) = max
x∈R

{u(t, x)}, m̃(t) = min
x∈R

{u(t, x)}, (2.9)

for every t ∈ [0, T∗), where T∗ > 0 is the maximal existence time of solutions u to initial-

value problem (2.1).

The H1-orbital stability of the peaked waves is given as follows.

Theorem 2.2 (H1-orbital stability). Let ϕc(x − ct) = ae−|x−ct| be the peaked solutions

given in Theorem 2.1. Assume that the initial data u0 ∈ Hs(R), s > 5
2 . Then ϕc is

H1-orbitally stable in the following sense: ∃ 0 < δ0 � 1 such that if

‖u0 − ϕc‖H1 < aδ, 0 < δ < δ0, (2.10)

then the corresponding solution u(t, x) to (2.1) satisfies

sup
t∈[0,T∗)

‖u(t, ·) − ϕc(· − ξ(t))‖H1 < 2
(
3a + C(u0)1/4

)
δ1/4, (2.11)

where ξ(t) is the point at which the solution u(t, x) achieves its maximum and the

constant

C(u0) :=
2
√

2a

3
‖u0x‖2

L∞‖u0x‖L2 . (2.12)

Remark 2.4. It is easy to check that the mCH–Novikov equation in (2.1) has the

sign-persistence property: if the initial data m0 = (1 − ∂2
x )u0 ≥ 0 (or ≤ 0), then the
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6198 R. M. Chen et al.

corresponding solution satisfies that m(t, x) ≥ 0 (or ≤ 0). Therefore, if one assumes in

addition that m0 ≥ 0 (or ≤ 0), then the sign property on m implies that |ux| ≤ |u|. Hence,

in (2.12), we have from (2.17) that

‖u0x‖2
L∞‖u0x‖L2 ≤ 2E(u0)3/2 < 2

(
E(ϕc) + 4a2δ

)3/2
< 6a3.

Therefore, C(u0) in (2.12) can be replaced by

C(u0) = 4
√

2a4.

Remark 2.5. Our stability result is established in the H1-metric, which is below

the regularity index Hs for strong solutions as given in Proposition 2.1. The issue of

extending our result to replace the H1-metric by the Hs-metric is much more delicate. On

the other hand, one may consider an H1-stability result for suitable weak solutions. One

of the main ingredients in the proof of Theorem 2.1 is the use of the two conservation

laws. Hence, once a weak solution theory is established so that E and F1 are conserved,

it seems plausible that the same stability property holds for those weak solutions.

The proof of Theorem 2.2 is approached via a series of lemmas.

Lemma 2.2. For any u ∈ H1(R) and z ∈ R, we have

E(u) − E(ϕc) = ‖u − ϕc(· − z)‖2
H1 + 4a (u(z) − a) . (2.13)

Proof. Using integration by parts and (2.8), it follows that

‖u − ϕc(· − z)‖2
H1

= E(u) + E(ϕc(· − z)) − 2a

∫

R

u(x)ϕ(x − z) dx

− 2a

∫ z

−∞
ux(x)ϕ(x − z) dx + 2a

∫ ∞

z

ux(x)ϕ(x − z) dx

= E(u) + E(ϕc) − 4au(z) = E(u) − E(ϕc) − 4a (u(z) − a) .

Consequently, we have established the lemma. �

The following lemma is essential to derive the orbital stability of ϕc.
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Stability of Peaked Ways 6199

Lemma 2.3. Assume that u ∈ Hs(R), s > 5
2 , and M̃, m̃ are defined in (2.9).

(1) If M̃ + m̃ ≥ 0, then F1(u) ≤ 4
3M̃2E(u) − 4

3M̃4.

(2) If M̃ + m̃ ≤ 0, then F1(u) ≤ 4
3m̃2E(u) − 4

3m̃4.

Proof. (1) Since M̃ + m̃ ≥ 0, then there exists ξ ∈ R such that M̃ = u(ξ). Let us define

g(x) =

⎧
⎨
⎩

u(x) − ux(x), x < ξ ,

u(x) + ux(x), x > ξ ,
(2.14)

and a direct computation gives rise to

∫

R

g2(x) dx =
∫

R

(u2 + u2
x) dx − 2

∫ ξ

−∞
uux dx + 2

∫ ∞

ξ

uux dx

= E(u) − 2u2(ξ) = E(u) − 2M̃2.

(2.15)

On the other hand, we define h(x) by

h(x) =

⎧
⎨
⎩

u2(x) − 2
3u(x)ux(x) − 1

3u2
x(x), x < ξ ,

u2(x) + 2
3u(x)ux(x) − 1

3u2
x(x), x > ξ .

Direct computation yields that

∫

R

h(x)g2(x) dx = F1(u) −
4

3
M̃4.

Since M̃ + m̃ ≥ 0 implies that u2 ≤ M̃2, together with h − 4
3u2 = −1

3u2 ± 2
3uux − 1

3u2
x =

−1
3 (u ± ux)2 ≤ 0, it follows that

h(x) ≤
4

3
u2 ≤

4

3
M̃2. (2.16)

Combining (2.15) and (2.16), we deduce that

F1(u) −
4

3
M̃4 =

∫

R

h(x)g2(x) dx ≤
4

3
E(u)M̃2 −

8

3
M̃4,

thereby concluding part (1) of the lemma.

Part (2) of the lemma can be proved in a similar way. �
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6200 R. M. Chen et al.

Remark 2.6. Note that the functions g and h are zero when u is replaced by −ϕc.

Indeed, this requirement is crucial to construct a Lyapunov function for the stability.

Lemma 2.4. Let u ∈ Hs(R), s > 5
2 and assume ‖u − ϕc‖H1 < aδ, with 0 < δ � 1. Then

|E(u) − E(ϕc)| ≤ 4a2δ, (2.17)

|F1(u) − F1(ϕc)| ≤
(
C(u) + 17a4

)
δ, (2.18)

where C(u) := 2
√

2a
3 ‖ux‖2

L∞‖ux‖L2 .

Proof. Using the relation (2.15), for any u ∈ H1(R), it is inferred that

sup
x∈R

|u(x)| ≤
√

2

2
E(u)

1
2 =

√
2

2
‖u‖H1 ,

with equality holding if and only if u is a multiple of some translate of e−|x|.

From the assumption on ‖u − ϕc‖H1 , it follows that

∣∣E(u) − E(ϕc)
∣∣ =

∣∣(‖u‖H1 + ‖ϕc‖H1)(‖u‖H1 − ‖ϕc‖H1)
∣∣

≤ (‖u − ϕc‖H1 + 2‖ϕc‖H1)‖u − ϕc‖H1

≤
(
aδ + 2

√
2a

)
aδ < 4a2δ,

and

∣∣F1(u) − F1(ϕc)
∣∣ =

∣∣∣∣
∫

R

(
u4 + 2u2u2

x −
1

3
u4

x

)
dx −

∫

R

(
ϕ4

c + 2ϕ2
c ϕ2

cx −
1

3
ϕ4

cx

)
dx

∣∣∣∣

≤
∫

R

∣∣u4 + 2u2u2
x − ϕ4

c − 2ϕ2
c ϕ2

cx

∣∣ dx +
1

3

∫

R

∣∣u4
x − ϕ4

cx

∣∣ dx

≤
∫

R

∣∣(u2 − ϕ2
c )(u2 + 2u2

x)
∣∣ dx +

1

3

∫

R

∣∣u4
x − ϕ4

cx

∣∣ dx

+
∫

R

ϕ2
c

∣∣(u2 + 2u2
x − ϕ2

c − 2ϕ2
cx

∣∣ dx

=: I1 + I2 + I3.
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Stability of Peaked Ways 6201

We compute I1 as follows:

I1 ≤ 2

∫

R

|u + ϕc| · |u − ϕc| · (u2 + u2
x) dx

≤ 2
(
‖u‖L∞ + ‖ϕc‖L∞

)
· ‖u − ϕc‖L∞

∫

R

(u2 + u2
x) dx

≤
(√

2‖u‖H1 + 2a
)

‖u − ϕc‖H1 · E(u)

≤ ‖u − ϕc‖H1

(
E(ϕc) + 4a2δ

)
·
(√

2‖u − ϕc‖H1 + 4a
)

≤ 2a4δ(4 +
√

2δ)(2δ + 1).

(2.19)

In a similar manner,

I3 ≤ a2

∫

R

∣∣(u − ϕc)
2 + 2(ux − ϕcx)2 + 2ϕc(u − ϕc) + 4ϕcx(ux − ϕcx)

∣∣ dx

≤ 2a2
(
‖u − ϕc‖2

H1 + 2‖ϕc‖H1‖u − ϕc‖H1

)
≤ 2a4δ(δ + 2

√
2).

(2.20)

For the term I2, by the Hölder and Young inequalities, it follows that

I2 =
1

3

∫

R

∣∣(u2
x + ϕ2

cx)(ux + ϕcx)(ux − ϕcx)
∣∣ dx

≤
1

3

(∫

R

(u2
x + ϕ2

cx)2(ux + ϕcx)2 dx

) 1
2

(∫

R

(ux − ϕcx)2 dx

) 1
2

≤
2
√

2

3

(∫

R

(u6
x + ϕ6

cx) dx

) 1
2

‖u − ϕc‖H1 .

(2.21)

Since u ∈ Hs(R) ⊂ W1,∞(R), s > 5
2 , we have

‖ux‖L6 ≤ ‖ux‖
2
3
L∞‖ux‖

1
3

L2 .

We also know that ‖ϕcx‖6
L6 = 1

3a6. Hence, plugging the above into (2.21), there appears

the relation

I2 ≤
(

C(u) +
2
√

6

9
a4

)
δ, where C(u) =

2
√

2a

3
‖ux‖2

L∞‖ux‖L2 . (2.22)
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6202 R. M. Chen et al.

In view of (2.19), (2.20), and (2.22), we conclude that

∣∣F1(u) − F1(ϕc)
∣∣ ≤

(
C(u) + 17a4

)
δ.

This completes the proof of the lemma. �

Lemma 2.5. Assume that u(x) ∈ Hs(R), s > 5
2 , which satisfies (2.17) and (2.18) with

0 < δ � 1. Then we have the following:

(1) If M̃(t) + m̃(t) ≥ 0, then

∣∣M̃ − a
∣∣ <

√(
21a2 +

3

4a2
C(u)

)
δ. (2.23)

(2) If M̃(t) + m̃(t) < 0, then

|m̃ + a| <

√(
21a2 +

3

4a2
C(u)

)
δ. (2.24)

Proof. (1) If M̃(t) + m̃(t) ≥ 0, it then follows from Lemma 2.3 (1) that

M̃4 +
3

4
F1(u) − E(u)M̃2 ≤ 0. (2.25)

Hence, we define the function fu(y) by

fu(y) := y4 +
3

4
F1(u) − E(u)y2, y ∈ R. (2.26)

Recalling (2.8), a direct calculation reveals that

fϕc
(y) = y4 − 2a2y2 + a4 = (y + a)2 (y − a)2 . (2.27)

From (2.26), there appears the relation

fϕc
(M̃) = fu(M̃) + M̃2

(
E(u) − E(ϕc)

)
−

3

4

(
F1(u) − F1(ϕc)

)
,

which, together with (2.25) and (2.27), yields

(
M̃ + a

)2 (
M̃ − a

)2 ≤ M̃2
(
E(u) − E(ϕc)

)
−

3

4

(
F1(u) − F1(ϕc)

)
. (2.28)
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Stability of Peaked Ways 6203

On the other hand, using the relation

E(u) − 2M̃2 =
∫

R

g2(x) dx ≥ 0,

and the assumption (2.17), we discover that

0 < M̃2 ≤
E(u)

2
≤ a2(2δ + 1) < 2a2. (2.29)

Hence, in view of (2.28) and (2.29), we conclude that

a
∣∣M̃ − a

∣∣ <

√(
21a4 +

3

4
C(u)

)
δ,

which implies (2.23).

Part (2) of the lemma can be proved in a similar way and the detail is omitted,

thereby concluding the proof of Lemma 2.5. �

We are now in the position to give a proof of the H1-stability result.

Proof of Theorem 2.2. Applying Lemma 2.1, we see that

E(u(t, ·)) = E(u0) and F1(u(t, ·)) = F1(u0), t ∈ [0, T∗).

Therefore from assumption (2.10), it is easy to see that the conclusion of Lemma 2.4

holds. Assumption (2.10) implies that

‖u0 − ϕc‖L∞ < aδ � a.

By (2.7), it follows that

M̃(0) = max
x∈R

u0(x) ≥ u0(0) > ϕc(0) − aδ = a(1 − δ) > 0.

If m̃(0) = min
x∈R

u0(x) ≥ 0, the obviously

M̃(0) + m̃(0) > a(1 − δ) > 0.

If m̃(0) < 0, then there exists some η ∈ R such that u0(η) = m̃(0). This way we know that

m̃(0) = min
x∈R

u0(x) = u0(η) > ϕc(η) − aδ > −aδ.

So we still have

M̃(0) + m̃(0) > a(1 − δ) − aδ > 0.

Therefore in any case we know that

M̃(0) + m̃(0) > 0.
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6204 R. M. Chen et al.

Furthermore, by continuity, there exits a T0 > 0 such that

M̃(t) + m̃(t) > 0, (2.30)

for all t ∈ [0, T0]. In this way, Lemma 2.3 (1) and Lemma 2.5 (1) hold true for t ∈ [0, T0].

Reading off (2.28) and using (2.29), we have

a |u(t, ξ(t)) − a| <

√
2a2

(
E(u) − E(ϕc)

)
−

3

4

(
F1(u) − F1(ϕc)

)

=
√

2a2
(
E(u0) − E(ϕc)

)
−

3

4

(
F1(u0) − F1(ϕc)

)

<

√(
21a4 +

3

4
C(u0)

)
δ,

(2.31)

for any t ∈ [0, T0]. Now replacing z by ξ in Lemma 2.2, there obtains the equality

‖u(t, ·) − ϕc(· − ξ(t))‖2
H1 = E(u0) − E(ϕc) − 4a (u(t, ξ(t)) − a) .

This, together with the estimates (2.17) and (2.31) leads to that for t ∈ [0, T0],

‖u(t, ·) − ϕc(· − ξ(t))‖H1 ≤
√

|E(u0) − E(ϕc)| + 4a |u(t, ξ(t)) − a|

< 2
(
3a + C(u0)1/4

)
δ1/4.

(2.32)

An important consequence of (2.32) is that we now claim that (2.30) holds for all

t ∈ [0, T∗). If not, then there exists some T ∈ (0, T∗) such that (2.30) holds for all t ∈ [0, T),

but

M̃(T) + m̃(T) = 0. (2.33)

This implies that (2.32) holds for t ∈ [0, T). So when δ is sufficiently small so that

2
(
3a + C(u0)1/4

)
δ1/4 <

a

4
,

we know that over t ∈ [0, T),

M̃(t) + m̃(t) >
a

2
.

Thus, a continuity argument indicates that M̃(T) + m̃(T) ≥ a
2 with a > 0, which

contradicts (2.33). Therefore, (2.32) holds for all t ∈ [0, T∗), and hence we obtain (2.11).�
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Stability of Peaked Ways 6205

2.4 W1,4-orbital stability

Note that the conservation of F1 together with E as in (2.4) provides a control of ‖ux‖L4 ;

see, for example, [3]. In fact, we show that the H1-stability obtained in the previous

subsection can be further improved to the stability in the space H1 ∩ W1,4. Again we

only consider the case a > 0 here.

Theorem 2.3 (W1,4-orbital stability). Let the assumptions of Theorem 2.2 hold. Then

ϕc is W1,4-orbitally stable in the following sense: ∃ 0 < δ0 � 1 such that if

‖u0 − ϕc‖H1 < aδ, 0 < δ < δ0,

then the corresponding solution u(t, x) to (2.1) satisfies

sup
t∈[0,T∗)

‖u(t, ·) − ϕc(· − ξ(t))‖W1,4 < C1(u0)δ1/16 + C2(u0)δ1/4, (2.34)

where ξ(t) is the point at which the solution u(t, x) achieves its maximum and the

constants C1 and C2 depend on a, ‖u0x‖L∞ and ‖u0x‖L2 .

Proof. Let us denote

v(t, ·) := u(t, · + ξ(t)) − ϕc,

where ξ(t) is the point at which u(t, x) attains its maximum. In view of Theorem 2.2, we

know that

‖v‖H1 < Kδ1/4. (2.35)

Following [3,(2.7)-(2.8)], it is found that

‖vx‖4
L4 ≤ 3

(
‖v‖4

H1 − F1(v)
)

, ‖vx‖3
L3 ≤

√
3‖v‖H1

√
‖v‖4

H1 − F1(v). (2.36)

Plugging u = v + ϕc into F1(u) and using the fact that ‖ϕc‖L∞ = ‖ϕcx‖L∞ = ‖ϕc‖L2 =
‖ϕcx‖L2 = a yields after a direct computation that

|F1(v)| ≤
∣∣F1(u) − F1(ϕc)

∣∣

+ 2

∣∣∣∣
∫

R

(
2v2vxϕcx+ v2ϕ2

cx + 2vv2
xϕc+ 4vvxϕcϕcx + 2vϕcϕ

2
cx + v2

xϕ2
c + 2vxϕ2

c ϕcx

)
dx

∣∣∣∣

+
∣∣∣∣
∫

R

(
4v3ϕc + 6v2ϕ2

c + 4vϕ3
c

)
dx

∣∣∣∣ +
1

3

∣∣∣∣
∫

R

(
4v3

xϕcx + 6v2
xϕ2

cx + 4vxϕ3
cx

)
dx

∣∣∣∣

≤
∣∣F1(u) − F1(ϕc)

∣∣ +
4

3

∣∣∣∣
∫

R

v3
xϕcx dx

∣∣∣∣ + 14a3‖v‖H1 + 20a2‖v‖2
H1 + 12a‖v‖3

H1 .
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6206 R. M. Chen et al.

Note that we have
∣∣∣∣
4

3

∫

R

v3
xϕcx dy

∣∣∣∣ ≤
4a

3
‖vx‖3

L3 ≤
4a
√

3
‖v‖H1

√
‖v‖4

H1 − F1(v).

Thus, from (2.35) for δ � 1 sufficiently small it follows that

|F1(v)| ≤
∣∣F1(u) − F1(ϕc)

∣∣ +
4a
√

3
‖v‖H1

√
‖v‖4

H1 − F1(v) + 15a‖v‖H1 . (2.37)

On the other hand, from Lemma 2.4, we have

|F1(u) − F1(ϕc)| = |F1(u0) − F1(ϕc)| ≤
(
C(u0) + 17a4

)
δ.

Plugging the above into (2.37) yields that

|F1(v)| ≤
4a
√

3
‖v‖H1

√
‖v‖4

H1 − F1(v) + L ≤
8a2

3
‖v‖2

H1 +
1

2
‖v‖4

H1 +
1

2
|F1(v)| + L

where L := 15aKδ1/4 +
(
C(u0) + 17a4

)
δ < 15aKδ1/4 + K4δ. Hence, we have

|F1(v)| ≤
16a2

3
‖v‖2

H1 + ‖v‖4
H1 + 2L. (2.38)

Therefore from (2.36), it is inferred that

‖vx‖4
L4 ≤ 16a2‖v‖2

H1 + 6‖v‖4
H1 + 6L ≤ C̃1(u0)δ1/4 + C̃2(u0)δ

where C̃1(u0) := 90aK + 12a2K and C̃2(u0) := 24a2K + 12K4. Moreover, it is noted that

‖v‖L4 ≤ ‖v‖H1 ≤ Kδ1/4.

Combining the above leads to (2.34). This completes the proof of Theorem 2.3. �

3 The Extended Cubic CH Equation

We now turn our attention to the stability analysis for the extended cubic CH equation.

It is known that the classical CH equation without the linear terms ux and uxxx

possesses peaked localized solitons. Analogously we will focus on the equation (1.4),

which neglects the linear terms ux and uxxx, although the linear term uxxx could be

removed by the Galilean transformation u(t, x) → u(t, x−κt) with a suitable parameter κ.

3.1 Existence of peaked solitary waves

Consider the initial-value problem

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

mt + k1

(
2uxm + umx

)
+ k2

(
(u2 − 1

4 (u2)xx)u
)
x

= 0, t > 0, x ∈ R,

m = u − uxx,

u(0, x) = u0(x), x ∈ R.

(3.1)
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Stability of Peaked Ways 6207

Applying the operator (1 − ∂2
x )−1 to above equation in (3.1) yields the following nonlocal

equation:

ut + k1uux + k1px ∗
(

u2 +
1

2
u2

x

)
+

k2

2
u2ux +

k2

2
px ∗

(
uu2

x +
5

3
u3

)
= 0. (3.2)

The following local well-posedness results of strong solutions can be obtained

by applying a Galerkin-type approximation method, which is established by Hilmonas

and Holliman [13]. The proof is thus omitted.

Proposition 3.1. If s > 3
2 and u0 ∈ Hs(R), then there exists T > 0 and a unique

strong solution u ∈ C([0, T), Hs(R)) ∩ C1([0, T), Hs−1(R)) of the initial-value problem

(3.1). Further, the map u0 �→ u is continuous from a neighborhood of u0 in Hs(R) into

u ∈ C([0, T), Hs(R)) ∩ C1([0, T), Hs−1(R)).

Similarly as in the previous section, we record the important conservation laws.

Lemma 3.1. For a strong solution u obtained in Proposition 3.1, the following

functionals

E(u) =
∫

R

(u2 + u2
x) dx, F2(u) = 2k1

∫

R

(u3 + uu2
x) dx + k2

∫

R

(u4 + u2u2
x) dx (3.3)

are conserved, that is, d
dt

E(u) = d
dt

F2(u) = 0, for all t ∈ [0, T).

Proof. The conservation of E(u) can be proved by multiplying equation in (3.1) by u

and integrating over R and then integrating by parts. The conservation of F2(u) is an

easy consequence of the Hamiltonian structure of equation in (3.1), cf. (1.6). In fact, we

have

dF2(u)

dt
=

〈
δF2

δu
, ut

〉
=

〈
(1 − ∂2

x )
δF2

δm
, ut

〉
=

〈
δF2

δm
, mt

〉
=

〈
δF2

δu
, J2

δF2

δu

〉
= 0,

and this completes the proof of the lemma. �

The existence of the single peaked solutions to equation (3.2) is given below.

Details of the proof can be found in Appendix A.

Theorem 3.1. Assume k2 �= 0. The equation (3.2) admits the single peakon of the

following forms:
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6208 R. M. Chen et al.

(1) If c �= 0 and k2
1 + 2k2c ≥ 0, then the single peaked solutions have the form

u(t, x) = ϕc(x − ct) := ae−|x−ct|, with a =
−k1 ±

√
k2

1 + 2k2c

k2

=: a± �= 0. (3.4)

(2) If c = 0 and k1 �= 0, then the single peaked solutions take the form

u(t, x) = aϕ(x) := ae−|x|, with a = −
2k1

k2

�= 0. (3.5)

3.2 H1-orbital stability of ϕc(x − ct)

The focus of this subsection is the stability analysis with peakons of the form (3.4).

For simplicity, we will only consider the case when a = a+ > 0, since the other case

can be easily handled by using invariance of the cubic CH equation in (3.1) under the

transformation u → −u and k1 → −k1.

It is easy to check that

max
x∈R

{ϕc(x)} = ϕc(0) = a+, E(ϕc) = ‖ϕc‖2
H1 = 2a2

+, F2(ϕc) =
8

3
k1a3

+ + k2a4
+.

The main result of this subsection is the following:

Theorem 3.2 (H1-orbital stability). Consider ϕc = a+e−|x−ct| the peaked solutions

defined in (3.4). Then ϕc is orbitally stable in the following sense. Assume that the initial

data u0 ∈ Hs(R), s > 3
2 . There exists some 0 < δ0 � 1 such that if

‖u0 − ϕc‖H1 < a+δ, 0 < δ < δ0, (3.6)

then

(1) when k1 > 0, k2 > 0, the corresponding solution u(t) of (3.1) satisfies

sup
t∈[0,T∗)

‖u(t, ·) − ϕc(· − ξ(t))‖H1 < 2a+

(
86k1 + 75k2a+
8k1 + 3k2a+

)1/4

δ1/4. (3.7)

(2) when k1 > 0, k2 < 0, and 0 < c < −4k2
1

9k2
, the corresponding solution u(t) of

(3.1) satisfies

sup
t∈[0,T∗)

‖u(t, ·) − ϕc(· − ξ(t))‖H1 < 2a+

(
41k1 + 36|k2|a+

2k1

)1/4

δ1/4,
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Stability of Peaked Ways 6209

where T∗ > 0 is the maximal existence time of the solution u(t, x) and ξ(t) ∈ R is the

point at which the solution u(t, x) achieves its maximum.

The proof of this theorem is achieved via a series of lemmas.

Lemma 3.2. For any u ∈ H1(R) and z ∈ R, we have

E(u) − E(ϕc) = ‖u − ϕc(· − z)‖2
H1 + 4a+

(
u(z) − a+

)
.

Proof. The proof follows exactly along the same line as for the proof of Lemma 2.2. �

Lemma 3.3. Let u ∈ Hs(R), s > 3
2 . Assume ‖u − ϕc‖H1 < a+δ, with 0 < δ � 1. Then

|E(u) − E(ϕc)| ≤ C2δ, |F2(u) − F2(ϕc)| ≤ C3δ, (3.8)

where C2 := 4a2
+, C3 :=

(
10|k1| + 8|k2|a+

)
a3

+.

Proof. The 1st part of (3.8) is just (2.17). As for the 2nd estimate, it is noted that

|F2(u) − F2(ϕc)| ≤ 2|k1||I1(u) − I1(ϕc)| + |k2||I2(u) − I2(ϕc)|,

where the functionals I1 and I2 are defined in (1.8). In view of [7, Lemma 3], it follows

that

|I1(u) − I1(ϕc)| < a3
+δ

(
3
√

2 + 3δ +
δ2

√
2

)
< 5a3

+δ.

Next, similar to (2.19) and (2.20), a calculation reveals that

|I2(u) − I2(ϕc)| ≤
∫

R

[
|(u2 − ϕ2

c )(u2 + u2
x)| + ϕ2

c (u2 + u2
x − ϕ2

c − ϕ2
cx)

]
dx

< a4
+δ(4 +

√
2δ)(2δ + 1) + a4

+δ(δ + 2
√

2) < 8a4
+δ.

Putting the above together, we complete the proof of the lemma. �

Lemma 3.4. Assume that u ∈ Hs(R), s > 3
2 , and ‖u − ϕc‖H1 < a+δ, with 0 < δ � 1.

Furthermore, assume that one of the following two conditions holds:

(1) k1 > 0, k2 > 0, and M̃ + m̃ ≥ 0.

(2) k1 > 0, k2 < 0 and 0 < c ≤ − k2
1

2k2
.
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6210 R. M. Chen et al.

Then we have

2k1u + k2u2 ≤ 2k1M̃ + k2M̃2, (3.9)

where recall that the constants M̃ = max
x∈R

u(x) ≥ 0 and m̃ = min
x∈R

u(x) ∈ R.

Proof. (1) If k1 > 0, k2 > 0 and M̃ + m̃ ≥ 0, then it is easy to see that

2k1u + k2u2 ≤ 2k1M̃ + k2 max
x∈R

{u2(x)} ≤ 2k1M̃ + k2M̃2.

(2) In this case, we have

0 <

√
2

2
‖ϕc‖H1 = a+ =

−k1 +
√

k2
1 + 2k2c

k2

<
k1

|k2|
. (3.10)

Then choosing δ small enough, from (3.8), (3.10), and the Sobolev embedding, it

transpires that

‖u‖L∞ ≤
√

2

2
‖u‖H1 <

√
2

2
‖ϕc‖H1 +

√
2a+δ

1
2 <

k1

|k2|
. (3.11)

On the other hand, define the functional f (u) := 2k1u+k2u2. In view of (3.10) and (3.11),

a direct computation yields that

df

du
= 2k1 + 2k2u ≥ 2k1 − 2|k2||u| > 0 for ‖u‖L∞ <

k1

|k2|
.

Hence, it follows that f (u) ≤ f (M̃). We thus finish the proof of the lemma. �

Lemma 3.5. Under the conditions of Lemma 3.4, for u ∈ Hs(R), s > 3
2 , we have

F2(u) ≤ (2k1M̃ + k2M̃2)E(u) −
4

3
k1M̃3 − k2M̃4. (3.12)

Proof. Taking ξ ∈ R such that M̃ = u(ξ) and defining g(x) as in (2.14), it is noted that

∫

R

g2(x) dx = E(u) − 2u2(ξ) = E(u) − 2M̃2. (3.13)
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Stability of Peaked Ways 6211

In addition, the auxiliary function h(x) is defined by

h(x) := 2k1u(x) + k2u2(x), x ∈ R.

It holds that

2k1

∫

R

u(x)g2(x) dx = 2k1I1(u) −
8k1

3
M̃3, k2

∫

R

u2(x)g2(x) dx = k2I2(u) − k2M̃4.

Thus, we have

∫

R

h(x)g2(x) dx = F2(u) −
8k1

3
M̃3 − k2M̃4. (3.14)

On account of Lemma 3.4, it then follows from (3.13) and (3.14) that

F2(u) −
8k1

3
M̃3 − k2M̃4 =

∫

R

h(x)g2(x) dx =
∫

R

(
2k1u + k2u2

)
g2(x) dx

≤
(
2k1M̃ + k2M̃2

)
E(u) − 4k1M̃3 − 2k2M̃4,

which in turn implies that

F2(u) ≤
(
2k1M̃ + k2M̃2

)
E(u) −

4

3
k1M̃3 − k2M̃4.

Hence, we reach the conclusion of Lemma 3.5. �

Lemma 3.6. Let k1 > 0, k2 > 0 and M̃ + m̃ ≥ 0. Assume that u ∈ Hs(R), s > 3
2 , and

satisfies (3.8). Then

∣∣M̃ − a+
∣∣ <

√
78k1 + 72k2a+

8k1 + 3k2a+
· a+δ

1
2 .

Proof. From (3.12), it follows that

k1

(
4

3
M̃3 − 2E(u)M̃ + 2I1(u)

)
+ k2

(
M̃4 − E(u)M̃2 + I2(u)

)
≤ 0. (3.15)

This motivates us to define the Lyapunov function pu(z) by

pu(z) := k1

(
4

3
z3 − 2E(u)z + 2I1(u)

)
+ k2

(
z4 − E(u)z2 + I2(u)

)
. (3.16)
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6212 R. M. Chen et al.

Recall that E(ϕc) = 2a2
+, I1(ϕc) = 4

3a3
+ and I2(ϕc) = a4

+. We have

pϕc
(z) = k1

(
4

3
z3 − 2E(ϕc)z +

8

3
a3

+

)
+ k2

(
z4 − E(ϕc)z

2 + a4
+

)

=
(
z − a+

)2
(

4

3
k1(z + 2a+) + k2(z + a+)2

)
.

We can also write

pϕc
(M̃) = pu(M̃) + 2k1M̃

(
E(u) − E(ϕc)

)
+ k2M̃2

(
E(u) − E(ϕc)

)
−

(
F2(u) − F2(ϕc)

)
,

which together (3.15) yields

(
M̃ − a+

)2
(

4

3
k1(M̃ + 2a+) + k2(M̃ + a+)2

)

≤
(
2k1M̃ + k2M̃2

) ∣∣E(u) − E(ϕc)
∣∣ +

∣∣F2(u) − F2(ϕc)
∣∣ .

(3.17)

Using the conditions k1 > 0, k2 > 0, it is determined that

4

3
k1(M̃ + 2a+) + k2(M̃ + a+)2 ≥

8

3
k1a+ + k2a2

+. (3.18)

On the other hand, (3.8) implies that

0 < M̃ ≤
√

2

2
E(u)

1
2 ≤

√
2

2

(
E(ϕc) + 4a2

+δ
) 1

2 = a+(2δ + 1)
1
2 . (3.19)

Hence, in view of (3.17), (3.18), and (3.19), we conclude that

∣∣M̃ − a+
∣∣ ≤

√
3

(
2k1M̃ + k2M̃2

) ∣∣E(u) − E(ϕc)
∣∣ + 3

∣∣F2(u) − F2(ϕc)
∣∣

8k1a+ + 3k2a2
+

≤

√
(6k1M̃ + 3k2M̃2)C2δ + 3C3δ

8k1a+ + 3k2a2
+

<

√
78k1 + 72k2a+
8k1 + 3k2a+

· a+δ
1
2 ,

which completes the proof of Lemma 3.6. �
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Lemma 3.7. Let k1 > 0, k2 < 0 and 0 < c ≤ −4k2
1

9k2
. Assume that u ∈ Hs(R), s > 3

2 and

satisfies (3.8). Then we have

∣∣M̃ − a+
∣∣ <

√
78k1 + 72|k2|a+

4k1

· a+δ
1
2 .

Proof. Using the similar arguments as Lemma 3.6, we replace (3.17) by

(
M̃ − a+

)2
(

4

3
k1(M̃ + 2a+) + k2(M̃ + a+)2

)

≤
(
2k1M̃ + |k2|M̃2

) ∣∣E(u) − E(ϕc)
∣∣ +

∣∣F2(u) − F2(ϕc)
∣∣ .

(3.20)

From the conditions k1 > 0, k2 < 0, and 0 < c <
−4k2

1
9k2

, a direct calculation yields that

0 < 2a+ < −4k1
3k2

. Choosing δ sufficiently small, we have from (3.11) that

0 < M̃ + a+ ≤ 2a+ +
√

2a+δ
1
2 < −

4k1

3k2

,

from which we deduce that

4

3
k1(M̃ + 2a+) + k2(M̃ + a+)2 >

4k1

3
a+. (3.21)

Hence, in view of (3.19), (3.20), and (3.21), we therefore conclude that

∣∣M̃ − a
∣∣ ≤

√
(6k1M̃ + 3|k2|M̃2)C2δ + 3C3δ

4k1a+
<

√
78k1 + 72|k2|a+

4k1

· a+δ
1
2 .

This completes the proof of Lemma 3.7. �

Proof of Theorem 3.2. Assume u0 ∈ Hs(R) with s > 3
2 . Let u ∈ C([0, T∗), Hs(R)) ∩

C1([0, T∗), Hs−1(R)) be the corresponding solution of initial-value problem (3.1) on the

line with T∗ > 0 being the maximal existence time of the solution. From Lemma 3.1, it

is noted that

E(u(t, ·)) = E(u0) and F2(u(t, ·)) = F2(u0), t ∈ [0, T∗). (3.22)

(1) Applying (3.22) together with (3.6) implies that Lemma 3.3 holds. Further-

more, a similar argument as in the proof of Theorem 2.2 suggests the existence of T0 > 0
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6214 R. M. Chen et al.

such that

M̃(t) + m̃(t) > 0, for t ∈ [0, T0],

which allows us to apply Lemma 3.6 to obtain

∣∣u(t, ξ(t)) − a+
∣∣ <

√
78k1 + 72k2a+
8k1 + 3k2a+

· a+δ
1
2 , (3.23)

for any t ∈ [0, T0], where u(t, ξ(t)) = M̃(t). Moreover, utilizing Lemma 3.2, we have

‖u(t, ·) − ϕc(· − ξ(t))‖H1 ≤
√

|E(u0) − E(ϕc)| + 4a+|u(t, ξ(t)) − a+|

< 2a+

(
1 +

78k1 + 72k2a+
8k1 + 3k2a+

)1/4

δ1/4,

(3.24)

for t ∈ [0, T0]. Again a similar continuity argument as is performed in the proof of

Theorem 2.2 implies that T0 can be pushed all the way until T∗, which means that (3.24)

holds for all t ∈ [0, T∗). Thus, we complete the proof of part (1) of Theorem 3.2.

(2) Similarly, one can apply Lemma 3.3 here. Moreover, since in this case

0 < c < −
4k2

1

9k2

�⇒ 0 < c < −
k2

1

2k2

,

Lemma 3.7 can be applied. Then the rest of the proof can be done in a similar approach,

and hence we omit it here. �

4 Appendix A

For the readers’ convenience, we provide the details about the proofs of Lemma 2.1,

Theorem 2.1, and Theorem 3.1 in this appendix.

Proof of Lemma 2.1. The conservation of E(u) can be obtained by multiplying equation

in (2.1) by u and integrating over R and then using integration by parts. On the other

hand, taking the inner products between equation in (2.1) and 4(1 − ∂2
x )−1

(
(u2 − u2

x)m
)
,

then we have

0 =4
〈
mt, (1 − ∂2

x )−1
(
(u2 − u2

x)m
) 〉

+ 4k1

〈 (
(u2 − u2

x)m
)

x
, (1 − ∂2

x )−1
(
(u2 − u2

x)m
) 〉

+ 4k2

〈
u2mx + 3uuxm, (1 − ∂2

x )−1
(
(u2 − u2

x)m
) 〉

=: P1 + P2 + P3.

(4.1)
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For the terms P1 and P2, a direct calculation gives that

P1 = 4

∫

R

ut(u
2 − u2

x)m dx =
d

dt

∫

R

(
u4 + 2u2u2

x −
1

3
u4

x

)
dx, (4.2)

and

P2 = 4k1

∫

R

(
(u2 − u2

x)m
)

x
(1 − ∂2

x )−1
(
(u2 − u2

x)m
)

dx

= 2k1

∫

R

((
(1 − ∂2

x )−
1
2

(
(u2 − u2

x)m
))2

)

x

dx = 0.

(4.3)

Applying integration by parts, we discover that

P3 = 4k2

〈
u2mx + 3uuxm, (1 − ∂2

x )−1
(
(u2 − u2

x)m
) 〉

= 4k2

〈
u2ux, (u2 − u2

x)m
〉
+ 2k2

〈
(1 − ∂2

x )−1u3
x, (u2 − u2

x)m
〉

+4k2

〈
(1 − ∂2

x )−1∂x

(
u3 + 3

2uu2
x

)
, (u2 − u2

x)m
〉
= 0, (4.4)

where we have used the operator formula (1 − ∂2
x )−1∂2

x = −1 + (1 − ∂2
x )−1. Plugging (4.2)-

(4.4) into (4.1), we deduce that

d

dt

∫

R

(
u4 + 2u2u2

x −
1

3
u4

x

)
dx = 0. (4.5)

This completes the proof of Lemma 2.1. �

Proof of Theorem 2.1. Recall the definition (2.5). For simplicity, we drop the subscript

in ϕc. We have that

ϕ′(x) = −sgn(x)ϕ(x), p(x) =
1

2a
ϕ(x).

Plugging in the ansatz (2.5) into (2.3) and computing the convolution terms, we have

p′ ∗
[(

2k1

3
+ k2

)
ϕ3 +

(
k1 +

3k2

2

)
ϕ(ϕ′)2

]
+

(
k1

3
+

k2

2

)
p ∗ (ϕ′)3

=
1

2a

(
k1

3
+

k2

2

) (
5ϕ′ ∗ ϕ3 + ϕ ∗ (ϕ2ϕ′)

)
=

4(2k1 + 3k2)

9a
ϕ′ ∗ ϕ3.

A direct computation yields that

ϕ′ ∗ ϕ3 = −(sgn(x)ϕ) ∗ ϕ3 =
3a

4
sgn(x)ϕ(ϕ2 − a2).
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For the local terms in (2.3), we have

− cϕ′ + k1

(
ϕ2ϕ′ −

1

3
(ϕ′)3

)
+ k2ϕ2ϕ′ = sgn(x)ϕ

(
c −

2k1 + 3k2

3
ϕ2

)
.

Putting together, we find the equation for ϕ to be

sgn(x)ϕ

(
c −

2k1 + 3k2

3
a2

)
= 0, (4.6)

which leads to the two cases (1) a = ±
√

3c
2k1+3k2

and (2) a �= 0 with 2k1 +3k2 = c = 0. This

completes the proof of Theorem 2.1. �

Proof of Theorem 3.1. Similar to the approach in Theorem 2.1, we plug the function ϕ

into (3.2). A direct calculation then reveals

−cϕ′ + k1ϕϕ′ +
k2

2
ϕ2ϕ′ = sgn(x)ϕ

(
c − k1ϕ −

k2

2
ϕ2

)

and

p′ ∗
(

k1ϕ2 +
k1

2
(ϕ′)2 +

k2

2
ϕ(ϕ′)2 +

5

6
ϕ3

)
= sgn(x)k1

(
ϕ2 − aϕ

)
+ sgn(x)

k2

2

(
ϕ3 − a2ϕ

)
,

where use has been made of the equalities ϕ′ ∗ ϕ2 = 2a
3 sgn(x) ·

(
ϕ2 − aϕ

)
. In view of the

above two identities, we deduce that the equation for ϕ is

sgn(x)

(
c − k1a −

k2

2
a2

)
ϕ = 0.

Solving the above, we have that (1) c �= 0 and a =
−k1±

√
k2

1+2k2c

k2
, or (2) c = 0 and

a = −2k1
k2

. �
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