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Abstract. This paper studies the structural implications of constant vorticity for steady three-dimensional internal water
waves in a channel. It is known that in many physical regimes, water waves beneath vacuum that have constant vorticity
are necessarily two dimensional. The situation is more subtle for internal waves traveling along the interface between two
immiscible fluids. When the layers have the same density, there is a large class of explicit steady waves with constant
vorticity that are three-dimensional in that the velocity field is pointing in one horizontal direction while the interface is an
arbitrary function of the other horizontal variable. We prove the following rigidity result: every three-dimensional traveling
internal wave with bounded velocity for which the vorticities in the upper and lower layers are nonzero, constant, and
parallel must belong to this family. If the densities in each layer are distinct, then in fact the flow is fully two dimensional.
The proof is accomplished using an entirely novel but largely elementary argument that draws connection to the problem
of uniquely reconstructing a two-dimensional velocity field from the pressure.

1. Introduction

Depth-varying currents are ubiquitous in the ocean. They can arise from wind-wave interaction, boundary
layer effects along the seabed, or tides [20,29,36]. Waves riding on currents are essentially rotational, and
the interaction of waves with non-uniform currents is described by the vorticity [21,31]. So far most
of the theoretical works on water waves with non-zero vorticity pertains to two-dimensional flows. The
early nineteenth century work of Gerstner [11] furnished a family of exact solutions with a particular
nontrivial vorticity distribution that becomes singular at the free surface of the highest wave. Much later,
Dubreil-Jacotin [10] proved the existence of small-amplitude waves with a general vorticity distribution.
After a surge of activity in this area over the last two decades, initiated by Constantin and Strauss [9],
there is now a wealth of small- and large-amplitude existence results for water waves with vorticity; see
[16] for a survey.

Despite these advances in the two-dimensional case, the understanding of three-dimensional rotational
waves remains comparatively rudimentary. Currently, there are only two regimes in which existence is
known: Lokharu, Seth, and Wahlén [23] have constructed small-amplitude three-dimensional waves with
Beltrami-type flow, and Seth, Varholm, and Wahlén [32] obtained symmetric diamond waves with small
vorticity. The first result is proved using a careful multi-parameter Lyapunov–Schmidt reduction, while
the second involves a delicate fixed-point argument inspired by related problems in plasma physics.

Another body of important recent work concerns the rigidity of the governing equations: for certain
types of vorticity, the solutions necessarily inherit symmetries of the domain. A number of authors have
obtained results of this type for the Euler equations posed in a fixed domain. Moreover, it is known that
finite-depth surface water waves beneath vacuum with non-zero constant vorticity are forced to be two
dimensional with the vorticity vector pointing in the horizontal direction orthogonal to that of the wave
propagation; see [4,8,24,35] for flows beneath surface wave trains and surface solitary waves, [37] for
general steady waves, and [25] for an extension to non-steady waves. Flows with geophysical effects are
discussed in the survey article [27].
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The present paper aims to investigate the structural ramifications of constant vorticity for steady
three-dimensional internal water waves. An important feature of waves in the ocean is that the density
is heterogeneous due to variations in temperature and salinity. Commonly, this situation is modeled as
two immiscible, superposed layers of constant density fluids. The interface dividing these regions is a
free boundary along which internal waves can travel. Similar to surface waves, the theoretical study
on internal waves has been conducted almost exclusively in two dimensions; see [16, Section 7]. To the
authors’ knowledge the only rigorous existence result for genuinely three-dimensional steady internal
waves is due to Nilsson [30], who constructs small-amplitude capillary-gravity waves in a channel for
which the flow is layer-wise irrotational. The existence of large-amplitude capillary-gravity waves, or
gravity waves of any size, remain open questions. It is then natural to ask whether the rigidity of surface
water waves with constant vorticity has an internal wave counterpart. As the latter system has many
additional parameters, in principle we might expect it to support a greater variety of flows. For instance,
it can be shown if the vorticity is constant in each layer, then it must be horizontal, but its direction need
not be the same in each layer. On the other hand, if the vorticity vectors are parallel and nonvanishing,
we are able to prove a rigidity result that completely characterizes the possible flow patterns.

It is important to observe that, while the previous non-existence results for one-layer fluids mentioned
above provide a starting point for our argument, the internal interface fundamentally alters the analysis.
Indeed, there exist infinitely many internal waves with constant vorticity—albeit of a very specific form—
a rather dramatic warning that the two regimes are substantially different and new ideas will be needed.
The one-fluid works rely in large part on repeated applications of the maximum principle or Liouville-
type theorems. Such arguments give some limited information about the structure of three-dimensional
internal waves with constant vorticity, but far from a complete characterization. As we discuss in Sect. 1.3,
making further progress requires studying subtle questions about the uniqueness of the two-dimensional
free boundary Euler equations on an overlapping region with identical pressures but differing constant
densities.

1.1. Formulation

Consider a three-dimensional traveling wave moving along the interface dividing two immiscible fluids of
finite depth and under the influence of gravity. Fix a Cartesian coordinate system (x, y, z), where z is the
vertical direction and the wave propagates in the xy-plane. The fluids are bounded above and below by
rigid walls1 at heights z = −h1 and z = h2, for h1, h2 > 0. Adopting a frame of reference moving with the
wave renders the system time independent. Suppose then that the interface between the layers is given
by the graph of a C1 function η = η(x, y). The fluid domain is thus Ω := Ω1 ∪ Ω2, where the upper layer
Ω2 and lower layer Ω1 take the form

Ω1 :=
{
(x, y, z) ∈ R

3 : −h1 < z < η(x, y)
}

Ω2 :=
{
(x, y, z) ∈ R

3 : η(x, y) < z < h2

}
.

See Fig. 1 for an illustration.
For water waves, it is physically reasonable to model the flow in each region as inviscid and incom-

pressible with constant densities ρ1, ρ2 > 0. The motion in Ωi is described by the (relative) velocity field
ui := (ui, vi, wi) and pressure Pi. In the bulk, we impose the steady incompressible Euler equations:

ρi(ui · ∇)ui = −∇Pi + ρig, (1.1a)

∇ · ui = 0, (1.1b)

1This model is referred to as channel flow or the rigid lid approximation. It is physically motivated by the fact that the
displacements of pycnoclines in the ocean is often much larger than the amplitude of the air–sea interface. One could
alternatively take the upper boundary of Ω2 to be a free surface at constant pressure. This system has been studied by
many authors, see, for example, [6,7,19,33,34]. Our results do not obviously extend to this two free surface regime.
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Fig. 1. The two-fluid system

where g := (0, 0,−g) is the (constant) gravitational acceleration vector. The first of these mandates the
conservation of momentum, while the second is the incompressibility condition. The boundary conditions
at the interface are the continuity of normal velocity and pressure:

uiηx + viηy = wi on z = η(x, y), (1.1c)

P1 = P2 on z = η(x, y). (1.1d)

On the upper and lower rigid boundaries, the kinematic boundary conditions are
w1 = 0 on z = −h1

w2 = 0 on z = h2.
(1.1e)

These say simply that the velocity field is tangential to the rigid walls. Throughout this paper, we consider
classical solutions for which ui ∈ C1(Ωi;R3), Pi ∈ C1(Ωi), and η ∈ C1(R2). In order to ensure there
is a positive separation between the interface and the walls, we further assume that −h1 < inf η and
sup η < h2.

Recall that the vorticity in the layer Ωi is defined to be the vector field

ωi := ∇ × ui = (∂ywi − ∂zvi, ∂zui − ∂xwi, ∂xvi − ∂yui). (1.2)

Taking the curl of the momentum Eq. (1.1a), we find that each ωi satisfies the so-called steady vorticity
equation

(ui · ∇)ωi = (ωi · ∇)ui in Ωi. (1.3)

Suppose now that the vorticity in each layer is a nonzero constant

ωi = (αi, βi, γi) for i = 1, 2. (1.4)

Then the advection term on the left-hand side of (1.3) vanishes identically, while the vortex stretching
term on the right-hand side becomes a constant directional derivative of u:

(ωi · ∇)ui = 0 in Ωi. (1.5)

Thus, the velocity ui is constant in the direction of ωi. As (1.1) is invariant under rotation about the
z-axis, we can without loss of generality assume that ω2 = (0, β2, γ2), that is, the vorticity of the upper
fluid lies in the yz-plane.

From the vector identity

(u · ∇)u + u × ω = (∇ · u)u +
1
2
∇(|u|2),

one can rewrite (1.1a) as

ui × ωi = ∇Hi (1.6)

where

Hi :=
1
2
|ui|2 +

Pi

ρi
+ gz (1.7)

is called the Bernoulli function. From (1.6) we see that Hi is constant along the vortex lines.
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1.2. Main Results

Our first result imposes a dimensionality constraint on the vorticity: if u1 and u2 are uniformly bounded,
then both vorticity vectors ω1 and ω2 are necessarily two-dimensional and lie in the xy-plane. A theorem
of this type was first proved by Constantin [4] for gravity waves beneath vacuum assuming the free
boundary is two-dimensional. Wahlén [37] obtained an analogous theorem for steady gravity and capillary-
gravity water waves without this assumption. Martin [25] later showed the same holds for the time-
dependent case. Adapting Wahlén’s argument to the two-layer case requires some new analysis due to
the more complicated behavior at the interface, but we ultimately prove that the vorticity is likewise
constrained in the internal wave setting; see Proposition 2.1.

The main contribution of the present work concerns the structure of the velocity field and free surface
profile. Under remarkably general conditions, Wahlén [37] proves that for a gravity wave beneath vacuum,
if the vorticity is constant, then the flow must be entirely two dimensional: ui lies in the xz-plane and
depends only on (x, z), while η = η(x). In other words, genuinely three-dimensional steady surface
gravity water waves with non-zero constant vorticity do not exist. Wahlén also proves the same holds
for capillary-gravity waves provided the velocity field and free surface profile are uniformly bounded in
C1, and a Taylor sign condition on the pressure holds. Earlier work by Constantin [4], Constantin and
Kartashova [8], and Martin [24] obtain analogous results for gravity and capillary-gravity waves under
the more restrictive assumption that η is periodic, while Martin treats time-dependent [25] and viscous
waves [26] again with a Taylor sign condition; see also the survey in [27]. The moral of this body of work
is that in order to find genuinely three-dimensional steady rotational waves beneath vacuum, one must
allow for a more complicated vorticity distribution.

However, constant vorticity internal waves are not obliged to be two dimensional. Indeed, a little
thought readily leads us to a profusion of explicit three-dimensional solutions to (1.1). Consider the
Boussinesq limit where ρ1 = ρ2. In this case, the interface can equivalently be viewed as a vortex sheet
submerged in a single fluid of constant density. Then, taking

ui = (βiz + ki, 0, 0) for i = 1, 2, η = H(y) (1.8)

gives a steady wave for any H ∈ C1(R; (−h1, h2)). Note that the corresponding vorticity vectors ωi =
(0, βi, 0) are parallel. We can visualize (1.8) as two shear flows defined in Ω, which when ρ1 = ρ2 will have
the same (hydrostatic) pressure. Any streamline in the xz-plane can be viewed as a material interface
above which we have the first fluid and below the second. When v1, v2 ≡ 0, we can smoothly vary which
streamline is the interface as we change y, permitting there to be three-dimensional structure. Essentially,
the difference between the situation here and the one-layer case lies in the dynamic condition (1.1d). When
the fluid is bounded above by vacuum, the pressure must be constant along the interface, whereas for
internal waves it need only be continuous.

Members of the family of solutions (1.8) can be thought of as trivially three-dimensional shear flows
when ηy �≡ 0. Our main theorem shows that they are in fact the only possible configuration for three-
dimensional waves with constant parallel vorticity and bounded velocity.

Theorem 1.1 (Rigidity). Every solution of the steady internal wave problem (1.1) for which
(i) ω1 and ω2 are constant, parallel, and nonzero, and
(ii) ‖u1‖C0 , ‖u2‖C0 < ∞,
is either a trivially three-dimensional shear flow of the form (1.8) or two dimensional. If ρ1 �= ρ2, then
the wave is necessarily two dimensional.

One can interpret this theorem as the statement that the solutions to (1.1) inherit the symmetry
of the channel domain in which the problem is posed. Related rigidity results for the two-dimensional
Euler equations have been obtained by Hamel and Nadirashvili [13,14], who prove that all solutions
in a strip, half plane, or the whole plane with no stagnation points are shear flows (that is, the vertical
velocity vanishes identically and the horizontal velocity depends only on z). Under the same no-stagnation
assumption, these authors also find that steady Euler configurations confined to circular domains must
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be radially symmetric [15]. Allowing the presence of stagnation points, Gómez-Serrano, Park, Shi, and
Yao [12] show that smooth stationary solution with compactly supported and nonnegative vorticity must
be radial. In Theorem 1.1 we avoid making any restrictions on the velocity beyond boundedness, though
we only treat the constant vorticity case. Notably, as in [37], we make no a priori assumptions on the
far-field behavior of the wave. Thus in the non-Boussinesq case ρ1 �= ρ2, nontrivial solitary waves, periodic
waves, fronts—and all other more exotic waveforms—are excluded all at once. We also mention that it is
possible to rule out capillary-gravity internal waves through arguments similar to the one-fluid regime;
see Theorem 3.1.

Lastly, let us note that after a preprint of the present paper had appeared online, Martin [28] indepen-
dently obtained a set of rigidity results for internal waves with constant parallel vorticity. He considered
the dynamical problem, where ω1 and ω2 are assumed to be parallel and constant in space and time,
and allowed for the upper boundary to be either free or a rigid lid. He is also able to treat the viscous
case. On the other hand, for all of these results, Martin requires that ∇P1 − ∇P2 be non-vanishing along
the internal interface. This assumption has the flavor of a Taylor sign condition, which is appropriate
for the time-dependent problem but less natural for the traveling waves studied here. In particular, it
excludes the entire family of trivially three-dimensional shear flows (1.8) with ρ1 = ρ2, since ∇P1 and
∇P2 coincide everywhere in that case. Our results are somewhat smaller in scope, but avoid any such
hypotheses on the pressure.

1.3. New Ingredients in the Proof

The idea of the proof can be explained as follows. Thanks to Proposition 2.1, when ω1 and ω2 are parallel,
the velocity fields are two-dimensional: ui = (ui(x, z), Vi, wi(x, z)) where Vi are constants. The same also
holds for the pressures, but a priori η may depend on both (x, y). If the interface is not independent of y,
then the projections Ω̃i of Ωi into the xz-plane will have non-empty intersection with non-empty interior,
and on that set we have two solutions of the two-dimensional Euler equations. Because each point in
Ω̃1 ∩ Ω̃2 corresponds to one or more points on the interface, the dynamic condition applies throughout.
The key insight of Wahlén is that, for waves beneath vacuum, this forces the pressure to be constant,
and hence by analyticity, it is constant throughout the fluid. As this is not possible, he concludes that for
surface waves, the interface must be flat in y. For internal waves, however, the dynamic condition tells
us merely that there exists a pressure P = P (x, z) that is real analytic on Ω̃1 ∪ Ω̃2 and whose restriction
to Ω̃1 is P1 and whose restriction to Ω̃2 is P2. One certainly cannot infer from this that the flow is
two-dimensional, as the abundance of three-dimensional solutions of the form (1.8) shows quite clearly.

The central question therefore turns to one of uniqueness of steady solutions of the two-dimensional
Euler equations with a prescribed pressure, but allowing for potentially different densities and different
constant vorticities. We have in addition that the kinematic condition (1.1c) holds on the intersection
region, which forces a relation between the slopes of the two velocity fields there. Through a novel but
elementary argument, we prove that the streamlines (integral curves) of the vector fields (u1, w1) and
(u2, w2) coincide on Ω̃1 ∩ Ω̃2. Finally, from the real analyticity of the velocity and pressure and Liouville’s
theorem, we are ultimately able to conclude that the pressure must be hydrostatic, and thus the wave is
of the form (1.8). We emphasize that this analysis is completely new, as the many subtle issues stemming
from the possibility of “overlapping” projected regions of two-dimensional waves is specific to the two-layer
setting.

2. Proof of the Main Result

We begin by stating the following result on the two-dimensionality of the vorticity.
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Proposition 2.1. Consider a solution to the steady internal wave problem (1.1) such that ‖u1‖C0 , ‖u2‖C0 <
∞ and ω1 and ω2 are nonzero constant vectors. Then necessarily the third components of ω1 and ω2

both vanish.

This proposition can be established in a similar way to the one-fluid case [4,37], and relies on the
structure of the velocity field near the rigid walls. For the reader’s convenience we provide a self-contained
proof in “Appendix A”.

A key observation, both for proving the above result and the main theorem we consider below, is that
each component of the velocity is harmonic:

Δui = Δvi = Δwi = 0 in Ωi. (2.1)

This follows simply by taking the curl of Eq. (1.2) and using incompressibility (1.1b). As just one impor-
tant consequence, ui, vi, and wi are all real-analytic functions. Taking the divergence of the momentum
Eq. (1.1a), we likewise find that the pressure Pi solves a Poisson equation with real-analytic forcing, and
hence it too is real analytic. These facts will be crucial to our analysis at several points. In particular,
they provide a means to globalize identities that hold on open subsets to the entirety of the fluid domain.

Let us now turn to the proof of rigidity result in Theorem 1.1, characterizing three-dimensional internal
waves with constant vorticity. Recall that we have, without loss of generality, chosen axes so that ω2 lies
in the yz-plane. Proposition 2.1 then guarantees that the vorticity in each layer takes the form

ω1 = (α1, β1, 0), ω2 = (0, β2, 0). (2.2)

Note that the assumption ω1 and ω2 are parallel is equivalent to α1 = 0. More generally, though, the
particularly simple form of ω2 allows us further characterize the flow pattern in the upper layer.

Lemma 2.2. Let the assumptions of Proposition 2.1 hold. Then, u2 and P2 are independent of y, and v2
is constant. Likewise, u1 and P1 are constant along lines parallel to ω1, while α1u1 + β1v1 is constant.

Proof. We will only present the argument for the upper fluid as the lower fluid follows through essentially
the same reasoning. From (2.2), (1.4) and (1.5) it follows that

∂yu2 = ∂yv2 = ∂yw2 = 0, ∂xv2 = ∂zv2 = 0.

In particular, ∇v2 = 0, and thus v2 is a constant throughout Ω2. The y-directional momentum equation
then becomes

∂yP2 = 0 in Ω2.

Following the argument as in [37, Lemma 3] using the real analyticity of P2 we can show that P2 is
independent of y in the upper fluid layer Ω2. In fact we see that P2 is independent of y in a region
sufficiently close to the top boundary {z = h2}. Therefore for any y1 �= y2, there exists a minimal z∗ ≤ h2

such that

P2(x, y1, z) = P2(x, y2, z) for z∗ ≤ z ≤ h2.

Clearly we know that z∗ ≥ max{η(x, y1), η(x, y2)}. Using the real analyticity of z �→ P2(x, y1, z) −
P2(x, y2, z) we see that z∗ = max{η(x, y1), η(x, y2)}, which indicates that P2 is independent of y in Ω2.
The result for (u2, w2) follows in a similar way. �

We can now proceed to the proof of the main result.

Proof of Theorem 1.1. Thanks to Lemma 2.2 and the assumption that ω1 and ω2 are parallel and non-
vanishing, we have that v1 and v2 are constants; let them be denoted V1 and V2, respectively. Moreover,
u1, P1,u2, and P2 are independent of y, so we can write

u1(x, y, z) = ũ1(x, z), P1(x, y, z) = P̃1(x, z),

u2(x, y, z) = ũ2(x, z), P2(x, y, z) = P̃2(x, z),
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Fig. 2. Projection to Ω̃1

where ũi and P̃i are defined on the projection

Ω̃i := {(x, z) : (x, y, z) ∈ Ωi for some y ∈ R} , (2.3)

of Ωi on the xz-plane, for i = 1, 2. It is easy to see that in fact

Ω̃1 = {(x, z) : −h1 < z < f1(x)} , Ω̃2 = {(x, z) : f2(x) < z < h2} , (2.4)

where

f1(x) := sup
y∈R

η(x, y), and f2(x) := inf
y∈R

η(x, y).

By definition f2(x) ≤ f1(x). The boundedness of η implies that −h1 < f1(x) ≤ h2 and −h1 ≤ f2(x) < h2.
It is elementary that f1 is then lower semicontinuous while f2 is upper semicontinuous. The projected
planes Ω̃i are both open and connected subsets of R2, for i = 1, 2.

Arguing by contrapositive, suppose that ηy �≡ 0. Then Ω̃1∩Ω̃2 �= ∅ and there exists some point (x0, y0)
such that z0 := η(x0, y0) ∈ (f2(x0), f1(x0)). The dynamic boundary condition (1.1d) yields

P̃1(x0, z0) = P̃2(x0, z0).

A continuity argument implies that for each z between z0 and f1(x0) there exists some y(z) such that
z = η(x0, y(z)). Therefore on the line segment joining (x0, z0) and (x0, f1(x0)) we have

P̃1(x0, z) = P̃2(x0, z).

See Fig. 2. Now from the lower semicontinuity of f1 and the upper semicontinuity of f2 we know that
for x sufficiently close to x0 it holds that f2(x) < η(x, y0) < f1(x). Repeating the previous argument it
follows that there exists an open subset of Ω̃1 in which P̃1(x, z) = P̃2(x, z). The analyticity of P̃i then
forces P̃1 = P̃2 on Ω̃1 ∩ Ω̃2, and thus P̃1 and P̃2 are analytic extensions of each other in the entire strip
Ω̃ := {(x, z) : −h1 < z < h2}.

Recall that we say the pressure in Ω̃i is hydrostatic provided ∇(P̃i+ρigz) vanishes identically. Suppose
that either P̃1 or P̃2 is hydrostatic. Then uniqueness of the analytic extension implies both are hydrostatic
and hence ρ1 = ρ2. The incompressibility of ũ1 and ũ2 permit us to define stream functions ψ̃i by
∇⊥ψ̃i := (ũi, w̃i). The Bernoulli Eq. (1.6) now reads

βi(−w̃i, 0, ũi) = ∇
[
1
2
(ũ2

i + V 2
i + w̃2

i )
]

in Ωi,

which in turn leads to
1
2

(
ũ2

i + w̃2
i

)
+ βiψ̃i = Qi in Ω̃i

for some constant Qi. On the bed, w̃1 ≡ 0 and ψ̃1 is constant, and so ũ1 is likewise constant there. Thus,

w̃1z = ũ1x = 0 on {z = −h1},
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and, because w̃1 is harmonic, it must therefore be that w̃1 ≡ 0 in Ω̃1. The same argument applied on the
lid shows that w̃2 ≡ 0 in Ω̃2. Note that the argument differs from the one in the proof of Proposition 2.1
since here the third component of the vorticity is zero. Incompressibility then implies that ũ1 = U1(z)
and ũ2 = U2(z), meaning we have a shear flow. The constant vorticity then forces ũi = βiz + ki as in
(1.8).

Evaluating the kinematic condition using this fact gives

(β1η + k1)ηx + V1ηy = 0 for all (x, y) ∈ R
2.

If V1 �= 0, this is Burgers’ equation with y playing the role of the evolution variable. Because the only
global classical solutions are constants, this forces the interface to be perfectly flat. On the other hand, if
V1 = 0, we can simply integrate the equation in x to see that η( · , y) is likewise constant. In either case,
then, the wave is completely shear with no variation in the x-direction.

As the converse of these inferences is obviously true, the conclusions of the previous two paragraphs
can be stated succinctly as:

P̃1 or P̃2 hydrostatic ⇐⇒ P̃1 and P̃2 hydrostatic ⇐⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ũ1 = β1z + k1, w̃1 ≡ 0,

ũ2 = β2z + k2, w̃2 ≡ 0,

η = H(y),
ρ1 = ρ2.

(2.5)

Our goal in the remainder of the proof is therefore to show that at least one of P̃1 and P̃2 is hydrostatic.
The kinematic condition in the projected domain states that

{
ũ1(x, z)ηx(x, y) + V1ηy(x, y) = w̃1(x, z)

ũ2(x, z)ηx(x, y) + V2ηy(x, y) = w̃2(x, z),

where (x, z) ∈ Ω̃1 ∩ Ω̃2 and y is any point such that z = η(x, y). Observe that this can be rewritten in
terms of the stream functions as

⎧
⎪⎨

⎪⎩

V1ηy(x, y) = ∂x

(
ψ̃1(x, η(x, y))

)

V2ηy(x, y) = ∂x

(
ψ̃2(x, η(x, y))

)
.

(2.6)

Let us look at two possibilities. First suppose that V1 = V2 = 0. Thus from (2.6), we see that each
graph η( · , y) is a streamline for both ũ1 and ũ2. It follows that the Poisson bracket of ψ̃1 and ψ̃2 vanishes
identically in Ω̃1 ∩ Ω̃2. We claim that in fact ψ̃1 and ψ̃2 must be locally functionally dependent. Indeed,
by real analyticity, the zero-set of |∇ψ̃1|2|∇ψ̃2|2 is either the entirety of Ω̃1 ∩ Ω̃2 or a closed, nowhere
dense subset. In the first case, we would of course have that the flow is hydrostatic, so assume that the
latter is true. Then we can find an open set U ⊂ Ω̃1 ∩ Ω̃2 on which |∇ψ̃1|, |∇ψ̃2| �= 0. It follows that there
exists some real-analytic function Λ such that ψ̃1 = Λ(ψ̃2) on U . Taking the Laplacian of both sides then
gives the identity

β1 = Λ′′(ψ̃2)|∇ψ̃2|2 + Λ′(ψ̃2)β2 on U .

We see then that either Λ′′(ψ̃2) ≡ 0, or else |∇ψ̃2|2 is constant along the streamlines in some open
subset V ⊂ U . In the first case, λ := Λ′(ψ̃2) is constant on V, and so by real analyticity, (ũ1, w̃1) =
λ(ũ2, w̃2) on all of U . We can thus extend ũ1 and w̃1 as real-analytic (indeed, harmonic) functions defined
on the entire closure of Ω̃ with ũ1 = λũ2 and w̃1 = λw̃2 on Ω̃2. The Phragmén–Lindelöf principle and
boundary conditions then force w̃1 ≡ 0, so by incompressibility ũ1x ≡ 0. Thus P̃1 is hydrostatic, and we
can appeal to (2.5) to show that the wave is trivial.

Assume next that |∇ψ̃2|2 is constant along the streamlines in V. Bernoulli’s law then implies that the
dynamic pressure p2 := P̃2 − ρ2gz is also constant along the streamlines in V, that is, ∇p2 · ∇⊥ψ̃2 = 0
in V. By construction, ∇⊥ψ̃2 = (ũ2, w̃2) has no stagnation points in Ω̃2. So by analyticity we have
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∇p2 · ∇⊥ψ̃2 = 0 in Ω̃2. In particular, p2, and thus P̃2, is constant on z = h2, which by the argument
above forces P̃2 to be hydrostatic.

Next consider the situation where at least one of V1 and V2 is non-vanishing; for definiteness, say
V1 �= 0. Unlike the previous case, the graphs of η( · , y) are no longer streamlines, however (2.6) implies
that for any y ∈ R,

V2ψ̃1 − V1ψ̃2 is constant on {η(x, y) : x ∈ R}.

As we have assumed ηy �≡ 0, we may let (x0, z0) ∈ Ω̃1 ∩ Ω̃2 be given such that z0 = η(x0, y0) and
ηy(x0, y0) �= 0. Let (a, b) be an open interval containing y0 on which η(x0, · ) is monotone. Integrating
the kinematic condition (2.6) from x = x0 to x = M and from y = a to y = b gives

V1

∫ M

x0

(η(x, b) − η(x, a)) dx =
∫ M

x0

∫ b

a

∂x

(
ψ̃1(x, η(x, y))

)
dy dx

=
∫ b

a

ψ̃1(M,η(M,y)) dy −
∫ b

a

ψ̃1(x0, η(x0, y)) dy.

The right-hand side above is bounded uniformly in M since
∣
∣
∣
∣
∣

∫ b

a

ψ̃1(M,η(M,y)) dy

∣
∣
∣
∣
∣
≤ (b − a)‖ψ̃1‖C0 � ‖ũ1‖C0 .

Therefore, we must have that infx≥x0 |η(x, b)−η(x, a)| = 0, as otherwise, the left-hand side integral would
diverge as M → ∞. That is, the distance between the graphs η( · , y1) and η( · , y2) is in fact 0 for all
y1, y2 ∈ (a, b). It follows that V2ψ̃1 − V1ψ̃2 is constant in the set W that is bounded above and below
by the graphs of η( · , b) and η( · , a). But since ηy(x0, y0) �= 0, the inverse function theorem applied to
(x, y) �→ (x, η(x, y)) ensures that some open neighborhood U � (x0, z0) lies in the interior of W.

From here, it is easy to see that the flow must be hydrostatic. If V2 = 0, by analyticity we would
have that (ũ2, w̃2) ≡ (0, 0), meaning β2 = 0 and the flow is hydrostatic. If V2 �= 0, then we can write
ψ1 = Λ(ψ2) for an affine function Λ. The argument from the previous case shows that this forces the
pressure to be hydrostatic. �

3. Discussion

We conclude with some informal discussion of some simple extensions, as well as two open problems
stemming from the arguments above.

Capillary-Gravity Internal Waves

One can also consider the question of rigidity for capillary-gravity internal waves, meaning the effects
of surface tension on the interface are included in the model. Mathematically, this entails replacing the
dynamic condition (1.1d) with

P2 − P1 = σ
(1 + η2

y)ηxx − 2ηxηyηxy + (1 + η2
x)ηyy

(1 + η2
x + η2

y)3/2
on z = η(x, y), (3.1)

where σ > 0 is the coefficient of surface tension. The right-hand side above is the mean curvature of the
free boundary, and hence (3.1) enforces the Young–Laplace law for the pressure jump.

Thanks to Proposition 2.1 and Lemma 2.2, a straightforward adaptation of the proof of [37, Theorem
2] quickly yields the following result on the nonexistence of constant vorticity internal capillary-gravity
waves.

Theorem 3.1 (Capillary-gravity waves). Any solution to the steady internal capillary-gravity wave prob-
lem (1.1a)–(1.1c), (1.1e), (3.1) satisfying
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(i) ω1 and ω2 are constant, parallel, and nonzero,
(ii) ‖u1‖C1 , ‖u2‖C1 , ‖η‖C2 < ∞, and
(iii) sup (P1z − P2z)|z=η < 0,
is necessarily two dimensional.

Notice that the sign requirement on P1z − P2z along the interface is consistent with the two-fluid
Rayleigh–Taylor criterion due to Lannes [22], though it is not equivalent to well-posedness like in the
one-fluid case.

Non-parallel Vorticities

Second, it is natural to ask whether Theorem 1.1 can be extended to the case ω1 and ω2 are non-parallel.
For instance, suppose that they are orthogonal with ω1 aligned along the x-axis and ω2 aligned along
the y-axis. In view of Lemma 2.2, this would imply that

u1 = (U1, ṽ1(y, z), w̃1(y, z)) u2 = (ũ2(x, z), V2, w̃2(x, z)) ,

P1 = P̃1(y, z) P2 = P̃2(x, z),

for constants U1 and V2. We conjecture that this is not possible if ρ1 �= ρ2, and even in the Boussinesq
setting it can only be that the flow in both layers is shear—that is, ∇η, w̃1, and w̃2 vanish identically,
while ũ1 and ṽ2 are independent of the horizontal variables. Indeed, the dynamic boundary condition on
the interface would then give

P̃1(y, η(x, y)) = P̃2(x, η(x, y)) for all (x, y) ∈ R
2,

which coupled with the kinematic conditions appears to be overdetermined. However, the argument for
the parallel vorticity case do not apply directly, as we cannot project into a common two-dimensional
domain.

Pressure Reconstruction

Lastly, in the proof of Theorem 1.1, we were confronted with the possibility that on some open subset
U ⊂ R

2, there are two solutions to the incompressible steady Euler equations with (potentially different)
constant densities and vorticities. That is, the elliptic problem

⎧
⎨

⎩

Δψ + β = 0

∇
(

1
2
|∇ψ|2 − βψ + gz +

1
ρ
P

)
= 0

in U . (3.2)

was satisfied by the triples (ψ1, ρ1, β1) and (ψ2, ρ2, β2). In the context of the proof of Theorem 1.1, we
had additional information about the level sets of ψ1 and ψ2 due to the kinematic condition (for the
three-dimensional problem), which was how we ultimately found that this situation could not occur
unless ρ1 = ρ2 and ψ1 was an affine function of ψ2. However, one could reasonably ask whether the same
conclusion follows simply from (3.2) if say ψ1 and ψ2 share a common streamline. This question is of
considerable independent interest, both mathematically and to hydrodynamical applications. On the one
hand, (3.2) is a parameter-dependent Poisson problem coupled with an unusual gradient constraint. Thus
unique solvability falls into the broader category of unique continuation of elliptic PDE. On the other
hand, determining (ψ, ρ, β) from (3.2) amounts to recovering the flow from pressure data, which has been
the subject of a number of papers in the applied literature. Constantin [5] provided an explicit formula for
the surface elevation of a two-dimensional irrotational solitary wave in finite-depth water in terms of the
trace of the pressure on bed. The central observation of that work is that one can derive from the pressure
on the bed and Bernoulli’s principle Cauchy data for an elliptic equation describing the flow. Henry [17]
extended this idea to general real-analytic vorticity (assuming the absence of stagnation points) using
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the Dubreil-Jacotin formulation of the steady water wave problem and Cauchy–Kovalevskaya theory.
Chen and Walsh [1] later proved an analogous result with vorticity of Sobolev regularity and allowed
for density stratification using strong unique continuation techniques. A recovery formula for constant
vorticity waves was recently obtained by Clamond, Labarbe, and Henry [34]. See also [2,3,18] for ealier
results of this variety. Pressure recovery for (3.2) is simpler in that we require constant vorticity and have
pressure data on an open set, rather than the boundary. However, it is important that we do not specify
a priori the values of ρ or β, which is a large departure from these earlier works.
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Appendix A. Dimension Reduction for the Vorticity

For completeness, we give here the proof of the dimension reduction result for the vorticity, which gen-
eralizes Constantin’s argument for the single-fluid case in [4].

Proof of Proposition 2.1. Seeking a contradiction, suppose that one of γi is not zero, say, γ1 �= 0; the
argument for the other case γ2 �= 0 can be treated the same way. Then from the third component of the
vorticity equation (1.5) we see that w1 is constant in the direction of ω1, which is transverse to the lower
boundary at z = −h1. From the kinematic condition (1.1e), it follows that w1 vanishes identically on the
open neighborhood N := {(x, y, z) : −h1 < z < inf η} of the bed. As it is real analytic, this forces

w1 ≡ 0 in Ω1.

Reconciling this with (1.4), (1.1b) and (1.1a), we then have

∂zu1 = β1, ∂zv1 = −α1, (A.1)

∂xu1 + ∂yv1 = 0, (A.2)

∂zP1 = −ρ1g (A.3)

in Ω1. By integrating (A.1), we infer that

u1 = ū1(x, y) + β1z, v1 = v̄1(x, y) − α1z, (A.4)

in N for some functions ū1 and v̄1. The reduced incompressibility condition (A.2) then implies that

∂xū1 + ∂y v̄1 = 0,
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which ensures the existence of a reduced stream function ψ̄1 = ψ̄1(x, y) defined on N such that ∇⊥ψ̄1 =
(−∂yψ̄1, ∂xψ̄1) = (ū1, v̄1). Rewriting the two horizontal momentum equations (1.1a) in terms of ψ̄1,
differentiating the result with respect to z and then using (A.3), we see that in N , ψ̄1 satisfies

⎧
⎪⎨

⎪⎩

β1∂x∂yψ̄1 − α1∂
2
y ψ̄1 = 0

−β1∂
2
xψ̄1 + α1∂x∂yψ̄1 = 0

Δψ̄1 − γ1 = 0

in N , (A.5)

where the last equation comes from (1.2). We consider two cases.
Case 1: α2

1 + β2
1 = 0. From A.1 and (1.4) it follows that

∂zu1 = ∂zv1 = 0, ∂xv1 − ∂yu1 = γ1. (A.6)

We also find from (A.4) and (2.1) that in the neighborhood N , u1 = ū1 and v1 = v̄1 are harmonic
functions with domain R

2. The boundedness of u1, and thus the boundedness of (ū1, v̄1), allows one to
appeal to the Liouville theorem for harmonic functions to conclude that u1 and v1 are constants. However
this contradicts that fact that γ1 �= 0.

Case 2: α2
1+β2

1 �= 0. In this case, direct computation from (A.5) yields that the second-order derivatives
of ψ̄1 are all constant:

∂2
xψ̄1 = − α2

1γ1
α2
1 + β2

1

=: A1, ∂x∂yψ̄1 = − α1β1γ1
α2
1 + β2

1

=: B1, ∂2
y ψ̄1 = − β2

1γ1
α2
1 + β2

1

=: C1, (A.7)

from which one can solve for ū1 and v̄1

ū1 = −B1x − C1y + a1, v̄1 = A1x + B1y + b1

for some constants a1 and b1. Thus

u1 = −B1x − C1y + β1z + a1, v1 = A1x + B1y − α1z + b1. (A.8)

Again boundedness of u1 forces A1 = B1 = C1 = 0, leading to α1 = β1 = 0, a contradiction. �

References

[1] Chen, R.M., Walsh, S.: Unique determination of stratified steady water waves from pressure. J. Differ. Equ. 264, 115–133
(2018)

[2] Clamond, D., Constantin, A.: Recovery of steady periodic wave profiles from pressure measurements at the bed. J. Fluid
Mech. 714, 463–475 (2013)

[3] Clamond, D., Henry, D.: Extreme water-wave profile recovery from pressure measurements at the seabed. J. Fluid Mech.
903, R3 (2020)

[4] Constantin, A.: Two-dimensionality of gravity water flows of constant nonzero vorticity beneath a surface wave train.
Eur. J. Mech. B. Fluids 30, 12–16 (2011)

[5] Constantin, A.: On the recovery of solitary wave profiles from pressure measurements. J. Fluid Mech. 699, 376–384
(2012)

[6] Constantin, A., Ivanov, R.I.: Equatorial wave–current interactions. Commun. Math. Phys. 370, 1–48 (2019)
[7] Constantin, A., Ivanov, R.I., Martin, C.-I.: Hamiltonian formulation for wave–current interactions in stratified rotational

flows. Arch. Ration. Mech. Anal. 221, 1417–1447 (2016)
[8] Constantin, A., Kartashova, E.: Effect of non-zero constant vorticity on the nonlinear resonances of capillary water

waves. EPL 86, 29001 (2009)
[9] Constantin, A., Strauss, W.A.: Exact steady periodic water waves with vorticity. Commun. Pure Appl. Math. 57,

481–527 (2004)
[10] Dubreil-Jacotin, M.: Sur la determination rigoureuse des ondes permanentes periodiques d’ampleur finie. J. Math. Pures

Appl. 13, 217–291 (1934)
[11] Gerstner, F.: Theorie der wellen. Ann. Phys. 32, 412–445 (1809)
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