HEKWS: Privacy-Preserving Convolutional Neural
Network-based Keyword Spotting with a Ciphertext
Packing Technique

Daniel L. Elworth and Sunwoong Kim
Division of Engineering and Mathematics, University of Washington, Bothell, WA 98011, USA
Email: {delworth, sunwoong} @uw.edu

Abstract—Keyword spotting (KWS) is a key technology in
smart devices. However, privacy issues in these devices have
been constantly raised. To solve this problem, this paper applies
homomorphic encryption (HE) to a previous small-footprint
convolutional neural network (CNN)-based KWS algorithm. This
allows for a trustless system in which a command word can be
securely identified by a remote cloud server without exposing
client data. To alleviate the burden on an edge device of a
client, a novel packing technique is proposed that reduces the
number of ciphertexts for an input keyword to one. Our HE-
based KWS shows a prediction accuracy of 72% for Google’s
Speech Commands Dataset with 12 labels. This is almost identical
to the accuracy of the non-HE-based implementation that has the
same CNN layers and approximates a rectified linear unit in the
same manner. On a workstation, it takes 19 seconds to process
one keyword on average, which can be improved in the future
through parallelization, HE parameter optimization, and/or the
use of custom hardware accelerators.

Index Terms—Kkeyword spotting, homomorphic encryption,
convolutional neural networks, cyber-physical systems

I. INTRODUCTION

As devices in cyber-physical systems (CPS) and/or internet-
of-things (IoT) continue to become more ubiquitous, an area
of concern is data privacy [1]. With related technologies
being used in an increasing number of applications, such as
appliances, vehicles, security systems, and health monitors,
it is difficult to keep track of information flow and ensure
security. The need for improvement in data privacy is apparent,
as there has been a massive increase in cyberattacks targeting
CPS/1oT devices in the past year. Kaspersky labs reported 1.51
billion breaches of IoT devices in the first half of 2021, over
twice the reported number from the same period in 2020 [2].

Keyword spotting (KWS) is a popular CPS/IoT application
[3]-[8]. The typical goal of a KWS algorithm is the classifi-
cation of a spoken word from a predetermined list to detect
commands or wake words. One application is the development
of voice user interfaces (VUIs) used to improve accessibility
options. For instance, VUIs are used to control hearing aids,
allowing hands-free adjustments [9]. Another application is a
hands-free medical alert system that can be voice-activated to
put a user in contact with medical aid in an emergency [10].
By only requiring identification of a small set of words, it can
avoid resource-intensive methods used for automatic speech
recognition, and thus be used in small-footprint applications.
KWS algorithms continuously receive speech data of daily

978-1-6654-7189-3/22/$31.00 © 2022 IEEE

life, including private data such as passwords. If attackers
exploit these, serious privacy issues arise. Therefore, privacy-
preserving KWS algorithms are essential.

Using homomorphic encryption (HE) [11]-[16], a crypto-
graphic technique, allows for a trustless system that eliminates
the risk of data exposure. Unlike other techniques that require
decryption first to perform operations on a ciphertext, such
as the advanced encryption standard (AES) algorithm [17],
HE performs operations on ciphertexts directly. This makes it
possible to run real-world applications without exposing user
data to a third party, a fact relevant to the increasing use of
cloud servers [18], [19].

However, HE has a critical problem in that the processing
speed is slow [20], [21]. Since the size of each ciphertext
containing thousands to tens of thousands of slots is usually
several tens or hundreds of MB, the amount of data trans-
mission between server and client is large. In addition, the
computational complexity of a client that generates, stores,
and transmits ciphertexts is high. Usually, a client is im-
plemented on a resource-hungry embedded system platform
with limited processing speed and power consumption, so the
large number of ciphertexts is a big burden. To solve this
problem, techniques for packing multiple plaintext messages
into a few ciphertexts and performing slot-wise operations
have been widely used [12], [18], [22]-[25]. Such a method
greatly reduces the number of ciphertexts and shows good
amortized running time. However, it is impossible to per-
form operations between slots in the same ciphertext without
decryption, so how to pack plaintext messages is critical in
overall performance [18].

This paper applies a HE scheme to a convolutional neural
network (CNN)-based KWS algorithm. We propose a novel
packing technique that reduces the number of ciphertexts of
speech data and improves slot utilization, which is different
from previous HE-based CNN applications [22], [26]. The
proposed packing technique moves the client’s workload to
a server, and therefore it is suitable for a CPS/IoT platform
where computation is centered on a resource-rich cloud server.

II. BACKGROUND
A. CNN-based KWS Algorithms

Several machine learning approaches have been used to
implement KWS, including hidden Markov models and vari-

TABLE I
THE HONK COMPACT MODEL [5]
Conv ReLU FClI FC2 Softmax
m 32 - - - -
r 8 - - - -
n 186 - 128 128 12

ous neural networks [3], [5], [6], [8], with CNNs being one
of the most popular. A typical CNN for KWS has one or
more convolutional (Conv) layers, followed by several fully
connected (FC) layers. At least one activation function, such
as a rectified linear unit (ReLU), is used after selected Conv
or FC layers. A final FC layer has a node for each target label,
and performing the softmax function on the output gives the
result of the classification.

A CNN for KWS first requires some preprocessing of an
input audio sample. This is done by performing a windowed
fast Fourier transform to produce a spectrogram of the signal.
The spectrogram can be transformed using the mel scale and
have the logarithm of the results found. This becomes the input
to a Conv layer of the CNN and has the shape S € R**/,
where f is frequency and ¢ is time. S is then convolved with
weights W € R™*™*" where m and r are the frequency
and time span of the convolution, and n is the number of
feature maps. The process of convolution extracts features
from the input. The FC layers consist of nodes. Each node
applies separate weights to each input, sums the values and
applies a bias. With M inputs, the output of the i-th node
is y; = b; + 221:1 TpWy, Where x, w, and b are the inputs,
weights, and biases, respectively.

Some studies use a compact small-footprint CNN model
rather than a full model for KWS algorithms to minimize
parameters and/or multiplications [5], [6]. Table I shows one
such compact model presented by Tang and Lin in their Honk
reimplementation [5] of a TensorFlow model [27]. Again, m,
r, and n in this table represent the width and height of the
convolution filter and the number of feature maps or nodes,
respectively. This model forms the basis of our HE-based
KWS (HEKWS) and is referred to as Honk in the rest of
this paper.

B. Operations in HE Schemes

One of the HE schemes commonly implemented in popular
open-source HE libraries, such as Microsoft SEAL [28] and
PALISADE [29], is the Cheon, Kim, Kim, and Song (CKKS)
scheme [11]. This scheme supports homomorphic operations
for ciphertexts of fixed-point real-number plaintext messages.
The basic operations are as follows (other HE schemes have
similar operations except for rescaling (Rescale)):

e HomAdd(ctg, cty): adds two ciphertexts. A homomor-
phic subtraction is also supported.

e HomAddPlain(ct, m): adds a plaintext to a ciphertext.

e HomMult,x(ctp, cty): multiplies two ciphertexts. Af-
ter each multiplication, relinearization (Relin) is per-
formed using the relinearization keys rk to restore

the transformed key to the original one. In addition,
Rescale is performed to round off plaintext messages
in a ciphertext and maintain a scale.

e HomMultPlain(ct, m): multiplies a ciphertext with
a plaintext. Unlike HomMult, this operation does not
require Relin.

e HomRotgk(ct): rotates a cyclic vector (slots in a cipher-
text) by the amount defined by the Galois keys gk.

A plaintext message is hidden by noise in a ciphertext, and
the noise level increases whenever a homomorphic operation is
performed. If it exceeds a certain level, correct results cannot
be obtained after decryption. In particular, the noise level
significantly increases when performing HomMult, and the
number of consecutive HomMult is defined as the (multiplica-
tive circuit) depth. The size of the maximum depth depends
on HE parameters.

Many HE schemes pack and encode multiple data into
a plaintext polynomial, and this polynomial is encrypted as
a ciphertext polynomial. Specifically, in the CKKS scheme,
a vector of multiple real numbers is encoded. In particular,
N/2 real numbers are maximally included in N/2 slots of
a ciphertext, respectively, when the polynomial degree is N.
These slots are processed in a single instruction/multiple data
(SIMD) manner. For more details about the HE and CKKS
scheme, refer to [12].

III. PACKING TECHNIQUES FOR A KEYWORD

In this section, our proposed packing technique in HEKWS
is presented. This technique addresses two inherent issues in
the HE domain: 1) operations cannot be performed between
slots in the same ciphertext, and 2) storing and transmitting a
large number of ciphertexts causes issues in performance on
the client-side. In order to address these issues, our packing
technique creates a single densely-packed ciphertext for a key-
word on the client-side and expands the transmitted ciphertext
into multiple sparse ciphertexts on the server-side to effectively
apply different weights and biases in Conv and FC layers.

A. Client-side Packing

One of the challenges in adapting a CNN for use in a
practical HE application is developing an appropriate packing
technique to minimize expensive operations and the size of ci-
phertexts. HEKWS achieves this by maximizing ciphertext slot
utilization. For our KWS, the input spectrogram has a shape of
(40, 32) in the frequency and time dimensions, respectively, for
a total of 1,280 input values. A naive packing may encode each
input value in a separate ciphertext. This has the advantage
of requiring no additional homomorphic operations related to
packing (e.g., HomRot) but wastes resources as only a single
slot is utilized per ciphertext. A better approach is to store each
time segment (i.e., all the frequency values for a single time
point of an input spectrogram) into a separate ciphertext. This
approach reduces the required input ciphertexts from 1,280
using the naive approach to 32 as each ciphertext contains 40
frequency values. However, this approach still requires sending
a significant number of ciphertexts from the client. Thus,

time segment A time segment B

Input ciphertext

cto: [o T o T 1 a1 1 r 1T & 1 »]

Masking 1

PE0 (mask): [T 0 T o T 0 T o T o T o T o]

cr=coxpto: [o« [b [e | a | o [o [o | o |

Inter-slot addition

ct2 = ct0 left-rotl: | b | c l d | e | f | g | h | a I

c3=cto+ce2: [atb | bre | ctd | dre | ef | g | gth | hta |

cth=ct3lefiro2: [ctd | dte | etf | srg | gth | hta | atb | bte |
|

cts=ct3+cth: [atbrerd| brordre | crdretf | drerfrg [etfrgth | atfrgth [atbrgth | atbreth

Masking 2
pt1 (mask): [T o T o T o T v T o T o T o]
cto=ctsxptl: [atbrerd] 0 [o [o Jetpgn] o [o [o]

Fig. 1. An example of masking and inter-slot addition.

HEKWS maps the spectrogram matrix (frequency x time)
into one dimensional array of size 1,280 and then encrypts
it into a densely-packed single ciphertext. This calls for an
efficient unpacking on the server side to perform homomorhpic
operations.

B. Server-side Expansion

The server-side techniques involve three concepts: masking,
inter-slot addition, and expansion. Masking is the multipli-
cation of a ciphertext with a plaintext filled with values of
either 1 or 0. Masking allows for the separation of time
segments onto separate ciphertexts. Fig. 1 shows an example
using a simplified input with a dimension of (4, 2). The input
ciphertext contains 8 plaintext values (a, b, ..., g, h), and every
4 values belong to each time segment (A or B). To extract
the values in A, the input ciphertext is multiplied by the mask
plaintext containing (1, 1, 1, 1, 0, 0, 0, 0).

The next concept is inter-slot addition, where the values
of a time segment (e.g., a to d) get added together so the
weights in CNN can be applied to the ciphertext. As operations
between slots in the same ciphertext are not allowed, a copy of
a ciphertext is made, rotated, and then added to the original
ciphertext. This can be done efficiently by using sequential
rotations that increase by a multiple of the previous rotation.
Fig. 1 shows an example of inter-slot addition (see the Inter-
slot addition and Masking 2 parts). To add up messages from
each time segment, the inter-slot addition involves two left-
rotations and two additions, and the final results are stored
in the zeroth and fourth slots of the ciphertext from the left.
Masking is used at the end of the operation to remove artifacts
such that only the colored values remain.

Finally, expansion is the process of storing multiple copies
of the same time segment on a single ciphertext. The dupli-
cated values allow for different weight positions or values to
be applied on the same time segment when processing Conv
and FC layers. In our HEKWS design, after receiving the
transmitted ciphertext, the resource-rich server uses expansions
to create 32 ciphertexts, each containing multiple copies of
one time segment. Fig. 2 shows an example of expansion.
Expansion is similar to inter-slot addition but includes masking

frequency
thK:l

time

Fig. 2. An example of expansion. The flattened input (a single ciphertext)
is masked to extract frequency values for a single window, which are then
duplicated to fill slots in the ciphertext by using rotations and additions. This
is repeated for each time step (color).

Client

Record Audio Receive Result Ciphertext
Compute Spectrogram Decrypt and Decode Result
Flatten

Encode and Enerypt Select Label

Send Ciphertext to Server Spectrogram

Operation

Server

Output
Ciphertexts

Receive Input Ciphertext
1 Normalize
32 Duplicate and Expand
16 Perform Convolution
16 ReLU Approximation (x2 +x)
4 Fully Connected Layer 1
1 Fully Connected Layer 2
1 Softmax
Return Ciphertext to Client

First 125 slots of the 32
expanded ciphertexts

Fig. 3. Process outline for the classification of a command word.

that leaves only the data to be copied and removes the rest.
For example, with 4,096 slots and 40 frequency values, there
is room for 102 copies on a ciphertext. In order to minimize
operations used when processing layers of the CNN, plaintexts
are packed to store as many weights and biases as possible to
match the expanded ciphertexts.

IV. NETWORK STRUCTURE

Our proposed HEKWS is outlined in Fig. 3. Once the server
receives the input ciphertext, normalization, Z = (X — pu)/o,
is performed on the input ciphertext X, where 1 and o are the
mean and standard deviation, respectively. The x and o values
are constants determined from the training. The normalization
stage keeps data centered and mostly contained within a range
where the ReLLU approximation, discussed later, is valid. After
this stage, the ciphertext is expanded into the 32 ciphertexts,
as described previously.

After the input ciphertext is expanded into 32 ciphertexts,
they are multiplied by the corresponding weights and added
together, as shown in Fig. 4 (left). To complete the convolu-
tions, inter-slot addition must be done since each convolution
has a frequency span of eight slots. This is done by copying
a ciphertext, rotating the copy, adding it to the original, and
repeating the process with a rotation twice as large as the
previous one. To add the eight adjacent slots, rotations of
1, 2, and 4 are used. In total, 16 sets of weight plaintexts

2]
8

X
&
g
=
=™

Ciphertexts

2.Add

2
><
2
=}
=
~

M
(I
“ofy

Fig. 4. Application of weight plaintexts (first 60 slots shown) in the Conv
layer (left) and the FC1 layer (right).

Qo®

Qo®

are applied, giving an output size of 16 ciphertexts from this
layer. Bias plaintexts are then added to the ciphertexts, and the
expansion process presented in the previous section duplicates
values in the ciphertexts for the next layer.

Since HE only supports linear operations, ReLU cannot be
directly used in the HE domain. Instead, HEKWS uses x2 +
x to approximate the ReLU function, based on the work by
Chabanne et al. exploring polynomial approximations of the
ReLU function for HE applications [30]. A copy of each of
the ciphertexts is made, each ciphertext is multiplied by itself
(i.e., 22), and the copy is added to the result (i.e., +x).

Applying weights in the first FC layer is similar to that
in the Conv layer, but the weights are stored in plaintexts
in a different order due to the difference in structures. Fig. 4
(right) shows one set of weights. After multiplications with the
weight plaintexts and adding up, inter-slot addition is used to
combine across slots, and the bias plaintexts are added to the
ciphertexts. For expansion, a mask is used to retain only the
first eight values in each ciphertext, and then those are each
duplicated 128 times, filling the first 1,024 slots in each of the
16 output ciphertexts. By rotating ciphertexts by multiples of
1,024, the 16 outputs are combined into four ciphertexts with
4,096 slots filled.

Weights for the second FC layer are encoded into four
plaintexts. Again, ciphertexts and plaintexts are multiplied, and
the resulting ciphertexts are added up into a final ciphertext.
Inter-slot addition is used with rotations of 1, 2, 4, 1024, and
2048, and the bias plaintext for this layer is added to the
ciphertext. Expansion extracts the values in every eighth slot,
up to slot 1016, using a mask and creates 16 copies using
rotations of 1, 2, 4, and 1024.

The final weight plaintext is encoded, corresponding to
the 12 labels, and applied. Inter-slot addition and addition
with a bias plaintext complete the server-side computations.
This final ciphertext is returned to the client. After decryption
and decoding, the client chooses the label with the highest
prediction score.

V. EVALUATION

In this section, HEKWS is evaluated in terms of prediction
accuracy, execution time, and other resource requirements.

TABLE 11
HE PARAMETERS FOR HEKWS

Polynomial degree N Bit-length of ¢ [33] Maximum depthf
211 441 10
{60, 30, 30, ..., 30, 30, 60} bits are allocated for 12 primes.

A. Experimental Setup

1) Dataset and Training: In 2018, Google released the
Speech Commands Dataset [31] for use in training and testing
KWS models. The dataset contains over 100,000 one-second
audio samples split between 12 labels: 10 command words
(up, down, yes, no, left, right, on, off, stop, go); no word;
and unknown word. The dataset is partitioned into training,
validation, and test sets with an approximate 85/10/5% split,
respectively.

Our model was first implemented in Keras [32], then trained
using the training and validation sets in the Speech Commands
Dataset. With a batch size of 64, the model achieved a
minimum validation loss after 32 epochs. The model was
then modified, replacing the ReLU activation function with the
linear approximation x2 + x. The training was then resumed,
before reaching the stopping criteria in 40 epochs.

2) HE Parameters: Our HEKWS is implemented using
functions of the CKKS scheme in the Microsoft SEAL open-
source library version 3.6.2 [28]. Table II shows the HE
parameters used in HEKWS. There are mainly two parameters:
polynomial degree /N and bit-length of ¢ (= logaq). In general,
logoq is proportional to N, and Alogag/AN decreases as a
security level increases [12]. In fact, g is a product of multiple
primes, and one prime is dropped whenever HomMult is ex-
ecuted. The first and last primes are used for special purposes
in SEAL, so the number of primes minus 2 is the maximum
available depth. There are ten stages in the CNN model of
HEKWS where homomorphic multiplications are used (in
order): normalization - masking - Conv layer - masking -
approximate ReLU - FC1 layer - masking - FC2 layer -
masking - softmax. Most of the homomorphic multiplications
are HomMultPlain. Theoretically, HomMultPlain does
not need to consume a depth every time. However, in SEAL,
it consumes a depth for easy and safe use for beginners [19].
Therefore, HEKWS requires a depth of 10.

Our HEKWS targets a 128-bit security level, widely used in
practical real-world applications. The execution time increases
as the value of N increases, and therefore we set the N
value to 2'4, which is the minimum value satisfying our target
security level and depth. For our N value and security level,
the SEAL manual suggests 441-bits for the logaq value [33].
To generate the maximum available depth of 10 with this bit
number, 60 bits are allocated to the first and last primes, and
30 bits are allocated to the remaining 10 primes.

B. Prediction Accuracy

Table III compares the prediction accuracy of small-
footprint KWS designs. To measure the prediction accuracy,
we processed a random 1,000 keyword samples in Google’s

TABLE III
PREDICTION ACCURACY COMPARISON

Non-HE-based Honk [5]

w/o ReLU approx. =~ w/ ReLU approx. HEKWS
76.0% 72.1% 72.3%
TABLE IV

ERRORS IN A CASE WITH A DIFFERENT PREDICTION RESULT

Prediction score

Label Non-HET HEKWS Error (%)
0 5.746 5.829 1.45
1 4.373 4.444 1.62
2 12.720 12.907 1.47
3 3.727 3.787 1.61
4 0.330 0.341 3.13
5 -0.853 -0.856 0.33
6 6.938 7.051 1.64
7 -3.740 -3.787 1.25
8 -4.235 -4.290 1.30
9 7.502 7.624 1.63
10 -153.446 -155.744 1.50
11 12.729 12.889 1.26

TNon-HE-based Honk [5] w/ ReLU approximation

Speech Commands Dataset with an approximately even 8.3%
split between labels. The accuracy of HEKWS was compared
to that of the non-HE-based Honk [5]. In addition, the result
of Honk with the approximate ReLU (i.e., 2% 4) is shown
in the second column to see the accuracy degradation in HE
conversion.

Among the three small-footprint KWS designs, the Honk
design without the ReLU approximation shows the highest
accuracy of 76.0%. Note that this value is lower than the
prediction accuracy of 77.9% presented in the Honk paper.
This is because only the logarithm of the spectrogram was
used, without the mel scaled spectrogram, in the training
process of this experiment. Also, unlike the original Honk,
noise was not added to the training set.

Using the ReLLU approximation resulted in a 3.9% reduction
in accuracy, as shown in the first and second columns. Besides
this approximation, the homomorphic operations of the CKKS
scheme generate errors in the results to preserve precision,
which causes a slight change in the prediction score. However,
HEKWS did not cause any significant degradation in predic-
tion accuracy. Out of the 1,000 samples, only two samples
were classified differently. Both were borderline cases, with
the highest labels falling within a fraction of a percent. Table
IV shows one such classification of a sample with label 2
(underlined) as the ground truth. The error is due to the
HE conversion and is negligible for most samples, averaging
1.75%. Although HEKWS predicted the correct labels for
those two samples, these are uncommon edge cases and do
not indicate HEKWS outperforms the baseline.

C. Execution Time

Table V shows the average execution time per keyword of
the proof-of-concept implementation of HEKWS, excluding
the encoding, encryption, decryption, and decoding times. As
hardware, a workstation with the Intel Xeon W-2295, 128GB

TABLE V
EXECUTION TIME PER KEYWORD (MILLISECONDS)
HomAdd?T HomMult¥+Relin+Rescale HomRot Total
185 3,556 14,805 18,546

TIncluding HomAddPlain
¥Including HomMultPlain

TABLE VI
RPI 4 CLIENT-SIDE EXECUTION TIME (SECONDS)

Computation Time

Secret key 0.02
Key generation Public key 0.30
(one-time) Relin key 3.33

Galois key 99
Encoding + Encryption 1.01
Decryption + Decoding 0.08

RAM, and Ubuntu 18.04 LTS operating system was used. The
first through third columns show the execution time in each
homomorphic operation. Note that HomAdd and HomMult
in this table include HomAddPlain and HomMultPlain,
respectively, and the second column includes the execution
time in Relin and Rescale as well.

In total, it takes 19 seconds to process a single en-
crypted keyword. For reference, the non-HE version had
an execution time of 64 milliseconds on the same ma-
chine. The execution time for homomorphic additions ac-
counts for 1% of our total execution time. Homomorphic
multiplications account for 19%, with HomMult+Relin,
HomMultPlain, and Rescale using 2%, 3%, and 14%,
respectively. Each HomMultPlain requires shorter exe-
cution time compared to each HomMult+Relin. How-
ever, the number of HomMultPlain is larger than that of
HomMult+Relin, so HomMultPlain takes up a larger
percentage of the execution time. The remaining 80% is from
HomRot. This is a relatively long time, but allows for the
use of a single input ciphertext, significantly reducing client
workload and network transfers.

As shown in Table VI, running the key generation function
on a Raspberry Pi (RPi) 4 Model B with a 4GB RAM took
102 seconds, with 99 seconds of that spent generating Galois
keys. Since the key generation is usually a one-time process
and the generated keys are reused, this process is not a big
burden on the client-side. Encoding and encryption are done in
about one second, and decryption and decoding use additional
84 milliseconds.

D. Client Resources Requirements

Each classification requires the client to send a 1.7MB
ciphertext. Table VII shows the reduction in ciphertext trans-
mission requirements using the proposed packing technique
compared to the naive and expanded packing techniques
described in Section III-A. In the case of key transmission,
the first time the client establishes a connection with the
server, it makes a one-time transfer of the relinearization and
Galois keys. Once received, the server can store and use the
keys indefinitely, as mentioned in the previous subsection. The

TABLE VII
THE NUMBER OF INPUT CIPHERTEXTS (SIZE) PER KEYWORD

Naive packing
1280 (2.4GB)

Expanded packing
32 (54.4MB)

Proposed packing
1 (1.7MB)

public and secret keys used for encryption and decryption are
stored solely on the client and have sizes of several MB.

VI. CONCLUSIONS

Our HEKWS with the novel packing technique accepts
and returns single ciphertexts for secure classification of a
potential command word. In the proposed packing technique,
a single ciphertext is expanded on a server to effectively apply
different weights. It requires masking and rotations but helps
shift the burden from a resource- and power-hungry client
to a server. Although there is a decrease in accuracy due to
the ReLU approximation, there is a negligible decrease due
to the homomorphic operations. To the best of the authors’
knowledge, this is the first paper that applies a HE scheme to
KWS in CPS and IoT.

The 19-second processing time of our proof-of-concept
implementation can be reduced with parallelization. For ex-
ample, the homomorphic multiplications in the Conv layer
can be performed in parallel. This is true for most of the
multiplications and additions, and many of the rotations in
HEKWS. Furthermore, the polynomial degree of 2!4 used in
this paper can be reduced by using other open-source HE
libraries where HomMultPlain does not consume a depth
every time. Custom hardware accelerators can be used as well
to improve the speed. We envision that these optimizations
would promote real-world use of HEKWS by improving the
speed. Besides the speedup, the scalability of the number
of keywords and the number of layers of CNN can be an
interesting research topic.

ACKNOWLEDGMENT

We thank Dr. Rob Rutenbar, Dr. Jung Hee Cheon, Dr.
Ha-Kyung Kong, Wonhee Cho, and Keewoo Lee for their
continued support.

This work was supported by Institute of Information &
Communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No. 2020-
0-00840, Development and Library Implementation of Fully
Homomorphic Machine Learning Algorithms supporting Neu-
ral Network Learning over Encrypted Data). In addition, this
material is based upon work supported by the National Science
Foundation under Grant No. 2105373.

REFERENCES

[1]1 E. A.Lee and S. A. Seshia, Introduction to Embedded Systems: A Cyber-
Physical Systems Approach, Berkeley, CA, USA:Lee & Seshia, 2011.

[2] "Why It’s Critical to Keep IoT Security Top-of-Mind,”
[Online]. Available: https://www.aeris.com/news/post/
why-its-critical-to-keep-iot-security-top-of-mind

[3] G. Chen, C. Parada, and G. Heigold, ”Small-footprint Keyword Spotting
Using Deep Neural Networks,” in Proc. ICASSP, 2014.

[4] R. Tang and J. Lin, "Deep Residual Learning for Small-footprint
Keyword Spotting,” in Proc. ICASSP, 2018.

[5]

[6]
[7]
[8]
[9]
[10]

(11]
[12]

[13]
[14]
[15]
[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]
[24]
[25]

[26]

[27]
[28]
[29]

(30]

(31]
[32]

[33]

R. Tang and J. Lin, "Honk: A Pytorch Reimplementation of Con-
volutional Neural Networks for Keyword Spotting,” arXiv preprint
arXiv:1710.06554, 2017.

T. N. Sainath and C. Parada, "Convolutional Neural Networks for Small-
footprint Keyword Spotting”, in Proc. INTERSPEECH, 2015.

Y. Zhang, N. Suda, L. Lai, and V. Chandra, "Hello Edge: Keyword
Spotting on Microcontrollers,” arXiv preprint arXiv:1711.07128, 2017.
R. C. Rose and D. B. Paul, A Hidden Markov Model based Keyword
Recognition System,” in Proc. ICASSP, 1990.

M. H. Cohen, M. H. Cohen, J. P. Giangola, and J. Balogh, Voice User
Interface Design, Addison-Wesley, 2004.

M. Vacher, F. Aman, S. Rossato, F. Portet, and B. Lecouteux, "Making
Emergency Calls More Accessible to Older Adults Through a Hands-
free Speech Interface in the House,” ACM Trans. Access. Comput., vol.
12, no. 2, pp. 1-25, Jun. 2019.

J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic Encryption
for Arithmetic of Approximate Numbers,” in Proc. ASIACRYPT, 2017.
J. H. Cheon, A. Costache, R. C. Moreno, W. Dai, N. Gama, M.
Georgieva, S. Halevi, M. Kim, S. Kim, K. Laine, Y. Polyakov, and
Y. Song, "Introduction to Homomorphic Encryption and Schemes,” in
Protecting Privacy through Homomorphic Encryption, Springer, 2021.
pp. 3-28.

Z. Brakerski, “Fully Homomorphic Encryption without Modulus Switch-
ing from Classical GapSVP,” in Proc. CRYPTO, 2012.

J. Fan and F. Vercauteren, “Somewhat Practical Fully Homomorphic
Encryption,” Cryptology ePrint Archive, Report 2012/144, 2012.

L. Ducas and D. Micciancio, "FHEW: Bootstrapping Homomorphic
Encryption in Less Than a Second,” in Proc. EUROCRYPT, 2015.

I. Chillotti, N. Gama, M. Georgieva, and M. Izabachene, "TFHE: Fast
Fully Homomorphic Encryption Over the Torus,” J. Cryptol., vol. 33,
no. 1, pp. 34-91, 2020.

J. Daemen and V. Rijmen, “Aes proposal: Rijndael,” 1999.

S. Kannivelu and S. Kim, ”A Homomorphic Encryption-based Adaptive
Image Filter Using Division Over Encrypted Data,” in Proc. RTCSA,
2021.

M. Cho, K. Lee, and S. Kim, "HELPSE: Homomorphic Encryption-
based Lightweight Password Strength Estimation in a Virtual Keyboard
System,” in Proc. GLSVLSI, 2022.

S. Kim, K. Lee, W. Cho, Y. Nam, J. H. Cheon, and R. A. Ruten-
bar, "Hardware Architecture of a Number Theoretic Transform for a
Bootstrappable RNS-based Homomorphic Encryption Scheme,” in Proc.
FCCM, 2020.

S. Kim, K. Lee, W. Cho, J. H. Cheon, and R. A. Rutenbar, "FPGA-based
Accelerators of Fully Pipelined Modular Multipliers for Homomorphic
Encryption,” in Proc. ReConFig, 2019.

R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J.
Wernsing, “Cryptonets: Applying Neural Networks to Encrypted Data
with High Throughput and Accuracy,” in Proc. ICML, 2016.

X. Jiang, M. Kim, K. Lauter, and Y. Song, ’Secure Outsourced Matrix
Computation and Application to Neural Networks,” in Proc. CCS, 2018.
J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A Full RNS Variant
of Approximate Homomorphic Encryption,” in Proc. SAC, 2018.

Z. Brakerski, C. Gentry, and S. Halevi, "Packed Ciphertexts in LWE-
based Homomorphic Encryption,” in Proc. PKC, 2013.

C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, "GAZELLE: A
Low Latency Framework for Secure Neural Network Inference,” in Proc.
USENIX Security, 2018.

M. Abadi et al., “Tensorflow: A System for Large-scale Machine
Learning,” in Proc. OSDI, 2016.

“Microsoft SEAL (release 3.6),” [Online]. Available: https://github.com/
Microsoft/SEAL

“"PALISADE Lattice Cryptography Library (release 1.11.5),” [Online].
Available: https://palisade-crypto.org/

H. Chabanne, A. De Wargny, J. Milgram, C. Morel, and E. Prouff,
“Privacy-preserving Classification on Deep Neural Network,” Cryptol-
ogy ePrint Archive, Paper 2017/035, 2017.

P. Warden, ”Speech Commands: A Dataset for Limited-vocabulary
Speech Recognition,” arXiv preprint arXiv:1804.03209, 2018.

A. Gulli and S. Pal, Deep learning with Keras, Packt Publishing Ltd,
2017.

H. Chen, K. Han, Z. Huang, A. Jalali, and K. Laine, “Simple Encrypted
Arithmetic Library v2.3.0,” [Online]. Available: https://www.microsoft.
com/en-us/research/wp-content/uploads/2017/12/sealmanual.pdf

	Introduction
	Background
	CNN-based KWS Algorithms
	Operations in HE Schemes

	Packing Techniques for a Keyword
	Client-side Packing
	Server-side Expansion

	Network Structure
	Evaluation
	Experimental Setup
	Dataset and Training
	HE Parameters

	Prediction Accuracy
	Execution Time
	Client Resources Requirements

	Conclusions
	References

