
Parameterized First Fit (PFF):
Eliminating Symmetry in Spectrum Allocation

George N. Rouskas, Priya Sharma, Shubham Gupta
North Carolina State University

Abstract—Spectrum allocation (SA) is a fundamental problem
in optical network design, yet existing solutions cannot cope
effectively with the challenges posed by spectrum symmetry.
In this work, we develop parameterized first-fit (PFF), a new
heuristic for the SA problem that is not affected by spectrum
symmetry and has several desirable properties: it explores a
pre-defined subset of the solution space whose size is tailored
to the available computational budget; it constructs this subset
by sampling from diverse areas of the solution space rather than
from the neighborhood of an initial solution; it finds solutions by
applying the well-known FF heuristic and thus it can be deployed
readily; and it is efficient in finding good quality solutions.

I. INTRODUCTION

The design and planning of optical networks encompasses
the allocation of optical spectrum resources to traffic de-
mands as an integral part of the optimization process [1].
Spectrum allocation (SA) [2], a generalization of wavelength
allocation (WA) [2], [3], is tightly coupled to other aspects
of network design, including the routing process [4]–[6],
traffic grooming [7], virtual topology embedding [8], [9], and
network survivability [10]. Therefore, since the early days of
optical networking, researchers and industry practitioners have
focused on developing effective spectrum allocation strategies.
These efforts, however, have been complicated by two features
inherent to the SA and WA problems: spectrum continuity and
spectrum symmetry.

Due to the spectrum continuity property of optical elements,
a connection that optically bypasses a node must exit on the
same optical frequency it entered. Hence, the spectrum re-
sources that are in use on one link may affect the resources that
may be allocated on other links, creating resource contention
among the links of the network. As a result, the SA problem
is computationally intractable in general topologies [11], even
when it is not coupled to other objectives (e.g., routing).

Symmetry refers to the fact that spectrum slots are inter-
changeable [12]. Hence, for each possible solution, a large
number of equivalent solutions may be derived simply by
using a different permutation of spectrum slots [13]. Symmetry
is particularly challenging for conventional ILP formulations
of the SA problem, regardless of whether these were developed
specifically for SA or as part of formulations that tackle the
more general routing and spectrum allocation (RSA) problem.
Since an ILP solver will have to evaluate an exponential
number of distinct but equivalent optimal solutions, its running
time can be unnecessarily long [13]. ILP formulations based
on maximal independent sets (MIS), such as the one we

developed in [14] for the RWA problem in rings, do not
suffer from symmetry. However, MIS-based formulations are
impractical for general topology networks as the number of
variables increases exponentially with the network size.

Given these two challenges, the SA problem is typically
solved using heuristic algorithms that attempt to minimize
spectrum contention. These include the first-fit, best-fit, most-
used, and least-loaded heuristics [15], each representing a
different tradeoff between algorithmic complexity and amount
of network state information required. In particular, first-fit
(FF) is a simple heuristic that operates without any global
knowledge, performs well across various network topologies
and traffic demands [2], [16], and, consequently, it is com-
monly employed for spectrum/wavelength allocation.

In recent work [17] we proved that there exists a permuta-
tion of the traffic demands such that applying the FF heuristic
to this permutation yields an optimal solution for the SA prob-
lem. Based on this optimality property, we developed recursive
first-fit (RFF), an optimal branch-and-bound algorithm. RFF
searches the entire space of demand permutations to find one
that is optimal for the SA problem at hand, and applies the
FF heuristic as it incrementally builds each permutation during
the search. While the demand permutation space is itself expo-
nential in size, RFF represents a significant improvement over
existing approaches as it completely sidesteps the spectrum
symmetry challenge.

Even so, it is impossible to explore the demand permutation
space for networks of realistic size. Therefore, in this work we
develop a heuristic for the SA problem that has three desirable
properties: 1) it employs an intuitive parameter to construct a
subset of the demand permutation space to explore with a
size that matches the available computational resources; 2) it
selects permutations that are distributed uniformly across the
permutation space (i.e., they are not limited to any particular
region of the space); and 3) it can be readily deployed as it
simply applies the well-known FF heuristic.

In Section II we discuss the SA problem we consider,
explain the concept of spectrum symmetry, and show how an
optimality property of the FF heuristic allows for the elimina-
tion of symmetric solutions and leads to a vast reduction of
the solution space to be explored. In Section III we present
parameterized FF (PFF), a heuristic for the SA problem that
allows the network designer to explore cutomizable subsets of
permutations that sample from diverse regions of the solution
space. We evaluate the PFF algorithm in Section IV, and we

2022 IEEE Global Communications Conference: Optical Networks and Systems

3688

GL
O

BE
CO

M
 2

02
2

- 2
02

2
IE

EE
 G

lo
ba

l C
om

m
un

ic
at

io
ns

 C
on

fe
re

nc
e

|
97

8-
1-

66
54

-3
54

0-
6/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

GL
O

BE
CO

M
48

09
9.

20
22

.1
00

01
65

6

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 21,2023 at 17:46:56 UTC from IEEE Xplore. Restrictions apply.

The Offline SA Problem
Input:
• A graph G = (V,A)
• A set T = {Ti = (si, di, pi, ti), i = 1, · · · ,K}, of traffic

requests
Output: An assignment of ti spectrum slots to each request
Ti along the physical path pi
Spectrum Constraints:
• Contiguity: each request Ti is allocated a block of ti

contiguous spectrum slots
• Continuity: each request is allocated the same block of

spectrum slots along all links of its path pi
• Nonoverlap: requests whose paths share a link are allo-

cated nonoverlapping blocks of spectrum slots
Objective: Minimize the index of the highest spectrum slot
used on any link in the network

Fig. 1. The Offline SA problem

conclude the paper in Section V.

II. THE SA PROBLEM, SPECTRUM SYMMETRY, AND THE
FIRST-FIT OPTIMALITY PROPERTY

Consider an optical network with topology graph G =
(V,A), where V is the set of nodes and A is the set of directed
fiber links in the network. Let N = |V | denote the number of
nodes and L = |A| the number of directed links. The traffic
offered to the network consists of a set T = {Ti} of K traffic
requests. Each request is a tuple Ti = (si, di, pi, ti), where: si
is the source and di the destination node of the request; pi is
the path between nodes si and di that the request must follow;
and ti is the number of spectrum slots required to carry the
traffic from si to di.

In this work we study the offline SA problem shown in
Figure 1, where the objective is to allocate spectrum slots to
each traffic request so as to minimize the highest assigned slot
on any link, while satisfying the three spectrum constraints.
This objective attempts to pack the spectrum slots assigned
to the traffic requests as tightly as possible, and hence it
minimizes spectrum fragmentation and allows for growth in
demand; consequently, it is one that has been adopted widely
in the literature. Also, we assume that the path pi of each re-
quest Ti is fixed and pre-determined, i.e., any routing decision
has been made before the allocation of spectrum. Therefore,
any algorithm that solves this SA problem, including the one
we propose in the next section, may be applied as part of a
multistep, iterative approach to the RSA problem [2].

We have shown [11] that the SA problem is NP-hard
even for chain (i.e., single-path) networks with four or more
links. But even beyond computational intractability, a major
challenge in tackling the SA problem in Figure 1, or any of
its variants that have been studied in the literature, relates to
spectrum symmetry. Specifically, blocks of contiguous spec-
trum slots of a certain size are interchangeable. Therefore, for

1

2

Link1 Link 2 Link 3 Link 4

3

4

5

6

7

8

9

10

11

12

13

14

15

(a)

S
pe

ct
ru

m
 S

lo
ts

1

2

Link1 Link 2 Link 3 Link 4

3

4

5

6

7

8

9

10

11

12

13

14

15

(b)

S
pe

ct
ru

m
 S

lo
ts

Fig. 2. Equivalent solutions due to spectrum symmetry

any optimal solution to the SA problem, one can derive a
large number of equivalent solutions simply by permuting the
spectrum blocks.

Figure 2 illustrates how spectrum symmetry leads to mul-
tiple equivalent solutions. Figure 2(a) shows a solution to
the SA problem on a four-link chain network with K = 9
requests. Each request is represented by a different color and
spans all the links in the path of the corresponding demand.
For instance, the bottommost (light blue) request spans all
four links of the network, indicating that the request has
been allocated this contiguous block of two spectrum slots
along each of these links. Note that the solution shown in
Figure 2(a) is optimal: the highest assigned slot on Link 3 is
equal to the lower bound, i.e., the number of slots required to
carry the traffic requests whose path includes Link 3. Consider
now two blocks of spectrum slots in Figure 2(a): the three-
slot block consisting of specrum slots 3-5, and the five-slot
block consisting of spectrum slots 6-10. Figure 2(b) shows
the equivalent solution that can be obtained by permuting these
two blocks of slots. In the new solution, the two requests that
were allocated slots in the range 3-5 in Figure 2(a) are now
shifted up and are allocated the corresponding slots in the
range 8-10, while the four requests that were allocated slots in
the range 6-10, are now shifted down accordingly. Otherwise,
the two solutions in Figures 2(a) and (b) are identical; they are
also equivalent in that they yield the same objective function
value. Furthermore, note that 1) it is possible to obtain many
more solutions equivalent to the two shown in Figure 2 by
permuting different blocks of spectrum slots, and 2) spectrum
symmetry applies to non-optimal solutions as well.

Based on the above discussion it is clear that, due to
spectrum symmetry, conventional ILP formulations may yield
an exponentially large number of equivalent (optimal or sub-
optimal) solutions. Consequently, ILP solvers are forced to
explore a solution space that is essentially the product of the
request permutation space and the spectrum permutation space.
However, exploring such a vast solution space is unnecessary.

Let us return to the offline SA problem shown in Figure 1
on graph G and request set T = {Ti, i = 1, · · · ,K}. Let P
be a permutation (i.e., an ordering) of the traffic requests Ti.
Let SOL(P) denote the solution to the SA problem obtained
by the FF heuristic when it considers each traffic request in

2022 IEEE Global Communications Conference: Optical Networks and Systems

3689
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 21,2023 at 17:46:56 UTC from IEEE Xplore. Restrictions apply.

the order implied by permutation P . Let OPT denote the
objective value of an optimal solution to the SA problem.
Clearly, for any permutation P of the traffic requests it must
be that OPT ≤ SOL(P).

We have shown in [17] that there exists a permutation P ?
FF

of the traffic requests such that applying the FF heuristic to the
requests in the order in which they appear in P ?

FF yields an
optimal solution to the SA problem, i.e., SOL(P ?

FF) = OPT .
This optimality property of FF implies that, to find an optimal
solution, it is sufficient to examine all permutations of the
traffic demands and, therefore, there is no need to consider
a spectrum assignment for the various request permutations
other than the one produced by the FF heuristic. For instance,
it is not difficult to see that the solution shown in Figure 2(a) is
the product of the FF heuristic on an appropriate permutation
of the K = 9 traffic requests. However, the equivalent solution
in Figure 2(b) would not be produced by the FF heuristic;
rather, FF would have allocated slots 5 and 6 to the (dark
blue) request spanning just Link 1, not slots 8 and 9.

Although the number of traffic request permutations is
exponential, the FF optimality property allows us to design
algorithms that ignore the exponential number of symmetric
solutions derived from spectrum permutations, e.g., solutions
such as the one in Figure 2(b). Doing so, drastically reduces
the size of the solution space that needs to be explored.
Accordingly, we developed recursive first-fit (RFF), a branch-
and-bound algorithm that recursively searches the entire space
of demand permutations to find an optimal solution [17].

This FF optimality property explains why many studies of
the SA (and WA) problem have confirmed that the FF heuristic
yields good solutions across diverse problem instances. It also
suggests a procedure for finding the unknown permutation
P ?
FF : enumerate all request permutations of requests and

select the one for which the FF heuristic yields the smallest
objective value. However, in a network with N nodes and
traffic between all node pairs, the size K of set T is O(N2).
Therefore, any algorithm, such as RFF, that considers all
possible permutations of requests to determine the optimal
spectrum allocation must take time that is exponential in the
size of the network, O(N2!). Next, we present a parameterized
heuristic that applies the FF algorithm to a subset of the
request permutation space whose size can be customized to
the available computational budget.

III. PARAMETERIZED FIRST FIT (PFF)

A. Motivation

The motivation for a new algorithm for the SA problem
is based on the observation that the FF heuristic and the
optimal RFF algorithm we developed in [17] represent two
opposite extremes in exploring the solution space of request
permutations. The FF heuristic considers a single permutation,
whereas, given sufficient time, RFF will explore all K! permu-
tations. While RFF can be executed in parallel [17], exploring
the entire permutation space for SA instances encountered
in practice would be infeasible. Typically, there is a budget

in terms of the computational resources (or time) alloted to
tackling network design problems such as SA. Therefore, any
algorithm, either optimal or heuristic in nature, that runs for a
limited amount of time is bound to explore only the region of
the solution space around its starting point, and hence fail to
find optimal solutions that may exist in different parts of the
space.

Furthermore, algorithms that operate in a branch-and-bound
fashion, including RFF and those employed by integer linear
programming (ILP) solvers, are sensitive to the values of
the input parameters, in this case the spectrum demands ti.
Consequently, given two different problem instances on the
same topology graph G = (V,A) and number of requests K,
branch-and-bound algorithms will explore a different number
of permutations (i.e., a different fraction of the solution space)
for each instance within a prescribed amount of running time.
In addition, it cannot be known a priori for which instance
the algorithm will explore a larger or smaller fraction of the
solution space; and it may be difficult to determine the relative
size of the solution space explored for each instance after the
algorithm has completed.

Parameterized first fit, PFF(M), where M is a parameter
such that 1 ≤ M ≤ K, is a generalization of the FF and
RFF algorithms that operates in the vast space between these
two extremes. Rather than searching the whole solution space
of size O(K!) from some initial and often arbitrary starting
point, the key idea of PFF(M) is to completely explore a
subset of the solution space of size O(M !), where M ≤ K,
and, typically, M � K. Ideally, the M ! request permutations
to be explored should be distributed evenly across the whole
solution space. One strategy for achieving this goal would be
to generate the M ! permutations randomly. Instead, PFF(M)
takes a structured approach to generating the M ! permutations
that has several benefits for network designers:
• it provides a well-defined tradeoff between the size of

the permutation space to be explored and the amount of
computational resources available, via the choice of the
value of parameter M ;

• it employs a method that is readily reproducible, works
for every value of parameter M , and explores the exact
same subset of the solution space for any two instances
of the same SA problem,

• it explores request permutations that are spread over
diverse regions of the solution space, and

• it provides better and more even coverage of the solution
space as the value of M increases.

B. The PFF Algorithm

In determining a solution to an instance of the SA problem,
PFF(M) considers only subsets of the solution space of size
equal to that of a (smaller) permutation space, i.e., of size
O(M !),M ≤ K. It then generates M ! request permutations
that are spread over the entire original solution space.

To achieve this objective, PFF(M) first partitions the set
T of K requests into M ≤ K subsets, T1, T2, · · · , TM , and

2022 IEEE Global Communications Conference: Optical Networks and Systems

3690
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 21,2023 at 17:46:56 UTC from IEEE Xplore. Restrictions apply.

TABLE I
PFF PERMUTATION SPACE FOR THE SET T = {A,B,C,D,E, F,G} OF

K = 7 REQUESTS, PARTIONED INTO M = 3 SUBSETS,
T1 = {A,B,C}, T2 = {D,E}, T3 = {F,G}

Subset permutations Request permutations
T1, T2, T3 A,B,C,D,E, F,G
T1, T3, T2 A,B,C, F,G,D,E
T2, T1, T3 D,E,A,B,C, F,G
T2, T3, T1 D,E, F,G,A,B,C
T3, T1, T2 F,G,A,B,C,D,E
T3, T2, T1 F,G,D,E,A,B,C

generates all M ! permutations of the M subsets. We assume
that the requests within each subset are listed in a fixed
order, and we consider this list as a single meta-request. In
essence, then, this operation produces all M ! meta-request
permutations.

PFF(M) then generates the M ! request permutations to
evaluate by parsing each meta-request permutation and replac-
ing each meta-request with the list of its constituent requests.
This approach produces request permutations that are spread
over the entire solutions space. To see this, note that two
meta-request permutations that differ in the first meta-request
will produce two request permutations that are far apart in
the request permutation space; similar observations apply to
permutations that differ in the second, third, etc., meta-request.
In other words, replacing each meta-request with its individual
requests involves large jumps in the request permutation space,
achieving our objective of generating request permutations that
cover the entire solution space.

Finally, PFF applies the FF heuristic to the M ! request per-
mutations created in this manner, and selects the permutation
that results in the best solution to the SA problem.

Table I illustrates this concept for the set T =
{A,B,C,D,E, F,G} of K = 7 requests partitioned into
three subsets, T1, T2, and T3. There are several options for
partitioning the set T into subsets. In this work, we only
consider partitions in which the sizes of the various subsets
vary by at most one. Therefore, each subset Ti is such that
|Ti| = bK/Mc or bK/Mc+1. Without loss of generality, we
determine the subsets such that |T1| ≥ |T2| ≥ · · · ≥ |TM |.
Therefore, as shown in Table I, the M = 3 subsets of T are:
T1 = {A,B,C}, T2 = {D,E}, and T3 = {F,G}.

The left column of Table I shows the M ! = 6 subset
permutations (or meta-request permutations, as we mentioned
above). The right column of the tabe shows the corresponding
6 request permutations obtained by replacing each subset
(met-request) with its constituent requests. Although this is a
small number compared to the 7! = 5, 040 possible request
permutations to provide uniform coverage of the solution
space, it is evident that these six permutations are spread
across different regions of the space. In this example, PFF will
evaluate only the 6 permutations shown in the right column
of the table by running the FF heuristic on each.

Algorithm 1 shows the operation of PFF(M). The prepro-

Algorithm 1 Parameterized First Fit
Input:

G = (V,A): network topology
T = {Ti = (si, di, pi, ti}: set of traffic requests
K = |T |: number of traffic requests

Output:
BestP : best request permutation
BestSOL: SA solution corresponding to BestP

PFF(M, 1 ≤M ≤ K)
1: {Preprocessing: Generate M ! request permutations}
2: Partition T into M subsets, T1, T2, · · · , TM , such

that |Ti| = bK/Mc or bK/Mc+ 1;
3: Generate all M ! permutations of the M subsets;
4: for i = 1; i ≤M !; i++ do
5: Pi ← request permutation created by replacing

each subset in subset permutation i with its requests;
6: end for
7: {Main: Apply FF to the M ! request permutations}
8: for i = 1; i ≤M !; i++ do
9: S ← SOL(Pi); {solution obtained by FF on Pi}

10: if S < BestSOL then
11: BestSOL = S; BestP = Pi;
12: end if
13: end for
14: return;

cessing step in Lines 1-6 generates the M subsets of the
request set T , and from them the M ! request permutations
that the algorithm considers. This step takes time O(M !), but
since M is fixed (i.e., it is determined by the network designer
and is not part of the input to the problem), this time can be
considered as constant. Note that a network designer may have
to solve multiple instances for a given SA problem defined by
the network topology G = (V,A) and number of spectrum
requests K; for instance, this may be due to carrying out a
“what-if” analysis to explore the sensitivity of design decisions
to forecast traffic demands. In this case, the designer only
needs to perform the preprocessing step once, store the M !
permutations, and use them to solve all instances that are part
of the analysis. Therefore, the computational cost of this step
can be amortized over multiple problem instances.

The main part of the algorithm in Lines 7-13 simply runs the
FF heuristic on each of the M ! generated in the preprocessing
step, and selects the one that offers the best solution to the
problem at hand. Each application of the FF heuristic takes
time O(KL), as each permutation consists of K requests and
each request may involve any of the L links in the network.
Therefore, the total running time of this part of the algorithm
is O(KLM !), where M is again considered a constant.

The PFF(M) algorithm encompasses the FF heuristic (for
M = 1) and the optimal RFF algorithm (for M = K), as spe-
cial cases. Parameter M affords the network designer a wide

2022 IEEE Global Communications Conference: Optical Networks and Systems

3691
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 21,2023 at 17:46:56 UTC from IEEE Xplore. Restrictions apply.

range of options between these two extremes, and its value
can be selected so as to strike an appropriate balance between
the quality of solution and the running time O(KLM !) of the
FF application step of the algorithm.

As a final note, let SOLPFF (M) denote the value of the
best solution returned by PFF(M). Increasing the value of
parameter M from, say, m to m+1, results in an increase in
the size of the solution space explored by a factor of m+ 1.
Nevertheless, despite the fact that PFF(m + 1) evaluates a
larger number of request permutations than PFF(m), it does
not necessarily follow that SOLPFF (m+1) ≤ SOLPFF (m).
Intuitively, since PFF(m + 1) and PFF(m) each evaluate a
different set of request permutations, it is conceivable that a
permutation in the set of PFF(m) may yield a solution that
is better than those produced by permutations in the set of
PFF(m+ 1). Our experiments confirm this observation as we
have occasionally found that SOLPFF (m) < SOLPFF (m+
1) on the same problem instance. Therefore, in this work we
apply the PFF(M) algorithm as follows:

1) Run PFF(m) for all m = 1, · · · ,M .
2) Return SOLPFF = minm=1,··· ,M{SOLPFF (m)}.

Consequently, the solutions in Step 2 above are monotonically
non-increasing as a function of m.

IV. SIMULATION STUDY

In our simulation study to evaluate the performance of the
PFF heuristic we considered three algorithms: 1) First-Fit
heuristic, FF: We run FF on a permutation in which the
K traffic requests are listed in decreasing order of spectrum
demand ti, and requests with the same demand are listed in
decreasing order of path length. 2) Recursive FF, RFF: This
is the branch-and-bound algorithm we developed in [17]. We
run RFF until it either reaches the lower bound (in which
case it has found an optimal solution) or it reaches a 5-
hour limit on running time (in which the solution may not be
optimal). 3) Parameterized FF, PFF(M): In our experiments,
for parameter M we used the values M = 1, · · · , 6. Note that
PFF(1) is equivalent to FF, and PFF(K) is equivalent to RFF,
where K is the number of input traffic requests.

We consider the highest index of allocated spectrum slots on
any network link as the performance measure to compare the
various algorithms. For a meaningful comparison between dif-
ferent problem instances, we normalize the solutions returned
by the various algorithms by dividing with the lower bound for
the corresponding instance. A lower bound LB on the optimal
objective value may be obtained by ignoring the spectrum
contiguity and continuity constraints and simply counting the
spectrum slots required by all traffic demands on the most
congested link: LB = maxl∈A

{∑
Ti∈T :l∈pi

ti

}
. Clearly, the

closer the normalized value is to 1.0, the better the solution.
To be consistent with our recent work in [17], we create

SA problem instances by generating traffic requests between
all node pairs in the network as follows. We consider data
rates of 10, 40, 100, 400, and 1000 Gbps. For a given
problem instance, we generate a random value for the demand

between a pair of nodes based on one of three distributions:
1) Uniform: each of the five rates is selected with equal
probability; 2) Skewed low: the rates above are selected with
probability 0.30, 0.25, 0.20, 0.15, and 0.10, respectively; or
3) Skewed high: the five rates are selected with probability
0.10, 0.15, 0.20, 0.25, and 0.30, respectively. Once the traffic
rates between each node pair have been generated, we calcu-
late the corresponding spectrum slots by assuming that the slot
width is 12.5 GHz, and adopting the parameters of [18]–[21]
to determine the number of spectrum slots that each demand
requires based on its data rate and path length. For each traffic
distribution, we generate 100 random problem instances. We
also use shortest path routing to find a path for each traffic
request before we apply one of the SA algorithms above.

Table II summarizes the results we have obtained regarding
the relative performance of the FF, PFF(M), and RFF algo-
rithms on the well-known 14-node, 21-link NSFNET topology.
Specifically, the table shows how far the solutions obtained by
each algorithm are from the lower bound; the values listed in
the table are averages over the 100 problem instances from
the specified traffic distribution. The PFF(M) values were
calculated by considering the monotonically non-increasing
solutions we discussed at the end of the previous section.

As we can see, the FF algorithm performs well and, on
average, produces solutions that are within 9-10% of the
lower bound across the 300 problem instances we used in our
experiments. These results are consistent with earlier research
indicating that the FF algorithm finds solutions of good quality.
Also, similar to what we have shown in [17], the branch-and-
bound RFF algorithm improves upon the FF heuristic and finds
solutions that, on average, are between 4-6% from the lower
bound, depending on the traffic distribution.

Turning our attention to the PFF(M) results in Table II, we
make several observations. The quality of solutions improves
as a function of M , a fact that is consistent with our use
of monotonically non-increasing solutions. On average, the
improvement over the FF solutions is substantial even for
small values of M ; for instance, using M = 2 only takes an
additional fraction of a second (refer to Table III we discuss
shortly) and leads to an improvement of about 2%. On the
other hand, increasing the value of M results in diminishing
returns, and by M = 6 most of the benefits of this approach
have been realized. This outcome is expected because 1) the
FF solutions are of high quality to begin with, 2) the PFF(6)
solutions are very close to the lower bound on average, and
3) the lower bound may not be attainable in general.

TABLE III
RUNNING TIME (SECONDS) OF FF, RFF AND PFF(M) ALGORITHMS,

NSFNET TOPOLOGY

FF PFF(M) RFF
[PFF(1)] M = 2 3 4 5 M = 6 [PFF(91)]

0.24 .49 1.35 5.16 28.54 171.28 ≤ 18, 000

The most important observation from Table II, however, has

2022 IEEE Global Communications Conference: Optical Networks and Systems

3692
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 21,2023 at 17:46:56 UTC from IEEE Xplore. Restrictions apply.

TABLE II
RELATIVE PERFORMANCE OF FF, RFF AND PFF(M) ALGORITHMS AS % FROM LOWER BOUND, NSFNET TOPOLOGY

Traffic FF PFF(M) RFF
Distribution [PFF(1)] M = 2 M = 3 M = 4 M = 5 M = 6 [PFF(91)]

Skewed High 9.04% 6.89% 4.91% 3.77% 3.30% 3.16% 3.74%
Skewed Low 10.29% 8.31% 7.42% 7.00% 6.74% 6.70% 6.01%

Uniform 9.09% 6.29% 4.73% 4.18% 4.06% 4.01% 4.49%

to do with the fact that the PFF algorithm is not just better than
FF but that it can find solutions that are even better than the
ones obtained by the optimal branch-and-bound RFF algorithm
after five hours of execution. Specifically, for the skewed high
distribution, PFF(M) almost matches the RFF performance
(on average) starting with M = 4 and outperforms it starting
with M = 5; while for the uniform distribution, PFF(M)
outperforms RFF (on average) starting with M = 4. It is
only for the skewed low distribution that RFF produces better
solutions than PFF for the values of M we consider here.

To put these results into perspective, we have listed in
Table III the running time of the algorithms; the running time
of PFF does not depend on the demand distribution, hence
the values shown are representative of all three distributions.
The 14-node NSFNet has 91 node pairs, and each problem
instance we solve consists of K = 91 traffic requests (hence
RFF is denoted as PFF(91) in the tables). Therefore, the size of
the demand permutation space is O(91!). While RFF explores
tens of millions of permutations in five hours [17], PFF(M)
only explores M ! permutations and for M = 6 takes less than
200 seconds; the running time of PFF(M) is roughly M times
that of PFF(M − 1), as the former examines M times more
permutations than the latter. Nevertheless, even though RFF
considers a number of permutations that is orders of magnitude
greater than those considered by PFF, it only explores the
solution space around the initial permutation; PFF, on the other
hand, examines permutations spread across the entire solution.
Overall, these results indicate that PFF is effective in its use of
computational resources in identifying solutions close to the
lower bound.

V. CONCLUDING REMARKS

We have developed parameterized first-fit (PFF), a new
heuristic for the SA problem that completely sidesteps the
spectrum symmetry challenge and can identify near-optimal
solutions to moderate-size networks in minutes. We plan
to extend this work in two directions: we will explore the
potential of PFF in larger-size networks, and we will combine
PFF with the routing algorithms we developed in [22], [23] to
tackle large RSA problems efficiently.

REFERENCES

[1] J. M. Simmons, Optical Network Design and Planning. Springer, 2008.
[2] J. Simmons and G. N. Rouskas, “Routing and wavelength (spectrum)

allocation,” in B. Mukherjee, I. Tomkos, M. Tornatore, P. Winzer, and Y.
Zhao (Editors), Springer Handbook of Optical Networks, 2020.

[3] G. N. Rouskas, “Routing and wavelength assignment in optical WDM
networks,” in Wiley Encyclopedia of Telecommunications, 2001.

[4] B. Jaumard, C. Meyer, and B. Thiongane, “Comparison of ILP for-
mulations for the RWA problem,” Optical Switching and Networking,
vol. 3-4, pp. 157–172, 2007.

[5] M. Klinkowski, P. Lechowicz, and K. Walkowiak, “Survey of resource
allocation schemes and algorithms in spectrally-spatially flexible optical
networking,” Optical Switc. and Netw., vol. 27, no. C, pp. 58–78, 2018.

[6] S. Talebi, F. Alam, I. Katib, M. Khamis, R. Khalifah, and G. N. Rouskas,
“Spectrum management techniques for elastic optical networks: A
survey,” Optical Switching and Netw., vol. 13, pp. 34–48, July 2014.

[7] R. Dutta and G. N. Rouskas, “Traffic grooming in WDM networks: Past
and future,” IEEE Network, vol. 16, pp. 46–56, Nov/Dec 2002.

[8] R. Dutta and G. N. Rouskas, “A survey of virtual topology design
algorithms for wavelength routed optical networks,” Optical Networks,
vol. 1, pp. 73–89, January 2000.

[9] H. Wang and G. N. Rouskas, “Hierarchical traffic grooming: A tutorial,”
Computer Networks, vol. 69, pp. 147–156, August 2014.

[10] D. Zhou and S. Subramaniam, “Survivability in optical networks,” IEEE
Network, vol. 14, pp. 16–23, November/December 2000.

[11] S. Talebi, E. Bampis, G. Lucarelli, I. Katib, and G. N. Rouskas,
“Spectrum assignment in optical networks: A multiprocessor schedul-
ing perspective,” Journal of Optical Communications and Networking,
vol. 6, pp. 754–763, August 2014.

[12] R. Ramaswami and K. Sivarajan, “Routing and wavelength assignment
in all-optical networks,” IEEE/ACM Transactions on Networking, vol. 3,
pp. 489–500, October 1995.

[13] B. Jaumard, C. Meyer, and B. Thiongane., “ILP formulations for
the routing and wavelength assignment problem: Symmetric systems,”
in Handbook of Optimization in Telecommunications, pp. 637–677,
Springer US, 2006.

[14] E. Yetginer, Z. Liu, and G. N. Rouskas, “Fast exact ILP decompositions
for ring RWA,” Journal of Optical Communications and Networking,
vol. 3, pp. 577–586, July 2011.

[15] H. Zang, J. P. Jue, and B. Mukherjee, “A review of routing and
wavelength assignment approaches for wavelength-routed optical WDM
networks,” Optical Networks, vol. 1, pp. 47–60, January 2000.

[16] Y. Zhu, G. N. Rouskas, and H. G. Perros, “A comparison of allocation
policies in wavelength routing networks,” Photonic Network Communi-
cations, vol. 2, pp. 265–293, August 2000.

[17] G. N. Rouskas and C. Bandikatla, “Recursive first fit: A highly par-
allel optimal solution to spectrum allocation.,” IEEE/Optica Journal of
Optical Communications and Netw., vol. 14, pp. 165–176, April 2022.

[18] M. Jinno et al., “Distance-adaptive spectrum resource allocation in
spectrum-sliced elastic optical path network,” IEEE Communications
Magazine, vol. 48, no. 8, pp. 138–145, 2010.

[19] Z. Ortiz, G. N. Rouskas, and H. G. Perros, “Scheduling of multicast
traffic in tunable-receiver WDM networks with non-negligible tuning
latencies,” in Proceedings of SIGCOMM ’97, pp. 301–310, ACM,
September 1997.

[20] V. Sivaraman and G. N. Rouskas, “HiPeR-`: A High Performance
Reservation protocol with `ook-ahead for broadcast WDM networks,”
in Proceedings of INFOCOM ’97, pp. 1272–1279, IEEE, April 1997.

[21] B. Chen, G. N. Rouskas, and R. Dutta, “Clustering methods for hierar-
chical traffic grooming in large-scale mesh wdm networks,” Journal of
Optical Communications and Netw., vol. 2, pp. 502–514, August 2010.

[22] M. Fayez, I. Katib, G. N. Rouskas, T. F. Gharib, and H. Faheem,
“A scalable solution to network design problems: Decomposition with
exhaustive routing search,” Proc. IEEE GLOBECOM 2020, Dec. 2020.

[23] G. N. Rouskas and C. Bandikatla, “Parameterized exhaustive routing
with first fit for RSA problem variants,” Proc. IEEE GLOBECOM 2021.

2022 IEEE Global Communications Conference: Optical Networks and Systems

3693
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on August 21,2023 at 17:46:56 UTC from IEEE Xplore. Restrictions apply.

