HEMTH: Small Depth Multilevel Thresholding for
a Homomorphically Encrypted Image

Paul Nam, Justin Shyi, and Sunwoong Kim
Division of Engineering and Mathematics, University of Washington, Bothell, WA 98011, USA
Email: {poul0315, shyil23, sunwoong} @uw.edu

Abstract—One of the image segmentation techniques, mul-
tilevel thresholding, is widely used in many computer vision
applications because of its low computational complexity and
efficient data representation. When it is used in cyber-physical
systems and internet-of-things, a special technique is required
to protect the sensitive information in an image. This paper
proposes a novel homomorphic encryption (HE)-based multilevel
thresholding method. To implement a comparison operation in
the HE domain, which is not a basic homomorphic operation,
a numerical method is adopted. Our proposed method executes
comparison operations in parallel to perform more iterations
and increase accuracy. When the number of iterations in the
numerical comparison operation is (5, 3), the proposed three-
level thresholding method shows an average peak signal-to-noise
ratio of 28 dB compared to a conventional non-HE-based method
and takes 3 minutes on a PC.

Index Terms—homomorphic encryption, multilevel threshold-
ing, cyber-physical systems, internet-of-things

I. INTRODUCTION

Image segmentation is one of the fundamental techniques
to analyze an image [1]-[6]. It is widely used in many image
processing and computer vision applications, such as medical
imaging, content-based image retrieval, and video surveillance.
One of the approaches frequently used for image segmentation
uses predefined criteria for region partitioning. A thresholding
technique, one of the techniques based on this approach, has
been an important tool because it enables small storage space,
low required transmission bandwidth, fast processing speed,
and region-of-interest highlighting [3], [4].

Thresholding techniques are categorized into global thresh-
olding techniques, which use a global threshold(s) for a whole
image, and local adaptive thresholding techniques, which use
a locally computed threshold for each pixel or block [5], [6].
Typically, the former technique ensures low computational
complexity and easy implementation so has got a lot of
attention [4]. If a single global threshold is used, an image
is segmented into two different regions. Specifically, pixels
of which intensity values are greater than a threshold 7' are
classified as object pixels, and the others are classified as back-
ground pixels. On the other hand, a multilevel thresholding
technique uses multiple thresholds to segment an image into
a single background region and several object regions [1]-[3].

Recently, many internet-connected devices are contained
in cyber-physical systems (CPS) and internet-of-things (IoT)
[7]. In some systems, a cloud server is additionally used to
undertake computational burdens of resource- and/or power-
hungry user devices. A thresholding technique in CPS and IoT

978-1-6654-7189-3/22/$31.00 © 2022 IEEE

has a distinct issue that does not exist in the conventional one:
security. In particular, malicious attackers can see user’s pri-
vate images containing sensitive information on networks and
cloud servers [8]. Therefore, a privacy-preserving thresholding
technique is necessary.

In this paper, a homomorphic encryption (HE) scheme is
applied to a multilevel thresholding technique. A comparison
operation in thresholding, which is not supported in HE
schemes, is implemented using a numerical method. To avoid
depth accumulation by successive comparison operations of
multilevel thresholding, our proposed HE-based multilevel
thresholding (HEMTH) first executes multiple comparison
operations in parallel and then merges the results to produce a
segmented image in the HE domain. To the best of the authors’
knowledge, this is the first paper that applies a HE scheme to
an image thresholding technique.

II. HOMOMORPHIC ENCRYPTION

HE allows operations to be performed on encrypted data
without decryption [9]. This helps a public cloud server
process data while preserving user’s private information. Com-
pared to solutions using other cryptography techniques, an
end-to-end HE-based solution reduces the burden on a client
because it does not require frequent communications between
server and client after sending encrypted data. Thanks to
these properties, HE has been applied to image processing
algorithms, such as filtering, edge detection, sharpening, and
brightness control [8], [10].

Today, Brakerski-Fan-Vercauteren (BFV)/Brakerski-Gentry-
Vaikuntanathan (BGV) [11]-[13], Cheon-Kim-Kim-Song
(CKKS) [14], and Ducas-Micciancio (DM)/Chillotti-Gama-
Georgieva-Izabacheéne (CGGI) [15], [16] HE schemes are
widely used. They are implemented in open-source libraries,
such as Microsoft SEAL [17]. Their plaintext data types are
different. For example, the BFV/BGV, CKKS, and DM/CGGI
schemes deal with integer, real number, and boolean plaintext
messages, respectively.

A. Basic Homomorphic Operations

The HE schemes for integer and real number plaintext
messages provide the following homomorphic operations [9]:

e HomAdd: ciphertext-ciphertext addition;

e HomAddPlain: ciphertext-plaintext addition;

¢ HomSub: ciphertext-ciphertext subtraction;

e HomSubPlain: ciphertext-plaintext subtraction;

Algorithm 1 Comp(z, y;n,d) [18]
Input: normalized real numbers z,y € [0, 1]
Input: the number of iterations n,d € N
Qutput: a value between 0 and 1
a+—x—y
for(i=1,i<d;i=i+1)do

a < fn(a)
end for
return (a +1)/2

A

e HomMult: ciphertext-ciphertext multiplication;
e HomMultPlain: ciphertext-plaintext multiplication.

The results of these operations are ciphertexts. Unlike the
other homomorphic operations, HomMult includes a key
switching operation, also called the relinearization, to restore
the deformed key. Furthermore, the CKKS scheme requires an
additional operation called rescaling to control the precision
and minimize the growth of error.

Each time a homomorphic operation is performed, the
magnitude of noise used to hide plaintext messages increases.
In particular, HomMult nearly doubles the magnitude. If the
noise level exceeds a certain level, decryption does not guar-
antee desirable results. Therefore, a limited number of con-
secutive HomMults are allowed for homomorphic evaluation.
This number is called the multiplicative circuit depth, or just
the depth. Note that there is a technique called bootstrapping
that makes the depth infinite, but it requires tremendous com-
putational complexity. Therefore, the bootstrapping technique
is not considered in this paper.

Many recent HE schemes support packing techniques. With
these techniques, multiple plaintext messages are packed into
a single vector, and this vector is transformed into a ciphertext.
A homomorphic operation on this ciphertext corresponds
to element-wise or single instruction/multiple data (SIMD)
operations in the plaintext domain. Therefore, the execution
time is significantly improved.

B. Comparison of Homomorphically Encrypted Data

HE schemes for integer and real number plaintext messages
do not support a homomorphic comparison operation by de-
fault. To solve this problem, Cheon et al. proposed a numerical
method for a comparison operation in the CKKS scheme [18].
Algorithm 1 describes this method. This algorithm starts with
the following formula, comparison result = M where
f () is the step function that produces 1 if x > y; -1 if z < y;
and 0 otherwise. Since this step function is non-linear, it is
approximated as follows:

f"<“)_§if <2j‘7> -a(l—a?). (1)

Algorithm 1 implemented in the HE domain requires a
large depth because it includes a nested loop, in which an
inner loop has n iterations and an outer loop has d iterations.
Ideally, the depth of Algorithm 1, denoted as depth in the

comp

constant a 1-a? 1-a? 1-a? 1-a?
(depth =0) (depth =0) (depth =1) (depth =1) (depth =1) (depth =1)
costant - a
(depth =1)

depth is pulled
up to 2

(1 - a?)?
(depth =2)

(1-a??
(depth =2)

costant - a - (1 — a?)?
(depth =3)

depth is pulled
costant - a - (1 —a?)* |upto3
(depth = 4)

Fig. 1. Depth accumulation in f4(a) calculation.

// Serial conditional statements // Parallel conditional statements

if (x > Ty) Y =cy; if(x>Ty) yi=1,
elseif (x > T,) y=cy; else y1=0;
elseif (x > T3) y =c3; if(x >T,) y, =1;
else v, =0;
elseif (x > Ty) y = cy;

else Y = Crtrs if(x>Ty) ye=1;
return y; else Vi =0;

return ¢y X Z{'c=1 Yi;

(a) (b)

Fig. 2. Pseudo code for multilevel thresholding in the non-HE domain. x is
an input pixel intensity value and T; is the ¢-th threshold. ¢; in Fig. 2(a) is
the ¢-th potential pixel intensity value, and cg in Fig. 2(b) is the base potential
pixel intensity value. (a) naive method (b) proposed method for HEMTH.

rest of this paper, is approximately d[log,n|. Fig. 1 shows
how the depth is accumulated in f,(a) when n is 4. The
constant in this figure stands for ;- (2]3), which is calculated
in advance, and intermediate results, such as (1 — a2)2, are
reused to avoid unnecessary computations. When operands
with different depths are multiplied by each other, a smaller
depth is pulled up to a larger depth before the operation.

Therefore, the total depth in f,(a) grows logarithmically.

III. PRIVACY-PRESERVING MULTILEVEL THRESHOLDING

This section presents our proposed HEMTH that adopts
Algorithm 1 for multilevel thresholding in the HE domain.
Note that the numerical comparison operation is denoted as
the Comp operation in the rest of this paper to distinguish it
from the conventional comparison operation. In addition, for
the sake of simplicity, the same n and d values are used for
different Comp operations working together.

A. Small Depth Multilevel Thresholding

Typically, a thresholding technique includes a comparison
operation(s). In particular, for multilevel thresholding, multiple
comparison operations should be performed. The most naive
method for multilevel thresholding is to use if ... else if ...
else statements, as shown in Fig. 2(a). However, when moved
to the HE domain, this method performs Comp operations in
serial, which incurs a large depth. For example, the total depth
in three-level thresholding is 2 x depthComp + 1, which requires
long latency or even may not satisfy a depth constraint. This

problem gets worse as the number of levels in thresholding
increases.

To solve this problem, HEMTH performs Comp operations
in parallel and merges the results, which greatly lowers the
total depth. Fig. 2(b) shows its pseudo code in the non-HE
domain. It replaces the if ... else if ... else statements of the
naive method with independent if ... else statements. Suppose
that there are three levels in thresholding, and r; and 79 stand
for Comp(z,T1,n,d) and Comp(x,Ts,n,d), respectively. T3
and Ty are thresholds (77 > T5). Additionally, suppose that
three potential pixel intensity values are evenly distributed
between the maximum and minimum values expressed with
a given bits per pixel (bpp), which is different from the naive
method that selects any potential pixel intensity values. A
segmented pixel intensity y is then calculated as follows:

P |

y=(r1+r2)- LTJ‘ 2

For (k+1)-level thresholding, this equation is generalized as
follows:
2brp 1
k)

where r; = Comp(z,T;,n,d) and T; is the i-th threshold.

Since Comp operations in HEMTH are executed in parallel,
the total depth is depth,,,, regardless of the number of levels.
For three-level thresholding, HEMTH reduces the depth by
approximately half compared to the naive method, and the
improvement increases as the number of levels increases.

Unlike the conventional thresholding method that exactly
outputs a fixed number of potential pixel intensity values,
HEMTH outputs approximate potential pixel intensity values.
Due to the characteristics of the numerical Comp operation,
an image segmented by HEMTH becomes closer to an image
segmented by the conventional method as the n and d values
increase. In fact, segmenting an image in the HE domain does
not help reduce data size nor improve execution time, but it can
be used to highlight regions of interest in an encrypted image.
Accuracy in this application is not significantly affected by the
approximate technique, which is described in Section IV-C.

y=Sh | ®

B. Overall Flow

In this paper, HEMTH is implemented as a client-server
model. Fig. 3 shows a high-level overall flow of our proposed
design. First of all, an input image is read on the client-
side. Suppose that all pixels in this image cannot be encoded
and encrypted into a single ciphertext because the image
size is too large (the number of elements in a vector or
slots in a ciphertext is insufficient to contain all pixels).
To create multiple ciphertexts, the input image is split into
several blocks, and each block is encoded and encrypted into
a separate ciphertext. The block size is determined based on
the number of slots in a ciphertext, and this number depends
on HE parameters. The details are explained in Section IV-B.
The generated ciphertexts are sent to the server through net-
works, and HEMTH segments the encrypted image. Since the
resulting image is still encrypted, the server cannot acquire any

Server

Fig. 3. Overall flow of our proposed design.

TABLE I
HE PARAMETERS USED FOR HEMTH

Security level N logg | Maximum depthf
128-bit 21517885 20
TWhen 40 bits are allocated to all primes.

sensitive information in the image. After being sent from the
server to the client, the resulting image blocks are decrypted,
decoded, and merged, and finally, the client gets the segmented
image.

IV. EVALUATION

A. Experimental Setup

In HEMTH implementation, Microsoft SEAL version 3.6
is used [17]. Among the HE schemes available in this library,
the CKKS scheme is used for the Comp operation using real
numbers. Generally, HE parameters greatly affect performance
in homomorphic evaluation. There are two critical parameters:
polynomial degree N and total bit-length of g (logg). N is
a power of two, and ¢ is a product of different primes. In
the CKKS scheme, one of the primes is dropped whenever
HomMult is performed. Therefore, the number of primes
determines the maximum available depth in homomorphic
evaluation. For the same security level, NV and logg are propor-
tional to each other [9]. Therefore, to increase the maximum
available depth, the N value needs to be increased. However,
as the N value increases, the execution time increases signif-
icantly. It makes homomorphic evaluation impractical, so the
maximum N value in SEAL is limited to 25,

This paper aims for a 128-bit security level, which is
common in recent real-world applications, and uses the N
value of 2!° to make a sufficiently large maximum available
depth. According to the SEAL manual, the bit-length of ¢
corresponding to this N value is 885 bits [19]. If 40 bits are
allocated to each prime, 22 (=|885/40]) primes are generated.
Since both end primes are used for special purposes, the
maximum available depth is 20. Table I summarizes the HE
parameters used in this paper.

As input images, six 512x512-sized grayscale standard
images with a bpp of 8, shown in Fig. 4, are used [20]. In
this evaluation section, the number of thresholding levels is

()]

Fig. 4. Test input images (512x512 grayscale). (a) Boat (b) Cameraman (c)
Lake (d) Peppers (e) Pirate (f) Woman.

set to 3, and each segmented pixel intensity value is (ap-
proximately) 0, 127, or 254. For comparison, a conventional
three-level thresholding implementation using if ... else if ...
else statements is used as a baseline. In addition, another
non-HE-based implementation that replaces the conventional
comparison operation with the Comp operation is used. This
implementation is referred to as “non-HE” in Table II. Note
that there is no previous work on HE-based thresholding
techniques, so only results by HEMTH are presented for the
HE domain. As hardware for our proof-of-concept design, a
PC with the Intel Xeon W-2295 and 128GB RAM is used.
The operating system is Ubuntu 18.04 LTS.

B. Encoding

Given the N value of 2!, each ciphertext of the CKKS
scheme has 21° /2 slots [21]. In other words, 214 real numbers
can be packed into a single ciphertext maximally. If all slots
in a ciphertext are used, a 512x512-sized grayscale image
generates 16 ciphertexts. In our implementation, a 512x512-
sized image is divided into 16 128 x 128-sized blocks, and each
block is encoded and encrypted into each ciphertext.

C. Accuracy

To evaluate the accuracy of images segmented by HEMTH,
peak signal-to-noise ratio (PSNR) is used. PSNR and mean
squared error (MSE) values are calculated using (4) and (5),
respectively.

PSNR (dB) = 10 - log, (2" — 1)2/MSE), (4)

Ef:olzjcz_ol [9(7"]) - h(Z’])]Q (5)
RxC ’

where R and C' are the height and width of an image, and

g(i,7) and h(i,j) are pixel intensity values segmented by

the conventional thresholding technique using if ... else if ...

else statements and the modified thresholding techniques using

Comp operations at a coordinate (4, 7).

MSE =

Table II compares the PSNR values of the three-level
thresholding techniques. The first and second columns show
the d and n values of the Comp operation, respectively. The
third column shows the total depth required for thresholding.
Note that this table shows only the results when the total depth
is smaller than the maximum available depth shown in Table
I. In addition, d = 2 cases showing relatively low PSNR values
and n > 8 cases requiring long execution time are not included
due to limited space. Theoretically, each HomMultPlain
does not necessarily require depth consumption. However, in
SEAL, a depth is consumed even after HomMultPlain to
provide ease of use without worrying about noise accumulation
[22]. Therefore, the depth results in Table II do not exactly
follow depth¢omp. However, the depth is still maintained until
the value of n becomes a power of 2.

Columns 4-15 in Table II show the PSNR results for the
six text images. First of all, the non-HE and HEMTH designs
incur PSNR differences because the CKKS scheme performs
rounding off to plaintext messages in a ciphertext after each
homomorphic multiplication. However, the PSNR difference
is 0.1% on average, which is negligible. Depending on the
test image, d value, and n value, HEMTH occasionally shows
higher PSNR results than the non-HE design. It is due to
probability and does not mean that HEMTH outperforms the
non-HE design in terms of accuracy.

In all the six images, if the d value is fixed, the PSNR value
increases as the n value increases. Similarly, if the n value is
fixed, the PSNR value increases as the d value increases. These
results are in line with what is argued by Cheon er al. [18]:
fn(a) in the outer loop with d iterations becomes closer to the
ideal step function as the n and d values increase. In fact, the
PSNR value increases in a logarithmic fashion as the n value
increases, while the execution time increases approximately
linearly. Therefore, it is necessary to consider the increase
in PSNR and computational complexity together to find the
optimal parameter values, which is described in Section IV-D.

Fig. 5 shows the images segmented by the conventional and
proposed three-level thresholding designs. Here, the n value
is fixed, and the d value changes from 3 to 5. Specifically, the
n value is set to 3, which is the maximum value available for
the d value of 5 under the depth constraint. As described in
Section III-A, the Comp operation outputs not exact 0 and 1
but approximate values, so the images segmented by HEMTH
contain more than three values. However, as the d value (and
the n value) increases, they get close to the images segmented
by the conventional design.

D. Execution Time

In this subsection, execution time is evaluated. Fig. 6(a)
shows the execution time of HEMTH. The horizontal and ver-
tical axes refer to the n value and execution time in a minute,
respectively, and the three line graphs correspond to different
d values. For all the d values, the execution time increases
as the n value increases. Overall, the three line graphs show
linear trends. However, when the n value increases from 3
to 4, where the depth changes, the slopes of the graphs for

TABLE II
PSNR COMPARISON OF THE THREE-LEVEL THRESHOLDING TECHNIQUES

PSNR (dB)

d | n | depth Boat Cameraman Lake Peppers Pirate ‘Woman

non-HE HE! | nonHE HE' | nonHE HE' | non-HE HE' | non-HE HE' | non-HE HE!
312 12 20.24 20.27 19.60 19.59 18.92 18.89 18.92 18.90 18.84 18.84 19.83 19.83
313 12 22.05 22.07 21.36 21.33 20.82 20.78 20.83 20.77 20.50 20.50 21.61 21.60
3| 4 15 23.77 23.79 23.09 23.09 22.64 22.62 22.51 22.52 22.05 22.06 23.19 23.19
315 15 25.06 25.06 24.44 24.42 24.09 24.04 2391 23.85 23.30 23.29 24.45 24.43
316 15 26.06 26.14 25.46 25.53 25.19 25.22 25.02 25.07 24.32 24.39 25.45 25.52
317 15 26.99 27.03 26.40 26.43 26.17 26.17 26.06 26.09 25.27 25.30 26.39 26.41
41 2 15 22.83 2291 22.14 22.18 21.63 21.65 21.59 21.60 21.19 21.25 22.32 22.37
413 15 25.70 25.70 25.09 25.08 24.79 24.75 24.59 24.59 23.94 23.94 25.08 25.08
4 | 4 19 27.72 27.72 27.14 27.13 26.94 26.90 26.90 26.87 26.03 26.03 27.13 27.12
415 19 29.32 29.32 28.74 28.73 28.60 28.56 28.70 28.67 27.70 27.69 28.75 28.74
416 19 30.65 30.62 30.07 30.04 29.96 29.91 30.25 30.19 29.09 29.07 30.08 30.04
4 17 19 31.70 31.70 31.12 31.12 31.04 31.02 31.66 31.69 30.21 30.21 31.13 31.12
512 18 25.71 25.75 25.10 25.13 24.80 24.80 24.60 24.63 23.95 23.99 25.09 25.12
513 18 29.02 29.01 28.44 28.42 28.28 28.24 28.34 28.31 27.38 27.37 28.44 28.42
TOur proposed HEMTH including encoding, encryption, decryption, and decoding processes.

d = 3 and d = 4 deviate from the linear trend. It is because ACKNOWLEDGMENT

the bit-length of ¢ that is actually used changes, and thus the
execution time for each homomorphic operation increases. The
slope increases as the d value increases because the increased
execution time in the f,(a) calculation is accumulated more.

Fig. 6(b) shows the results for all the (d, n) cases depending
on the average PSNR and execution time. As the number of
iterations increases, the average PSNR value and execution
time increase together. However, while the execution time
increases almost linearly, the increase in average PSNR grad-
ually decreases, which lowers the efficiency. However, since
a low PSNR due to a small number of iterations may not be
acceptable, it may be useful to find the optimal (d, n) values in
partitioned PSNR sections. For example, high efficiency can
be obtained by using (d, n) of (4, 2) in the 20-25 dB section.
When a PSNR value greater than 25 dB is required, using (d,
n) of (5, 3) leads to high efficiency.

The non-HE-based implementation using the Comp oper-
ation shows 179x faster average processing speed on the
same machine. The execution time of HEMTH was measured
using a single thread. Therefore, it can be improved by using
multiple threads. In addition, using custom hardware designs
of homomorphic operators can help with acceleration [23],
[24].

V. CONCLUSION

This paper proposes a privacy-preserving multilevel thresh-
olding method. It focuses on how to do multilevel thresholding
in the HE domain, rather than on how to find the best
threshold. Specifically, to solve the depth problem, multiple
comparison operations are executed in parallel. This makes
multilevel thresholding use the same depth as bi-level thresh-
olding in the HE domain, which in turn increases the number
of available iterations and the accuracy. To the best of the
authors’ knowledge, this is the first paper on multilevel thresh-
olding in the HE domain. For future work, we are working
on accelerating HEMTH using FPGA-based custom hardware
designs.

We thank Dr. Rob Rutenbar, Dr. Jung Hee Cheon, Wonhee
Cho, and Keewoo Lee for their continued support.

This work was supported by Institute of Information &
Communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No. 2020-
0-00840, Development and Library Implementation of Fully
Homomorphic Machine Learning Algorithms supporting Neu-
ral Network Learning over Encrypted Data). In addition, this
material is based upon work supported by the National Science
Foundation under Grant No. 2105373.

REFERENCES

[1] P-S. Liao, T.-S. Chen, and P.-C. Chung, ”A Fast Algorithm for Multi-
level Thresholding,” J. Inf. Sci. Eng., vol. 17, no. 5, pp. 713-727, 2001.

[2] J.-C. Yen, E.-J. Chang, and S. Chang, A New Criterion for Automatic
Multilevel Thresholding,” IEEE Trans. Image Process., vol. 4, no. 3, pp.
370-378, Mar. 1995.

[3] S. Arora, J. Acharya, A. Verma, and P. K. Panigrahi, “Multilevel Thresh-
olding for Image Segmentation Through a Fast Statistical Recursive
Algorithm,” Pattern Recognit. Lett., vol. 29, no. 2, pp. 119-125, 2008.

[4] S.S. Al-Amri, N. V. Kalyankar, and S. D. Khamitkar, “Image Segmen-
tation by Using Threshold Techniques,” J. Computing, vol. 2, no. 5, pp.
83-86, May 2010.

[5] F. Shafait, D. Keysers, and T. M. Breuel, “Efficient Implementation
of Local Adaptive Thresholding Techniques Using Integral Images,” in
Proc. Doc. Recognit. Retriev., 2008.

[6] N. Senthilkumaran and S. Vaithegi, “Image Segmentation by Using
Thresholding Techniques for Medical Images,” Comput. Sci. Eng., Int.
J., vol. 6, no. 1, pp. 1-13, Feb. 2016.

[71 E. A.Lee and S. A. Seshia, Introduction to Embedded Systems: A Cyber-
Physical Systems Approach. Berkeley, CA, USA: Lee & Seshia, 2011.

[8] M. T. L. Ziad, A. Alanwawr, M. Alzantot, and M. Srivastava, “Cryp-
toimg: Privacy Preserving Processing Over Encrypted Images,” in Proc.
CNS, 2016.

[9] J. H. Cheon et al., "Introduction to Homomorphic Encryption and

Schemes,” in Protecting Privacy through Homomorphic Encryption,

Springer, 2021, pp. 3-28.

S. D. Kannivelu and S. Kim, A Homomorphic Encryption-based

Adaptive Image Filter Using Division Over Encrypted Data,” in Proc.

RTCSA, 2021.

Z. Brakerski, “Fully Homomorphic Encryption Without Modulus

Switching From Classical GapSVP,” in Proc. CRYPTO, 2012.

J. Fan and F. Vercauteren, "Somewhat Practical Fully Homomorphic

Encryption,” Cryptology ePrint Archive, Tech. Rep. 2012/144, 2012.

[10]

(1]
[12]

Fig. 5. Images segmented by the three-level thresholding methods. (a)-(f) conventional (non-HE-based) (g)-(1) HEMTH (d = 3; n = 3) (m)-(r) HEMTH (d

=4; n =3) (s)-(x) HEMTH (d = 5; n = 3).

9 . 32 a
g -—m-d=3 30 A
A

T 7 eeed=4 P = 28 °A
E ¢ —a—d=5 = 2% o 0°
g, k4 < u °
= . .- 2 4°
f=4
st . 20 o 32 033 034
3 3 o _-" 3 18 ©(3,5) ©(3,6) ®(3,7)
g, & . ® 16 A(4,2) A(43) A(4,4)
@ o A(4,5) A(4,6) A(4,7)

1 w~ 14 @(52) ©(53)

0 12

2 3 4 5 & 7 0 2 4 6 8 10
n execution time (min)
(a) (b)

Fig. 6. Execution time evaluation of HEMTH (three-level). (a) execution time
vs. n (b) average PSNR vs. execution time.

[13] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, ”(Leveled) Fully Ho-
momorphic Encryption Without Bootstrapping,” ACM Trans. Comput.
Theory, vol. 6, no. 3, pp. 1-36, 2014.

[14] J. H. Cheon, A. Kim, M. Kim, and Y. Song, "Homomorphic Encryption
for Arithmetic of Approximate Numbers,” in Proc. ASTACRYPT, 2017.

[15] L. Ducas and D. Micciancio, "FHEW: Bootstrapping Homomorphic
Encryption in Less Than a Second,” in Proc. EUROCRYPT, 2015.

[16]

(17]
[18]

[19]

[20]
(21]

[22]

[23]

[24]

I. Chillotti, N. Gama, M. Georgieva, and M. Izabachéne, "TFHE: Fast
Fully Homomorphic Encryption Over the Torus,” J. Cryptology, vol. 33,
pp. 34-91, 2020.

Microsoft SEAL (release 3.6), [Online]. Available: https://github.com/
Microsoft/SEAL, 2020.

J. H. Cheon, D. Kim, and D. Kim, “Efficient Homomorphic Comparison
Methods with Optimal Complexity,” in Proc. ASIACRYPT, 2020.

H. Chen, K. Han, Z. Huang, A. Jalali, and K. Laine, “Simple Encrypted
Arithmetic Library v2.3.0,” [Online]. Available: https://www.microsoft.
com/en-us/research/wp-content/uploads/2017/12/sealmanual.pdf
Standard Test Images, [Online]. Available: http://imageprocessingplace.
com/root_files_V3/image_databases.htm

J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “Bootstrapping for
Approximate Homomorphic Encryption,” in Proc. EUROCRYPT, 2018.
M. Cho, K. Lee, and S. Kim, "HELPSE: Homomorphic Encryption-
based Lightweight Password Strength Estimation in a Virtual Keyboard
System,” in Proc. GLSVLSI, 2022.

S. Kim, K. Lee, W. Cho, J. H. Cheon, and R. A. Rutenbar, "FPGA-based
Accelerators of Fully Pipelined Modular Multipliers for Homomorphic
Encryption,” in Proc. ReConFig, 2019.

S. Kim, K. Lee, W. Cho, Y. Nam, J. H. Cheon, and R. A. Ruten-
bar, "Hardware Architecture of a Number Theoretic Transform for a
Bootstrappable RNS-based Homomorphic Encryption Scheme,” in Proc.
FCCM, 2020.

	Introduction
	Homomorphic Encryption
	Basic Homomorphic Operations
	Comparison of Homomorphically Encrypted Data

	Privacy-Preserving Multilevel Thresholding
	Small Depth Multilevel Thresholding
	Overall Flow

	Evaluation
	Experimental Setup
	Encoding
	Accuracy
	Execution Time

	Conclusion
	References

