
HEMTH: Small Depth Multilevel Thresholding for
a Homomorphically Encrypted Image

Paul Nam, Justin Shyi, and Sunwoong Kim
Division of Engineering and Mathematics, University of Washington, Bothell, WA 98011, USA

Email: {poul0315, shyi123, sunwoong}@uw.edu

AbstractÐOne of the image segmentation techniques, mul-
tilevel thresholding, is widely used in many computer vision
applications because of its low computational complexity and
efficient data representation. When it is used in cyber-physical
systems and internet-of-things, a special technique is required
to protect the sensitive information in an image. This paper
proposes a novel homomorphic encryption (HE)-based multilevel
thresholding method. To implement a comparison operation in
the HE domain, which is not a basic homomorphic operation,
a numerical method is adopted. Our proposed method executes
comparison operations in parallel to perform more iterations
and increase accuracy. When the number of iterations in the
numerical comparison operation is (5, 3), the proposed three-
level thresholding method shows an average peak signal-to-noise
ratio of 28 dB compared to a conventional non-HE-based method
and takes 3 minutes on a PC.

Index TermsÐhomomorphic encryption, multilevel threshold-
ing, cyber-physical systems, internet-of-things

I. INTRODUCTION

Image segmentation is one of the fundamental techniques

to analyze an image [1]±[6]. It is widely used in many image

processing and computer vision applications, such as medical

imaging, content-based image retrieval, and video surveillance.

One of the approaches frequently used for image segmentation

uses predefined criteria for region partitioning. A thresholding

technique, one of the techniques based on this approach, has

been an important tool because it enables small storage space,

low required transmission bandwidth, fast processing speed,

and region-of-interest highlighting [3], [4].
Thresholding techniques are categorized into global thresh-

olding techniques, which use a global threshold(s) for a whole

image, and local adaptive thresholding techniques, which use

a locally computed threshold for each pixel or block [5], [6].

Typically, the former technique ensures low computational

complexity and easy implementation so has got a lot of

attention [4]. If a single global threshold is used, an image

is segmented into two different regions. Specifically, pixels

of which intensity values are greater than a threshold T are

classified as object pixels, and the others are classified as back-

ground pixels. On the other hand, a multilevel thresholding

technique uses multiple thresholds to segment an image into

a single background region and several object regions [1]±[3].
Recently, many internet-connected devices are contained

in cyber-physical systems (CPS) and internet-of-things (IoT)

[7]. In some systems, a cloud server is additionally used to

undertake computational burdens of resource- and/or power-

hungry user devices. A thresholding technique in CPS and IoT

has a distinct issue that does not exist in the conventional one:

security. In particular, malicious attackers can see user’s pri-

vate images containing sensitive information on networks and

cloud servers [8]. Therefore, a privacy-preserving thresholding

technique is necessary.

In this paper, a homomorphic encryption (HE) scheme is

applied to a multilevel thresholding technique. A comparison

operation in thresholding, which is not supported in HE

schemes, is implemented using a numerical method. To avoid

depth accumulation by successive comparison operations of

multilevel thresholding, our proposed HE-based multilevel

thresholding (HEMTH) first executes multiple comparison

operations in parallel and then merges the results to produce a

segmented image in the HE domain. To the best of the authors’

knowledge, this is the first paper that applies a HE scheme to

an image thresholding technique.

II. HOMOMORPHIC ENCRYPTION

HE allows operations to be performed on encrypted data

without decryption [9]. This helps a public cloud server

process data while preserving user’s private information. Com-

pared to solutions using other cryptography techniques, an

end-to-end HE-based solution reduces the burden on a client

because it does not require frequent communications between

server and client after sending encrypted data. Thanks to

these properties, HE has been applied to image processing

algorithms, such as filtering, edge detection, sharpening, and

brightness control [8], [10].

Today, Brakerski-Fan-Vercauteren (BFV)/Brakerski-Gentry-

Vaikuntanathan (BGV) [11]±[13], Cheon-Kim-Kim-Song

(CKKS) [14], and Ducas-Micciancio (DM)/Chillotti-Gama-

Georgieva-Izabachène (CGGI) [15], [16] HE schemes are

widely used. They are implemented in open-source libraries,

such as Microsoft SEAL [17]. Their plaintext data types are

different. For example, the BFV/BGV, CKKS, and DM/CGGI

schemes deal with integer, real number, and boolean plaintext

messages, respectively.

A. Basic Homomorphic Operations

The HE schemes for integer and real number plaintext

messages provide the following homomorphic operations [9]:

• HomAdd: ciphertext-ciphertext addition;

• HomAddPlain: ciphertext-plaintext addition;

• HomSub: ciphertext-ciphertext subtraction;

• HomSubPlain: ciphertext-plaintext subtraction;

978-1-6654-7189-3/22/$31.00 © 2022 IEEE

Algorithm 1 Comp(x, y;n, d) [18]

Input: normalized real numbers x, y ∈ [0, 1]

Input: the number of iterations n, d ∈ N

Output: a value between 0 and 1

1: a← x− y
2: for (i = 1; i ≤ d; i = i+ 1) do

3: a← fn(a)
4: end for

5: return (a+ 1)/2

• HomMult: ciphertext-ciphertext multiplication;

• HomMultPlain: ciphertext-plaintext multiplication.

The results of these operations are ciphertexts. Unlike the

other homomorphic operations, HomMult includes a key

switching operation, also called the relinearization, to restore

the deformed key. Furthermore, the CKKS scheme requires an

additional operation called rescaling to control the precision

and minimize the growth of error.

Each time a homomorphic operation is performed, the

magnitude of noise used to hide plaintext messages increases.

In particular, HomMult nearly doubles the magnitude. If the

noise level exceeds a certain level, decryption does not guar-

antee desirable results. Therefore, a limited number of con-

secutive HomMults are allowed for homomorphic evaluation.

This number is called the multiplicative circuit depth, or just

the depth. Note that there is a technique called bootstrapping

that makes the depth infinite, but it requires tremendous com-

putational complexity. Therefore, the bootstrapping technique

is not considered in this paper.

Many recent HE schemes support packing techniques. With

these techniques, multiple plaintext messages are packed into

a single vector, and this vector is transformed into a ciphertext.

A homomorphic operation on this ciphertext corresponds

to element-wise or single instruction/multiple data (SIMD)

operations in the plaintext domain. Therefore, the execution

time is significantly improved.

B. Comparison of Homomorphically Encrypted Data

HE schemes for integer and real number plaintext messages

do not support a homomorphic comparison operation by de-

fault. To solve this problem, Cheon et al. proposed a numerical

method for a comparison operation in the CKKS scheme [18].

Algorithm 1 describes this method. This algorithm starts with

the following formula, comparison result = f(x−y)+1
2 , where

f(·) is the step function that produces 1 if x > y; -1 if x < y;

and 0 otherwise. Since this step function is non-linear, it is

approximated as follows:

fn(a) =

n
∑

j=0

1

4j
·

(

2j

j

)

· a(1− a2)j . (1)

Algorithm 1 implemented in the HE domain requires a

large depth because it includes a nested loop, in which an

inner loop has n iterations and an outer loop has d iterations.

Ideally, the depth of Algorithm 1, denoted as depthcomp in the

Fig. 1. Depth accumulation in f4(a) calculation.

(a) (b)

Fig. 2. Pseudo code for multilevel thresholding in the non-HE domain. x is
an input pixel intensity value and Ti is the i-th threshold. ci in Fig. 2(a) is
the i-th potential pixel intensity value, and c0 in Fig. 2(b) is the base potential
pixel intensity value. (a) naÈıve method (b) proposed method for HEMTH.

rest of this paper, is approximately d⌈log2n⌉. Fig. 1 shows

how the depth is accumulated in fn(a) when n is 4. The

constant in this figure stands for 1
4j ·

(

2j
j

)

, which is calculated

in advance, and intermediate results, such as (1 − a2)2, are

reused to avoid unnecessary computations. When operands

with different depths are multiplied by each other, a smaller

depth is pulled up to a larger depth before the operation.

Therefore, the total depth in fn(a) grows logarithmically.

III. PRIVACY-PRESERVING MULTILEVEL THRESHOLDING

This section presents our proposed HEMTH that adopts

Algorithm 1 for multilevel thresholding in the HE domain.

Note that the numerical comparison operation is denoted as

the Comp operation in the rest of this paper to distinguish it

from the conventional comparison operation. In addition, for

the sake of simplicity, the same n and d values are used for

different Comp operations working together.

A. Small Depth Multilevel Thresholding

Typically, a thresholding technique includes a comparison

operation(s). In particular, for multilevel thresholding, multiple

comparison operations should be performed. The most naÈıve

method for multilevel thresholding is to use if ... else if ...

else statements, as shown in Fig. 2(a). However, when moved

to the HE domain, this method performs Comp operations in

serial, which incurs a large depth. For example, the total depth

in three-level thresholding is 2×depthcomp+1, which requires

long latency or even may not satisfy a depth constraint. This

problem gets worse as the number of levels in thresholding

increases.

To solve this problem, HEMTH performs Comp operations

in parallel and merges the results, which greatly lowers the

total depth. Fig. 2(b) shows its pseudo code in the non-HE

domain. It replaces the if ... else if ... else statements of the

naÈıve method with independent if ... else statements. Suppose

that there are three levels in thresholding, and r1 and r2 stand

for Comp(x, T1, n, d) and Comp(x, T2, n, d), respectively. T1

and T2 are thresholds (T1 > T2). Additionally, suppose that

three potential pixel intensity values are evenly distributed

between the maximum and minimum values expressed with

a given bits per pixel (bpp), which is different from the naÈıve

method that selects any potential pixel intensity values. A

segmented pixel intensity y is then calculated as follows:

y = (r1 + r2) · ⌊
2bpp − 1

2
⌋. (2)

For (k+1)-level thresholding, this equation is generalized as

follows:

y = Σk
i=1ri · ⌊

2bpp − 1

k
⌋, (3)

where ri = Comp(x, Ti, n, d) and Ti is the i-th threshold.

Since Comp operations in HEMTH are executed in parallel,

the total depth is depthcomp regardless of the number of levels.

For three-level thresholding, HEMTH reduces the depth by

approximately half compared to the naÈıve method, and the

improvement increases as the number of levels increases.

Unlike the conventional thresholding method that exactly

outputs a fixed number of potential pixel intensity values,

HEMTH outputs approximate potential pixel intensity values.

Due to the characteristics of the numerical Comp operation,

an image segmented by HEMTH becomes closer to an image

segmented by the conventional method as the n and d values

increase. In fact, segmenting an image in the HE domain does

not help reduce data size nor improve execution time, but it can

be used to highlight regions of interest in an encrypted image.

Accuracy in this application is not significantly affected by the

approximate technique, which is described in Section IV-C.

B. Overall Flow

In this paper, HEMTH is implemented as a client-server

model. Fig. 3 shows a high-level overall flow of our proposed

design. First of all, an input image is read on the client-

side. Suppose that all pixels in this image cannot be encoded

and encrypted into a single ciphertext because the image

size is too large (the number of elements in a vector or

slots in a ciphertext is insufficient to contain all pixels).

To create multiple ciphertexts, the input image is split into

several blocks, and each block is encoded and encrypted into

a separate ciphertext. The block size is determined based on

the number of slots in a ciphertext, and this number depends

on HE parameters. The details are explained in Section IV-B.

The generated ciphertexts are sent to the server through net-

works, and HEMTH segments the encrypted image. Since the

resulting image is still encrypted, the server cannot acquire any

Fig. 3. Overall flow of our proposed design.

TABLE I
HE PARAMETERS USED FOR HEMTH

Security level N logq Maximum depth†

128-bit 215 885 20
†When 40 bits are allocated to all primes.

sensitive information in the image. After being sent from the

server to the client, the resulting image blocks are decrypted,

decoded, and merged, and finally, the client gets the segmented

image.

IV. EVALUATION

A. Experimental Setup

In HEMTH implementation, Microsoft SEAL version 3.6

is used [17]. Among the HE schemes available in this library,

the CKKS scheme is used for the Comp operation using real

numbers. Generally, HE parameters greatly affect performance

in homomorphic evaluation. There are two critical parameters:

polynomial degree N and total bit-length of q (logq). N is

a power of two, and q is a product of different primes. In

the CKKS scheme, one of the primes is dropped whenever

HomMult is performed. Therefore, the number of primes

determines the maximum available depth in homomorphic

evaluation. For the same security level, N and logq are propor-

tional to each other [9]. Therefore, to increase the maximum

available depth, the N value needs to be increased. However,

as the N value increases, the execution time increases signif-

icantly. It makes homomorphic evaluation impractical, so the

maximum N value in SEAL is limited to 215.

This paper aims for a 128-bit security level, which is

common in recent real-world applications, and uses the N
value of 215 to make a sufficiently large maximum available

depth. According to the SEAL manual, the bit-length of q
corresponding to this N value is 885 bits [19]. If 40 bits are

allocated to each prime, 22 (=⌊885/40⌋) primes are generated.

Since both end primes are used for special purposes, the

maximum available depth is 20. Table I summarizes the HE

parameters used in this paper.

As input images, six 512×512-sized grayscale standard

images with a bpp of 8, shown in Fig. 4, are used [20]. In

this evaluation section, the number of thresholding levels is

(a) (b) (c)

(d) (e) (f)

Fig. 4. Test input images (512×512 grayscale). (a) Boat (b) Cameraman (c)
Lake (d) Peppers (e) Pirate (f) Woman.

set to 3, and each segmented pixel intensity value is (ap-

proximately) 0, 127, or 254. For comparison, a conventional

three-level thresholding implementation using if ... else if ...

else statements is used as a baseline. In addition, another

non-HE-based implementation that replaces the conventional

comparison operation with the Comp operation is used. This

implementation is referred to as ºnon-HEº in Table II. Note

that there is no previous work on HE-based thresholding

techniques, so only results by HEMTH are presented for the

HE domain. As hardware for our proof-of-concept design, a

PC with the Intel Xeon W-2295 and 128GB RAM is used.

The operating system is Ubuntu 18.04 LTS.

B. Encoding

Given the N value of 215, each ciphertext of the CKKS

scheme has 215/2 slots [21]. In other words, 214 real numbers

can be packed into a single ciphertext maximally. If all slots

in a ciphertext are used, a 512×512-sized grayscale image

generates 16 ciphertexts. In our implementation, a 512×512-

sized image is divided into 16 128×128-sized blocks, and each

block is encoded and encrypted into each ciphertext.

C. Accuracy

To evaluate the accuracy of images segmented by HEMTH,

peak signal-to-noise ratio (PSNR) is used. PSNR and mean

squared error (MSE) values are calculated using (4) and (5),

respectively.

PSNR (dB) = 10 · log10((2
bpp − 1)2/MSE), (4)

MSE =
ΣR−1

i=0 ΣC−1
j=0 [g(i, j)− h(i, j)]2

R× C
, (5)

where R and C are the height and width of an image, and

g(i, j) and h(i, j) are pixel intensity values segmented by

the conventional thresholding technique using if ... else if ...

else statements and the modified thresholding techniques using

Comp operations at a coordinate (i, j).

Table II compares the PSNR values of the three-level

thresholding techniques. The first and second columns show

the d and n values of the Comp operation, respectively. The

third column shows the total depth required for thresholding.

Note that this table shows only the results when the total depth

is smaller than the maximum available depth shown in Table

I. In addition, d = 2 cases showing relatively low PSNR values

and n ≥ 8 cases requiring long execution time are not included

due to limited space. Theoretically, each HomMultPlain

does not necessarily require depth consumption. However, in

SEAL, a depth is consumed even after HomMultPlain to

provide ease of use without worrying about noise accumulation

[22]. Therefore, the depth results in Table II do not exactly

follow depthcomp. However, the depth is still maintained until

the value of n becomes a power of 2.

Columns 4-15 in Table II show the PSNR results for the

six text images. First of all, the non-HE and HEMTH designs

incur PSNR differences because the CKKS scheme performs

rounding off to plaintext messages in a ciphertext after each

homomorphic multiplication. However, the PSNR difference

is 0.1% on average, which is negligible. Depending on the

test image, d value, and n value, HEMTH occasionally shows

higher PSNR results than the non-HE design. It is due to

probability and does not mean that HEMTH outperforms the

non-HE design in terms of accuracy.

In all the six images, if the d value is fixed, the PSNR value

increases as the n value increases. Similarly, if the n value is

fixed, the PSNR value increases as the d value increases. These

results are in line with what is argued by Cheon et al. [18]:

fn(a) in the outer loop with d iterations becomes closer to the

ideal step function as the n and d values increase. In fact, the

PSNR value increases in a logarithmic fashion as the n value

increases, while the execution time increases approximately

linearly. Therefore, it is necessary to consider the increase

in PSNR and computational complexity together to find the

optimal parameter values, which is described in Section IV-D.

Fig. 5 shows the images segmented by the conventional and

proposed three-level thresholding designs. Here, the n value

is fixed, and the d value changes from 3 to 5. Specifically, the

n value is set to 3, which is the maximum value available for

the d value of 5 under the depth constraint. As described in

Section III-A, the Comp operation outputs not exact 0 and 1

but approximate values, so the images segmented by HEMTH

contain more than three values. However, as the d value (and

the n value) increases, they get close to the images segmented

by the conventional design.

D. Execution Time

In this subsection, execution time is evaluated. Fig. 6(a)

shows the execution time of HEMTH. The horizontal and ver-

tical axes refer to the n value and execution time in a minute,

respectively, and the three line graphs correspond to different

d values. For all the d values, the execution time increases

as the n value increases. Overall, the three line graphs show

linear trends. However, when the n value increases from 3

to 4, where the depth changes, the slopes of the graphs for

TABLE II
PSNR COMPARISON OF THE THREE-LEVEL THRESHOLDING TECHNIQUES

PSNR (dB)
d n depth Boat Cameraman Lake Peppers Pirate Woman

non-HE HE† non-HE HE† non-HE HE† non-HE HE† non-HE HE† non-HE HE†

3 2 12 20.24 20.27 19.60 19.59 18.92 18.89 18.92 18.90 18.84 18.84 19.83 19.83
3 3 12 22.05 22.07 21.36 21.33 20.82 20.78 20.83 20.77 20.50 20.50 21.61 21.60
3 4 15 23.77 23.79 23.09 23.09 22.64 22.62 22.51 22.52 22.05 22.06 23.19 23.19
3 5 15 25.06 25.06 24.44 24.42 24.09 24.04 23.91 23.85 23.30 23.29 24.45 24.43
3 6 15 26.06 26.14 25.46 25.53 25.19 25.22 25.02 25.07 24.32 24.39 25.45 25.52
3 7 15 26.99 27.03 26.40 26.43 26.17 26.17 26.06 26.09 25.27 25.30 26.39 26.41
4 2 15 22.83 22.91 22.14 22.18 21.63 21.65 21.59 21.60 21.19 21.25 22.32 22.37
4 3 15 25.70 25.70 25.09 25.08 24.79 24.75 24.59 24.59 23.94 23.94 25.08 25.08
4 4 19 27.72 27.72 27.14 27.13 26.94 26.90 26.90 26.87 26.03 26.03 27.13 27.12
4 5 19 29.32 29.32 28.74 28.73 28.60 28.56 28.70 28.67 27.70 27.69 28.75 28.74
4 6 19 30.65 30.62 30.07 30.04 29.96 29.91 30.25 30.19 29.09 29.07 30.08 30.04
4 7 19 31.70 31.70 31.12 31.12 31.04 31.02 31.66 31.69 30.21 30.21 31.13 31.12
5 2 18 25.71 25.75 25.10 25.13 24.80 24.80 24.60 24.63 23.95 23.99 25.09 25.12
5 3 18 29.02 29.01 28.44 28.42 28.28 28.24 28.34 28.31 27.38 27.37 28.44 28.42
†Our proposed HEMTH including encoding, encryption, decryption, and decoding processes.

d = 3 and d = 4 deviate from the linear trend. It is because

the bit-length of q that is actually used changes, and thus the

execution time for each homomorphic operation increases. The

slope increases as the d value increases because the increased

execution time in the fn(a) calculation is accumulated more.

Fig. 6(b) shows the results for all the (d, n) cases depending

on the average PSNR and execution time. As the number of

iterations increases, the average PSNR value and execution

time increase together. However, while the execution time

increases almost linearly, the increase in average PSNR grad-

ually decreases, which lowers the efficiency. However, since

a low PSNR due to a small number of iterations may not be

acceptable, it may be useful to find the optimal (d, n) values in

partitioned PSNR sections. For example, high efficiency can

be obtained by using (d, n) of (4, 2) in the 20-25 dB section.

When a PSNR value greater than 25 dB is required, using (d,

n) of (5, 3) leads to high efficiency.

The non-HE-based implementation using the Comp oper-

ation shows 179× faster average processing speed on the

same machine. The execution time of HEMTH was measured

using a single thread. Therefore, it can be improved by using

multiple threads. In addition, using custom hardware designs

of homomorphic operators can help with acceleration [23],

[24].

V. CONCLUSION

This paper proposes a privacy-preserving multilevel thresh-

olding method. It focuses on how to do multilevel thresholding

in the HE domain, rather than on how to find the best

threshold. Specifically, to solve the depth problem, multiple

comparison operations are executed in parallel. This makes

multilevel thresholding use the same depth as bi-level thresh-

olding in the HE domain, which in turn increases the number

of available iterations and the accuracy. To the best of the

authors’ knowledge, this is the first paper on multilevel thresh-

olding in the HE domain. For future work, we are working

on accelerating HEMTH using FPGA-based custom hardware

designs.

ACKNOWLEDGMENT

We thank Dr. Rob Rutenbar, Dr. Jung Hee Cheon, Wonhee

Cho, and Keewoo Lee for their continued support.

This work was supported by Institute of Information &

Communications Technology Planning & Evaluation (IITP)

grant funded by the Korea government (MSIT) (No. 2020-

0-00840, Development and Library Implementation of Fully

Homomorphic Machine Learning Algorithms supporting Neu-

ral Network Learning over Encrypted Data). In addition, this

material is based upon work supported by the National Science

Foundation under Grant No. 2105373.

REFERENCES

[1] P.-S. Liao, T.-S. Chen, and P.-C. Chung, ºA Fast Algorithm for Multi-
level Thresholding,º J. Inf. Sci. Eng., vol. 17, no. 5, pp. 713±727, 2001.

[2] J.-C. Yen, F.-J. Chang, and S. Chang, ºA New Criterion for Automatic
Multilevel Thresholding,º IEEE Trans. Image Process., vol. 4, no. 3, pp.
370-378, Mar. 1995.

[3] S. Arora, J. Acharya, A. Verma, and P. K. Panigrahi, ªMultilevel Thresh-
olding for Image Segmentation Through a Fast Statistical Recursive
Algorithm,º Pattern Recognit. Lett., vol. 29, no. 2, pp. 119±125, 2008.

[4] S. S. Al-Amri, N. V. Kalyankar, and S. D. Khamitkar, ªImage Segmen-
tation by Using Threshold Techniques,º J. Computing, vol. 2, no. 5, pp.
83±86, May 2010.

[5] F. Shafait, D. Keysers, and T. M. Breuel, ªEfficient Implementation
of Local Adaptive Thresholding Techniques Using Integral Images,º in
Proc. Doc. Recognit. Retriev., 2008.

[6] N. Senthilkumaran and S. Vaithegi, ºImage Segmentation by Using
Thresholding Techniques for Medical Images,º Comput. Sci. Eng., Int.

J., vol. 6, no. 1, pp. 1-13, Feb. 2016.
[7] E. A. Lee and S. A. Seshia, Introduction to Embedded Systems: A Cyber-

Physical Systems Approach. Berkeley, CA, USA: Lee & Seshia, 2011.
[8] M. T. I. Ziad, A. Alanwawr, M. Alzantot, and M. Srivastava, ºCryp-

toimg: Privacy Preserving Processing Over Encrypted Images,º in Proc.

CNS, 2016.
[9] J. H. Cheon et al., ºIntroduction to Homomorphic Encryption and

Schemes,º in Protecting Privacy through Homomorphic Encryption,
Springer, 2021, pp. 3±28.

[10] S. D. Kannivelu and S. Kim, ºA Homomorphic Encryption-based
Adaptive Image Filter Using Division Over Encrypted Data,º in Proc.

RTCSA, 2021.
[11] Z. Brakerski, ºFully Homomorphic Encryption Without Modulus

Switching From Classical GapSVP,º in Proc. CRYPTO, 2012.
[12] J. Fan and F. Vercauteren, ºSomewhat Practical Fully Homomorphic

Encryption,º Cryptology ePrint Archive, Tech. Rep. 2012/144, 2012.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

(s) (t) (u) (v) (w) (x)

Fig. 5. Images segmented by the three-level thresholding methods. (a)-(f) conventional (non-HE-based) (g)-(l) HEMTH (d = 3; n = 3) (m)-(r) HEMTH (d
= 4; n = 3) (s)-(x) HEMTH (d = 5; n = 3).

(a) (b)

Fig. 6. Execution time evaluation of HEMTH (three-level). (a) execution time
vs. n (b) average PSNR vs. execution time.

[13] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, º(Leveled) Fully Ho-
momorphic Encryption Without Bootstrapping,º ACM Trans. Comput.

Theory, vol. 6, no. 3, pp. 1-36, 2014.

[14] J. H. Cheon, A. Kim, M. Kim, and Y. Song, ºHomomorphic Encryption
for Arithmetic of Approximate Numbers,º in Proc. ASIACRYPT, 2017.

[15] L. Ducas and D. Micciancio, ºFHEW: Bootstrapping Homomorphic
Encryption in Less Than a Second,º in Proc. EUROCRYPT, 2015.

[16] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, ºTFHE: Fast
Fully Homomorphic Encryption Over the Torus,º J. Cryptology, vol. 33,
pp. 34-91, 2020.

[17] Microsoft SEAL (release 3.6), [Online]. Available: https://github.com/
Microsoft/SEAL, 2020.

[18] J. H. Cheon, D. Kim, and D. Kim, ªEfficient Homomorphic Comparison
Methods with Optimal Complexity,º in Proc. ASIACRYPT, 2020.

[19] H. Chen, K. Han, Z. Huang, A. Jalali, and K. Laine, ªSimple Encrypted
Arithmetic Library v2.3.0,º [Online]. Available: https://www.microsoft.
com/en-us/research/wp-content/uploads/2017/12/sealmanual.pdf

[20] Standard Test Images, [Online]. Available: http://imageprocessingplace.
com/root files V3/image databases.htm

[21] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, ºBootstrapping for
Approximate Homomorphic Encryption,º in Proc. EUROCRYPT, 2018.

[22] M. Cho, K. Lee, and S. Kim, ºHELPSE: Homomorphic Encryption-
based Lightweight Password Strength Estimation in a Virtual Keyboard
System,º in Proc. GLSVLSI, 2022.

[23] S. Kim, K. Lee, W. Cho, J. H. Cheon, and R. A. Rutenbar, ºFPGA-based
Accelerators of Fully Pipelined Modular Multipliers for Homomorphic
Encryption,º in Proc. ReConFig, 2019.

[24] S. Kim, K. Lee, W. Cho, Y. Nam, J. H. Cheon, and R. A. Ruten-
bar, ºHardware Architecture of a Number Theoretic Transform for a
Bootstrappable RNS-based Homomorphic Encryption Scheme,º in Proc.

FCCM, 2020.

	Introduction
	Homomorphic Encryption
	Basic Homomorphic Operations
	Comparison of Homomorphically Encrypted Data

	Privacy-Preserving Multilevel Thresholding
	Small Depth Multilevel Thresholding
	Overall Flow

	Evaluation
	Experimental Setup
	Encoding
	Accuracy
	Execution Time

	Conclusion
	References

