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A B S T R A C T   

Biodiversity is in decline globally and predicting species diversity is critically important if current trends are to 
be reversed. Tree species richness (TSR) has long been a key measure of biodiversity, but considerable un
certainties exist in current models, particularly given the classic statistical assumptions and poor ecological 
interpretability of machine learning outcomes. Here, we test several ecologically interpretable machine learning 
approaches to predict TSR and interpret the driving environmental factors in the continental United States. We 
develop two artificial neural networks (ANN) and one random forest (RF) model to predict TSR using Forest 
Inventory and Analysis data and 20 environmental covariates and compare them to a classic generalized linear 
model (GLM). Models were evaluated on an independent, unseen testing dataset using R2 and Mean Absolute 
Error (MAE) and residual spatial autocorrelation analysis. An Interpretable Machine Learning approach, SHapley 
Additive exPlanations (SHAP), was adopted to explain the major environmental factors driving TSR. Compared 
to a baseline GLM (R2 = 0.7; MAE = 4.7), the ANN and RF models achieved R2 greater than 0.9 and MAE<3.1. 
Additionally, the ANN and RF models produced less spatially clustered TSR residuals than the GLM. SHAP 
analysis suggested that TSR is best predicted by Aridity Index, Forest Area, Altitude, Mean Precipitation of the 
Driest Quarter and Mean Annual Temperature. SHAP further revealed a non-linear relationship of environmental 
covariates with TSR and complex interactions that were not revealed by the GLM. The study highlights the need 
for conservation efforts of forest areas and reducing precipitation-related physiological stress on tree species in 
low forested but arid regions. The machine learning approach used here is transferrable for studies of biodiversity 
for other organisms or prediction of TSR under future climatic scenarios.   

1. Introduction 

Biodiversity is a critical ecological indicator currently undergoing 
significant global declines, which are adversely impacting humanity 
(Cardinale et al., 2012). For decades, the cornerstone of biodiversity 
science has been understanding the drivers and consequences of varia
tion in species richness and how abundances change across spatial and 
temporal scales (MacArthur et al., 1972; Rosenzweig, 1995). Despite a 
shift in focus over the last three decades to approaches that prioritize 
functional diversity (Swenson et al., 2011), species-based approaches 
remain relevant and have given rise to some of the most influential 
ecological theories (MacArthur and Wilson, 1967; Tilman, 1982; Hub
bell, 2001). Predicting biodiversity trends is critically important to un
derstand the impact of global climate change (Pereira et al., 2013) and 
regional land use and land cover change (Cardinale et al., 2012) on 

ecosystems and humans. 
Tree species richness (hereafter TSR) is the number of distinct tree 

species represented in an ecological community, landscape, or region. 
TSR has long been an important component of biodiversity studies 
(Gentry, 1988; Cleland, 2011), particularly with respect to global 
change (Iverson and Prasad, 2001). Recent studies have shown that 
richness increases with higher stand-level productivity in forests (Huang 
et al., 2018), interactions of higher trophic levels (Schuldt et al., 2017), 
forest stability (Ouyang et al., 2020), and nutrient cycling and soil- 
related processes (Haghverdi and Kooch, 2019). Therefore, accurately 
predicting and modeling broad-scale changes in TSR is critical to fore
casting where declines may occur in the future and what effects those 
changes may have on other species or ecosystem services. 

However, modeling and predicting TSR at broad spatial scales (e.g., 
continental to global) has been limited by both data availability and 
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methodological concerns. The lack of systematic species occurrence data 
with consistent spatial grain at continental to global scales has been 
well-documented (Belmaker and Jetz, 2010; Keil and Chase, 2019). In 
North America, the USDA Forest Inventory and Analysis (FIA) data has 
been particularly effective for modeling TSR. The FIA data provide a 
consistent, systematic, annual sample of plot-level tree information in 
the United States (Bechtold and Patterson, 2005). The data have been 
used in biodiversity studies (Woodall et al., 2010; Zhu et al., 2015), but 
most previous work has focused on regional or subcontinental-level 
analyses of TSR (e.g., across the eastern United States; Fan and War
ing, 2009; Kwon et al., 2018). The nation-wide fixed-radius plot design 
FIA inventory offers the opportunity for larger scale estimates of TSR 
across the entire United States, but the large dataset (millions of ob
servations) has become unwieldy for classic statistical modeling 
approaches. 

Methodological concerns have also limited the development of 
broad-scale predictions of TSR. Most prior studies have used correlative 
(or linear) models to predict TSR, with the most common approach 
being a general linear model (Sarr et al., 2005). However, general linear 
models have been found to be inappropriate for TSR prediction because 
the spatial patterns of TSR are driven by complex, non-linear environ
mental relationships, and TSR is not typically normally distributed 
(Wang et al., 2011; Kwon et al., 2018). To address the non-normality, 
generalized linear modeling (GLM) has been used (Wang et al., 2011; 
Kwon et al., 2018), but the collinearity of predictor variables and spatial 
autocorrelation of residuals present challenges. Variable selection 
methods, such as Least Absolute Shrinkage and Selection Operator 
(LASSO), have been used to reduce multicollinearity (Kwon et al., 2018), 
and spatial autoregressive models (Svenning and Skov 2007) or eigen
vector spatial filtering models (Kwon et al., 2018) have been employed 
to account for spatial autocorrelation. However, issues remain with the 
ability of these models and techniques to capture the complex spatial 
patterns of TSR with highly interactive environmental covariates. 

Data-driven, machine learning models have shown high prediction 
accuracy when applied to global ecology and biodiversity studies 
(Christin et al., 2019; Maina, 2021). Compared to classic predictive 
models, machine learning models provide several benefits. First, ma
chine learning models use general-purpose learning algorithms to find 
patterns in big and unwieldy data (Bzdok et al., 2017) while classic 
predictive models tend to overfit when many covariates are included. 
Second, machine learning methods make minimal assumptions about 
data structure or data-generating systems, and they can be effective even 
when the underlying systems are unknown, difficult to describe, have 
complex interactions or the sample data are noisy (Liu et al., 2018). This 
loose assumption about data structure is relevant for TSR studies 
because the forces driving species richness spatial patterns are multi- 
dimensional, non-linear, and highly correlated (Li et al., 2017). Third, 
in contrast to classic statistical approaches where the entire data sample 
is considered during hypothesis testing (Wasserstein and Lazar, 2016), 
with machine learning approaches, the sample data are typically sepa
rated into subsets for training, validation, and testing. The algorithm is 
fit with the training data, and hyperparameters are tuned on the vali
dation data to produce the best model with the highest prediction ac
curacy. The fitted model is then empirically evaluated using the testing 
set. With machine learning, the desired relevance of a statistical rela
tionship in the underlying population is ascertained by explicit evalua
tions on new data rather than formal mathematical proofs as it is for 
classic regression (Breiman, 2001; Wasserstein and Lazar, 2016). This 
feature ensures the machine learning model not only produces low bias 
but also low variance (i.e., high generalization power) on new or unseen 
data from the modeled system. 

Among machine learning models, random forests (RF, Breiman, 
2001) and artificial neural networks (ANNs, Goodfellow et al., 2016) 
have been widely applied for biodiversity assessments as they are robust 
nonparametric, non-linear learners that have demonstrated good pre
dictive power (Bland et al., 2015; Wu and Liang, 2018). RF and ANNs 

models are also fairly insensitive to problems of multicollinearity, which 
makes them well suited for species prediction models when a large 
number of environmental covariates are being tested, eliminating the 
need for a variable pre-selection step such as LASSO. In addition, both 
RF and ANNs are stable and can tolerate outliers or noisy data (Liu et al., 
2018). While interpretability of ML outputs is a major concern in 
ecological studies (Welchowski et al., 2021), Interpretable Machine 
Learning (IML) has been offered to explain increasingly complex ma
chine learning models to provide insights on the modeled system and 
predictors (Molnar 2020; Welchowski et al., 2021). A recent review by 
Linardatos et al. (2021) suggested the Shapley Additive exPlanations 
(SHAP, Lundberg and Lee, 2017) method as the most comprehensive, 
model-agnostic method for its versatility. These developments offer an 
opportunity to examine environmental relationships in greater depth. 

This study develops a machine learning approach for predicting TSR 
at broad spatial scales to improve prediction accuracy and determine the 
environmental factors driving TSR. Specifically, we test two approaches 
– RF and ANNs – for predicting TSR in the continental United States with 
the nation-wide FIA database and 20 widely-studied environmental 
covariates. We apply the SHAP IML method to analyze the importance of 
these covariates and unveil their relationships to TSR. We compare these 
models to the classic GLM approach. The work is novel in utilizing ML 
models to improve the geographic prediction accuracy of TSR and 
adopting IML method to explain the importance of environmental 
covariates and their relationships to TSR. 

2. Data and variable construction 

2.1. Forest Inventory and analysis database 

The FIA program provides consistent, nationwide tree census infor
mation on the extent, condition, status, and trends of United States forest 
resources (Bechtold and Patterson, 2005). Data are collected via a sys
tematic, five-year rolling annual inventory system with a unified, fixed- 
radius plot design. Within each plot, adult trees (>=5.0 in. or 12.7 cm 
diameter at breast height, DBH) are tallied in four, 24-foot or 7.3 m 
fixed-radius subplots, and saplings (between 1.0 in. or 2.5 cm and 5.0 in. 
or 12.7 cm DBH) are tallied in four, 6.8-foot or 2.1 m fixed-radius micro- 
plots for core attributes such as tree diameter, height, damage, and 
forest type (Bechtold and Patterson, 2005). Plot locations on private 
land are generally swapped for privacy protection (McRoberts et al., 
2005), but the up to 0.8 km shift in location is negligible in studies with 
large spatial extent (Woodall et al., 2010). We retrieved the FIA database 
(version 1.8.0.00) for the continental United States (a.k.a. the lower 48 
states) from the FIA DataMart (https://apps.fs.usda.gov/fia/datamart/) 
for the period 2013 to 2018. We include both subplots and microplots, 
with all data from each plot aggregated into a grid (described in section 
2.2). The dataset comprises 143,810 plots, which include 1,151,062 
observations consisting of 714,805 adult trees and 436,257 seedlings. 

2.2. TSR outcome variable 

To calculate a standard TSR, we overlaid a 20 × 20 km grid (a total of 
20,251 cells) over the continental United States and mapped each FIA 
plot to this grid (cf. Kwon et al., 2018). Among these grid cells, 15,310 
contained at least one FIA subplot or micro-plot; the remaining 4,941 
grid cells did not contain any plots and were eliminated from the anal
ysis. TSR was calculated as the number of distinct tree species for each 
grid unit (Fig. 1a). The 20 × 20 km analytic unit is chosen to capture 
spatial variation of TSR and environmental factors across continental 
US. A previous study (Kwon et al. 2018) found that TSR saturation oc
curs at around 20 FIA plots, with the FIA sampling intensity being one 
plot per 6000 acres (24.3 km2) of forest, there are 17–18 FIA plots per 
20 km × 20 km of forested area. 

The total number of tree species from FIA samples in the continental 
United States is 390. Across the grid, TSR ranges between 1 and 60, with 
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a median of 12. TSR varies considerably across the U.S., and the dis
tribution is bimodal and positively skewed (Fig. 1b). In general, higher 
TSR values are in the central and southeast U.S. and lower values are 
located in the west. 

2.3. Environmental covariates 

Twenty environmental covariates identified in prior TSR studies (Fan 
and Waring, 2009; Wang et al., 2011; Kwon et al., 2018; Kwon et al., 
2019) were chosen as predictor variables. To remain consistent with 

recent studies predicting TSR using FIA data, we grouped these variables 
into seven categories following Kwon et al. (2018) (Table S1). The soil 
hydrological group (SHG) variable is the only categorical variable and is 
converted to continuous via one-hot encoding. All predictor variables 
are standardized to [0,1]. For additional details on the data sources of 
the covariates, readers are directed to supporting document S1. 

3. Methods 

Upon the construction of environmental covariates and TSR variable, 

Fig. 1. (a) Tree species richness (TSR) calculated from USDA Forest Inventory and Analysis (FIA) database aggregated to a 20 km by 20 km grid system for the 
continental United States (lower 48 states), (b) TSR frequency distribution and kernel density estimate (KDE) point observations. 

Fig. 2. Methodology flowchart.  
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we develop four types of models for TSR prediction: a generalized linear 
model (GLM), random forest (RF), and two artificial neural network 
(ANN) models – a generalized regression neural network (GRNN) and a 
feedforward neural network (FFNN) (Fig. 2). First, we develop a GLM 
model using the entire dataset (15,310 grid cells with 20 covariates) and 
examine the influence of each predictor variable on TSR. Second, we 
develop the RF, GRNN and FFNN models using training and validation 
sets. For the RF and two ANNs, the dataset is randomly split into three 
folds: 1) 80% of the cells are used to train the models, 2) 10% of the cells 
are used for validation to provide an unbiased evaluation of a model fit 
on the training dataset while tuning model architecture and hyper
parameters if present, 3) 10% of the cells are used for testing to provide 
an unbiased evaluation of a final model fit after parameter tuning. To 
evaluate model performance, we compare fit metrics of the four models 
computed on the testing dataset and geographic patterns of predicted 
TSR in different regions across the United States. Lastly, we calculate a 
mean SHAP value for each environmental covariate in the RF model to 
rank variable importance for predicting TSR. Details of each model and 
the SHAP analysis are provided below. See Fig. 2 for the complete 
methodology flowchart and reproducible codes are available at 
https://github.com/lydiabrugere/tsrmodel. 

3.1. Model development 

The four models differ in terms of their characteristic features 
(Table 1). This section provides model specifications such as architec
tures and hyperparameters of trained models. 

3.1.1. Generalized linear model (GLM) 
The GLM is a baseline model with a logarithmic link function and 

negative binomial residuals. As species richness values are counts, 
appropriate statistical families for the error distribution are the poisson 
or negative binomial distribution. To choose an appropriate model 
family, we run GLM with a log link function and poisson-distributed 
residuals for TSR based on all 20 environmental covariates. Since the 
variance and mean of residual TSR were unequal, a negative binomial 
error distribution with a log-link function was chosen for the baseline 
GLM. To assess the explanatory power of each predictor variable, we 
report standardized regression coefficients of each predictor. GLM has a 
fixed architecture with no optimization method, thus no model training 
is done (Table 1). The model is developed using the python package 
statsmodels (Seabold and Perktold 2010). 

3.1.2. Random forest (RF) 
RF offers more flexibility than GLM but is more complex to develop 

(Table 1). Several hyperparameters in RF models can be trained for 
model optimization, such as the number of decision trees. Sensitivity 
tests have been carried out in previous studies to determine the optimal 
values for these hyperparameters in RF models. Liaw and Wiener (2001) 
recommend using the number of predictors divided by three as the value 

for the number of variables used at each split for regression. However, it 
is often feasible to programmatically train for optimal values in a 
modeled system. We trained the following hyperparameters with 10- 
fold cross-validation (final trained specifications are reported in paren
thesis): 1) number of trees (200), 2) maximum depth of the tree (68), 3) 
minimum number of samples required to split an internal node (10), 4) 
minimum number of samples required to be at a leaf node (5), and 5) 
number of features that can be searched at each split (4). We imple
mented the RF model using the python package sklearn (Pedregosa et al., 
2011). 

3.1.3. Generalized regression neural network (GRNN) 
GRNN is a single-pass ANN consisting of a fixed architecture of four 

layers: input, pattern, summation, and output layers (Specht, 1991). 
GRNN is a probabilistic neural network, and the additional knowledge 
needed to fit a GRNN model is relatively small (Specht, 1991). The input 
layer fully connects the raw input to the pattern layer, of which the 
function is a Radial Basis Function, typically the Gaussian kernel func
tion. The width of Radial Basis Function, also known as the spread 
constant σ, is the only unknown parameter in GRNN models. The 
training of a GRNN model is essentially to determine the optimum value 
of σ. In general, if the input feature values are high, σ is high, and vice 
versa. GRNN is sensitive for cases when input feature values are of 
various ranges, which is the case with the variables being used to predict 
TSR here. Thus, we normalized the input data [0,1] and tuned the value 
for σ to [0.05, 1] with a step of 0.005, and evaluated the performance of 
σ based on cross-validated mean absolute error value on the validation 
dataset. The optimal value of the spread constant σ was 0.115 from the 
best performing GRNN model. GRNN is implemented using the python 
package neupy (Shevchuk, 2015). 

3.1.4. Feedforward artificial neural network (FFNN) 
FFNN is one of the most common ANNs (Lek et al., 1996). FFNN is 

typically best suited for tabular data and is a popular choice for 
regression tasks (Table 1). FFNN consists of at least three layers: an input 
layer accepting raw data, one or more hidden layers used for trans
formations, and an output layer for prediction. In FFNN models, per
formance is highly influenced by the architecture and hyperparameters 
(more options compared to GRNN), and training relies heavily on the 
data and modeled system itself. To obtain the best performing FFNN 
model, we trained the following hyperparameters and selected optimal 
values based on TSR prediction performance on the validation dataset: 
(1) number of hidden layers (1–5), (2) number of neurons in each layer 
(256, 512 or 1024), (3) dropout rate (0–1), i.e., a regularization tech
nique to avoid ANNs overfitting (Srivastava, et al., 2014) (4) optimizer 
(‘adam’, ‘sgd’ or ‘rmsprop’), and (5) batch size (128, 256 or 512). A 
ReLU transfer function (Agarap, 2018) is used for all hidden and output 
layers to enable the network to learn nonlinear relationships with 
computational efficiency. The versatile and computationally efficient 
‘adam’ optimizer (Kingma and Ba, 2015) was chosen to train the 

Table 1 
Comparison of model features (GLM: Generalized Linear Model; RF: Random Forest; GRNN: Generalized Regression Neural Network; FFNN: Feedforward Neural 
Network).  

Features GLM RF GRNN FFNN 

Data Types Tabular Tabular Tabular, Image, Audio Tabular, Image, Audio 
Number of Data Points Low Moderate Low High 
Constraints on Data Structure High Low Moderate Low 
Prediction Task Regression Regression or Classification Regression Regression or Classification 
Implementation Complexity Low Moderate Low High 
Architecture to Tune No Yes No Yes 
Number of Tuning Parameters/Hyperparameters Low Moderate Low High 
Interpretability High Moderate Low Low 
Training Time Low Moderate Low High 
Optimization Method No Yes No Yes 
Predictive Accuracy Low High High High  
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network. The model was trained for 1,000 epochs on the training 
dataset, and the training batch size was 128. The final, trained FFNN 
model consisted of three hidden layers: the input layer and the third 
hidden layer had 1,024 neurons, and the first and second hidden layers 
had 512 neurons. Dropout rates for the three hidden layers were 0.46, 
0.50 and 0.59 respectively. FFNN was implemented using the python 
packages Keras (Chollet et al., 2015) and Tensorflow (Abadi et al., 2015), 
and hyperparameter tuning was conducted using hyperopt (Bergstra 
et al., 2015). 

3.2. Model evaluation 

Prediction accuracy for all models is assessed through model fit 
metrics including the coefficient of determination (R2) and mean abso
lute error (MAE). We also assess residual spatial autocorrelation to un
derstand its impact on the model reliability, and this is accomplished in 
two steps. First, for each grid, the standardized Pearson residual is 
calculated as its raw residual divided by the standard error of all re
siduals. Second, residuals for all 15,310 grids are evaluated using Mor
an’s I. In addition, TSR prediction accuracy is assessed using a non- 
parametric Wilcoxon signed-rank test, in which TSR predictions made 
by all four models are compared with FIA-based TSR observations paired 
at the grid level. This test is done as TSR data are not normally 
distributed. The null hypothesis is that the median difference of TSR 
between predictions and FIA observations of matched grids is zero. 

3.3. Feature importance 

Shapley Additive exPlanations (SHAP, Lundberg and Lee, 2017) is a 
state-of-the-art IML method based on the concept of Shapley values from 
cooperative game theory (Shapley, 1951). SHAP has been benchmark 
tested in machine learning models as a more unified feature attribution 
method in terms of model consistency and accuracy compared to other 
widely used approaches such as permutation feature importance and 
Gini importance (a.k.a. embedded feature importance in random forest) 
(Lundberg and Lee, 2017). SHAP values are calculated as the average 
difference between the predicted value and a baseline value. The ab
solute value of SHAP is a measure of how much impact a model has on 
predicting TSR; the higher the SHAP value, the more impact. The sign of 
the SHAP value indicates which direction a predictor drives TSR. 

SHAP has been widely applied to different fields since its initial 
implementation (Linardatos et al., 2021). As a model agnostic approach, 
SHAP can practically explain any kind of machine learning model, but 
the computational complexity grows exponentially with model 
complexity. It is less computationally expensive to explain an RF model 
than a deep neural network model. A general rule when implementing 
SHAP is to explain a pre-trained model with good performance, i.e., low 
bias and low variance. Lundberg and Lee (2017) demonstrated the ac
curacy and consistency of SHAP implementation of tree-based models. 
For these reasons, we apply SHAP to explain how our trained RF model 
uses environmental covariates to make TSR predictions and compare the 
relative contribution of each environmental covariate to TSR. We also 
report the standardized regression coefficients from the GLM model for 
comparison of feature importance. 

4. Results 

4.1. Modeling results 

Of the four models tested, the GLM model has the lowest testing R2 

(0.739) and highest MAE (4.713). The GLM also has residual Moran’s I 
value (0.445) three to four times higher than all other models (Table 2). 
Correspondingly, the predicted median TSR value from the GLM for the 
testing set (13.69) was higher than the true median (12) and higher than 
the predictions from any other model (Table 2). The GLM does not 
require model training and therefore is not included in training-based 
comparisons. 

The three remaining models all achieved testing R2 higher than the 
GLM. Each of these models also permit the calculation of R2 for the 
training set. The RF model showed the highest R2 (0.955) and lowest 
MAE (1.931) on the training dataset and the second highest R2 (0.903) 
and MAE (2.904) on the test dataset (Table 2). The RF model also ach
ieved the lowest Moran’s I residual (0.083) (Table 2), and its predicted 
median TSR value (12.59) was the second closest to the true median 
(12). The GRNN model achieved the second highest R2 (0.932) and 
second lowest MAE (2.195) in the training dataset but the lowest R2 

(0.886) and highest MAE (3.142) after GLM in the test dataset (Table 2). 
The GRNN model also attained the second lowest Moran’s I residual 
(0.134), and the predicted median TSR value (12.72) was higher than 
the true value (12) (Table 2). The FFNN model showed the lowest R2 

(0.917) and highest MAE (2.505) in the training dataset, whereas it 
achieved the highest R2 (0.907) and lowest MAE (2.851) in the test 
dataset. The FFNN model obtained the second lowest residual Moran’s I 
(0.124). The predicted median value of TSR was 12.29 in the FFNN 
model, and this was the only model that achieved a not significantly 
different median TSR value compared to the observed median (Table 2). 
Collectively, these results suggest that the RF model outperformed the 
GLM and the two neural networks for predicting TSR. 

4.2. Feature importance 

We examined which features were most important for predicting TSR 
across the United States. First, as a baseline for comparisons with the 
widespread use of GLMs in prior studies, we present feature importance 
from our fitted GLM. From the GLM, we used the estimated standardized 
regression coefficients to identify forest area, mean annual precipitation, 
range of mean annual temperature, annual range of temperature, and 
altitude as the five most important predictors of TSR. Except for altitude, 
all of these predictors positively influenced TSR (Table 3). 

Second, we identified the importance of features in our best fitting 
RF model using the SHAP method. The SHAP summary plot (Fig. 3) 
displays the relative importance of the 20 environmental covariates 
included in the RF model in descending order by their absolute mean 
SHAP values over the entire gridded dataset. This analysis reveals that 
the five most important variables for predicting TSR are (in descending 
order): aridity index, forest area, altitude, mean precipitation of the 
driest quarter, and mean annual temperature. The vertical dispersion for 
each predictor in Fig. 3 represents a mixed effect with other predictor 
variables on TSR. If a predictor had no interaction with another 

Table 2 
Model performance comparisons between the Generalized Linear Model (GLM), random forest (RF), generalized regression neural network (GRNN) and feedforward 
neural network (FFNN).  

Model Train Testing Residual Moran’s I Z-score of Moran’s I Continental United States (Median ¼ 12.0, N ¼ 15310) 

MAE R2 MAE R2 Median W* P-value (two-tailed) 

GLM  –  –  4.713  0.739  0.445  121.482***  13.69 55,122,841  0.006 
RF  1.931  0.955  2.904  0.903  0.083  18.651***  12.59 57,574,340  0.060 
GRNN  2.195  0.932  3.142  0.886  0.134  29.988***  12.72 57,483,148  0.040 
FFNN  2.505  0.917  2.851  0.907  0.124  27.779***  12.29 57,211,620  0.903 
Significance level: ***: p < 0.001; W* is the sum of the ranks of the differences (positive)  
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predictor, the plot for that predictor would be flat. Some level of inter
action with other variables was observed for all covariates in Fig. 3. 
Overall, a higher aridity index (AI, i.e., greater humidity) and larger 
forest area (FA) were found to drive higher TSR, while a drier climate 
and lower forest area was found to drive lower TSR. Similarly, mean 
precipitation of the driest quarter (MPDQ) and mean annual tempera
ture (MAT) were also found to have a positive relationship with TSR. For 
altitude (ALT), the impact on TSR was mixed, but higher altitude values 
(red dots in Fig. 3) in some grids had a negative impact on TSR. 

We next used the SHAP measure to examine how the identified 
important predictors impact TSR prediction and their interactions with 

other predictors (Fig. 4). The absolute SHAP value means the magnitude 
of impact a predictor has on TSR, and a positive SHAP value means a 
positive impact on TSR while a negative value means a negative impact. 
We found that the three covariates representing precipitation avail
ability all have a non-linear relationship with TSR (Fig. 4a, 4d, 4f). In 
arid regions, which are widely represented across the western United 
States (Figures S2.1, S2.2, S2.3, Table S2.1), precipitation availability 
had a negative impact on the predicted TSR. As aridity (AI) and mean 
annual precipitation (MAP) increase, the magnitudes of their impacts 
decrease in a near-linear fashion. Both AI and MAP have the strongest 
negative impact on TSR when they are lowest. 

Table 3 
GLM-based relations between the 20 predictor variables and tree species richness (bold indicates covariates with the highest standardized coefficients).  

Category Abbreviation Variable Standardized Coefficient Standard Error 

Intercept 2.448 0.003** 
Areal factors FA Forest Area (km2)  0.394  0.013*** 

WA Water Area (km2)  0.020  0.012 
Climatic seasonality ART Annual Range of Temperature  0.285  0.083*** 

PSN Precipitation Seasonality  −0.016  0.021 
TSN Temperature Seasonality  0.008  0.098 

Energy availability MAT Mean Annual Temperature (oC)  0.045  0.075 
MTWQ Mean Temperature of Warmest Quarter (oC)  −0.023  0.062 
PET Potential Evapotranspiration (mm)  −0.117  −1.738 

Energy-water dynamic EWD PET-PET2 + MAP  0.239  0.051*** 
Habitat heterogeneity RA Range of Altitude  −0.204  0.042*** 

RMAP Range of Mean Annual Precipitation  −0.016  0.016 
RMAT Range of Mean Annual Temperature  0.337  0.036*** 

Limiting climatic factors MFDF Mean Frost Day Frequency  −0.095  0.035** 
MPDQ Mean Precipitation of Driest Quarter  0.236  0.034*** 
MTCQ Mean Temperature of Coldest Quarter  0.028  0.089 
ALT Altitude  ¡0.275  0.033*** 
SHG Soil Hydrological Group  −0.013  0.009 

Water availability AET Annual Evapotranspiration (mm)  −0.003  0.011 
AI Aridity Index  −0.238  0.034*** 
MAP Mean Annual Precipitation  0.349  0.042*** 

Null Deviance 15,289 Residual Deviance (% explained)  3142 (79.45) 
Significance level: ***: p < 0.001, **: p < 0.01, *: p < 0.05  

Fig. 3. SHapley Additive exPlanations (SHAP) summary plot from the best fitting RF model of the relative importance of 20 environmental covariates in the 
prediction of tree species richness (TSR) (The horizontal location on x-axis indicates whether an observation of a predictor has a negative/positive and high/low 
impact on the prediction of TSR; Vertical dispersion for each variable represents its interaction effects with other features). Refer to Table 1 in S1 for the full name of 
each predictor variable. 
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In more humid regimes, such as the eastern U.S., precipitation 
availability contributes positively to predicted TSR. As the AI, MPDQ, 
and MAP continue to increase (i.e., as the climate becomes more humid), 
the magnitude of positive impacts on TSR becomes greater until the 
effect is compounded by interactions with other covariates (Fig. 4a, 4d, 
4f). For instance, when the aridity index is greater than 0.9 (e.g., in the 
southeast U.S.), it interacts strongly with forest area. The greater the 
forest area, the stronger the impact of the aridity index on TSR until the 
impact becomes stable as forest area approaches the maximum cell value 
of 400 km2 (Fig. 4a). In humid areas, MPDQ interacts with the annual 
range of temperature (ART) (Fig. 4d), and MAP interacts with Energy- 
Water Dynamic (expressed as PET-PET2 + MAP) (Fig. 4f). Both in
teractions are non-linear and complex with no patterns shown. This 
mixed effect of environmental energy and precipitation on TSR agrees 
with previously proposed relationships between TSR and climate for 
angiosperms (Francis and Currie, 2003). 

Forest area (FA) was the second strongest predictor of TSR. The 
impact of forest area on TSR (Fig. 4b) resembles the species-area rela
tionship identified in Preston (1962). The continental United States has 
very high forest area variability ranging from 0 to 395 km2 per grid cell 
(400 km2) with a standard deviation of 107 km2 (S2 Fig. 4). Areas with 
low forest area were predicted to have low TSR in all four models; a 
similar relationship is observable in Little’s range maps (e.g., Montoya 
et al., 2007). As forest area increases, the impact of area on TSR levels 
off, and forest area interacts strongly with MPDQ. Overall, the higher the 
MPDQ, the greater the mixed impact of forest area and MPDQ on TSR in 
highly forested areas. 

Altitude was the third strongest predictor of TSR, and it impacts TSR 
in a non-linear manner and interacts strongly with the range of mean 
annual precipitation (RMAP) when altitude is relatively high (Fig. 4c). 
In lowlands (i.e., altitude < 500 m, most of Eastern US), the impact of 
altitude on TSR varies considerably and ranges from a strong negative to 

Fig. 4. SHapley Additive exPlanations (SHAP) values for the six most important environmental covariates in the prediction of tree species richness (TSR) (the color is 
denoted by each predictor’s most interactive predictor -high (red) or low (blue); the vertical dispersion in each plot shows that the same value for the predictor can 
have a different impact on the TSR for different grids. This means there are non-linear interaction effects in the model between the environmental covariate and other 
predictors. Histogram of each covariate is shown in the grey plots along the x-axis. 
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a strong positive. This finding indicates a compounding impact from 
other environmental covariables on TSR. As altitude increases, its 
average impact on TSR becomes marginal but stays largely negative, and 
the range of MAP (RMAP) starts to mediate the negative impact of 

altitude on TSR. The relationship between altitude and TSR found in this 
study is consistent with prior studies that vascular plant species richness 
does not maximize at a certain altitudinal zone in the Himalaya (Vetaas 
and Grytnes, 2002). 

Fig. 5. Generalized Linear Model (GLM) prediction (a), GLM residuals (b), Random Forest prediction (c), Random Forest residuals (d), Generalized regression neural 
network (GRNN) prediction I, GRNN residuals (f), feedforward neural network (FFNN) prediction (g), FFNN residuals (h). The same map symbology is applied to the 
prediction maps and residual maps respectively. 
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Mean annual temperature (MAT) is the only temperature-related 
covariate determined to be of high importance, and it has a non-linear 
impact on TSR (Fig. 4e). The annual range of temperature (ART) was 
the 3rd strongest predictor in Wang et al. (2011) and was the eighth 
important predictor in this analysis. When MAT is small (<5◦C), it has a 
mostly negative impact on TSR, and the impact is stronger when MPDQ 
is greater (Fig. 4e). This indicates that environmental energy plays a 
limiting factor in areas where precipitation is relatively abundant. As 
MAT becomes larger, its impact on TSR becomes highly interactive with 
MPDQ and other covariates highlighting the energy-water dynamic 
impact on TSR (Francis and Currie, 2003). In a cross-scale study, Bel
maker and Jetz (2010) did not observe Temperature/Energy impact on 
birds, mammals, and amphibians’ richness at 20 km resolution, but this 
study confirms energy-water dynamics on tree species at the 20-km 
scale. 

5. Discussion 

This study examined the feasibility of using several machine learning 
algorithms to predict TSR in the continental U.S., and compared the 
performance of those algorithms to widely used GLMs. In this section, 
we discuss model performance, the ecological meaning of important 
predictor variables and their interactions with TSR in the continental U. 
S., and other modeling approaches for predicting species richness. 

5.1. Model performance 

Overall, all the machine learning models achieved R2 greater than 
0.9 on the training dataset and R2 ≅ 0.9 on the test dataset, which 
suggests promising results for their use in predicting TSR. As far as we 
are aware, these accuracy levels have only been exceeded by one pre
vious study predicting the species richness of angiosperms at a regional 
scale (Qian et al., 2015). Despite the presence of residual spatial auto
correlation (rSAC) in the RF and ANNs, their magnitudes were much 
smaller compared to the GLM, and they were more spatially dispersed 
(Fig. 5b, 4d, 4f, 4 h). Neither the RF nor ANNs were free from spatial 
autocorrelation of errors, but lower rSAC observed in both methods 
implies they predicted more reliable TSR spatial patterns compared to 
the GLM. This observed lower rSAC in RF and ANNs is presumably 
connected to the non-parametric nature of the machine learning 
methods, whereas GLM is sensitive to the requirement that observations 
are independent and identically distributed. Comparing within-model 
prediction accuracy, FFNN exhibited the smallest performance differ
ences between training and test datasets, indicating that it potentially 
makes more accurate predictions on an independent, unseen dataset 
than RF and GRNN as large generalization errors of a model (i.e., high 
variance) typically indicate the model may overfit the training dataset. 
Thus, the FFNN model is recommended if transfer learning is applied to 
TSR prediction under future climatic scenarios or predictions of species 
richness of other organisms. However, the RF model performed similarly 
well with the added benefit of allowing a derivation of driver impor
tance through the SHAP function with less computational intensity than 
the deep learning neural network models. 

The spatial patterns of TSR in the continental United States predicted 
by the ANN and RF models (Fig. 5c, 5e and 5g) were very similar to the 
gridded FIA observations but more accurate than the GLM model 
(Fig. 5a) and more accurate than the GLM prediction by Wang et al 
(2011). For instance, our ANN and RF models predicted low and 
spatially heterogeneous patterns of TSR in the western U.S., while the 
GLM predicted patches of high TSR in the northwest (see high residuals 
in Fig. 5b); Wang et al. (2011) over-predicted TSR in much of the 
western United States. In the eastern U.S., both the results by Wang et al. 
(2011) and the GLM developed here show relatively high residuals. 
Overall, the RF and ANN models better captured the complex hetero
geneous spatial patterns of TSR in the United States compared to the 
GLM model. 

5.2. Modeled drivers of tree species richness 

Both the GLM results and SHAP analysis of the RF indicate that forest 
area, precipitation, altitude, and temperature have the strongest impact 
on the geographic patterns of TSR in the continental United States. This 
finding aligns with previous studies at similar spatial resolutions (Wang 
et al., 2011; Kwon et al., 2018). While coefficients from the GLM model 
can indicate how TSR will change when the value of an environmental 
covariate changes, alone, they are insufficient for measuring the overall 
importance of a variable. This is because the value of GLM coefficients 
depends on the scale of the input predictor, and the scales of the vari
ables used in this study vary considerably. In addition, the GLM model 
only reports a mean coefficient for each predictor. In comparison, the 
SHAP analysis of the RF model provides detailed explanations of how 
each predictor impacts a final predicted value as well as the interactions 
with other predictors. 

According to the SHAP analysis, three precipitation-related cova
riates, aridity index (AI), mean annual precipitation (MPDQ), and mean 
annual precipitation (MAP) were among the top six predictors of TSR, 
with AI being the top predictor. This finding aligns with prior studies of 
TSR, which have found MAP to be a strong predictor of TSR in temperate 
ecoregions around the globe (Wang et al., 2011), and MPDQ to be a 
strong predictor of TSR in the eastern United States (Kwon et al., 2018). 
The fact that the impact of MPDQ on TSR was nearly the same in arid 
regions indicates that for western forests, decreasing precipitation dur
ing already dry seasons is not associated with intensifying negative TSR. 
This is concordant with the complex impacts of increasing drought on 
forest biodiversity in the United States (Clark et al., 2016) and suggests 
that monitoring should focus on compounding effects of climate change 
in the western United States. In addition, the non-linear and complex 
interactions between environmental energy variables, Energy-Water 
Dynamic (expressed as PET-PET2 + MAP), and precipitation cova
riates, MAP and MPDQ highlight the importance of precipitation 
availability for TSR in the U.S and reveal the mixed impact of 
precipitation-related physiological stress and environmental energy. 
SHAP also uncovers that forest area has the strongest negative impact on 
TSR when forests are very small and this aligns with observational data 
in Little’s range maps (e.g., Montoya et al., 2007) and emphases the 
importance of forest conservation efforts in low forested regions. Lastly 
SHAP reveals both altitude and temperature-related predictors have an 
important but more complex impact on TSR, which are compounded by 
other environmental covariates, such as precipitation and energy-water 
dynamics. 

5.3. Capabilities for machine learning models to predict species richness 

The results confirm that decision tree-based machine learning 
models, such as RF, detected more regional and subtle variations of TSR 
compared to GLM (França and Cabral, 2015; Li et al., 2017). RF has 
previously been criticized for producing lower prediction accuracy than 
GLM due to its inability to capture the non-symmetric error distribution 
of species richness (Lopatin et al., 2016). However, our results suggest 
that RF is a robust model for capturing TSR error distribution in the 
continental United States. This difference in findings may result from the 
fact that Lopatin et al. (2016) implemented a fixed RF model structure 
instead of training an RF model as suggested by machine learning ap
proaches (Bzdok et al., 2017). Additionally, to our knowledge, this study 
is the first application of ANNs to TSR prediction using environmental 
covariates. The prediction accuracy exceeded other ANN applications of 
species richness estimation (Rocha et al., 2017; Franceschini et al., 
2018) and suggest that FFNN is a valid model for TSR prediction. 

Other machine learning approaches, such as a hybrid RF and kriging 
model (Li et al., 2017) have shown improved prediction accuracy of 
sponge species richness. We tested hybrid models for RF and FFNN with 
ordinary kriging to transform the TSR residuals, but we did not observe 
significant performance improvements: the hybrid RF model increased 
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R2 marginally from 0.903 to 0.905 and lowed MAE from 2.90 to 2.85, 
while the R2 and MAE of the hybrid FFNN models did not change (see 
Figure S3.1). The findings here suggest that this joint approach may 
depend on the chosen model, but more thorough integration of ANNs 
and RF and geostatistical tools are needed to fully assess the potential for 
species richness modeling. With the ease of access to cloud computing, 
state-of-the-art modeling software, and open access environmental and 
species databases, implementing machine learning algorithms for spe
cies richness modeling on large datasets is now feasible. For future 
studies, more advanced machine learning models, such as model aver
aging and deep learning, present an interesting development opportu
nity to improve accuracy. 

6. Conclusions 

Three machine learning models, RF and two ANN models (GRNN and 
FFNN), were employed to predict spatial patterns of TSR in the conti
nental United States using plot-level tree species occurrence data from 
the FIA and 20 twenty environmental covariates. Results showed that all 
three machine learning models were powerful in predicting TSR with 
greater accuracy, less clustered residuals, and more reliable geographic 
patterns compared to the commonly used GLM. The FFNN model 
showed the highest prediction accuracy, the least generalization error, 
and a median TSR that was statistically similar to the observed TSR. 
However, the RF model had similar capabilities but with the added value 
that SHAP can be applied to explain the results with less computational 
intensity than the deep learning neural network models. The results of 
these models demonstrated that these machine learning models can be 
successfully applied to establish an accurate and reliable TSR prediction 
model. The modeling approach established in this study can potentially 
be transferred to the prediction of TSR using future climate scenarios or 
prediction of other species richness. SHAP analysis of the RF model 
revealed that the gridded TSR is best predicted by the aridity index, 
forest area, altitude, mean precipitation of the driest quarter, mean 
annual temperature, and mean annual precipitation. These covariates 
also show a non-linear relationship with TSR and interaction effects with 
other predictors. The findings suggest the importance of conservation 
efforts in preserving forest areas for tree species and further studying 
precipitation-related interacting factors to understand TSR patterns in 
the continental United States. 
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