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Climate change induced heat stress has increased coral bleaching events
worldwide. Differentially regulated immune genes are one of the primary
responses to heat stress suggesting that immune activation is critical.
However, the cellular immune mechanisms of coral bleaching is currently
unknown, and it is still not known if the immune response documented during
heat stress is a consequence of bleaching or is directly caused by the heat
stress itself. To address this question, we have used two model system sea
anemones (Order: Actiniaria): Exaiptasia diaphana and Nematostella vectensis.
E. diaphana is an established sea anemone model for algal symbiont
interaction, while N. vectensis is an established sea anemone model that
lacks the algal symbiont. Here, we examined the effect of increased
temperature on phagocytic activity, as an indication of immune function. Our
data shows that immune cell activity increases during heat stress, while small
molecule pinocytosis remains unaffected. We observed an increase in cellular
production of reactive oxygen species with increasing temperatures. We also
found that the cellular immune activity was not affected by the presence of the
Symbiodiniaceae. Our results suggest that the immune activity observed in
heat-stress induced bleaching in corals is a fundamental and basic response
independent of the bleaching effect. These results establish a foundation for
improving our understanding of hexacorallian immune cell biology, and its
potential role in coral bleaching.
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Introduction

Climate change induced heat stress is detrimental to
hexacorallian health and is the primary cause of coral reef
death throughout the world (1-7). The rise of ocean
temperatures has led to the increasing frequency of coral
bleaching events, a phenomenon in which endosymbiotic
dinoflagellates (family: Symbiodiniaceae) are expelled from the
coral host (1, 8). The Symbiodiniaceae reside within coral
gastrodermal cells, and are responsible for providing the
majority of the coral’s food source (9). During heat stress an
increase in reactive oxygen species (ROS) is produced by
Symbiodiniaceae, which leads to the damage of both coral host
tissues and Symbiodiniaceae membranes (10-15). However, it
has also been suggested that Symbiodiniaceae expulsion is
unrelated to endosymbiotic ROS (16-19), and may be a result
of shifting dynamics within the coral holobiont (20). Regardless,
the Symbiodiniaceae and coral host then dissociate via several
different methods, including host cell apoptosis and host cell-
initiated exocytosis of Symbiodiniaceae, among other
documented mechanisms (21-27).

Heat stress-induced coral bleaching affects the expression of
innate immune genes within the coral (28-30). During early heat
stress, the coral host upregulates transcription factors related to
innate immune pathways such as ELK-3, NF-kB, and Kruppel-
like factors (29, 30). Additionally, many potential immune-like
factors, such as TRAF, TNFR, and NOD-like receptors, are
upregulated during heat stress (28, 31, 32). Previous research
on the effects of increased temperatures has focused on the
dysbiosis of the relationship of the Symbiodiniaceae with the
hexacorallian hosts and the mechanisms causing bleaching (1, 9,
15, 33-36). However, the functional immune responses
independent of the symbiosis with Symbiodiniaceae during
heat stress have not yet been teased apart. Given this previous
body of research, we hypothesize that the coral immune
activation observed in heat stress-induced bleaching is due to a
heat stress-specific immune response in Hexacorallia. Further,
we hypothesize that hexacorallians without Symbiodiniaceae will
still activate their immune system in response to heat stress.

To experimentally test our hypothesis, we compared two
hexacorallian models, the sea anemones (Order: Actiniaria): E.
diaphana and N. vectensis. While N. vectensis lacks
Symbiodiniaceae, E. diaphana can be raised with and without
Symbiodiniaceae. Within each sea anemone population, we
performed an overnight phagocytosis assay on isolated cells to
test the cellular immune function under heat-stress, compared to
pinocytosis under heat stress (Figure 1). Previously, we
functionally characterized phagocytosis and the phagocytic
cells in both the sea anemone, N. vectensis and the stony coral,
P. damicornis (37). Specialized immune cells use phagocytosis as
the primary mechanism to engulf and degrade target particles
such as pathogens and damaged cells (38, 39). Phagocytosis is
mediated by a rapid rearrangement of the actin cytoskeleton, in
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which pseudopodia extensions engulf the target. Once engulfed,
the target will fuse with a phagolysosome for degradation (40).
On the other hand, pinocytosis is a type of endocytosis in which
cells ingest extracellular fluid and small molecules. We've
previously observed similarities in phagocytic mechanisms
between the two species (37), strengthening the establishment
of N. vectensis as a model for immune studies in Hexacorallia.

Here we show that the immune system of sea anemones is
activated under short-term heat stress. Moreover, this mechanism
is not dependent on the presence of Symbiodiniaceae.
Additionally, we show that in short-term heat stress ROS
production is carried out by the sea anemone cells regardless of
having Symbiodiniaceae. Finally, we suggest that the immune
activation in short term heat stress could be a conserved
mechanism in Hexacorallia.

Methods
Animal husbandry

N. vectensis individuals were generously provided by Prof.
Tamar Lotan from Haifa University. Animals were maintained at
the mariculture room at the Regenerative Medicine and Stem Cell
Research Center, Ben Gurion University (approved by the Israel
ministry of agriculture and university biosafety committee). All
artificial seawater (ASW) used to maintain the animals for this
study was made with Red Sea Salt (Red Sea). Both N. vectensis
and E. diaphana were fed freshly hatched Artemia 3-4 times a
week. N. vectensis was maintained at 18°C in 14 ppt ASW with a
pH ranging from 8-8.6. Symbiotic E. diaphana (harboring clade B
Symbiodiniaceae) and aposymbiotic E. diaphana (E. diaphana
lacking Symbiodiniaceae) were maintained at 22°C in 35 ppt
ASW with a pH ranging from pH 8-8.6 (41, 42). The symbiotic E.
diaphana were raised in a light/dark cycle of 12 hours, while
aposymbiotic E. diaphana were raised in 24 hours of dark. Three
days before the start of the experiments, N. vectensis and E.
diaphana were starved and isolated within plastic petri dishes.

Cell dissociation

The same cell dissociation protocol was used for both N.
vectensis and E. diaphana. Cell suspensions were produced from
a minimum of 5 animals per experiment, using mechanical
dissociations with a sterile razor blade and filtration through 100
pm and 40 pm cell strainers (37, 43, 44). A syringe plunger was used
to help facilitate filtering. The culture media used was made of L-15
supplemented with 2% heat-inactivated fetal bovine serum (FBS),
and 20 mM HEPES. It was then brought to 1.42 x PBS molarity for
N. vectensis or 3.3 x PBS for E. diaphana using calcium- and
magnesium-free 10 x PBS and supplemented with 0.05% NaNj to
reduce contamination. The entire cell dissociation process was done
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General workflow for heat stress experiments. First, cells were dissociated from one of the following models: N. vectensis, symbiotic E. diaphana
or aposymbiotic E. diaphana. The cells were exposed to one of the phagocytic challenges (S. aureus or DQ™ ovalbumin) or pinocytosis assay
(dextran), then divided into overnight incubators at different temperatures to test the response to heat stress. Following overnight incubations,
the cells were concentrated in a 96-well plate and analyzed by imaging flow cytometry and fluorescent confocal microscopy. Diagram was

created with BioRender (https://biorender.com/).

on ice to lower cell metabolism and minimize cell damage. Cells
were then washed by centrifugation at 500 x g at 4°C for 5 minutes
and resuspended in 1 ml of culture media.

After the cell dissociation, the cells were counted on an
Automated Cell Counter (TCZOTM— Bio-Rad). Then the cells
were used in either phagocytosis or pinocytosis assays. Cells of
N. vectensis and E. diaphana were plated in 96 well U-shaped
plates, with 100,000 cells/well in 200 pl of staining
culture media.

Phagocytosis and pinocytosis assays

Two types of phagocytic assays were performed overnight as
previously published (37). The first was a bacterial challenge of 15
pg/ml of inactive Staphylococcus aureus particles (pHrodo " Green
S. aureus Bioparticles' Con)ugate for Phagocytosis; Thermo Fisher
Scientific). The pHrodo conjugation to S. aureus causes green
fluorescence emission when engulfed within low-pH vesicles. In
the second assay, DQ " ovalbumin was used at 15 pg/ml
(ThermoFisher Scientific, D12053). This assay measures the
protease activity of phagocytosis. We previously modified this
established protocol for hexacorallian phagocytic cells (37). In
short, the DQTM

BODIPY dye (boron-dipyrromethene). Only upon engulfment and

ovalbumin is self-quenching and labeled with

fusion with a lysosome will it be hydrolyzed into peptides and emit a
green fluorescence (45). To measure pinocytosis, fluorescently
tagged dextran molecules, Fluorescein Isothiocyanate — Dextran,
were used at 0.65 pg/ml. Dextran is a complex sugar molecule
derived from bacteria used as an assay for pinocytosis (Fluorescein
Isothiocyanate - Dextran; molecular weight 500,000 MW; Sigma-
Aldrich). For phagocytic activity and pinocytosis assays both N.
vectensis and E. diaphana cells were incubated with the reagents
overnight. For experiments examining two temperatures pQ™
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, and Dextran
Green S. aureus

ovalbumin, pHrodoTM Green S. aureus BioparticlesT
were used. For the heat ramp assays lerodoTM

BioparticlesTM, and Dextran were used.

Flow cytometry analysis

To differentiate between cells and the phagocytosis reagents
(ie. pHrodoTM Green S. aureus Bioparticles), cells were pre-
labeled with CellTrace' " Far Red (1:1000) for 30 min.
Phagocytic activity was detected using a flow cytometer
(NovoCyte flow cytometer, Acea). pHrodoTM Green, DQTM
ovalbumin, and Fluorescein Isothiocyanate — Dextran were all
analyzed by flow cytometry using 2 488 nm laser and detected
using a 530/30 nm filter. CellTrace ™
630 nm laser and detection using 675/30 nm filter) was used to

Far Red (excitation with

detect cells (37). Data analysis was conducted using
NovoExpress software.

For two temperature comparisons at least three experiments
were performed. For heat ramp assays, each temperature was at
least in two independent experiments. In addition, ambient
temperature was used in each of the experiments for
normalization. For comparing between the effect of two
temperatures in phagocytosis and pinocytosis, statistical
analysis (Student t-test) was performed in Graphpad Prism for
Windows, version 9.4.1.

In order to compare the effect of increasing temperature on
phagocytosis and pinocytosis in N. vectensis and E. diaphana, we
normalized the percentage of phagocytosis and pinocytosis to
ambient temperature using Excel software. Next, we used Mixed
effects analysis, using the restricted maximum likelihood method
(REML), by Graphpad Prism for Windows, version 9.4.1
(Supplementary Table 1).
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Heat stress at variable temperatures

To test the effects of heat stress, cell suspensions undergoing
the above phagocytosis assay or pinocytosis assay were incubated
in ambient or elevated temperatures. For N. vectensis cells, an
ambient temperature of 18°C (46, 47) and elevated temperatures
of 21°C, 24°C, 28°C, and 34°C were used. N. vectensis has been
observed to tolerate temperatures up to 30°C, although it is
typically reared at 18°C in the laboratory (48, 49). E. diaphana
cells were kept at an ambient temperature of 22°C (50), and
elevated temperatures of 25°C, 27°C, 30°C, 32°C, or 34°C. E.
diaphana are naturally found in tropical waters and could be
reared in laboratory temperatures between 20-26°C (General
Aiptasia husbandry - Weis Lab; 51). We observed tissue
degradation at 34°C after performing a heat tolerance
experiment on the whole animal level of aposymbiotic E.
diaphana, making it our highest temperature for testing
(Figure SI).

Detection of reactive oxygen species

To test whether cells increase ROS production when
exposed to high temperature, cells were exposed to 11.2 ng/
ml of DCFDA-ROS Detection Cell-Based Assay Kit (Cayman).
Cells from N. vectensis, symbiotic E. diaphana, and
aposymbiotic E. diaphana were incubated overnight in the
variable temperatures. The next morning, following cell
counting and distribution of 50,000 cells/well in a 96 U-
shaped plate, cells were incubated for 45 minutes in the
DCFDA-ROS Detection Cell-Based Assay at ambient
temperatures. Detection of DCFDA-ROS was then measured
by flow cytometry using a 488 nm laser and detected on a 530/
30 nm filter. The signal measurement was compared to the
unstained controls. For comparing the effect of temperature on
ROS enrichment in N. vectensis and E. diaphana, we used an
unpaired t-test, using Microsoft Excel software.

Symbiodiniaceae measurement in
medium

To measure the expulsion of symbiotic Symbiodiniaceae into
the surrounding water, we incubated the symbiotic E. diaphana
overnight in 24 well plates, at 2.5 ml of 35 ppt ASW. We
incubated animals in different temperature including ambient
temperature of 22°C (50) and elevated temperatures of 25°C, 28°
C, 30°C, 32°C, or 34°C. Following overnight incubation, we
measured the far-red autofluorescence of the Symbiodiniaceae
by sampling 0.5 ml out of the 2.5 ml of the surrounding medium
using FACS analysis. For comparing the effect of temperature on
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algae expulsion in E. diaphana, we used an unpaired t-test, using
Microsoft Excel software.

Imaging flow cytometry

After the overnight incubations for both ambient and heat
stress treatments, cells were analyzed using ImageStream X
Mark II Imaging flow cytometer (Amnis, Co., Seattle, WA,
USA) with a 40x/0.75 objective. As previously done in (37)
channels representing bright-field, green channel (excitation
laser 488nm, filter band 533/55nm), and far-red channel
(excitation laser 642nm, filter band 702/85nm), were used to
record 10,000 cells for each sample. IDEAS® software was then
used to quantify the measurements of cells that were in focus,
single cells, and had a fluorescent signal.

Confocal microscopy

Cells from representative treatments were transferred into 500
uL of staining culture media, centrifuged for 5 minutes at 500 x g at
4°C, and resuspended in 50 pL of staining culture media. The
resuspended cells were transferred to 384 glass bottom imaging
plate (cell culture microplate 384 well, CLEAR®, Poly-L-lysine,
cellcoat®, Greiner bio-one). Images were acquired using a 20 x
objective on a ZEISS LSM900 confocal microscope and analyzed
using ZEISS ZEN-black software.

Immune gene identification and analysis

To identify upregulated immune genes in N. vectensis during
heat stress, we used a previously published gene expression data
set (52). This study sought to evaluate the impact of abiotic
stressors such as heat, salinity and, UV light on venom
production of distinct populations along the East coast of
North America of N. vectensis. The raw reads for stress and
control treatments from two populations, Massachusetts (MA)
and North Carolina (NC) were used in our study. Raw reads
were mapped with STAR v.2.7.5 (53) to N. vectensis gene models
and counted with Featurecounts (54). Differential expression
analysis of the two populations was performed using the DESeq2
v1.6.3 R package (55). The raw counts tables were imported into
R Studio and normalized using the median of ratios (56) with the
“estimateSizeFactors” function in DESeq2. Genes with over two-
fold changes (log2 fold change>1) and a False Discovery Rate
(FDR) cut off of FDR<0.05 were considered as significantly
differentially expressed genes.

To characterize potential immune genes among significant
differentially expressed up-regulated genes, Blastp with e value
<le-5 (57) and HMM version 3.3.2 with e value <le-5
(hmmer.org) searches were performed against a custom database
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of immune up-regulated genes in abiotic stress found in previous
studies on Anthozoa. This custom database was built with protein
sequences downloaded from the RefSeq nr database (58) from the
species Acropora digitifera, Acropora millepora, Acropora palmata,
Actinia tenebrosa, E. diaphana, N. vectensis, Orbicella faveolata,
Paramuricea clavata, P. damicornis and Stylophora pistillata for
pathways labeled with key words including: “ tumor necrosis factor
receptor”, “apoptotic”, “enzymatic”, “NF-kappa-B”, “HLF”, “nod-
like receptor” and “inflammatory”.

Results

Immune gene expression in the
N. vectensis model in stress

To test whether hexacorallians without Symbiodiniaceae
activate their immune system in response to heat stress, we
examined previously published data on gene expression in N.
vectensis under a combination of abiotic stressors, including heat
stress (52). We found similar immune gene homologs between
N. vectensis and corals that were upregulated in response to heat
stress (52; Table 1). These genes include TNF receptor-
associated factors, Caspase-8, Hepatic Leukemia Factor, and
the inflammatory marker of Kruppel-like Factors.

Phagocytic activity increases in the
N. vectensis model

To test the effects of elevated heat on the immune system
at the functional level we used two phagocytic cell assays:
pHrodo Green S. aureus bioparticles and DQ™ ovalbumin
protein, or dextran as a pinocytosis control (previously
established in 37). In N. vectensis, a significant increase in
the percentage of active phagocytic cells was detected in the
elevated temperature (28°C) in comparison to the ambient
temperature (18°C) (Student’s t-test, * = p <0.05; Figures 2A,
B). In contrast, overnight exposure with the pinocytosis

TABLE 1 Eight upregulated genes were identified in searches.

10.3389/fimmu.2022.1016097

stimulant dextran showed no significant change between the
ambient (18°C) and elevated (28°C) temperatures (Figure 2D).
For validation of N. vectensis cellular phagocytosis,
ImageStream analysis (Figures 2E, F) and confocal analysis
(Figures 2G, H) showed that the phagocytic signal is localized
within the cells.

Phagocytic activity during heat stress in
aposymbiotic and symbiotic E. diaphana
model

To further test whether the effects of heat stress on
phagocytosis were conserved in Hexacorallia harboring
Symbiodiniaceae we employed the model E. diaphana, which
is capable of living with and without Symbiodiniaceae. Similar to
N. vectensis, regardless of the presence of Symbiodiniaceae,
phagocytic cell activity was significantly higher after overnight
exposure to a moderate heat stress (30°C) compared with
ambient temperatures (22°C) (Figures 3A, B, F, G), while
pinocytosis remained unaffected (Figures 3C, H).

Immune function changes in variable
temperatures of heat stress

To test the effects of variable temperatures on immune
function we applied phagocytic and pinocytic assays to N.
vectensis, and aposymbiotic or symbiotic E. diaphana at
different elevated temperatures. N. vectensis cells had a
significant increase in their phagocytic activity of pHrodoTM
Green S. aureus Bioparticles (Figure 4A). Response peaked at 21°
C and incrementally declined while still being above ambient
temperature. In contrast, there was no significant change in the
pinocytic activity in variable temperatures compared to 18°C
(Figure 4C). In E. diaphana, similar phagocytic responses were
observed in both aposymbiotic and symbiotic individuals. The

Gene Model Annotation Log2Fold Change*
NVE10794 TNF receptor associated factor 2.64
NVE12824 TNF receptor associated factor 3.24
NVE1476 TNF receptor associated factor 1.81
NVE26090 Caspases 2.12
NVE9681 Caspases 2.55
NVE7846 Inflammatory Kruppel-like factor 1.1
NVE8107 Hepatic leukemia factor 1.88
NVE5408 Hepatic leukemia factor 5.22

Columns include: Gene model=identifier for upregulated model gene in Nematostella vectensis. Annotation=protein domains found in genes identified. Log2Fold Change= log2 fold change

value of gene identified when compared to control treatment. * The log2 fold change values in the MA population were similar.
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FIGURE 2

Phagocytic activity increases in heat-stress conditions, while pinocytosis remains unchanged in N. vectensis. (A) N. vectensis imaged by ZEISS
Axiocam 208 Color Microscope Camera. (B, C) Phagocytosis of S. aureus bioparticles and DQ ovalbumin, respectively, under heat stress
conditions of 28°C, increased significantly from the ambient treatment (18°C). (D) Pinocytosis of dextran under heat stress did not significantly
change between ambient and heat stress conditions. (E) ImageStream analysis of cells that have engulfed S. aureus particles. The green
fluorescence is emitted from the S. aureus particles, but only when in low-pH vesicles; red fluorescence is from the CellTrace cell stain. (F)

ImageStream analysis of cells that have engulfed DQ ovalbumin. The green fluorescence is emitted from the DQ ovalbumin conjugation with
BODIPY, but only once hydrolysis into single peptides has occurred. A Student’'s T-Test analysis was performed on the phagocytic and pinocytic
assays between the ambient and elevated temperatures. (G) Confocal images of N. vectensis cells challenged with inactive pHrodoTM S. aureus
bioparticles (blue arrows), with cells having internalized pH-activated bioparticles in green (yellow arrow). (H) Confocal images of N. vectensis
cells challenged with DQ ovalbumin, upon protease activity DQ ovalbumin fluoresces in green. A Student’s t-test analysis was performed on the
phagocytosis and the pinocytosis assays comparing the ambient and elevated temperatures. P-value legend: ns, Not significant, *: p <0.05, ***:

p < 0.001. Scale bar represents standard deviation (SD)

greatest relative change compared to the ambient treatment
occurred at 30°C and declined afterwards, with 34°C reaching
almost to the level of ambient temperature at 22°C. As in N.
vectensis, the relative pinocytic activity did not significantly
change across varying degrees of heat stress (Figures 4B, C).
Interestingly, when overlaying the relative phagocytic activity of
symbiotic and aposymbiotic E. diaphana there is no difference
between the two reactions, suggesting that Symbiodiniaceae
doesn’t affect the immune regulation in heat.
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Elevated temperatures increase cellular
ROS production as well as algae
expulsion

To test whether heat stress leads to an increase in ROS
production independent of the symbiotic Symbiodiniaceae, we
used DCFDA markers for intracellular ROS in cells from N.
vectensis, symbiotic, and aposymbiotic E. diaphana, that were
exposed to a range of temperatures. Intracellular ROS was
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FIGURE 3

Phagocytic activity increases in heat stress conditions, while pinocytosis remains unchanged in both aposymbiotic and symbiotic E. diaphana.
(A) Aposymbiotic E. diaphana imaged by ZEISS Axiocam 208 Color Microscope Camera. (B, C) Phagocytic cell activity in aposymbiotic E.
diaphana of S. aureus particles (B) and DQ ovalbumin (C) is significantly higher under heat stress conditions 30°C, compared to ambient
conditions of 22°C. (D) Pinocytosis of dextran in aposymbiotic E. diaphana under normal and heat stress conditions are not significantly different
between ambient (22°C) and thermal stress conditions (30°C). (E, F) Phagocytosis images by Image stream analysis for aposymbiotic E. diaphana
of S. aureus particles (E) and DQ ovalbumin (F). (G) Symbiotic E. diaphana imaged by ZEISS Axiocam 208 Color Microscope Camera. (H, )
Phagocytic activity in symbiotic E. diaphana of S. aureus particles (H) and DQ™ ovalbumin (1) is significantly higher under heat stress conditions
(30°C), compared to ambient (22°C). (J) Pinocytosis of dextran in symbiotic E. diaphana under normal and heat stress conditions are not
significantly different. A Student’s t-test analysis was performed on the phagocytic and the pinocytosis assays comparing the ambient and
elevated temperatures. P-value legend: ns, Not significant, *: p <0.05, ***: p < 0.001. Scale bar represents standard deviation (SD).

significantly increased in elevated temperatures, compared to To validate that the temperature conditions were inducing
ambient conditions (Figure 5A). Similarly, both aposymbiotic bleaching, we measured the expulsion of symbiotic
and symbiotic E. diaphana showed increases in intracellular ROS Symbiodiniaceae from E. diaphana into the surrounding water
under thermal stress conditions compared to the ambient after overnight incubation at the various temperatures. The
temperature (Figures 5B, C). number of Symbiodiniaceae cells in the medium was observed
Frontiers in Immunology 07 frontiersin.org
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Immune activation vs pinocytosis at increased temperatures in hexacorallian models. (A) The relative change in the flow cytometry percentage
of activity in the N. vectensis phagocytic cells (normalized to ambient temperature) significantly elevated with heat, compared to the control
pinocytosis of dextran. (B, C) The relative change in the flow cytometry percentage of activity in the aposymbiotic E. diaphana (B) and symbiotic
E. diaphana (C) phagocytic cells (normalized to ambient temperature) significantly elevated with heat, compared to the control pinocytosis of
dextran. (D) The relative percentage change in different temperatures of the S. aureus phagocytosis in the aposymbiotic and the symbiotic E.
diaphana phagocytic cell is similar. Control temperature for the N. vectensis model is 18°C and 22°C is the control temperature for the E.
diaphana models. Mixed effects analysis was performed on the phagocytosis and the pinocytosis series for each animal model (A-C), and
between the two E. diaphana models (D). Mixed effects analysis, using the model of restricted maximum likelihood method (REML; detailed in
Supplementary Table 1). P-value between treatments: ns, Not significant, ****: p < 0.0005. Scale bar represents SD.

to have increased significantly compared to ambient conditions
(Figure 5D), indicating the expulsion of Symbiodiniaceae from
the host cells.

Discussion

Immune cellular function activity is
heightened in heat induction

Previous heat stress gene expression studies on many different
hexacorallians have shown differential gene expression of
immune genes, suggesting immune activation is occurring (28—
32,59). Here, we found that during heat stress phagocytic activity
increased, indicating that heat stress can increase the immune cell
activity. Further, pinocytosis was not affected by the heat stress,
indicating that within these assays, normal metabolic function
was maintained (Figures 2-4). Phagocytosis and pinocytosis
processes are functionally different in hexacorallians, where
phagocytosis is executed by a specific subpopulation of cells and
not the majority of the cells like what is observed in pinocytosis
(Figures 2, 3) (37, 60). Previous studies on heat stress effects in
aposymbiotic and symbiotic E. diaphana found an upregulation
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of immune genes during the first 12 hours, followed by a decrease
to near baseline levels (59). Similarly, our overnight assays of 12
hours showed significant increase in immunological function in
both symbiotic and aposymbiotic animals. Our results may
indicate that heat stress in Hexacorallia does not reduce
immunocompetence, but rather increases it, perhaps even to a
potentially harmful level. Hyperimmune responses are not well
characterized in invertebrates, but in vertebrates, including
humans have been documented (61-63). Future research on
measuring and characterizing this potential hyperimmune
response in corals may be important to our understanding of
the different disease and heat stress pathologies that have been

previously observed (64).

Immune activation during heat stress is
not a by-product of bleaching

Previous observations of differential gene expression of
immune genes suggested immune activity during heat stress in
Hexacorallia was due to the process of bleaching (28-32). Here we
show that the immune activation in heat stress occurs regardless
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each cell. Measured by Geometric mean of the green fluorescence of the cells. (D) Counts of expelled algae from E. diaphana due to heat stress
in 2.5 ml of media. Control temperature for the N. vectensis model is 18°C and 22°C is the control temperature for the E. diaphana models.
Unpaired t-test analysis was performed on the ROS enrichment and algae count between the ambient temperature and 34°C. P-value legend:

*: p <0.05, ****: p < 0.0005 (Supplementary Table 1). Scale bar represents SD.

of the presence of the symbiotic Symbiodiniaceae. We were able to
tease apart if the increase in phagocytosis was linked to the
presence of Symbiodiniaceae, and found that the increase of
phagocytosis was independent of the algal symbiosis, suggesting
that the immune response and bleaching response can be
uncoupled. This shows that immune activation during heat
stress is not a byproduct of heat-induced bleaching. Moreover,
the aposymbiont and symbiont models of E. diaphana respond in
a similar way to heat stress (Figure 4D) (59). When we tested for
ROS production (15), we observed that it is also produced by the
animal cells independently of the presence of symbiotic
algae (Figures 5A-C). Our observations support the hypothesis
that the ROS production in heat-induced bleaching is done not
only by the algae but also by hexacorallian cells. This supports
previous suggestions that ROS production is not solely a
marker for photosynthetic stress (65). Together, these results
suggest that there is an underlying immune response to heat
stress, and it is independent of the symbiotic dinoflagellate
algae, Symbiodiniaceae.
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Immune activation in heat could be a
conserved evolutionary mechanism

Immune system response upon heat induction is well
documented across vertebrates. Upon infection, warm blooded
organisms will initiate a febrile response, while cold blooded
organisms will raise their body temperature by behavioral means
(66-74). In the case of marine invertebrate organisms, they are
dependent on environmental temperature fluctuations (75).
Warming water temperatures or heat wave events have been
linked to an increase in pathogenic Vibrio sp. abundance in
several locations (76-79). During heat waves, the microbial
population may shift in favor of more opportunistic pathogenic
species and can lead to higher mortality due to infection (80). It is
plausible that marine invertebrates evolved means to respond and
combat these pathogenic stressors in heat, by activating their
immune system (81-84). However, there are also examples of
immune activity reduction in marine invertebrates in long-term
exposure to heat stress (85-88). These examples show the
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importance of the temporal aspects of the immune response and
highlight the need for further comparisons between short-term heat
stress immune activation and long-term/chronic heat stress
immune reduction. While our study only examined a heat stress
exposure over 12 hours, it is important to note that this was
comparable to the gene activity observed in E. diaphana
previously (59). Lastly, our experiments show that temperature
levels used in heat stress exposures are also important when
measuring levels of immune activation (Figure 4). Further
investigation into the temperature duration and ranges in which
immune activity occurs will help our understanding of the limits
under which it can function in hexacorallians.

Conclusions

Within the hexacorallian models N. vectensis and E.
diaphana we show that during heat stress there is increased
phagocytic activity indicative of increased immune activity.
Using aposymbiont and symbiont models, we show that this
immune activity is independent of Symbiodiniaceae presence.
We also show that there is significant ROS production in
hexacorallian cells during heat induction. Finally, this work
proposes that the immune activation by heat stress induced
bleaching, previously suggested in corals, is a basic mechanism
in Hexacorallia that might be independent of the bleaching itself,
or possibly even contributes to bleaching.
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