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Abstract—Recent advances in cloud services provide greater
computing ability to edge devices on cyber-physical systems (CPS)
and internet of things (IoT) but cause security issues in cloud
servers and networks. This paper applies homomorphic encryp-
tion (HE) to background subtraction (BGS) in CPS/IoT. Cheon et
al.’s numerical methods are adopted to implement the non-linear
functions of BGS in the HE domain. In particular, square- and
square root-based HE-based BGS (HEBGS) designs are proposed
for the input condition of the numerical comparison operation.
In addition, a fast-converging method is proposed so that the
numerical comparison operation outputs more accurate results
with lower iterations. Although the outer loop of the numerical
comparison operation is removed, the proposed square-based
HEBGS with the fast-converging method shows an average peak
signal-to-noise ratio value of 20dB and an average structural
similarity index measure value of 0.89 compared to the non-HE-
based conventional BGS. On a PC, the execution time of the
proposed design for each 128 x128-sized frame is 0.34 seconds.

Index Terms—homomorphic encryption, background subtrac-
tion, approximation, cyber-physical systems, internet of things

I. INTRODUCTION

Recently, the use of cyber-physical systems (CPS) and
internet of things (IoT) has increased significantly [1]. The
microcontroller performance and memory size of edge devices
are often insufficient to handle real-time processing and store
large amounts of data generated by multiple sensors. Users
have turned to third-party cloud services to meet their needs,
but when the data is submitted to those entities, the information
ultimately leaves their hands. With or without malicious intent,
information in the cloud and network is constantly vulnerable.
Thus, naturally, the first step in protecting sensitive informa-
tion is to encrypt it before sending it to the cloud.

Through regular encryption, users of cloud services secure
an additional layer of protection but miss out on one of the
greatest tools the cloud services provide: cloud computing.
By using homomorphic encryption (HE), which performs
operations on a ciphertext (ct) without decryption, users gain
the protection of encryption while taking advantage of the vast
computing infrastructure built in those third-party services [2].

This paper moves background subtraction (BGS), which
is a real-world application frequently used in CPS/IoT, to
the HE domain. The prior work of Akkaya et al. applies
HE to BGS for drone-based CPS [3]. However, BGS is
performed on an unencrypted video frame, and HE is then

applied separately to the generated foreground and background
frames. After transmission, the server restores the original
frame by homomorphically adding the encrypted foreground
and background frames and analyzes it.

Unlike the previous work, our proposed work performs BGS
in the HE domain. In particular, numerical methods for non-
linear operations in BGS are adopted. To reduce the depth
and execution time in our HE-based BGS (HEBGS), while
minimizing the degradation of accuracy (or even improving
the accuracy), a fast-converging method for the numerical
comparison operation is proposed.

II. BACKGROUND
A. Background Subtraction

BGS generates foreground masks by subtracting input
frames from a static camera by a background model [4], [5].
The formula of the conventional BGS technique is as follows:

foreground, if |I(z,y) — B(x,y)| > T,

otherwise.
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where R(z,y), 'I(z,y), and B(z,y) stand for the resulting
mask, input frame, and background model at the coordinate
(z,y), respectively. T is a threshold and a given constant. If the
absolute value of the difference from a background is greater
than or equal to a threshold value, an input pixel is classified
as a foreground. Otherwise, it is classified as a background.

B. Homomorphic Encryption and Basic Operations

Popular HE schemes, such as BGV/BFV for integer plain-
text (pt) messages [6]-[8] and CKKS for real number pt
messages [9], provide the following operations [2]:

o Key generation: generates secret keys, public keys, and

relinearization keys.

o Encryption: converts pt into ct using public keys.

o Decryption: converts ct into pt using secret keys.

o Arithmetic operations: ct-ct addition/subtraction/multi-

plication and ct-pt addition/subtraction/multiplication.
In addition to these operations, a packing encoding technique
is supported. It packs multiple pt messages into a single ct
and enables single instruction multiple data operations.

'I(x,y) and B(z,y) are simply denoted by I and B in the rest of this
paper.



Algorithm 1 Comp(a, b; n, d.) [12]

Input: a,b € [0, 1], n.,d. € N

Output: a value between 0 and 1 (1 if a > b; 0 if a < b)
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Fig. 1. Graphs of the approximate step function and Comp operation. (a) f3
results (b) Comp results with n. of 3 and d. from 1 to 4.

Among the homomorphic arithmetic operations, ct-ct multi-
plication has special features. First, after each multiplication,
a relinearization step is performed with relinearization keys
to keep the ct size. Second, each multiplication significantly
increases the level of noise used to hide pt messages in ct.
There is a limit to the number of consecutive multiplications
to obtain the desired value after decryption, which is called
the (multiplicative circuit) depth. Lastly, ct-ct multiplication
is very slow compared to other homomorphic operations, so
custom hardware accelerators are sometimes used [10], [11].

C. Numerical Methods for Homomophically Encrypted Data

One of the most used operations in real-world applications is
a comparison operation. Since only addition, subtraction, and
multiplication are supported in the HE domain, a comparison
operation is numerically performed [12], [13]. Algorithm 1
shows the numerical comparison algorithm. This algorithm
includes the step function generating approximate -1 and 1.
The formula of this approximate step function is as follows:

=3 () wa-uy. e
3=0

In this algorithm, the total number of iterations is d. X n.. If
these iterations are performed in a binary tree fashion, the total
number of consecutive multiplications is d.[log,n. ]|, which is
the (ideal) depth required for one Comp operation [14].

As the values of n. and d. increase, the Comp operation
outputs values closer to 0 and 1. Fig. 1(a) shows the graph of
f3(+), and Fig. 1(b) shows the graphs of the Comp operation
when the n. value of 3 is used with the d. values from 1 to
4. As the number of iterations increases, the total depth and
execution time increase, which makes an application infeasible
or prevents it from working in real time.

Another non-linear operation often used in real-world appli-
cations is a square root operation. The numerical algorithm for

this operation, denoted by Sqrt, was presented in Cheon et
al.’s work [13]. This algorithm contains a single loop with d;
iterations, and its optimal depth in the HE domain is 2d;—1.

III. APPLICATION OF HOMOMORPHIC ENCRYPTION TO
BACKGROUND SUBTRACTION

In this section, we propose methods to perform BGS on
homomorphically encrypted data. Specifically, the numerical
methods presented in Section II-C are adopted to perform
the non-linear operations in (1) in the HE domain. Note
that several studies use the Comp operation for HE-based
applications [14], [15]. Unlike the prior studies, this work
focuses on how to perform comparison operations involving
absolute value calculations in the HE domain.

The most intuitive way is to run two separate Comp oper-
ations of which the first inputs are I — B and B — I but the
second inputs are the same as 7. We call this design Design
0. To satisfy the input condition of the Comp operation (i.e.,
a —b € [-1,1]), a normalization process is performed in
advance. The worst case is when the difference between [
and B becomes — (277 — 1), where bpp stands for bits per
pixel. It sets the @ — b value to —(2°PP — 1) — T'. Therefore, to
get the minimum bound of a — b to be —1, the inputs of the
Comp operation are multiplied by 1/(2°PP — 1 + T).

If |I — B| > T, one of the two Comp operations outputs
a result close to 0, and the other outputs a result close to 1.
On the other hand, if |I — B| < T, the results of both Comp
operations are close to 0. To calculate the final pixel value,
these Comp operation results are added together and multiplied
by 2°PP — 1. This approach keeps the error in absolute value
calculation and the total depth low. However, it requires a long
execution time because of the two expensive Comp operations.

If inputs of a comparison operation are positive numbers,
squaring them does not change the result. Therefore, to reduce
the execution time of Design 0, normalized I — B and T
are squared and compared to each other. This design, called
Design 1, requires an additional multiplication for square
calculation but eliminates the need to use two Comp operations
in the HE domain, which almost doubles the processing
speed of Design 0. However, since the Comp operation is
an approximate operation, the result changes when inputs are
squared. In particular, squaring causes the input values to
be closer to 0, which makes the convergence of the Comp
operation slower. Consequently, it increases the number of
iterations to obtain an accurate comparison result.

Comparing /(I — B)? and T addresses this slow conver-
gence problem. To implement this design, called Design 2,
in the HE domain, the Sqrt operation [13] is used. The
improved convergence speed comes at the cost of increased
depth as well as introducing errors from the Sgrt operation.
Compared to Design 0, the processing speed of Design 2 is
faster because the Comp operation has a nested loop while the
Sqrt operation has a single loop.

IV. FAST-CONVERGING METHOD

Due to the depth and execution time issues in the HE do-
main, the actual result of the Comp operation lands somewhere
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Fig. 2. Step functions in the Comp operation. (a) original ideal (in green)
and approximate (in red) step functions (b) shifted approximate step function
(c) shifted-and-scaled approximate step function.

within [0, 1]. Consider Design 1 for example, the value I — B
is squared. If | — B| is small, the input for the Comp operation
after normalization is close to 0. Thus, especially in the case
of lower d. values, the outputs of Design 1 may not fully
converge. Fig. 2(a) shows ideal and approximate step functions
in the Comp operation. To have outputs of the Comp operation
converge faster with small iterations, this section proposes
a novel method based on the fact that a large number of
|I — B| — T values in BGS exist around -7'.

The minimum output value of HEBGS occurs when [ = B
(i.e., a = 0). In this case, the initial input of f,,_(-) is just the
normalized -7'. The proposed fast-converging method calcu-
lates the theoretical minimum output of the Comp operation for
-T, denoted by ¢,,;,, and subtracts it from outputs of the Comp
operation for any I and B values. By this shifting, the output
of HEBGS is artificially converged to O in the case when [ =
B. Fig. 2(b) shows the graph of the shifted function. In fact,
the subtraction of t,,;, causes the output to shift away from 1
when |I — B| is large. Thus, to ensure that the Comp operation
fully converges for this scenario, the shifted function output
is divided by 1 — ¢,,;,. Fig. 2(c) shows the result where the
graph in Fig. 2(b) is scaled by ﬁ Note that this scaling
assumes that the theoretical maximum is 1.

V. CLIENT-DEVICE-SERVER MODEL

This section introduces a scenario where HEBGS is im-
plemented as a client-device-server model. Fig. 3 shows the
entities connected to one another, tasks, and data transmitted
between them. The client is the entity generating public, secret,
and relinearization keys. The public and relinearization keys
are sent to the device and server, respectively. The client keeps
the secret key and performs decryption upon the reception of
the HEBGS results. The device is a remote entity capable of
obtaining input frames. Captured frames may contain sensitive
information, which must not be leaked out of the device. The
device is implemented on a tiny microcontroller with a camera
sensor. It encrypts captured input frames using the public keys,
and the encrypted frames are sent to the server.

The server is a resource-rich third-party entity. On obtain-
ment of an encrypted input frame, the server either stores it
as a background model or performs HEBGS with the existing
background model. Input, intermediate, and resulting frames
are all encrypted, and therefore the server cannot acquire any
sensitive information. After performing HEBGS, it sends the
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Fig. 3. A client-device-server model scenario for HEBGS.

resulting masks to the client, and the client checks whether
objects newly appear through the decrypted masks.

Note that this paper focuses on how to convert the conven-
tional BGS to HEBGS, not how to estimate B well. However,
we suggest two simple methods for updating B: 1) the client
side instructs the server to update after analyzing the results;
2) the server automatically updates after a set period of time.

VI. EVALUATION
A. Parameters and Dataset

Microsoft SEAL open-source library (v3.6) was used for the
HEBGS implementation [16]. In particular, the homomorphic
operations of the CKKS scheme implemented in this library
were used. HEBGS aims at a 128-bit security level, which is
widely used in recent HE-based applications [14], [15], [17],
[18]. Two important HE parameters are the polynomial degree
N and the total bit length of ¢ (log2q), where ¢ is the product
of different primes. Each time multiplication of ciphertexts is
performed, one prime is dropped. The N value of 2'° has 885
bits for logag [19]. When each prime is assigned 40 bits, the
number of available primes is 22. The first and last primes
have special uses, and therefore the maximum depth is 20.

As the value of T', 40 was empirically chosen. A ciphertext
with N of 2'° in the CKKS scheme has 2'* slots [20].
Therefore, each frame was resized to a 128 x 128 dimension
to include all pixels in a single ciphertext. The n,. value was
fixed at 3 because the depth of f,_(-) is proportional to the
logarithm of n. and 3 is the maximum value for a depth of 3.
The d. value changed from 1 to 4. The d, value of the Sqrt
operation was fixed at 2 because it was the maximum value
that ran in conjunction with d. of 4 and n. of 3 of the Comp
operation, not exceeding the maximum depth of 20.

We evaluated four proposed HEBGS designs: Design 1,
Design 2, Design 3 (= Design 1 + fast-converging), and Design
4 (= Design 2 + fast-converging). As test videos, two simple
videos — SI-01 (frames #75-300) and SI-02 (frames #70-300)
[21] — and two complex videos — Lab (frames #267-400)
[22] and Nominal Motion (frames #275-500) [23] — were
used. The first few frames without foreground objects were
excluded, and the frame before foreground objects appear was
used as an initial background model for each video.

B. Accuracy

To evaluate the still frame quality of the HEBGS designs,
the peak signal-to-noise ratio (PSNR) and structural similarity
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Fig. 4. Average PSNR results of the HEBGS designs compared to the
conventional BGS [5]. (a) SI-01 (b) SI-02 (c) Lab (d) Nominal Motion.
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Fig. 5. Average SSIM results of the HEBGS designs compared to the

conventional BGS [5]. (a) SI-01 (b) SI-02 (c) Lab (d) Nominal Motion.

index measure (SSIM) functions implemented in OpenCV
were used [24]. The resulting frames of the non-HE-based
conventional BGS [5] were used as reference frames of the
PSNR and SSIM functions. For each video, the PSNR values
and SSIM values of all frames were averaged, respectively.

Figs. 4 and 5 show the average PSNR and SSIM results
depending on the d. value, respectively. Overall, PSNR and
SSIM values for all designs increase as the d. value increases.
Specifically, at higher d. values, a larger input value for
fn.(+) in the square root-based designs makes them outperform
the square-based designs in terms of SSIM values. This is
especially evident when not using the fast-converging method.

The use of the fast-converging method drastically improves
the accuracy. However, as the d. value increases, the effective-
ness of the fast-converging method diminishes. At d. of 4 for
instance, Design 4 results in total convergence and no longer
benefits from the fast-converging method. This is because the
tmin value in the fast-converging method is approximately O
at d. of 4.

The PSNR values for square root-based designs drop
slightly when the d. value exceeds 3. It is because the Comp
operation becomes accurate and the inaccuracies caused by the
Sgrt operation began to show. In particular, when |I — B|

TABLE I
DEPTH AND EXECUTION TIME (IN SECONDS) PER FRAME OF HEBGS

d Design 1 Design 2 Design 3 Design 4

¢ | Dep. Time | Dep. Time | Dep. Time | Dep. Time
1 8 0.33 11 0.70 8 0.34 11 0.69
2 11 0.81 14 1.37 11 0.81 14 1.38
3 14 1.56 17 227 14 1.59 17 2.27
4 17 2.55 20 3.57 17 2.55 20 3.55

is close to T, the error created by approximating /(I — B)?
may cause it to end up on the wrong side of 7', making the
comparison result to 1 when it should be 0.

C. Total Depth and Execution Time

To evaluate the execution time of the HEBGS designs, a
PC with the Intel Xeon W-2295 CPU and 128GB RAM was
used. A single thread was used when running the software.
Table I shows the execution time results per frame along with
the total depth results. Since the execution times of the client
and device functions are relatively short, only the execution
times of the HEBGS designs running on the server are shown.

As the d. value increases, the total depth and execution
time increase, which is common to all the cases in this table.
Designs 2 and 4 using the Sqrt operation use 3 more depth
than Designs 1 and 3, resulting in longer execution times.
However, they show shorter execution times than Designs 1
and 3 that use the same depth, and the difference increases
as the d,. value increases. This is because the computational
complexity of f,_(-) is higher than that of the Sqrt operation.

Our fast-converging method has little effect on the execution
time. When the d. value is 1, where the outer loop of the Comp
operation is removed, Design 4 shows approximately 1dB
higher average PSNR results compared to Design 3. However,
in terms of execution time, Design 3 shows a 51% reduction,
which makes Design 3 the best overall among the four designs.

VII. CONCLUSION

This paper applies HE to BGS. To perform a comparison
operation in the HE domain, a numerical method is adopted.
For absolute value calculation, square- and square-root-based
designs are proposed. To reduce the total depth and execution
time in the comparison operation of HEBGS, a novel fast-
converging method is proposed, which even improves the ac-
curacy of resulting frames. When both accuracy and execution
time are considered, the square-based HEBGS design with the
fast-converging method is the most superior.
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