
Received: 10 October 2022 | Accepted: 15 June 2023

DOI: 10.1002/aps3.11536

S O F TWAR E NOT E

GOgetter: A pipeline for summarizing and visualizing
GO slim annotations for plant genetic data

Emily B. Sessa1 | Rishi R. Masalia2 | Nils Arrigo3 | Michael S. Barker2 |

Jessie A. Pelosi4

1New York Botanical Garden, Bronx, New
York, USA

2Department of Ecology and Evolutionary
Biology, University of Arizona, Tucson,
Arizona, USA

3SOPHiA Genetics, Saint Sulpice, Switzerland

4Department of Biology, University of Florida,
Gainesville, Florida, USA

Correspondence

Emily B. Sessa, New York Botanical Garden, 2900
Southern Blvd., Bronx, New York 10458, USA.
Email: esessa@nybg.org

This article is part of the special issue
“Bioinformatics for Plant Biology.”

Abstract
Premise: The functional annotation of genes is a crucial component of genomic
analyses. A common way to summarize functional annotations is with hierarchical
gene ontologies, such as the Gene Ontology (GO) Resource. GO includes
information about the cellular location, molecular function(s), and products/
processes that genes produce or are involved in. For a set of genes, summarizing GO
annotations using pre‐defined, higher‐order terms (GO slims) is often desirable in
order to characterize the overall function of the data set, and it is impractical to do
this manually.
Methods and Results: The GOgetter pipeline consists of bash and Python scripts.
From an input FASTA file of nucleotide gene sequences, it outputs text and image
files that list (1) the best hit for each input gene in a set of reference gene models, (2)
all GO terms and annotations associated with those hits, and (3) a summary and
visualization of GO slim categories for the data set. These output files can be queried
further and analyzed statistically, depending on the downstream need(s).
Conclusions: GO annotations are a widely used “universal language” for describing
gene functions and products. GOgetter is a fast and easy‐to‐implement pipeline for
obtaining, summarizing, and visualizing GO slim categories associated with a set
of genes.

K E YWORD S

annotation, data mining, gene function, gene ontology

The functional annotation of genetic data is a critical
component of ‐omics research, but the primary process of
assigning functional annotations (henceforth “annotation”)
to a gene or set of genes in a genome is labor‐ and time‐
intensive, expensive, and requires extensive experimental
work to determine genes’ functions or products, and the
processes in which they are involved. As a result, relatively
few species (e.g., Arabidopsis thaliana, Drosophila melano-
gaster) have genomes annotated at this level (de Crécy‐
Lagard et al., 2022), and these are typically used as
references from which annotation information is trans-
ferred to other data sets of interest based on the results of a
sequence similarity/homology search. The result of this
transfer process is typically an exhaustive list of annotations

for the input sequence set; depending on the goals of
subsequent analyses, these may be used in their raw form, or
it may be useful or necessary to summarize and organize
those raw data in some way.

Structured, hierarchical vocabularies, or ontologies, are
widely used in the biological sciences for organizing and
classifying terminology about biological systems (Howard
et al., 2021). Ontologies consist of terms and the connec-
tions between them, which define their relationships; these
structures are hierarchical in the sense that parent–child
relationships exist, with broader categories serving as
parents for more specialized child terms. One of the most
widely used biological ontologies is the Gene Ontology
(Harris et al., 2004), which includes information about three

Appl. Plant Sci. 2023;11:e11536. wileyonlinelibrary.com/journal/AppsPlantSci | 1 of 9

https://doi.org/10.1002/aps3.11536

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2023 The Authors. Applications in Plant Sciences published by Wiley Periodicals LLC on behalf of Botanical Society of America.

http://orcid.org/0000-0002-6496-5536
http://orcid.org/0000-0003-3661-690X
http://orcid.org/0000-0001-7173-1319
http://orcid.org/0000-0002-2861-3445
mailto:esessa@nybg.org
https://wileyonlinelibrary.com/journal/AppsPlantSci
http://crossmark.crossref.org/dialog/?doi=10.1002%2Faps3.11536&domain=pdf&date_stamp=2023-08-11

aspects of genes and gene products: their molecular
function, cellular location, and the larger biological
process(es) that they participate in or to which they
contribute. A given gene or gene product typically has
multiple annotations in the Gene Ontology (GO) that
describe these various aspects and that collectively provide a
wealth of information about the gene and its products’
structure, function, and location. Individual GO terms can
be grouped into higher‐level sets that summarize and
organize annotations according to broad categories, called
GO slim categories or GO slims. While an individual gene's
annotations may fall into multiple GO slims, the categories
themselves are non‐overlapping and collectively give a
broad overview of the functions, locations, and biological
processes of a data set's genes and gene products.

Given the value of GO for describing gene products and
functions, obtaining the complete list of GO annotations and a
summary of GO slims for a set of sequence data is highly
desirable. Various lists of GO annotations are available
online, including complete lists of all GO terms (e.g., from
QuickGO, https://www.ebi.ac.uk/QuickGO/annotations [Binns
et al., 2009]) and numerous taxon‐specific lists (available from
the Gene Ontology Consortium, http://current.geneontology.
org/products/pages/downloads.html [Ashburner et al., 2000;
Gene Ontology Consortium, 2023], and other sources).
However, downloading a reference list of annotations is only
the first step; a user needs to query their own data against the
reference set to determine the annotations, and then identify
the GO slim categories of those annotations. There are several
existing tools and software suites that can be used to obtain
annotations for a set of genes. Many of these packages first
require the use of a tool for sequence similarity/homology
searches (such as BLAST; Altschul et al., 1990), and will then
assign GO terms to a set of known coding sequences. Packages
with this capability include Blast2GO (a platform which
requires a paid subscription; Conesa et al., 2005) and agriGO
(which was developed primarily for agricultural plants; Tian
et al., 2017). Trinotate (Bryant et al., 2017) is perhaps the most
widely used functional annotation software for transcriptomes
and integrates a variety of tools (e.g., BLAST, HMMER [Eddy,
2011], signalP [Petersen et al., 2011], and tmHMM [Krogh
et al., 2001]) to associate putative genes to functions based on
database searches. These programs, however, leave the user
with a list of raw GO terms for their set of input data. While
such data certainly have use, the characterization of gene sets to
GO slims can be vital for visualizing data and answering
biological questions (see, for example: Barker et al., 2008;
Li et al., 2018; Marx et al., 2021; Pelosi et al., 2022).

Various web‐based tools are available to characterize
a set of genes from a model organism (GOTermMapper;
https://go.princeton.edu/cgi-bin/GOTermMapper), to summa-
rize GO terms to GO slims based on a pre‐defined GO slim
set (GOSlimViewer; https://agbase.arizona.edu/help/slimviewer
help.htm), or to calculate data set–specific summaries (REVI-
GO; Supek et al., 2011). However, a command‐line tool that
combines all of the above aspects (i.e., sequence similarity
searching through to characterization of GO slims) is lacking.

Here we introduce GOgetter, a set of Python and bash scripts
that uses BLAST for sequence homology searches of an input
FASTA file of nucleotide gene sequences and characterizes the
functional categories of the input at the level of GO slims with
both text and visualization files as output. GOgetter allows
the user to use any database and set of GO terms to characterize
their data, giving it an advantage over other existing software
that predefine these. GOgetter is a freely available, easy‐to‐use,
and flexible tool for the functional annotation of plant genetic
data to GO slims.

METHODS AND RESULTS

Computational requirements and
implementation of GOgetter

GOgetter was designed to provide the most straightforward
path from a FASTA file of nucleotide coding sequence data
to an output text file summarizing the GO slim annotations
of the input. The pipeline was written in Python v3.8,
is open source, and is available at https://github.com/
jessiepelosi/GOGetter under a GNU Public License. GOget-
ter requires the Python packages argparse v1.1, matplotlib
v3.3.0, numpy v1.20.2, pandas v1.2.4, re v2.2.1, and seaborn
v0.11.2, and was tested on the University of Florida's
HiPerGator computing cluster with Linux on an AMD
EPYC 75F3 Milan with 3.0 GHz cores, 8 GB/core, and using
BLAST v2.10.1 for sequence similarity/homology searches.
Any operating system capable of running Python and
BLAST should be capable of supporting GOgetter. A user
manual (README.md) and directory containing example
files are included in the GitHub repository. The example
directory includes example input FASTA files, which
are subsets of coding sequences for three publicly available
fern species (Dryopteris decipiens (Hook.) Kuntze, FASTA
filename prefix DRDE; Lygodium japonicum (Thunb.) Sw.,
LYJA; and Vittaria appalachiana Farrar & Mickel, NDUV)
that have been published in previous studies (Qi et al., 2018;
One Thousand Plant Transcriptomes Initiative, 2019) and
outputs generated from those files using GOgetter.

Once the pipeline is downloaded, it consists locally of
a primary GOgetter directory that contains the various
pipeline scripts, as well as the subdirectory TAIR_2021 that
contains a default reference database of Arabidopsis thaliana
(L.) Heynh. gene models from The Arabidopsis Information
Resource (TAIR; https://www.arabidopsis.org/ [accessed 13
February 2023]). For each input file, GOgetter can be run
from the command line with GOgetter.sh, which (1) uses
BLAST (or DIAMOND) to find significant sequence
similarity/homology matches, (2) parses the best BLAST
hit for each sequence (parse_best_hits.py), and (3) generates
summary tables that characterize the GO slim composition
of the input (make _tables.py; Figure 1). An additional
Python script (merge_and_viz.py) can be run to merge and
visualize the resulting summary information from multiple
input files (Figure 1).

2 of 9 | GOGETTER, A PIPELINE FOR GETTING GO SLIM ANNOTATIONS

 21680450, 2023, 4, D
ow

nloaded from
 https://bsapubs.onlinelibrary.w

iley.com
/doi/10.1002/aps3.11536 by Test, W

iley O
nline Library on [21/08/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://www.ebi.ac.uk/QuickGO/annotations
http://current.geneontology.org/products/pages/downloads.html
http://current.geneontology.org/products/pages/downloads.html
https://go.princeton.edu/cgi-bin/GOTermMapper
https://agbase.arizona.edu/help/slimviewerhelp.htm
https://agbase.arizona.edu/help/slimviewerhelp.htm
https://github.com/jessiepelosi/GOGetter
https://github.com/jessiepelosi/GOGetter
https://www.arabidopsis.org/

Sequence similarity/homology searching

GOgetter requires a single file of genes/coding loci in a
nucleotide FASTA file as input (provided by the user;
Figure 1, “Input Nucleotide FASTA of Coding Sequences”),

a protein BLAST database (Figure 1, “Reference Protein
Database”), and corresponding GO slim mapping file
(Figure 1, “Reference GO slim Database”). The BLAST
database and mapping files are provided for Arabidopsis
thaliana by default, and users can generate their own

F IGURE 1 The GOgetter pipeline. Inputs, primary pipeline activity, and output file names (.tsv tables for raw and frequency count data) from
GOgetter.sh are shown inside the dotted‐line box. The bottom of the figure shows the merged table and example figures produced from several frequency
count tables using merge_and_viz.py, after multiple input files have been run through the pipeline.

GOGETTER, A PIPELINE FOR GETTING GO SLIM ANNOTATIONS | 3 of 9

 21680450, 2023, 4, D
ow

nloaded from
 https://bsapubs.onlinelibrary.w

iley.com
/doi/10.1002/aps3.11536 by Test, W

iley O
nline Library on [21/08/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

database and mapping files if desired (see Appendix 1). The
first step begins with a BLASTx search of the query (“Input
Nucleotide FASTA of Coding Sequences”) against the
subject (“Reference Protein Database”) with a set of
default parameters (‐num_threads 1 ‐max_target_seqs
50 ‐evalue 0.001) that can be changed by the user when
executing GOgetter.sh. This is a relatively lenient set of
metrics for the BLAST search; more stringent filters can be
applied when determining the best BLAST hit for each
input gene sequence in parse_best_hits.py. An alternative
sequence similarity search program, such as DIAMOND
(Buchfink et al., 2021), may be run in place of BLAST and
called from GOgetter.sh by using the ‘‐n’ flag. While
DIAMOND is a faster alternative to BLAST, it is less
accurate (Buchfink et al., 2015) and therefore BLAST is used
as the default search program by GOgetter (see Case Study 1
for the differences in BLAST vs. DIAMOND searches).
Those wishing to use additional parameters may run these
searches independent of GOgetter.sh, as long as the output
format of the searches matches ‐outfmt 6 of BLAST.

Parsing best hits and summarizing GO slim
composition

The output BLAST search is then, by default, filtered to
remove matches with E‐values greater than 1 × 10−5. By
including this additional filtering step in parse_best_hits.py,
the user can run the first BLAST step once (which is the
most memory‐ and time‐consuming step), and can then
adjust the filtering parameters in parse_best_hits.py to
generate multiple different outputs based on varying
E‐value cutoffs, rather than rerunning the whole BLAST
search. By default, parse_best_hits.py filters BLAST hits
based on E‐value alone, which is the most common
and frequently used metric for assessing significance of a
similarity search. However, additional metrics can be used
to filter, including the alignment length, the percent
identity, and bitscore; the default values of these metrics
are set to 0 but can be changed from the command line. We
use these defaults as it is not possible to develop a universal
set of cut‐offs given that users may be interested in different
gene families with variable protein lengths and/or use inputs
with varying divergence from the reference.

The resulting matches are sorted and ranked, and the
best hit data are written to a tab‐delimited output file
containing the query and subject. Ranking of BLAST hits
can be based on the lowest E‐value (default), highest
bit score, longest alignment length, or highest percent
identity. We used the E‐value as the default ranking
parameter because it is a commonly used metric to assess
the significance of BLAST hits and is corrected for database
size and query length, although other metrics may be
preferred (Pearson, 2013). The script make_tables.py is next
used to summarize the number and frequency of each GO
slim category present in the input gene set. This portion of
the pipeline requires a reference mapping file from each

gene/locus in the BLAST database to the corresponding GO
slim category (“Reference GO slim Database”). The output
of make_tables.py consists of four table files: raw and
frequency count tables that include all GO slim categories,
at both gene‐ and locus‐levels as defined by TAIR.

Merging summary tables and visualizing results

GOgetter.sh calls the BLAST command and the two Python
scripts described above for one set of genes. Users wanting
to compare multiple gene sets can run the pipeline as
a for‐loop or an array (as on a computing cluster). The
additional Python script merge_and_viz.py can then be used
to perform an outer merge over a set of output tables
produced by GOgetter.sh from multiple individual inputs.
The output of this step consists of a tab‐delimited file
with the first column composed of the GO slim categories
followed by columns with corresponding frequency or
count data for each input gene set. By using the “both”
runmode (‐m both), users will generate this table and
several visualizations of the data including pie charts, bar
plots, heatmaps (Figure 1), and bubble graphs (Figure 2B).
Given that plastid transcripts are very abundant (up to 82%
of the cellular mRNA pool; Forsythe et al., 2022) and may
swamp out contributions from other functional categories,
both raw and log‐transformed heatmaps are generated. The
merged output data format allows for easy input into other
programs for downstream statistical analysis that are not
included in GOgetter.

Case studies

We performed three case studies to demonstrate the
behavior and usage of GOgetter under several different
circumstances and parameters, and to illustrate how
GOgetter may be applied to answer biological questions.
In Case Study 1, we show that GOgetter is widely applicable
across land plants and explore the differences observed
when using BLAST and DIAMOND search algorithms, as
well as the effect of differing search programs on the
resulting characterization of gene sets to higher‐order GO
slims. In Case Study 2, we examine the effects of varying the
stringency of the filtering parameters on GOgetter results.
In Case Study 3, we illustrate how GOgetter can be used to
explore biological systems by investigating differential
functions of genes retained in duplicate following putative
whole genome duplication events and the suitability of the
reference database employed.

Case Study 1: Applicability across land plants

We downloaded transcriptomes from the One Thousand
Plant Transcriptomes Initiative (2019) and Qi et al. (2018)
for representative non‐model species for each of the major

4 of 9 | GOGETTER, A PIPELINE FOR GETTING GO SLIM ANNOTATIONS

 21680450, 2023, 4, D
ow

nloaded from
 https://bsapubs.onlinelibrary.w

iley.com
/doi/10.1002/aps3.11536 by Test, W

iley O
nline Library on [21/08/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

F IGURE 2 (See caption on next page).

GOGETTER, A PIPELINE FOR GETTING GO SLIM ANNOTATIONS | 5 of 9

 21680450, 2023, 4, D
ow

nloaded from
 https://bsapubs.onlinelibrary.w

iley.com
/doi/10.1002/aps3.11536 by Test, W

iley O
nline Library on [21/08/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

lineages of land plants: Philonotis fontana (Hedw.) Brid.
(bryophytes), Dendrolycopodium obscurum (L.) A. Haines
(lycophytes), Lygodium japonicum (ferns), Podocarpus
coriaceus Rich. & A. Rich. (gymnosperms), and Narcissus
viridiflorus Schousb. (angiosperms). We used TransDecoder
v5.50 (https://github.com/TransDecoder/TransDecoder) to
extract coding sequences (CDS) from the 1KP assemblies;
data from Qi et al. (2018) were already available as coding
sequences. We ran GOgetter on each CDS with the default
parameters, once with BLAST v2.10.1 (Altschul et al., 1990)
and once with DIAMOND v2.1.3 (Buchfink et al., 2021). To
investigate both the potential impact of divergence level
between the subject and reference used in GOgetter, and the
divergence times between the study species and Arabidopsis
thaliana (the default reference in GOgetter), we used the
median ages from TimeTree5 (Kumar et al., 2022).

GOgetter was successful in assigning GO slims to
73.86% to 86.02% of transcripts when run with BLAST and
66.75% to 82.18% of transcripts when using DIAMOND
for these five species. On average, DIAMOND recovered
62.42% fewer hits and 5.86% fewer transcripts were
annotated compared to the BLAST searches (Figure 2A).
Unsurprisingly, the divergence between the reference
(Arabidopsis thaliana) and the subject had a significant
impact on the proportion of transcripts annotated (adjusted
R2 = 0.624, F1,8 = 15.95, P = 0.004; Figure 2A) (see Case
Study 3 for considerations of other reference databases).
Despite these differences, we found that there were no
significant differences in the proportion of GO slims in each
of the study systems when using BLAST or DIAMOND
(χ2 = 40.55–56.70, df = 72, P > 0.9; Figure 2B, results using
BLAST shown). This case study demonstrates the wide
applicability of GOgetter to categorize the functions of a
gene set across land plants diverged over 480 mya when the
default Arabidopsis thaliana is used as the reference, and
shows that the categorization of GO slims is relatively
robust to different sensitivities of the similarity/homology
search algorithms used.

Case Study 2: Parameters in similarity searches
and resulting higher‐order functional categories

We further examined how changing the filtering parameters
impacts higher‐order GO slim categories summarized by
GOgetter. We ran GOgetter.sh using the Lygodium japonicum
CDS with default parameters to get a resulting set of BLAST

hits. We then determined the best hits based on several
different filtering criteria by running parse_best_hits.py
and make_tables.py to generate new summary tables for
each set of filtering criteria. We explored the effects of the
individual metrics by filtering using: E‐value (cutoffs:
1 × 10−5, 1 × 10−10, 1 × 10−15, 1 × 10−20), alignment length
(30, 50, 100, 150), percent identity (10, 25, 33, 40), and
bitscore (33, 50, 60, 75). We then combined metrics to
generate four sets of filtering criteria from least stringent
(E‐value < 1 × 10−5, alignment length > 30, percent identity >
10, bitscore > 33) to most stringent (E‐value < 1 × 10−5,
alignment length > 150, percent identity > 40, bitscore > 75).
We used merge_and_viz.py to merge the tables generated
from each assessment (e.g., all E‐value tables were merged or
all bitscore tables were merged) and used χ2 tests to compare
the results and determine whether there was a significant
impact of filtering BLAST hits using different stringencies on
the resulting annotation to GO slim terms. Although there
were substantial changes in the proportions of BLAST hits
passing these filtering cutoffs and the number of transcripts
annotated (Appendix S1), there were no significant differ-
ences in the annotation to GO slim terms as the metric
cutoffs changed for E‐value, alignment length, percent
identity, or bitscore (all P > 0.05).

When we combined different metrics for filtering (i.e.,
filtering based on a combination of E‐value, alignment
length, percent identity, and bitscore cutoffs), we observed a
more drastic effect on the number of BLAST hits passing the
cutoffs (least stringent: 89.91% passing; most stringent:
10.90% passing) and the number of transcripts annotated
(least stringent: 76.66% annotated; most stringent: 43.73%
annotated). There was a significant difference in the
proportions of sequences annotated to GO slim terms
(χ2 = 261.4, df = 210, P = 0.009), but only when including the
most stringent filtering; otherwise, there were no significant
differences (χ2 = 49.588, df = 140, P = 1.0) when comparing
only the three less stringent filter combinations. The
differences we observed due to differences in filtering may
arise due to the fraction of the CDS that is annotated; in the
three less stringent filters, between 64.3% and 76.7% of the
transcripts were annotated to a GO slim category, whereas
only 43.7% transcripts were annotated in the most stringent
filter. This second case study demonstrates that the
categorization of GO slims in a gene set is relatively robust
to changes in the filtering parameters employed, although
more stringent filtering may result in more pronounced
effects on the functional categorization of the gene set.

F IGURE 2 Results of case studies using GOgetter: (A, B) Case Study 1, (C, D) Case Study 3. (A) Proportion of transcripts annotated to a GO slim term
using GOgetter with BLAST (circle) and DIAMOND (triangle) for five transcriptomes representing angiosperms (red), gymnosperms (purple), ferns
(green), lycophytes (orange), and bryophytes (blue). Vertical lines connecting points show the difference in the proportion of sequences annotated between
BLAST and DIAMOND searches. (B) Bubble graph generated from GOgetter for the five transcriptomes analyzed, scaled to the proportion of total
annotations that associate with that term. (C) The average proportion of sequences annotated to a GO slim term using GOgetter for full transcriptomes
(green) and paralogs (purple) for five species of vittarioid ferns, using either Arabidopsis thaliana (left) or Ceratopteris richardii (right) as a reference. Error
bars show ±1 standard error. (D) Heatmap of significantly over‐ (red) and under‐represented (blue) GO slim categories in paralog sequences relative to full
transcriptomes. Non‐significant differences between the paralog set compared to the full transcriptome are depicted as gray.

6 of 9 | GOGETTER, A PIPELINE FOR GETTING GO SLIM ANNOTATIONS

 21680450, 2023, 4, D
ow

nloaded from
 https://bsapubs.onlinelibrary.w

iley.com
/doi/10.1002/aps3.11536 by Test, W

iley O
nline Library on [21/08/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://github.com/TransDecoder/TransDecoder

Case Study 3: Selecting a suitable reference
database

For five species of vittarioid ferns, we retrieved whole
transcriptomes and sets of duplicate genes (putative paralogs)
retained following a vittarioid‐specific whole genome duplica-
tion from Pelosi et al. (2022). To explore the effects of using
different reference databases in the BLAST step, we ran the
GOgetter pipeline for each input file using two reference
species: Arabidopsis thaliana and Ceratopteris richardii
Brongn. We chose to use the Ceratopteris genome as this
species is a model fern (Kinosian and Wolf, 2022), has a well‐
annotated genome, and is more closely related to the vittarioid
ferns than is Arabidopsis, with a divergence time of 105 mya
vs. 405 mya. For Ceratopteris, we followed the steps described
in Appendix 1 to generate a custom GO slim database using
Ceratopteris richardii v2.1 (Marchant et al., 2022) for the
BLAST database (files obtained from https://phytozome-next.
jgi.doe.gov/info/Crichardii_v2_1). The ‘plant_goslim’ list from
QuickGO (Binns et al., 2009) was used for the GO slim
mapping database (see Appendix 1), excluding terms related to
flowers and fruits: GO:0009908, flower development;
GO:0009856, pollination; and GO:0009835, fruit ripening.
Each gene set was passed through GOgetter with BLAST as
the similarity/homology search program, and hits were filtered
to remove those with E‐values > 1 × 10−5 and alignment
lengths < 100.

We found that there was a significantly lower proportion
of sequences annotated (F1,16 = 39.642, P = 1.06 × 10−5) in the
paralog gene sets compared to the full transcriptomes
(F1,16 = 8.712, P = 0.00938) when we used Arabidopsis as the
reference, but there was no interaction between the reference
used and the gene set (F1,16 = 0.021, P = 0.88695) (Figure 2C).
Interestingly, we did not see a significant impact of the
reference database on the proportion of hits passing
(F1,16 = 1.206, P = 0.2886), but the proportion of hits passing
was significantly less for the paralogs compared to full
transcriptomes (F1,16 = 6.084, P = 0.0253). The differences
observed between the full transcriptomes and paralog sets
may be a result of fragmentation or mutation in paralogs
over time following whole genome duplication and subse-
quent failure to assign an annotation because of these factors.

We compared the composition of each pair of gene sets
(full transcriptome and putative paralogs) for each species
individually using Ceratopteris richardii as the reference. In
every case, there were significant differences in the overall
functional categorization between full transcriptomes and
paralogs (P < 10−16). Following Barker et al. (2008) and Shi
et al. (2010), GO slim categories with χ2 residuals greater
than 2 are considered to be over‐represented and those with
residuals less than –2 are considered to be under‐
represented in the paralog gene set relative to the full
transcriptome. In general, we found that the functions of
genes retained in duplicate following this whole genome
duplication were largely convergent across species
(Figure 2D). There were several GO slims that showed
either over‐representation (e.g., binding, endoplasmic

reticulum, ribosome) or under‐representation (e.g., nucleo-
tide binding, metabolic process, protein modification
process) in the paralogs of all or most species (Figure 2D).
In other cases, there were opposite trends, where categories
were over‐represented in one species but under‐represented
in another (e.g., cell cycle, transport; Figure 2D), suggesting
that there may be lineage‐specific processes that have
shaped genome evolution following the vittarioid‐specific
whole genome duplication (Pelosi et al., 2022).

CONSIDERATIONS

GOgetter does not perform gene prediction, structural
annotation, or any statistical analyses; rather this pipeline
was developed to provide a straightforward method for
generating a summary of functions for a set of input gene
sequences. As we have shown, the characterization of gene
sets to higher‐order functional categories (i.e., GO slims) is
relatively robust to differing sensitivities in sequence
similarity searches, filtering criteria, and divergence from
the reference database. While the case studies show that
results are stable, users should think critically before
running any annotation software, including GOgetter.
Importantly, sequence similarity does not translate directly
to gene function; the true function of a gene product cannot
be determined based on sequence similarity/homology
searches alone and requires extensive experimental work
to fully ascertain. Furthermore, differing selective regimes
on duplicated gene copies (reviewed by Li et al., 2021) can
lead to different functions in organisms diverged by millions
of years. Given these caveats, functional annotation of genes
is still largely based on the transfer of annotations inferred
from sequence similarity/homology. We recommend that
users employing GOgetter for annotation of gene sets to GO
slims: (1) employ BLAST rather than DIAMOND, given the
disparity in the number of significant hits and the
proportion of input sequences annotated to a GO slim;
(2) use an appropriate reference database; and (3) determine
the effect of altering filtering criteria before using the
defaults, which are lenient.

CONCLUSIONS

GOgetter is a lightweight pipeline that provides the user
with an easy‐to‐use method for obtaining, summarizing,
and visualizing a complete set of GO slim category
annotations for a set of input nucleotide sequence data.
The sequence data can be generated by any method, and
could come from any organism, although the pipeline is set
by default to use annotations from Arabidopsis thaliana as a
reference. The output table files provide a summary of GO
slim category annotations in both raw count and frequency
format, which can be used in downstream statistical
analyses. The visualization step provides publication‐ready
figures, including comparisons of the distribution of GO

GOGETTER, A PIPELINE FOR GETTING GO SLIM ANNOTATIONS | 7 of 9

 21680450, 2023, 4, D
ow

nloaded from
 https://bsapubs.onlinelibrary.w

iley.com
/doi/10.1002/aps3.11536 by Test, W

iley O
nline Library on [21/08/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://phytozome-next.jgi.doe.gov/info/Crichardii_v2_1
https://phytozome-next.jgi.doe.gov/info/Crichardii_v2_1

slim categories across input files. This pipeline is the first to
provide such a tool for summarizing and illustrating
GO slim annotation information directly from nucleotide
sequence data.

AUTHOR CONTRIBUTIONS
N.A., R.R.M., and M.S.B. wrote the original GOgetter
scripts. E.B.S. and J.A.P. updated and finalized the pipeline.
E.B.S. and J.A.P. drafted the manuscript, and all authors
contributed to and approved the final version.

ACKNOWLEDGMENTS
The authors thank the members of the Barker and Dlugosch
labs at the University of Arizona, the Sessa lab at the University
of Florida, and the Barbazuk lab at the University of Florida for
the use of computing resources. Funding was provided by the
National Science Foundation (DEB #1844930 to E.B.S.).

DATA AVAILABILITY STATEMENT
GOgetter is available under a GNU General Public License
(GPL) at https://github.com/jessiepelosi/GOGetter.

ORCID
Emily B. Sessa http://orcid.org/0000-0002-6496-5536
Rishi R. Masalia http://orcid.org/0000-0003-3661-690X
Michael S. Barker http://orcid.org/0000-0001-7173-1319
Jessie A. Pelosi http://orcid.org/0000-0002-2861-3445

REFERENCES
Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic

local alignment search tool. Journal of Molecular Biology 215: 403–410.
Ashburner, M., C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry,

A. P. Davis, et al. 2000. Gene Ontology: Tool for the unification of
biology. Nature Genetics 25(1): 25–29.

Barker, M. S., N. C. Kane, M. Matvienko, A. Kozik, R. W. Michelmore,
S. J. Knapp, and L. H. Rieseberg. 2008. Multiple paleopolyploidiza-
tions during the evolution of the Compositae reveal parallel patterns
of duplicate gene retention after millions of years. Molecular Biology
and Evolution 25: 2445–2455.

Binns, D., E. Dimmer, R. Huntley, D. Barrell, C. O'Donovan, and
R. Apweiler. 2009. QuickGO: A web‐based tool for Gene Ontology
searching. Bioinformatics 25: 3045–3046.

Bryant, D. M., K. Johnson, T. DiTommaso, T. Tickle, M. B. Couger,
D. Payzin‐Dogru, T. J. Lee, et al. 2017. A tissue‐mapped axolotl de
novo transcriptome enables identification of limb regeneration
factors. Cell Reports 18: 762–776.

Buchfink, B., C. Xie, and D. H. Huson. 2015. Fast and sensitive protein
alignment using DIAMOND. Nature Methods 12: 59–60.

Buchfink, B., K. Reuter, and H.‐G. Drost. 2021. Sensitive protein alignments
at tree‐of‐life scale using DIAMOND. Nature Methods 18: 366–368.

Conesa, A., S. Götz, J. M. García‐Gómez, J. Terol, M. Talón, and M. Robles.
2005. Blast2GO: A universal tool for annotation, visualization and
analysis in functional genomics research. Bioinformatics 21: 3674–3676.

de Crécy‐Lagard, V., R. Amorin de Hegedus, C. Arighi, J. Babor,
A. Bateman, I. Blaby, C. Blaby‐Haas, et al. 2022. A roadmap for the
functional annotation of protein families: A community perspective.
Database 2022: baac062.

Eddy, S. R. 2011. Accelerated profile HMM searches. PLoS Computational
Biology 7: e1002195.

Forsythe, E. S., C. E. Grover, E. R. Miller, J. L. Conover, M. A. Arick,
M. C. F. Chavarro, S. C. M. Leal‐Bertioli, et al. 2022. Organellar
transcripts dominate the cellular mRNA pool across plants of varying

ploidy levels. Proceedings of the National Academy of Sciences, USA
119: e2204187119.

Gene Ontology Consortium. 2023. The Gene Ontology knowledgebase in
2023. Genetics 224(1): iyad031.

Harris, M. A., J. Clark, A. Ireland, J. Lomax, M. Ashburner, R. Foulger,
K. Eilbeck, et al. 2004. The Gene Ontology (GO) database and
informatics resource. Nucleic Acids Research 32: D258–D261.

Howard, C. C., C. M. Tribble, J. Martínez‐Gómez, E. B. Sessa, C. D. Specht, and
N. Cellinese. 2021. 1, 2, 3, GO! Venture beyond gene ontologies in plant
evolutionary research. American Journal of Botany 108: 361–365.

Kinosian, S. P., and P. G. Wolf. 2022. The biology of C. richardii as a tool to
understand plant evolution. eLife 11: e75019.

Krogh, A., B. Larsson, G. von Heijne, and E. L. L. Sonnhammer. 2001.
Predicting transmembrane protein topology with a hidden Markov
model: Application to complete genomes. Journal of Molecular
Biology 305: 567–580.

Kumar, S., M. Suleski, J. M. Craig, A. E. Kasprowicz, M. Sanderford, M. Li,
G. Stecher, and S. B. Hedges. 2022. Timetree 5: An expanded resource for
species divergence times. Molecular Biology and Evolution 39: msac174.

Li, F.‐W., P. Brouwer, L. Carretero‐Paulet, S. Cheng, J. de Vries, P.‐M. Delaux,
A. Eily, et al. 2018. Fern genomes elucidate land plant evolution and
cyanobacterial symbioses. Nature Plants 4: 460–472.

Li, Z., M. T. W. McKibben, G. S. Finch, P. D. Blischak, B. L. Sutherland,
and M. S. Barker. 2021. Patterns and processes of diploidization in
land plants. Annual Review of Plant Biology 72: 387–410.

Marchant, D. B., G. Chen, S. Cai, F. Chen, P. Schafran, J. Jenkins, S. Shu,
et al. 2022. Dynamic genome evolution in a model fern. Nature Plants
8: 1038–1051.

Marx, H. E., S. A. Jorgensen, E. Wisely, Z. Li, K. M. Dlugosch, and
M. S. Barker. 2021. Pilot RNA‐seq data from 24 species of vascular
plants at Harvard Forest. Applications in Plant Sciences 9: e11409.

One Thousand Plant Transcriptomes Initiative. 2019. One thousand
plant transcriptomes and the phylogenomics of green plants. Nature
574: 679–685.

Pearson, W. R. 2013. An introduction to sequence similarity (“homology”)
searching. Current Protocols in Bioinformatics 42: 3.1.1–3.1.8.

Pelosi, J. A., E. H. Kim, W. B. Barbazuk, and E. B. Sessa. 2022.
Phylotranscriptomics illuminates the placement of whole genome
duplications and gene retention in ferns. Frontiers in Plant Science 13:
882441.

Petersen, T. N., S. Brunak, G. von Heijne, and H. Nielsen. 2011. SignalP
4.0: Discriminating signal peptides from transmembrane regions.
Nature Methods 8: 785–786.

Qi, X., L.‐Y. Kuo, C. Guo, H. Li, Z. Li, J. Qi, L. Wang, et al. 2018. A well‐
resolved fern nuclear phylogeny reveals the evolution history of
numerous transcription factor families. Molecular Phylogenetics and
Evolution 127: 961–977.

Shi, T., H. Huang, and M. S. Barker. 2010. Ancient genome duplications
during the evolution of kiwifruit (Actinidia) and related Ericales.
Annals of Botany 106: 497–504.

Supek, F., M. Bošnjak, N. Škunca, and T. Šmuc. 2011. REVIGO
summarizes and visualizes long lists of gene ontology terms. PLoS
ONE 6: e21800.

Tian, T., Y. Liu, H. Yan, Q. You, X. Yi, Z. Du, W. Xu, and Z. Su. 2017.
agriGO v2.0: A GO analysis toolkit for the agricultural community,
2017 update. Nucleic Acids Research 45: W122–W129.

SUPPORTING INFORMATION
Additional supporting information can be found online in
the Supporting Information section at the end of this article.

Appendix S1. Changes in the proportion of BLAST hits
returned (left column) and transcripts annotated (right column)
for various values of four filtering criteria (top row to bottom
row: E‐value, alignment length, bitscore, percent identity).

8 of 9 | GOGETTER, A PIPELINE FOR GETTING GO SLIM ANNOTATIONS

 21680450, 2023, 4, D
ow

nloaded from
 https://bsapubs.onlinelibrary.w

iley.com
/doi/10.1002/aps3.11536 by Test, W

iley O
nline Library on [21/08/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://github.com/jessiepelosi/GOGetter
http://orcid.org/0000-0002-6496-5536
http://orcid.org/0000-0003-3661-690X
http://orcid.org/0000-0001-7173-1319
http://orcid.org/0000-0002-2861-3445

How to cite this article: Sessa, E. B., R. R. Masalia, N.
Arrigo, M. S. Barker, and J. A. Pelosi. 2023. GOgetter:
A pipeline for summarizing and visualizing GO slim
annotations for plant genetic data. Applications in Plant
Sciences 11(4): e11536.
https://doi.org/10.1002/aps3.11536

Appendix 1: Instructions for generating the custom
Reference Protein Database and Reference GO slim
Database files.

1. A set of reference proteins in a single FASTA file (usually
in the form of representative gene models of a genome)
can be used to generate a BLAST database using the
following command:

makeblastdb ‐in [taxon.fasta.pep] ‐parse_seqids ‐title
“[Taxon] Database” ‐dbtype prot

2. Two options are available for generating a custom GO
slim mapping file.
a. Users can generate a GO slim mapping file from a set of

genes annotated to GO terms and a predefined set of GO
slim categories; a Plant GO slim (‘plant_goslim’) is already
available. From the main page of QuickGO (https://www.
ebi.ac.uk/QuickGO/), select “Explore Biology” and then
“Predefined GO slims”. Here, we choose “goslim_plant”
as an example, and then select “Apply”. Refine the
selection on the next page as needed (i.e., by removing
irrelevant categories as described above, such as
flowering‐related terms in an analysis of ferns) and
export as a tab‐delimited file (TSV). The “GO TERM”
column corresponds to the GO slim term for the
associated GO term in the “SLIMMED FROM” column.
A separate table with the GO slim term and the GO slim
name can also be used to merge and associate the name to
the term.

b. QuickGO provides several documents on how to generate
a custom GO slim database from a set of predefined GO

terms (https://www.ebi.ac.uk/QuickGO/help/slims). Users
can input the GO terms they wish to use as GO slim
categories and filter the associated GO terms to each
category by selecting “Explore Biology”, switching to
“Input Your Own”, and pasting the GO terms of interest.
The resulting table can be filtered based on the user's
preferences and exported as a tab‐delimited file (TSV).
The “GO TERM” column corresponds to the GO slim
term for the associated GO term in the “SLIMMED
FROM” column. A separate table with the GO slim term
and the GO slim name can also be used to merge and
associate the name to the term.

3. Associate the gene/locus information with the accompany-
ing GO slim term using a merge function in R or Python.
The annotated gene set should have columns for the locus,
gene, and corresponding GO term (this can be renamed to
“SLIMMED FROM” for the next step). Tables can be
merged on the “SLIMMED FROM” columns that will
associate the GO term (and therefore the gene/locus with a
GO slim term). The resulting tab‐delimited file can be
further edited for use as the GO slim mapping file required
by GOgetter.

4. The custom GO slim mapping file must follow the
format used in the TAIR Arabidopsis thaliana file
(ATH_GO_GOSLIM_2021.txt). This file consists of 15
columns (see https://www.arabidopsis.org/download_
files/GO_and_PO_Annotations/Gene_Ontology_
Annotations/ATH_GO.README.txt for descriptions of
each column). The gene/locus of the reference should be in
the “ObjectName” column and the corresponding GO slim
term should be in the “GOSlimTerm” column. While the
other columns must be present, they can be left empty. The
gene/locus name must follow the formatting of the
Arabidopsis thaliana annotation (e.g., locus AT1G01010;
gene AT1G01010.1). A string of letters, numbers, and
underscores may be used in the locus name, and the gene
should be the locus name followed by a period and a digit.
Names of loci and genes should also be adjusted to follow
this system in the input FASTA file used as the BLAST
database.

GOGETTER, A PIPELINE FOR GETTING GO SLIM ANNOTATIONS | 9 of 9

 21680450, 2023, 4, D
ow

nloaded from
 https://bsapubs.onlinelibrary.w

iley.com
/doi/10.1002/aps3.11536 by Test, W

iley O
nline Library on [21/08/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://doi.org/10.1002/aps3.11536
https://www.ebi.ac.uk/QuickGO/
https://www.ebi.ac.uk/QuickGO/
https://www.ebi.ac.uk/QuickGO/help/slims
https://www.arabidopsis.org/download_files/GO_and_PO_Annotations/Gene_Ontology_Annotations/ATH_GO.README.txt
https://www.arabidopsis.org/download_files/GO_and_PO_Annotations/Gene_Ontology_Annotations/ATH_GO.README.txt
https://www.arabidopsis.org/download_files/GO_and_PO_Annotations/Gene_Ontology_Annotations/ATH_GO.README.txt

	GOgetter: A pipeline for summarizing and visualizing GO slim annotations for plant genetic data
	METHODS AND RESULTS
	Computational requirements and implementation of GOgetter
	Sequence similarity/homology searching
	Parsing best hits and summarizing GO slim composition
	Merging summary tables and visualizing results
	Case studies
	Case Study 1: Applicability across land plants
	Case Study 2: Parameters in similarity searches and resulting higher-order functional categories
	Case Study 3: Selecting a suitable reference database

	CONSIDERATIONS
	CONCLUSIONS
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES
	SUPPORTING INFORMATION
	Appendix
	Instructions for generating the custom Reference Protein Database and Reference GO slim Database files.

