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Abstract In extreme astrophysical environments such as
core-collapse supernovae and binary neutron star mergers,
neutrinos play a major role in driving various dynamical and
microphysical phenomena, such as baryonic matter outflows,
the synthesis of heavy elements, and the supernova explosion
mechanism itself. The interactions of neutrinos with matter
in these environments are flavor-specific, which makes it of
paramount importance to understand the flavor evolution of
neutrinos. Flavor evolution in these environments can be a
highly nontrivial problem thanks to a multitude of collective
effects in flavor space, arising due to neutrino-neutrino (ν-ν)
interactions in regions with high neutrino densities. A neu-
trino ensemble undergoing flavor oscillations under the influ-
ence of significant ν-ν interactions is somewhat analogous
to a system of coupled spins with long-range interactions
among themselves and with an external field (‘ long-range’
in momentum-space in the case of neutrinos). As a result, it
becomes pertinent to consider whether these interactions can
give rise to significant quantum correlations among the inter-
acting neutrinos, and whether these correlations have any
consequences for the flavor evolution of the ensemble. In par-
ticular, one may seek to utilize concepts and tools from quan-
tum information science and quantum computing to deepen
our understanding of these phenomena. In this article, we
attempt to summarize recent work in this field. Furthermore,
we also present some new results in a three-flavor setting,
considering complex initial states.
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1 Neutrinos in extreme astrophysical environments

Neutrinos, owing to their feeble interactions with matter,
are highly efficient at transporting energy, entropy, and lep-
ton number in extreme astrophysical settings such as core-
collapse supernovae and binary compact object mergers
(binary neutron star or black hole - neutron star), as well as
during certain epochs in the early universe (e.g., see Refs. [1–
6]). As a result, they are expected to play a key role in influ-
encing the dynamics and nucleosynthesis in these environ-
ments.

The flavor-specific interactions that govern the neutrino
transport and determine the free neutron and proton abun-
dances in these environments are charged current (anti-
)neutrino captures that convert neutrons into protons, and
vice versa. Given the typical temperatures and densities
of these environments, neutrinos decouple with energies of
O(1–10) MeV, and therefore, the charged-current interac-
tions of μ and τ flavor (anti-)neutrinos are energetically
suppressed. Since these charged current processes govern
the energy transport as well as the neutron-to-proton ratio
(or equivalently electron fraction), which in turn determines
nucleosynthesis yields (e.g., [6–13]), the flavor-asymmetric
nature of charged-current capture implies that a complete
understanding of neutrino flavor evolution in these environ-
ments is crucial [14–23].

In this paper we first summarize recent progress in our
understanding of neutrino oscillations in extreme astro-
physical environments, particularly the quantum many-body
aspect of collective neutrino oscillation physics driven by ν-ν
interactions in high neutrino densities (Sects. 2–6). In Sect. 7,
we show some new results of many-body neutrino calcula-
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tions in a three-flavor setup. Finally, we offer concluding
remarks in Sect. 8.

2 Collective neutrino oscillations

Neutrinos experience flavor oscillations thanks to a misalign-
ment between the propagation (mass) eigenstates and the
eigenstates of the weak interaction (flavor). This misalign-
ment, present even in vacuum, can be modified in interest-
ing ways when neutrinos pass through a medium. Where
the medium consists of baryons and charged leptons, neu-
trino coherent forward-scattering with these particles can
lead to suppressed or resonantly enhanced flavor conversion
through the Mikheyev-Smirnov-Wolfenstein (MSW) mech-
anism [24–26]. This mechanism is the widely accepted solu-
tion for explaining the observed solar neutrino deficit. Even
more fascinating is the scenario where the neutrinos them-
selves form a significant component of the background, as
can be the case in extreme astrophysical environments like
core-collapse supernovae, binary compact object mergers,
and the early universe. In this situation, neutrinos experi-
ence an additional forward-scattering potential on account of
pairwise weak neutral current interactions with other neutri-
nos [27,28]. In the low-energy limit, this can be represented
by the four-Fermi effective operator

Hint ≡ GF√
2

∑

α,β

(ναγ μνα)(νβγμνβ), (1)

Unlike the interactions with baryons and charged leptons,
which are diagonal in the flavor basis, the coherent ν-ν scat-
tering can give rise to both diagonal and off-diagonal poten-
tials, each of which depend on the flavor composition of the
neutrino background [29–31]. In this sense, the background
itself becomes dynamical and the flavor evolution histories of
the interacting neutrinos thus become coupled to one another.
This coupling introduces a non-linearity and a nontrivial geo-
metrical complexity to the flavor evolution problem, giving
rise to many kinds of collective oscillation modes in flavor
space. See, for example, the reviews in Refs. [32–36] and
references therein. In particular, a lot of the recent litera-
ture deals with the aptly named “ fast flavor transformations”
which occur as a result of nontrivial angular distributions in
the neutrino flavor field (reviewed in Refs. [34–36]). Flavor
instabilities arising in this manner grow on a much faster
timescale compared to the instabilities present in physical
setups with a greater degree of angular symmetry, hence the
moniker “ fast”.

Another feature of this problem that has received atten-
tion in recent years is the quantum nature of these collective
effects, as part of a broader focus on quantum simulations in
high energy physics [37]. The pairwise interactions between

neutrinos that give rise to the coherent ν-ν scattering poten-
tials assume the form of a spin-spin coupling, when expressed
using “ isospin” operators defined in the Hilbert space of
neutrino flavor states (described in detail in the following
section). Depending on whether one considers two or three
flavors, the isospin operators for each neutrino form a SU(2)
or SU(3) algebra. The system of interacting neutrinos then
constitutes a quantum many-body system, with the size of
the associated Hilbert space scaling exponentially with the
number of particles in the system (2N or 3N for a system
of N neutrinos and anti-neutrinos in two or three flavors,
respectively).

Owing to the immense computational difficulty of ana-
lyzing a many-body system with an appreciable number of
neutrinos, it becomes necessary to invoke certain simplify-
ing assumptions. One common approach involves postulat-
ing that the effect of multi-particle quantum correlations on
the flavor evolution will remain negligible in the large-N
limit, as a result of a large number of random phases being
added incoherently. With this assumption, one is allowed to
construct a simplified Hamiltonian, where the two-particle
interaction operator is replaced with an effective one-particle
interaction with a “ mean-field” representing all of the back-
ground particles [31,38,39]. In this “ Random phase approx-
imation”, the effective dimensionality of the state-variable
space is reduced to n f N (where n f is the number of flavors),
thus making the problem much more tractable numerically.

However, this simplification naturally raises the question
as to whether such an assumption can lead to the exclusion of
any crucial physics from the problem. Several recent studies
have attempted to answer this question using a variety of
different physical setups and numerical methods. In what
follows, we review some of the recent progress.

3 Physical setup and neutrino Hamiltonian

In much of the recent literature investigating many-body neu-
trino correlations, the neutrinos are modeled as interacting
plane waves in a box of volume V (which can be taken to be
time-dependent to mimic the decrease of the neutrino num-
ber density with distance from the source). In this picture, the
finite size of the neutrino wave-packet (and consequently, the
finiteness of the interaction interval between any two neutri-
nos) is not taken into account. Therefore, this setup may not
be fully suitable for analyzing certain features of this prob-
lem, such as effects of incoherent scattering on the neutrino
flavor conversion [40]. Nevertheless, it can be a useful initial
step for illustrating the feedback effect from non-trivial ν-ν
correlations on the flavor dynamics, in a simplified setting. In
order to fully validate or invalidate the mean-field approxi-
mation, more detailed analyses including wave-packet effects
may be needed in the future.
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The Hamiltonian describing a system of interacting neu-
trinos can be written in terms of generators of SU (n f ) where
n f are the number of neutrino flavors.

For instance, in a two-flavor model, the SU(2) generators,
in terms of the Fermionic creation and annihilation operators,
are defined as [41]

J+
p = a†

1(p) a2(p) , (2)

J−
p = a†

2(p)a1(p) , (3)

J zp = 1

2

(
a†

1 (p)a1(p) − a†
2 (p)a2(p)

)
, (4)

in the mass basis. Alternatively, one may construct a fla-
vor basis SU(2) algebra, with ae and ax replacing a1 and a2

(where x represents an appropriate superposition of μ and τ

flavors). In the spin-1/2 representation, one can write these
operators in terms of Pauli matrices: i.e., �Jp = �σp/2, where
�σp is a vector of Pauli matrices defined in the subspace of the
neutrino with momentum p. In what follows, we also refer to
these SU(n f ) generators as neutrino “ isospin” operators. In
the two-flavor context, isospin “ up” and “ down” can refer to
|ν1〉 and |ν2〉, respectively, in the mass basis, or |νe〉 and |νx 〉
in the flavor basis. In this two-flavor picture, a Hamiltonian
consisting of terms that represent vacuum mixing as well as
ν-ν interactions.1 can be written as

H =
∑

p

ωp �B · �Jp +
√

2GF

V

∑

p,q

(1 − p̂ · q̂) �Jp · �Jq, (5)

where �B can be interpreted as a “ background field”
that points along the direction of the mass basis. It is
equal to (0, 0,−1) in the mass-basis representation, or
(sin 2θ, 0,− cos 2θ) in the flavor-basis representation. ωp =
δm2/(2|p|) are the vacuum oscillation frequencies for neu-
trinos with momenta p, with δm2 being the mass-squared
difference between the eigenstates. p̂ and q̂ are the unit vec-
tors along the momenta of interacting neutrino pairs, and V
is the quantization volume. One can define a ν-ν coupling
parameter μ ≡ √

2GFN/V , where N is the total number
of interacting neutrinos. The strength of the ν-ν interactions
thus depends on the neutrino number density and the intersec-
tion angle between their trajectories of the interacting neu-
trinos. This dependence introduces an additional geometric
complexity to the problem, aside from the complexity associ-
ated with the exponential scaling of the Hilbert space. Note

1 Here, we exclude the term representing neutrino interactions with
ordinary matter (e.g., baryons and charged leptons), since it has a struc-
ture that is conceptually similar to the vacuum oscillation term—i.e.,
consisting of individual neutrinos interacting with a background. In
regimes where collective oscillation effects typically dominate, this
matter-interaction term can be “ rotated away” with a suitable change-
of-basis transformation, resulting in a modified mixing angle and mass-
squared splitting compared to the corresponding values in vacuum.

that the Hamiltonian of Eq. (5) consists only of terms that
either preserve or exchange the momenta of interacting neu-
trino pairs (forward and exchange terms), since these can be
added up coherently in the mean-field limit. Recent work has
argued that these terms should not enjoy special status in an
exact many-body calculation, unlike in the mean field limit,
and, as a result, consideration of a more generalized Hamil-
tonian with interaction terms besides forward and exchange
scattering is warranted [42]. This addition could be an impor-
tant avenue to pursue in future studies.

In the mean field approach, the interaction term in the
Hamiltonian is replaced with an effective one-particle oper-
ator, using the following prescription:

�Jp · �Jq ≈ �Jp · 〈 �Jq〉 + 〈 �Jp〉 · �Jq − 〈 �Jp〉 · 〈 �Jq〉. (6)

This approximation in essence enforces that the wavefunc-
tions of individual neutrinos remain uncorrelated through the
course of the evolution (assuming that the neutrino ensemble
starts out in an uncorrelated state), and the system as a whole
thereby remains in a direct product state, greatly reducing
the effective number of independent amplitudes from nNf to
n f N .

4 Quantum dynamics of collective neutrino oscillations

4.1 Initial work

It was recognized early on that ν-ν interactions give rise
to non-diagonal terms in the quantum many-body prob-
lem, which may not always be factorizable in terms of a
one-particle effective approximation [29,30]. In subsequent
attempts to ascertain the validity of the one-particle effective
approximation [43–47], the flavor evolution of interacting
neutrinos was analyzed with two different approaches: (i)
using two intersecting beams of neutrinos, where the flavor
evolution was described in terms of a sequence of elemen-
tary scattering amplitudes, and (ii) using a neutrino ensemble
represented as interacting plane waves in a box.

Initial disagreement about the possibility of quantum
entanglement developing among neutrinos [43,44] culmi-
nated in the understanding that the timescales for the build-
up of entanglement suggest the possibility of incoherent
effects [45]. These conclusions were further generalized in
Ref. [46]. On the other hand, these analyses employed sev-
eral simplifications such as omission of the one-body terms in
the Hamiltonian. Even in the mean-field approximation, the
interplay between vacuum oscillations and ν-ν interaction
terms give rise to interesting collective phenomena such as “
spectral splits” [48–52]. Furthermore, it has been argued [47]
that even an incoherent timescale for the evolution does not
necessarily preclude the presence of significant multi-particle
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correlations. Therefore, the quantum many-body dynamics
of collective neutrino oscillations remains an interesting topic
that merits further exploration.

These early results in the past predicted either a vanish-
ingly small contribution [45,46] in the limit of large sys-
tem size N , or substantial flavor evolution over time scales
τF ∼ μ−1 log(N ) that can remain relevant for large sys-
tems [43,53]. More recently, the role of entanglement and
quantum effects in the out-of-equilibrium dynamics [54] of
neutrinos has received renewed interest (e.g., [55–57] and
subsequent works mentioned later in the text). Note that fla-
vor oscillations on the time scale τF can be considered to
be “ fast”, analogous to the classification in the mean-field
literature, wherein “ fast” and “ slow” oscillations refer to
time scales ∼ μ−1 and ∼ (μω)−1/2 (or ω), respectively.

4.2 Quantifying entanglement in a neutrino ensemble

To define the amount of entanglement in an interacting neu-
trino system, one must first devise a partition. For instance,
one can consider all neutrinos travelling parallel to one
another as a “ beam” or “ sub-system” and separate the sys-
tem in terms of beams. Alternatively, one may simply sepa-
rate each neutrino from the rest. In either case, one can define
the reduced density matrix of sub-system A by taking a par-
tial trace of the full density matrix ρ over the complement2

of A: i.e., ρA ≡ TrAc [ρ]. For example, the reduced density
matrix of a single neutrino of momentum q can be given as

ρq =
2∑

i1,...,îq ,...,iN=1

〈νi1 . . . ν̂iq . . . νiN |ρ|νi1 . . . ν̂iq . . . νiN 〉,

(7)

where thê symbol denotes exclusion. The entropy of entan-
glement of sub-system A with the rest of the ensemble is then
defined as the von Neumann entropy of the reduced density
matrix:

SA = −Tr[ρA log ρA] = −
∑

j

λ
(A)
j log λ

(A)
j , (8)

where λ
(A)
j are the eigenvalues of the reduced density matrix

ρA. Another important measure of entanglement is the Rényi
entropy, which is defined as

Rγ,A = 1

1 − γ
log[Tr(ργ

A)]. (9)

2 For a multi-neutrino system in a pure quantum state denoted by wave-
function |
〉, the density matrix of the entire system is ρ = |
〉〈
|.
The complement of sub-system A is defined so that A ∪ Ac represents
the full quantum system.

The von Neumann entropy can be expressed as Rényi entropy
in the limit of γ → 1

SA = lim
γ→1

Rγ,A = −Tr[ρA log(ρA)]. (10)

In multi-beam systems, one can compactly represent the
wavefunction of the system in a flavor angular momentum
basis, e.g.,

|
〉 =
∑

mA,mB ,...

amA,mB ,...|mA,mB, . . .〉, (11)

where mA is the difference between the number of electron
neutrinos versus the rest in beam A. As an example, the Rényi
entropy of beam A is given as [58],

Rγ,a = 1

1 − γ
log

[
∑

mA

(
∑

mB ,...

|amA,mB ,...|2
)γ ]

. (12)

The evolution of the interacting neutrino system can be
characterized in terms of the “ Polarization vectors” of indi-
vidual neutrinos, which are related to the expectation values
of the neutrino isospin operators defined previously,3 i.e.,
�Pq = 2〈 �Jq〉. In terms of these polarization vector compo-

nents, the reduced density matrix for an individual neutrino
can be written as

ρq = 1

2

[
1 + Pq,z Pq,x − iPq,y

Pq,x + iPq,y 1 − Pq,z

]
, (13)

and therefore the entanglement entropy can be related to the
length of the Polarization vector, in accordance with

S(ωq) = −1 − Pq
2

log

(
1 − Pq

2

)
−1 + Pq

2
log

(
1 + Pq

2

)
.

(14)

Note that, in the mean-field limit, the reduced density
matrix ρq is simply a pure state of the neutrino q, i.e.,

ρ
(MF)
q = |ψq〉〈ψq |, where |ψq〉 is the wavefunction of neu-

trino q. In that case, the density matrix ρq is that of an
unmixed state with Tr[ρ2

q ] = 1, implying Pq = 1 and
S(ωq) = 0. In the many-body case where neutrino q may
be entangled with the other neutrinos, ρq takes the form of a
mixed-state density matrix with Tr[ρ2

q ] < 1 and S(ωq) = 0.
A closely related measure of entanglement comes in the

form of left-right entanglement entropy, convenient partic-
ularly in the study of a two-beam model as noted first by

3 In the case of neutrino beams, the definition of the isospin operators
can be generalized to represent the entire beam: �JA = ∑

q∈A
�Jq . The

polarization vector of the beam is then given by �PA = 2〈 �JA〉/NA.
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Ref. [57]. When calculated via tensor network methods, this
entanglement entropy can be expressed in terms of the sin-
gular values vk(b) (k = 1, . . . , rb) encoding each bond b
between localized matrices of the wave function network
[57]:

SLR(b) = −
∑

k

vk(b)
2 log

[
vk(b)

2
]
. (15)

One can show for matrix product states that SLR(b) ≤
log(rb), where rb ≤ nmin(b,N−b)

f is the [truncated] dimension
of bond b. For more detailed discussion of how to calculate
these singular values and related entropy formulae, see e.g.,
Refs. [59–63].

In kind, one can compute quantum negativity,

Nq = 1

2

(√
Tr

[(
ρTq

)†
ρTq

]
− 1

)
, (16)

where ρTq is a partial transpose over the degrees of freedom
for neutrino q. This entanglement measure was briefly con-
sidered in Ref. [55], however, its behavior over time evolution
was found to be qualitatively similar to entanglement entropy
of each neutrino mode, while the latter was computationally
much less expensive to find.

Furthermore, one can consider measurements of entangle-
ment to describe an entire global wave function, as opposed
to the bipartite measures listed above. For example, the n-
tangle [64] can be used to measure of entanglement globally
in collective oscillations [65]. Functionally, one defines a n-
tangle measure for a system of size N as the overlap of a state
and its complex conjugate with n spin flips. More precisely, if
one spin flips a subset of spins s ⊆ {1, . . . , N }, then we con-
sider |
〉 �→ σy(s1) · · · σy(sn)|
∗〉, and the corresponding
n-tangle is

τ (s)
n =

∣∣∣∣∣

†

[
n⊗

i=1

σy(si )

]

∗

∣∣∣∣∣

2

. (17)

Moreover, one can study entanglement over size n ≤ N
subsystems via an average over combinations, τn = ∑

s τ
(s)
n .

4.3 The single-angle limit: an integrable system

In a non-homogeneous environment like a core-collapse
supernova, the dependence of the pairwise ν-ν interaction
strength on their respective trajectories implies that the fla-
vor evolution of a neutrino can, in general, depend on the
emission angles (polar and azimuthal) with respect to the
radial direction. This dependence vastly increases the num-
ber of degrees of freedom in the problem, and therefore, a
common workaround—the single-angle approximation—is

to replace all of the trajectory-dependent interaction strengths
among pairs of neutrinos with a single, appropriately chosen
classical average. In this limit, one can define a trajectory-
averaged interaction parameter μ̄ ≡ (

√
2GFN/V )〈1−p̂ ·̂q〉,

which then depends only on the distance from the source. The
Hamiltonian can then be re-written in a more simplified form:

H =
∑

ωp

ωp �B · �Jωp + μ̄

N
�J · �J . (18)

where �J = ∑
ωp

�Jωp is the total neutrino isospin. Since the
flavor evolution becomes trajectory-independent with this
approximation, the neutrinos can be indexed simply by the
magnitudes of their momenta (or by their vacuum oscillation
frequencies ωp). For a neutrino source with spherically sym-
metric emission from a single surface of radius Rν (a.k.a.
the “ neutrino bulb”—often used to model supernova neu-
trino emission [48,66]), the trajectory averaging leads to the
following expression for μ̄:

μ̄(r) = μ0

⎡

⎣1 −
√

1 −
(
Rν

r

)2
⎤

⎦
2

, (19)

where r is the distance from the center of the source. We also
define μ0 ≡ (GF/

√
2)(N/V ) = μ̄(Rν) to be the interaction

strength at r = Rν . Here, we also assume time-invariance of
the neutrino emission from the source; otherwise μ̄ would
depend on both radius r and time t . This invariance can be
a reasonably good approximation since the timescales over
which the emission changes significantly [O(s)] are much
longer than the light-crossing times across the supernova
envelope [O(10 ms)]. In the units of ω0, a typical scale
for the vacuum oscillation frequency,4 μ0 can range from
∼ 106ω0 during the neutronization burst phase of a core-
collapse supernova to μ0 ∼ 105–104ω0 during the late-time
neutrino-driven wind phase.

The Hamiltonian from Eq. (18) has been shown to possess
a number of invariants (or conserved charges) [67], analogous
to the “ Gaudin magnets” [68] that had been previously iden-
tified as the conserved charges of the pairing-force Hamilto-
nian in nuclear and condensed-matter physics [69–71]. These
conserved charges signify the integrability of the Hamilto-
nian, which implies that exact eigenvalues and eigenstates
may in principle be obtained in terms of closed-form solu-
tions to a set of algebraic “Bethe-Ansatz” equations [72]. In
the context of a single-angle neutrino Hamiltonian, these pro-
cedures have been described and numerically implemented

4 For a 10 MeV neutrino energy and the atmospheric mass-squared
splitting δm2 � 2.3 × 10−4 eV2, this scale is ω0 ∼ 10−16 MeV.
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in recent literature [67,73,74]. These methods (and the asso-
ciated parallels with other integrable many-body Hamiltoni-
ans in physics) have facilitated calculations of the neutrino
flavor spectral split starting from an initial all-electron-flavor
many-body state [73], and yielded an explanation of this split
as a Bardeen-Cooper-Schrieffer (BCS)-Bose-Einstein Con-
densate (BEC) crossover-type phenomenon [75].

In the single-angle limit, flavor evolution in small-sized
systems [O(10–20) neutrinos, distributed across just as many
vacuum oscillation modes] has been studied either using
exact diagonalization methods [55,74], or through brute-
force numerical integration (e.g., fourth-order Runge-Kutta
with an adaptive time step) [56,76]. The amount of entan-
glement between neutrinos in these calculations is seen to be
correlated with the extent of the deviations from the mean-
field behaviour of the system [55,56] and with the location
of the spectral splits in the neutrino energy distributions [76].
An illustration of such a calculation with eight neutrinos dis-
tributed across uniformly-spaced oscillation frequencies, is
depicted in Fig. 1.

A particular class of models where the single-angle limit
becomes exact is one where the neutrinos are grouped into
two beams, and thus there is only one intersection-angle in the
system. Since the neutrinos within each beam are assumed to
always exist in a fully symmetrized state, the scaling of the
number of independent amplitudes with neutrino number N
becomes a bit more favourable, i.e., ∼ (N/Nbeams)

Nbeams−1 in
the absence of vacuum mixing, or the same expression with
Nbeams → Nbeams + 1 if vacuum mixing is included [77].
This picture permits calculations with up toO(106) neutrinos
in this setup, and, for different choices of initial conditions
and/or neutrino mixing parameters, the many-body evolution
for this configuration has been shown to either converge to
or deviate from the mean-field limit [77,78].

4.4 Multi-angle effects

The assumption of uniform, trajectory-independent cou-
plings induces additional symmetries in the system, other-
wise not present. Such symmetries can partition the Hilbert
space into disconnected sectors and limit neutrino flavor
entanglement. When the assumption is lifted, the number of
invariants of motion is greatly reduced relative to the single-
angle approximation, further complicating the analysis. In
such cases, one can treat exactly the time evolution only for
systems of up to N ∼ 20 neutrinos [56] in full generality.
Short of large scale quantum computers, capable of quickly
exploring the exponentially large Hilbert space, one can focus
on few beam systems. In such cases the number of neutri-
nos may increase, but the number of momenta directions
is kept rather low. Even in these simplified setups, rather
surprising results can be found, where the large-N behav-
ior is dependent on the angle between beams. In Ref. [58],

the authors found that in dense neutrino systems (ignoring
vacuum oscillations), the beyond-mean-field behavior scales
logarithmically with system size, in sharp contradiction with
a similar setup for bipolar oscillations [45]. This result is
an indication of dynamical phase transitions and coincides
with the instabilities in the linear analysis of the mean field
equations, which we will describe below in more detail.

More recently in Ref. [79], the evolution of a N = 16
neutrino system with randomly chosen one- and two-body
couplings has been analyzed. For an initial condition com-
prised of some neutrinos as |νe〉 and the rest as |νx 〉, the
random coupling (i.e., multi-angle) result was shown to have
a distinctly different asymptotic behaviour compared to its
single-angle counterpart. This difference can be attributed to
a dephasing effect in the mass basis, which is prevented in the
single-angle case due to the integrability of the Hamiltonian.

4.5 Flavor instabilities and dynamical phase transitions

In the mean-field approach, collective neutrino oscillations
are typically associated with unstable modes in the linear
stability analysis of the Hamiltonian described in Eq. (5).
These instabilities are able to amplify initially small flavor
perturbations exponentially quickly (e.g., [33–36,53,80,81]
and references therein).

The presence of the forward-scattering interaction can
allow collective effects to develop when μ � ωp, giving rise
to interesting phenomena like synchronization [82–85], bipo-
lar oscillations [66,86,87], and spectral splits/swaps [49–
51,88,89]. On the other hand, in descriptions of interacting
neutrino systems that permit many-body quantum dynamics,
oscillations that develop on “ fast” timescales are generally
associated with rapid dynamical development of the neu-
trino entanglement entropy [55–57,76,90]. In Ref. [58], rapid
entanglement and mean field instabilities were also found to
be linked for certain angular setups.

Using a two-beam model, it was demonstrated [57,90]
that, when the frequency difference between two neutrino
beams is comparable to the ν-ν interaction coupling, δω � μ

to be precise, rapid and strong flavor oscillations develop
for certain initial conditions. This finding was understood
in terms of the presence of a Dynamic Phase Transition
(DPT) [91,92], which can be characterized by the introduc-
tion of the Loschmidt echo,

L (t) = |〈�|exp (−it H)|�〉|2 , (20)

with |�〉 the initial state at t = 0. The quantity L (t) is a
fidelity measure [93] that quantifies the probability for the
system to return to its initial state. For systems with degen-
erate initial state, as in both the two-beam bipolar case for
δω = 0 [57,90] or the three-beam unstable case [58], a suit-
able generalization of this quantity is obtained as follows (see
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Fig. 1 Evolution of an initial state |νe〉⊗6|νx 〉⊗2 from a starting radius
r0 such that μ(r0) = 5ω0, with a small mixing angle (θ = 0.161)
and discrete, equally spaced oscillation frequencies ωk = k ω0, and a
time-varying neutrino interaction strength μ(r) motivated by the neu-
trino bulb model [49], in the single-angle approximation according to
Eqs. (18) and (19). Details of this calculation can be found in [55]. Top
left: Evolution of the z-components of the neutrino isospin expectation
values (also known as “ Polarization vectors”) in the mass basis, i.e.,
Pz ≡ 2〈Jz〉, for the full many-body quantum system. Top right: Same

as top left, but in the mean-field approximation. Bottom left: Evolution
of the entanglement entropy of each neutrino, with respect to the rest of
the ensemble. Bottom right: Asymptotic values of Pz vs ωk , in the full
many-body calculation (purple), and in the mean-field approximation
(green), together with the initial Pz values (red), and the asymptotic
entanglement entropies (dark orange). Neutrinos located closest to the
spectral splits in the energy distributions (in this case, at ω2 and ω7)
develop the largest amount of entanglement and thereby experience the
most significant deviations compared to their mean-field evolution

Refs. [94–96])

Lk(t) = |〈�k |
(t)〉|2 . (21)

where |�k〉 are the two degenerate states: one is the ini-
tial state |�0〉 = |
(0)〉, and the other one is orthogonal
to |
(0)〉. A DPT is then characterized by non-analyticities
in the rate function

λ(t) = − 1

N
log [L (t)] , (22)

where N is the total number of particles in the system and
λ(t) is an intensive “ free energy” [91,97]. Here, the rate
λ(t) plays the role of a non-equilibrium equivalent of the
thermodynamic free-energy. In the generalized case, λ(t) is

the minimum of the two options. Notably, other definitions
of DPT are possible, such as time-averaged order parame-
ters [98–100].

4.6 Flavor evolution and entanglement in phase space

Recently, the neutrino flavor evolution and entanglement in
this problem have also been analyzed using a “ phase space”
description [101], with the phase space coordinates being
angles θ and φ that describe rotations in flavor space (θ =
0, π correspond to the basis states |ν1,2〉, respectively). For
an interacting two-neutrino-beam setup, the Husimi quasi-
probability or “ Q” representation [102] was constructed for
the reduced density operator ρA of neutrinos in one of the
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beams, as follows:

QA(�, t) = 〈�|ρA(t)|�〉, (23)

where |�〉 = |θ, φ〉 are coherent states, which form an over-
complete basis with the closure relation

2JA + 1

4π

∫
d�|�〉〈�| = 1. (24)

In the limit of infinite neutrino number, the Q representation
reduces to a classical phase-space probability distribution. It
was demonstrated that, for this system, the quasi-probability
distribution remains relatively localized at early times, before
subsequently de-localizing and developing a multi-modal
structure with several peaks. This behavior is indicative of
non-Gaussian entanglement, suggesting the presence of sig-
nificant dynamics beyond the first and second moments of
neutrino observables in the long-term evolution of this sys-
tem.

Based on these insights, an approximate method for esti-
mating the long-term evolution of this system was also pro-
posed. This method involves replacing the full quantum solu-
tion with a classical statistical average of several mean-
field solutions, derived from a Gaussian distribution of ini-
tial conditions around the exact starting point of the sys-
tem [103]. The time-evolution of one- and two-body observ-
ables obtained using this method was found to agree with the
exact solution at early times, while also capturing in long-
term evolution of these observables in a qualitative sense.

5 Compact representations for many-body systems

To calculate quantum corrections beyond the mean-field
coherent limit, one can systematically incorporate n-body
density matrices ρ1...n for n ≥ 1, given by

ρ1...n = N !
(N − n)!Trn+1...Nρ1...N , (25)

into the coupled equations of motion for N neutrinos, as
follows [104]:

i∂tρ1...n = [H1...n, ρ1...n]+
n∑

s=1

Trn+1[V (s, n+1), ρ1...n+1],

(26)

where H1...n is the Hamiltonian truncated for the first n neu-
trinos in a given ordering and V (i, j) is the two-body inter-
action potential for a pair of neutrinos (i, j). This proce-
dure follows the Bogoliubov-Born-Green-Kirkwood-Yvon
(BBGKY) hierarchy for density matrices: the mean-field

equations can be recovered by restricting to n = 2 and
approximating ρ12 ≈ ρ1ρ2 (i.e., requiring the two-body cor-
relation function to be zero). In this description, investi-
gating the importance of quantum corrections would involve
incorporating the n-body density operators for progressively
increasing values of n, while checking for convergence of
results for physical observables.

Because of the exponential growth (2n) of the size of the
Hilbert space, classical computers are unable to exactly sim-
ulate systems of more than ∼ 30 neutrinos. One possibility
is to introduce compact representations of the wave func-
tion through tensor network methods [57,90,105], and more
specifically matrix product states [60,61,106]. These meth-
ods allow for the computation of systems of hundreds of neu-
trinos in a two-beam setup with a time-independent ν-ν inter-
action [57,90]. Alternatively, when considering very dense
neutrino gases (if vacuum oscillations are ignored), methods
based on generalized angular momentum representations, by
analogy between two flavor oscillations and spin systems
(see Eq. 11), can reach up to O(106) neutrinos and predict
the thermodynamic limit in some cases [45,46,58,77,78].

In the case of a time-dependent interaction strength, a
more sophisticated tensor network method, namely, the time-
dependent variational principle (TDVP) method has been uti-
lized in Ref. [105]. These techniques provided considerable
computational benefit for an initial state with all neutrinos in
the same flavor, allowing for evolution of a system with ≈ 50
oscillation modes. This limit was a consequence of the entan-
glement among neutrinos being more localized in certain
regions of the neutrino energy distribution. For systems with
initial states being a mixture of νe and νx flavors, the entan-
glement is more de-localized, and therefore the comparative
advantage gained through TDVP methods is less dramatic,
although work remains in progress on this front. As shown
in Fig. 2, for a system of eight neutrinos with an initial state
|ψ〉 = |νe〉⊗8 the survival probability for the neutrino in the
highest frequency mode in the first mass eigenstate Pν1 , con-
verges to the exact value obtained from RK4 for a very small
bond dimension D ∼ 4. Therefore, D can be truncated to a
significantly small number (for N = 8 the maximum bond
dimension is 24 = 16) in the case of an initial state with all
neutrinos in the same flavor. In the case of an initial state
with half neutrinos in νe and νx flavor each, the Pν1 does not
converge to the exact value until D ∼ 15. Furthermore, the
results do not converge to those of RK4 exactly, and hence
the truncation requires considering a smaller time step for
more accurate results.

Non-vanishing connected correlations, being the essential
characteristic of beyond mean-field behavior, deserve partic-
ular attention. Ursell functions [107] provide a unified frame-
work for n-connected correlations,
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Fig. 2 The survival probability in first mass eigenstate in a eight neutrino system as a function of bond dimension (D) with an initial state |νe〉⊗8

(left) and |νe〉⊗4|νx 〉⊗4 (right) with time step δt = 0.1. The results are compared with the ones obtained from RK4

Cn(σz) = ∂n

∂λ1 . . . ∂λn
ln

(
〈
|e

∑n
i=1 λiσz i |
〉

) ∣∣∣∣
λ=0

, σz = 2Jz

(27)

and have been studied in recent works [65]. It is worth point-
ing out that, despite only pairwise interactions in the system,
higher order correlations dynamically develop as well.

6 Quantum simulations of many-body neutrino systems

For generic closed quantum systems, quantum simulation
algorithms are promising tools to study quantum many-body
evolution. Preliminary attempts [65,108–111] to simulate
collective neutrino oscillations on a quantum computer have
already been taken, for small system sizes and short evo-
lution times. In Ref. [108], a system of four neutrinos was
simulated using superconducting qubit hardware. In partic-
ular, the unitary evolution operator U (t) = exp(−iHt) was
approximated via first-order Trotter-Suzuki decomposition,
with error of O(t2).

Notably, since the interaction in this model is long-range,
quantum devices with all-to-all connectivity are desirable.
Nevertheless, on a quantum device having connectivity only
among neighboring qubits, SWAP operations can still be used
to implement this interaction [108], though doing so requires
more quantum gates in the simulation that may decohere the
quantum state being simulated. Alternatively, hybrid quan-
tum algorithms such as quantum Lanczos (QLanczos) could
be used [109] to approximately diagonalize the neutrino

many-body Hamiltonian on a quantum computer. Further,
real-time evolution using trotterization may allow for calcu-
lations of transition probabilities for interacting neutrinos.
However, practical limitations of current quantum hardware
prevent studies of larger systems in these earlier quantum
simulations, i.e., limited number of unitary operations with
low accuracy. More recently in Refs. [65,111], trapped-ion
quantum devices were utilized to perform the simulations
eight and twelve neutrinos respectively, thanks to the all-to-
all qubit connectivity in trapped-ion based architecture.

7 Three flavor case

An extension of the frequently adopted two-flavor framework
to three flavors in the mean-field approximation has revealed
several unique phenomena, e.g., multiple spectral splits, in
collective neutrino oscillations [112–120]. To see whether
these differences translate to the many-body picture, the neu-
trino many-body problem has recently been analyzed in a
three-flavor setting [121]. The Hamiltonian given in Eq. (18)
can be generalized to the three-flavor case:

H =
∑

p

�B · �Qp +
∑

p,p′
μ(r) �Q · �Q , (28)

where the generators Qi ′ are given by

Qi ′ = 1

2

3∑

i, j=1

a†
i (λi ′)i j a j , (29)
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Fig. 3 The temporal evolution of P3 (top), P8 (middle) and S (bot-
tom) for N = 5 neutrinos with initial state |ψ〉 = |νeνμνμντ ντ 〉 in NO
(left) and IO (right). Right panels: The temporal evolution Pν1 (top),

Pν2 (middle) and Pν3 (bottom) for N = 5 neutrinos with initial state
|ψ〉 = |νeνμνμντ ντ 〉 in NO (left) and IO (right)

with λ’s as the Gell-Mann matrices. The auxiliary vector �B
is given by

�B = (
0, 0, ωp, 0, 0, 0, 0,�p

)
. (30)

Here, the oscillation frequencies are

ωp = − 1

2E
δm2 (31a)

�p = − 1

2E
�m2 (31b)

where δm2 = m2
2 −m2

1, and �m2 ≈ |m2
3 −m2

2| ≈ |m2
3 −m2

1|,
and E is the energy of neutrino.

Due to computational limitations, only a system of up
to five neutrinos could be considered in this treatment. To
quantify the entanglement, the von-Neumann entanglement
entropies S(ωq) and the components of the neutrino polar-
ization vectors �Pq are calculated (straightforward general-
izations of the definitions in Sect. 4.2). In the three-flavor
case, two components of the total polarization vector (of the
entire ensemble), namely P3 and P8, are conserved through
the course of flavor evolution, whereas, in the two-flavor case
only the total Pz is conserved. It was found that the entan-
glement in the three-flavor case can be significantly larger

in comparison to the two-flavor case for an initial condition
with all neutrinos in the electron flavor.

Here we further investigate the entanglement in three-
flavor neutrino many-body system with an initial state dif-
ferent from those considered in Ref. [121]. Shown in Fig. 3
are the results for the time-evolution of a five-neutrino sys-
tem with an initial state |ψ〉 = |νeνμνμντ ντ 〉 in both normal
(NO) and inverted (IO) mass orderings. The vacuum oscilla-
tion frequencies of the neutrinos are chosen to be ωq = q ωp

and �q = q �p, with ωp and �p defined by Eq. (31), with a
neutrino energy E = 10 MeV. κ = 10−17 MeV is a suitably
chosen scaling factor in terms of which all the other dimen-
sionful quantities are defined in the numerical calculations.
The ordering of the asymptotic P3 values with respect to the
frequency modes q is observed to be the same in both NO
and IO. However, the magnitudes are significantly different.
The P8 values on the other hand show differences in both
magnitude and ordering. One can see from the entanglement
entropies S(ωq) that the neutrino in frequency mode q = 4
(3) is maximally entangled in NO (IO), whereas this neu-
trino is the least entangled in IO (NO), respectively. Further
information on the entanglement can be obtained from the
graphical representation of projection of polarization vectors
P3 and P8 values in the ê3-ê8 plane, as given in Ref. [121].
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From the probabilities of finding a neutrino in a partic-
ular mass eigenstate, Pνi , as shown in the right panels of
Fig. 3, the mixing of different mass eigenstates can be inves-
tigated. In NO, the neutrino which is maximally entangled,
i.e. q = 4, has ∼ 40% contribution from first and second
mass eigenstates each and ∼ 20% contribution from third
mass eigenstate. The least entangled q = 4 neutrino has
∼ 80% contribution from third mass eigenstate and ∼ 10%
contribution from first and second mass eigenstates each. In
IO, the maximally entangled neutrino in q = 3 frequency
mode has ∼ 50% contribution from the first mass eigenstate
and ∼ 25% contribution from second and third mass eigen-
states each. Therefore, the results in different mass orderings
differ significantly.

We notice that the entanglement in many-body neutrino
systems depends substantially on the initial state. These dif-
ferences enhance in three-flavor case as compared to the
two-flavor case. For example, the entanglement entropy for
N = 5 neutrino system with an initial state |νeνeνμνμντ 〉
(see Ref. [121]) in the case of NO is maximum for the neu-
trino in the highest frequency mode. Whereas in the case of
an initial state |νeνμνμντ ντ 〉, the entropy is maximum for
the second highest frequency mode q = 4 neutrino. Several
other differences can be observed in other properties and in
inverted mass ordering. Therefore, to better understand the
neutrino many-body system, similar calculations should be
performed for a significantly larger system considering var-
ious initial states.

8 Concluding remarks

Many-body quantum dynamics of dense neutrino systems is
an active area of research that in recent years has shown a
rapid development in terms of understanding and analyzing
many body correlations, instabilities, and dynamical phase
transitions, with various groups attempting to investigate the
problem using different types of classical and quantum com-
putational tools. Methods adapted from quantum informa-
tion have shown great potential for further studying many
body effects. The ongoing quest to augment our understand-
ing of these quantum dynamics, and collective flavor oscilla-
tions in general, stems from the importance of these phenom-
ena in influencing the neutrino transport and nucleosynthesis
in astrophysical environments like core-collapse supernovae
and binary neutron star mergers, which are important open
problems in the domain of high-energy/nuclear astrophysics.
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