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Abstract—We consider a class of multi-agent cooperative
consensus optimization problems with local nonlinear convex
constraints where only those agents connected by an edge can
directly communicate, hence, the optimal consensus decision
lies in the intersection of these private sets. We develop an
asynchronous distributed accelerated primal-dual algorithm to
solve the considered problem. The proposed scheme is the first
asynchronous method with an optimal convergence guarantee
for this class of problems, to the best of our knowledge. In
particular, we provide an optimal convergence rate of O(1/K)
for suboptimality, infeasibility, and consensus violation.

Index Terms—Multi-agent distributed optimization, asyn-
chronous algorithm, constrained optimization, convergence rate

I. INTRODUCTION

Let G = (N , E) denote a connected undirected graph of N
computing nodes where N ≜ {1, . . . , N} and E ⊆ N × N
represents the set of edges. We consider the following con-
strained optimization problem over network G:

min
x∈Rn

∑
i∈N

φi(x) ≜ fi(x) + ρi(x) (1)

s.t. gi(x) ≤ 0, i ∈ N ,

where x denotes the global decision variable; ρi : Rn →
R ∪ {+∞} is a possibly non-smooth convex function with
easy-to-compute proximal map; fi : Rn → R is a smooth
convex function; and gi : Rn → Rmi is a vector-valued convex
function. We assume that each agent i ∈ N has only access
to local information, i.e., fi, ρi, and gi. Our objective is to
develop an efficient algorithm with a convergence guarantee
for solving (1) in a decentralized fashion using the computing
nodes N and exchanging information only along the edges E .

Decentralized optimization over communication networks
has various applications. Here we discuss a few applications.
1) In multi-agent control design, consider computing an opti-
mal consensus decision satisfying the constraint of each agent
i ∈ N , involving some uncertain parameter qi ∈ Rn, with
at least 1 − ϵ probability, i.e., minx{

∑
i∈N fi(x) | P({qi :

q⊤i x ≤ bi}) ≥ 1− ϵ, i ∈ N}. This problem can be formulated
as a minimization over an intersection of ellipsoids under
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a particular distribution of the uncertain parameters [1]. 2)
In multi-agent localization in sensor networks one needs to
collaboratively locate a target x̄ ∈ Rn. Suppose each agent
i ∈ N has a directional sensor that can detect a target
when it belongs to Xi = {yi : ∥Aiyi − bi∥2 ≤ ηi}. Let
I = {i ∈ N : x̄ ∈ Xi}. Therefore, the target location x̄
can be estimated by solving minx{∥x∥2 : x ∈ ∩i∈IXi}.
3) In distributed robust optimization, the goal is to solve
minx∈X{

∑
i∈N fi(x) | gi(x, q) ≤ 0, ∀q ∈ Q, ∀i ∈ N}

where Q represents an uncertainty set. Using a scenario-based
approach [2], this problem can be reformulated as (1).

Recently, there have been many studies on developing
distributed algorithms for convex constrained consensus op-
timization problems subject to (non)linear constraints with a
convergence rate guarantee [3]–[5]. However, the update of
such algorithms is in a synchronous fashion which requires
access to a global clock, thus largely limiting their applicabil-
ity. Due to the lack of such an assumption, i.e, an agent has to
work based on its own clock, the development of asynchronous
algorithms is of prime importance. Additionally, in many
applications, networks are vulnerable to certain possible link
failures and some agents may not implement any operation at a
certain time instant. Therefore, asynchronous implementation
is crucial in process of communication and computation. Next,
we briefly summarize the related research, and then we state
our contributions.

A. Literature Review

In the past few years, numerous research studies have been
conducted concerning distributed optimization methods. In
the absence of constraints, various methods under both static
and time-varying communication network have been studied,
such as [6]–[8] to name a few. For convex optimization
problems with easy-to-project local constraints, in [9] authors
introduced a distributed random projection algorithm, that
can be employed by multiple agents connected over a time-
varying network, while a proximal minimization perspective
is proposed in [10]. In a time-varying setting, [11] suggested
a projected subgradient method to solve distributed convex
optimization problems. For minimizing multi-agent convex
optimization problems with linearly coupled constraints over
networks, the author in [12] proposed (primal) randomized



block-coordinate descent methods. Moreover, there have been
several methods proposed considering a nonconvex objective
function subject to easy-to-project or linear constraints such
as [13]–[17].

Recently primal-dual methods have become a popular ap-
proach for solving distributed optimization problems (see e.g.,
[3], [18]). In particular, Alternating Directions Method of
Multipliers (ADMM) is the basis of many effective distributed
algorithms such as those presented in [19]–[21]. Due to
the fact that the primal variables must achieve successive
minimizations at each iteration, distributed ADMM is compu-
tationally expensive [21]. To address this issue, the linearized
ADMM algorithms have been presented in [21] and [22].

Although the conventional implementation of distributed
algorithms requires synchronous communication between
agents, distributed systems may commonly use asynchronous
communication networks between nodes. Various asyn-
chronous versions of distributed optimization algorithms have
been studied in the literature [23]–[27] with a convergence rate
guarantee focusing on easy-to-project or linear constraint sets.
However, there are far fewer studies considering general non-
linear constraints. In particular, very recently there have been
few studies focusing on developing ADMM-based methods for
solving (1) (with possibly nonconvex functions) such as [28]–
[30] where the agent’s updates are asynchronous. However,
none of these methods present a convergence rate guarantee
for their algorithms.

Next, we outline the contributions of our paper.

II. CONTRIBUTIONS

We consider a class of distributed optimization subject to
agent-specific nonlinear constraints. We propose an acceler-
ated primal-dual algorithm with asynchronous updates where
each agent has to work based on its own clock and does
not need to have access to the global clock. By assuming
a composite convex structure on the primal functions and
convex constraints, we show that our proposed algorithm
converges to an optimal solution at a rate of O(1/K) in
terms of suboptimality, infeasibility, and consensus violation.
To the best of our knowledge, the proposed scheme is the
first asynchronous method with a momentum acceleration
that achieves the optimal convergence rate for the considered
setting.

Organization of the paper. In Section III, we provide the
main assumptions and definitions, required for the convergence
analysis. Next, in Sections IV and V, we introduce AD-
APD method and show the convergence rate of O(1/K) for
both suboptimality and infeasibility. Finally, in Section VI we
compare the performance of the proposed algorithm with a
competitive scheme.

III. PRELIMINARIES

Consider problem (1), where fi, gi and ρi satisfy the fol-
lowing assumption for any i ∈ N .

Assumption III.1. For each i ∈ N , (i) fi is differentiable on
an open set containing dom(ρi) with a Lipschitz continuous

gradient∇fi and Lipschitz constant Lf
i . (ii) gi is differentiable

with Lipschitz continuous Jacobian matrix Jgi ∈ Rn×mi with
constant Lg

i . (iii) dom(ρi) ≜ {x ∈ Rn | ρi <∞} is bounded.

Before discussing our communication network and the
related assumptions, first, we introduce important notations.

A. Notations

Throughout the paper, ∥.∥ denotes the Euclidean norm.
Given a convex function f , let proxf (w) ≜ argminv{f(v) +
1
2 ∥v − w∥

2} denote the proximal operator of function f . Let
In ∈ Rn×n denote the identity matrix and 1n ∈ Rn denote the
vector of ones. Let ⊗ denote Kronecker product and [x]+ ≜
max{0, x}. For any matrix A ∈ Rn×m, Ai: ∈ R1×m and
A:j ∈ Rn×1 denotes i-th row and j-th column of A, respec-
tively, and aij denotes row i and column j of matrix A. For any
set of vectors {xi}i∈N ⊂ Rn, x = [xi]i∈N ∈ RnN denotes
the concatenation of those vectors. Moreover, for a given set of
matrices Ai ∈ Rni×mi , for i ∈ N , diag([Ai]i∈N ) ∈ Rn×m

denotes a block diagonal matrix whose diagonal blocks are
Ai’s where (n,m) =

∑
i∈N (ni,mi).

Remark III.1. Based on Assumption III.1, the boundedness
of the domain implies that for any i ∈ N , gi is a Lipschitz
continuous function and we denote the constant with Ci.

Next, we define some notations based on the constants
introduced in Assumption III.1 and Remark III.1.

Definition 1. Given a set of parameters τi, γi, and σi for
i ∈ N , let T ≜ diag([ 1τi In]i∈N ), S ≜ diag([ 1

σi
Imi ]i∈N ),

Γ ≜ diag([ 1
γi
In]i∈N ), and B ≜ diag(S,Γ). Moreover, we

define C ≜ diag([CiImi ]i∈N ), D ≜ diag([(Ci+δi)In]i∈N ),
and ∆ ≜ diag([δiIn]i∈N ).

Definition 2. Let φ(x) ≜
∑

i∈N φi(xi) : RnN → R and
g(x) ≜ [gi(xi)]i∈N : RnN → Rm where m ≜

∑
i∈N mi.

B. Communication network

We consider a multi-agent system where the agents combine
their own information state with those received from their
neighbors to update their state. Suppose nodes i and j can
exchange information only if (i, j) ∈ E or (j, i) ∈ E , and
each node i ∈ N has a private (local) cost function φi and
constraint function gi. The set of neighboring nodes of agent
i is denoted by Ni ≜ {j ∈ N | (i, j) ∈ E or (j, i) ∈ E}. The
weighted matrix W = [wij ] ∈ RN×N is a nonnegative matrix
such that wij > 0 if j ∈ Ni and wij = 0 otherwise.

We assume that each node i ∈ N has a local clock ti ∈ R+

and a randomly generated waiting time Ti. Each node i will
remain idle while τi < Ti and switches to the awake mode
when τi = Ti after which it runs the local computations,
resets ti = 0 and draws a new realization of the random
variable Ti. Formally, we make the following assumptions on
the communication architecture.

Assumption III.2. The waiting times Ti between consecutive
events are i.i.d. random variables with the same exponential



distribution. Moreover, only one node can be awake at each
time instant.

C. Problem Reformulation

Let xi ∈ Rn denote the local decision vector of node i ∈ N .
We can reformulate (1) as minx{φ(x) | g(x) ≤ 0, xi =
xj ∀(i, j) ∈ E}. Furthermore, we can describe the consensus
constraint as a linear constraint, i.e., (V ⊗ In)x = 0 for
some V ∈ RN×N . We consider the following condition on
the consensus constraint matrix V .

Assumption III.3. For any x ∈ RnN , (V ⊗ In)x = 0 if and
only if there exists x ∈ Rn such that x = 1N ⊗ x. Moreover,
for any i ∈ N , there exists δi > 0 such that ∥Vi:∥1 ≤ δi.

Remark III.2. For any mixing matrix W with eigenvalues in
(−1, 1], e.g., Laplacian-based and Metropolis mixing matrices,
let V = α(IN −W ) for any α > 0. It implies that Assumption
III.3 is satisfied with δi = 2α(1− wii).

Furthermore, we consider the following standard regularity
assumption on problem 1.

Assumption III.4. The duality gap for (1) is zero, and a
primal-dual solution (x∗,y∗) to (1) exists. Moreover, the dual
solution is bounded, i.e., ∃B > 0 such that ∥y∗∥ ≤ B.

Remark III.3. Note that Assumption III.4 holds in practice
under mild conditions as it is studied in [31]. For instance,
when Slater condition holds the agents can collectively com-
pute a Slater point and use it to find a dual bound in a
distributed manner.

Now using Lagrangian duality, we equivalently write the
following saddle point formulation.

min
x∈RnN

max
y∈Rm

+

λ∈RnN

L(x,y,λ) ≜ φ(x) + ⟨g(x),y⟩+ ⟨λ,Vx⟩ (2)

where V ≜ V ⊗In. Next, we develop a distributed primal-dual
method with convergence guarantee for solving (2).

IV. PROPOSED METHOD

In this section, we study the asynchronous distributed im-
plementation of the accelerated primal-dual (APD) algorithm
to solve (2). We propose an asynchronous distributed acceler-
ated primal-dual (AD-APD) algorithm whose iterations can
be computed in a decentralized way, via the node-specific
computations as in Algorithm 1. In particular, at each iteration,
one agent goes to ”awake” mode uniformly at random and
updates its local decision variables by taking dual accent steps
with momentum accelerations following a proximal-gradient
descent using the most updated dual decision variables. More-
over, each agent combines the local information with its
neighbors using the consensus constraint matrix. Moreover,
our proposed method includes a new linear combination of
dual gradient iterates that can recover APD for N = 1.

Algorithm 1 Asynchronous Distributed Accelerated Primal-
Dual Algorithm (AD-APD)

Input: [τi, σi, γi]i∈N , (x0,y0,λ0) ∈ RnN × Rm × RnN

For k ≥ 0,
IDLE:

while ti < Ti do
Do Nothing

end while
Go to AWAKE

AWAKE:
Receive λkj , x

k
j , x

k−1
j from neighbors (j ∈ Ni)

yk+1
i ← max

{
0, yki + 2Nσi

(
gi(x

k
i )−

(2N−1)
2N gi(x

k−1
i )

)}
λk+1
i ← λki + γi

∑
j∈Ni∪{i} vij(2Nx

k
j − (2N − 1)xk−1

j )

xk+1
i ← proxτifi

(
xki − τi

(
Jgi(x

k
i )

⊤yk+1
i + viiλ

k+1
i

+
∑

j∈Ni
vijλ

k
j

))
Send λk+1

i , xk+1
i , xki to neighbors

Set ti = 0, get new realization Ti and go to IDLE

V. CONVERGENCE ANALYSIS

In the following theorem, we state the convergence rate
of AD-APD in terms of the Lagrangian error metric, and
then in Corollary V.1.1, the convergence rate in terms of the
suboptimality, infeasibility, and consensus violation is shown.

Theorem V.1. Suppose Assumptions III.1 - III.4 hold and
{xk,yk,λk}k≥0 is the sequence generated by AD-APD stated
in Algorithm 1 with step-sizes selected such that τi ≤

1

2(Ci+δi)+Lf
i +BLg

i

, σi ≤ 1
3Ci

and γi ≤ 1
3δi

. Then it holds

for any (x,y,λ) ∈ RnN × Rm
+ × RnN and K ≥ 1 that

E
[
L(x̄K ,y,λ)− L(x, ȳK , λ̄

K
)
]

≤ N

2(K +N − 1)

(∥∥x0 − x
∥∥2
T +D

+
∥∥y0 − y

∥∥2
S+C

+
∥∥λ0 − λ

∥∥2
Γ+∆

+ N−1
N (L(x0,y,λ)− L(x,y0,λ0))

)
,

where (x̄K , ȳK , λ̄
K
) ≜ 1

K+N−1

(K−1∑
k=1

(xk,yk,λk) +

N(xK ,yK ,λK)
)
.

Proof. The proof is presented in section V-A.

Corollary V.1.1. Under premises of Theorem V.1, for any K ≥
1, the following holds.∣∣φ(x̄K)− φ(x∗)

∣∣ ≤ O (
N

K+N−1

)
,

∥λ∗∥
∥∥V x̄K

∥∥+
∑
i∈N
∥y∗i ∥

∥∥[gi(x̄K)]+
∥∥ ≤ O (

N
K+N−1

)
.

Proof. The proof follows the same steps as in [32, Corollary
4.2.].

Before proving Theorem V.1, we state a standard technical
lemma for the proximal gradient step which is a trivial



extension of Property 1 in [33]. Then we provide a one-step
analysis of the algorithm in Lemma V.3.

Lemma V.2. Let f : Rn → R be a closed convex function.
Given x̄ ∈ dom f and t > 0, let

x+ = argmin
x∈Rn

f(x) + t
2∥x− x̄∥

2.

Then for all x ∈ Rn, the following inequality holds:

f(x) + t
2∥x− x̄∥

2 ≥ f(x+) + t
2∥x

+ − x̄∥2 + t
2∥x− x

+∥2.

Before we proceed, we define some notations to facilitate
the proof.

Definition 3. Let function Φ be the smooth part of the objec-
tive function in (2), i.e., Φi(xi, yi,λ) ≜ fi(xi)+⟨gi(xi), yi⟩+
⟨(Vi: ⊗ In)λ, xi⟩ and Φ(x,y,λ) ≜

∑
i∈N Φi(xi, yi,λ).

Moreover, we define z ≜ [y⊤ λ⊤]⊤.

Lemma V.3. Let {xk,yk,λk}k≥0 be the sequence generated
by AD-APD, stated in Algorithm 1. Suppose Assumptions III.1
and III.2 hold and T and B are defined in Definition 1. Let
z ≜ [y⊤,λ⊤]⊤, then for any (x,y,λ) ∈ RnN × Rm

+ × RnN ,

Ek[L(xk+1,y,λ)− L(x,yk+1,λk+1)] ≤ (N − 1)
(
Hk

− Ek[Hk+1]
)
+
〈
uk, zk − z

〉
− Ek[

〈
uk+1, zk+1 − z

〉
]

+ N
2 E

k
[ ∥∥x− xk

∥∥2
T −

∥∥x− xk+1
∥∥2
T −

∥∥xk − xk+1
∥∥2
T −LΦ

+
∥∥xk−1 − xk

∥∥2
2D

]
+ N

2 E
k
[ ∥∥z− zk

∥∥2
B

−
∥∥z− zk+1

∥∥2
B −

∥∥zk − zk+1
∥∥2
B̃

]
, (3)

where Hk ≜ ρ(xk) + Φ(xk,yk,λk), B̃ ≜
B − 2C2/N , D ≜ diag([(Ci + δi)In]i∈N ),
C2 ≜ diag([CiImi ]i∈N , [δiIn]i∈N ), and uk ≜
∇zΦ(x

k,yk,λk)− (2N − 1)∇zΦ(x
k−1,yk−1,λk−1).

Proof. We begin the proof by defining auxiliary sequences
{x̃k, λ̃

k
}k≥1 ⊆ RnN and {ỹk}k≥1 ⊆ Rm representing

centralized updates and compare them with the sequences
generated by the proposed algorithm. Note that these auxiliary
sequences are never actually computed in the implementation
of the algorithm. In particular, we define the following for all
i ∈ N

ỹk+1
i ≜ max{0, yki + σi(∇yi

Φi(x
k
i , y

k
i ,λ

k) + ski )}, (4)

λ̃k+1
i ≜ λki + γi(∇λi

Φ(xk,yk,λk) + rki ), (5)

x̃k+1
i ≜ proxτiρi

(xki − τi∇xi
Φi(x

k
i , y

k+1
i ,λk+1)), (6)

where ski ≜ (2N − 1)(∇yi
Φi(x

k
i , y

k
i ,λ

k) −
∇yi

Φi(x
k−1
i , yk−1

i ,λk−1)) and rki ≜ (2N −
1)(∇λi

Φ(xk,yk,λk)−∇λi
Φ(xk−1,yk−1,λk−1)). Applying

Lemma V.2 on (6) implies that

ρi(x̃
k+1
i )− ρi(xi) ≤

〈
∇xi

Φi(x
k
i , y

k+1
i ,λk+1), xi − x̃k+1

i

〉
+ 1

2τi

[ ∥∥xi − xki ∥∥2 − ∥∥xi − x̃k+1
i

∥∥2 − ∥∥xki − x̃k+1
i

∥∥2 ]. (7)

Using Lipschitz continuity of∇fi and Jgi and boundedness of
sequence {yk}k≥0 we conclude that ∇xiΦi(x

k
i , y

k+1
i ,λk+1)

is Lipschitz continuous with constant LΦ
i = Lf

i + BLg
i .

Therefore,〈
∇xi

Φi(x
k
i , y

k+1
i ,λk+1), xi − x̃k+1

i

〉
≤ Φi(xi, y

k+1
i ,λk+1)

− Φi(x̃
k+1
i , yk+1

i ,λk+1) +
LΦ

i

2

∥∥x̃k+1
i − xki

∥∥2 . (8)

Combining (7) and (8), and summing over i ∈ N we obtain

ρ(x̃k+1)− ρ(x) ≤ Φ(x,yk+1,λk+1)− Φ(x̃k+1,yk+1,λk+1)

+ 1
2

[ ∥∥x− xk
∥∥2
T −

∥∥x− x̃k+1
∥∥2
T −

∥∥xk − x̃k+1
∥∥2
T −LΦ

]
,

where LΦ ≜ diag([LΦ
i In]i∈N ). Note that at each iteration of

the algorithm only one agent is awake, i.e., one component of
each decision variable is updated, therefore, for any function
ψ : RnN → R we have Ek[ψ(xk+1)] = 1

N ψ(x̃
k+1) + (1 −

1
N )ψ(xk) and one can deduce similar results for yk+1 and
λk+1. Now using this fact and concavity and smoothness of
Φ(x, ·, ·) from the last inequality we can conclude that

Ek[ρ(xk+1) + Φ(xk+1,y,λ)− ρ(x)− Φ(x,yk+1,λk+1)] ≤
(N − 1)(ρ(xk) + Φ(xk,yk,λk)− Ek[ρ(xk+1)

+ Φ(xk+1,yk+1,λk+1)])

+ Ek
[〈
∇zΦ(x

k+1,yk+1,λk+1), z− zk+1
〉]

+Ak
1

+ (N − 1)Ek
[〈
∇zΦ(x

k,yk,λk), zk+1 − zk
〉]
, (9)

where Ak
1 ≜ 1

2

[ ∥∥x− xk
∥∥2
T −

∥∥x− x̃k+1
∥∥2
T −∥∥xk − x̃k+1

∥∥2
T −LΦ

]
.

Using a similar argument as in (7), one can obtain the fol-
lowing inequalities for the updates in (4) and (5), respectively.
Indeed for any yi ∈ Rmi

+ ,

0 ≤
〈
∇yi

Φi(x
k
i , y

k
i ,λ

k) + ski , ỹ
k+1
i − yi

〉
+ 1

2σi

[ ∥∥yi − yki ∥∥2 − ∥∥yi − ỹk+1
i

∥∥2 − ∥∥ỹk+1
i − yki

∥∥2 ] (10)

0 =
〈
∇λi

Φ(xk,yk,λk) + rki , λ̃
k+1
i − λi

〉
+ 1

2γi

[
∥λi − λki ∥2

− ∥λi − λ̃k+1
i ∥2 − ∥λ̃k+1

i − λki ∥2
]
. (11)

Next, we sum (10) and (11) over i ∈ N and add the
resulting inequality to (9). Then, using definition of L(x,y,λ)
and Hk, and that Ek[h(yk+1)] = 1

N h(ỹ
k+1)+(1− 1

N )h(yk),
we obtain

Ek[L(xk+1,y,λ)− L(x,yk+1,λk+1)] ≤ (N − 1)[Hk

− Ek[Hk+1]] +
〈
∇zΦ(x

k+1,yk+1,λk+1), z− zk+1
〉

+
〈
∇zΦ(x

k,yk,λk) + qk, z̃k+1 − z
〉
+Ak

1 +Ak
2 +Ak

3

+ (N − 1)Ek
[〈
∇zΦ(x

k,yk,λk), zk+1 − zk
〉]
, (12)

where qk ≜ [sk
⊤
, rk

⊤
]⊤. Moreover, Ak

2 , A
k
3 are defined

similar to Ak
1 as the sum of terms containing norm squares

in (10) and (11) over i ∈ N , respectively. To simplify the
notation, we will use ∇zΦ

k ≜ ∇zΦ(x
k,yk,λk). One can



easily observe that qk = (2N − 1)(∇zΦ
k −∇zΦ

k−1). Next,
we deal with the two inner product terms in (12) as follows.

Ek
[ 〈
∇zΦ

k+1, z− zk+1
〉
+
〈
∇zΦ

k + qk, z̃k+1 − z
〉

+ (N − 1)
〈
∇zΦ

k, zk+1 − zk
〉 ]

= Ek
[ 〈
∇zΦ

k+1 − (2N − 1)∇zΦ
k, z− zk+1

〉 ]
+
〈
qk − 2(N − 1)∇zΦ

k, zk − z
〉
+NEk[

〈
qk, zk+1 − zk

〉
]

=
〈
uk, zk − z

〉
− Ek[

〈
uk+1, zk+1 − z

〉
]

+NEk[
〈
qk, zk+1 − zk

〉
], (13)

where uk = qk − 2(N − 1)∇zΦ
k. Note that at each itera-

tion only one agent’s decision variables are updated, hence,
qk = qki for i = ik−1. Therefore, using Young’s inequality
and Lipschitz continuity of gi and ∥Vi:∥ ≤ δi we conclude
that for i = ik−1,

N
〈
qk, zk+1 − zk

〉
= N

〈
qki , z

k+1
i − zki

〉
= N(2N − 1)

( 〈
gi(x

k
i )− gi(xk−1

i ), yki − yk−1
i

〉
+
〈
Vi:(x

k
i − xk−1

i ), λk+1
i − λki

〉 )
≤ N(2N−1)

2

(
(Ci + δi)

∥∥xki − xk−1
i

∥∥2 + Ci

∥∥yk+1
i − yki

∥∥2
+ δi

∥∥λk+1
i − λki

∥∥2 ).
Note that at iteration k only zk+1

ik
is updated where ik is

chosen with probability 1/N . Hence, one can readily observe
that zk+1

ik−1
̸= zkik−1

with probability 1/N2 and zk+1
ik−1

= zkik−1

otherwise. Therefore, taking conditional expectation from the
above inequality imply that

NEk[
〈
qk, zk+1 − zk

〉
] ≤ 2N−1

2 Ek
[ ∥∥xk − xk−1

∥∥2
D

]
+ 2N−1

2N Ek
[ ∥∥zk+1 − zk

∥∥2
C2

]
. (14)

Finally, combining (14) and (13) with (12), and using the fact
that

∥∥x̃k+1 − xk
∥∥2 = NEk[

∥∥xk+1 − xk
∥∥2] the result can be

concluded.

A. Proof of Theorem V.1

Now we are ready to prove the main result. Consider the
inequality obtained in (3). Taking expectations from both sides,
using the step-size selection implying B̃ ⪰ 0 and T̃ ⪰ 0,
summing the resulting inequality from k = 0 to K − 1 and
dividing by K we obtain

1

K

K−1∑
k=0

E[L(xk+1,y,λ)− L(x,yk+1,λk+1)] ≤

(N − 1)
(
H0 − E[HK ]

)
+
〈
u0, z0 − z

〉
− E[

〈
uK , zK − z

〉
]

+ N
2 E

[ ∥∥x− x0
∥∥2
T −

∥∥x− xK
∥∥2
T −

∥∥xK−1 − xK
∥∥2
T −LΦ

]
+ N

2 E
[ ∥∥z− z0

∥∥2
B −

∥∥z− zK
∥∥2
B

]
. (15)

We notice that function Φ(x,y,λ) is linear in (y,λ), i.e.,
∇zΦ(x,y,λ) = ∇zΦ(x, ȳ, λ̄) for any y, ȳ,λ, λ̄; therefore,
we can show the following relations for any k ≥ 0,

(N − 1)(Hk − L(x,y,λ)) +
〈
uk, zk − z

〉

= (N − 1)
(
L(xk,y,λ)− L(x,y,λ)

)
+

〈
qk, zk − z

〉
− (N − 1)

〈
∇zΦ

k, zk − z
〉

= (N − 1)
(
L(xk,y,λ)− L(x,y,λ)

)
+

〈
qk, zk − z

〉
− (N − 1)

〈
∇zΦ

k, zk − z
〉

± (N − 1)
〈
∇zΦ(x,y

k,λk), zk − z
〉

= (N − 1)
(
L(xk,y,λ)− L(x,yk,λk)

)
+

〈
qk, zk − z

〉
+ (N − 1)

〈
∇zΦ(x,y

k,λk)−∇zΦ
k, zk − z

〉
. (16)

Next, we provide upper bounds for the two inner products on
the right-hand side of (16) similar to (14).

|
〈
qk, zk − z

〉
| ≤ 2N−1

2

( ∥∥xk − xk−1
∥∥2
D
+

∥∥zk − z
∥∥2
C2

)
(N − 1)

∣∣∣ 〈∇zΦ(x,y
k,λk)−∇zΦ

k, zk − z
〉 ∣∣∣ ≤

N−1
2

( ∥∥xk − x
∥∥2
D
+

∥∥zk − z
∥∥2
C2

)
.

Now, with the help of above inequalities in (16) once for k = 0
and once for k = K, the fact that q0 = 0, and using the
resulting inequality within (15) we obtain

1

K

K−1∑
k=0

E[L(xk+1,y,λ)− L(x,yk+1,λk+1)]

≤ (N − 1)(L(x0,y,λ)− L(x,y0,λ0))

− (N − 1)(L(xK ,y,λ)− L(x,yK ,λK))

+ N
2 E

[ ∥∥x− x0
∥∥2
T +D

−
∥∥x− xK

∥∥2
T −D

−
∥∥xK−1 − xK

∥∥2
T̃

]
+ N

2 E
[ ∥∥z− z0

∥∥2
B+C2

−
∥∥z− zK

∥∥2
B−3C2

]
,

where T̃ = T − LΦ − 2D. Finally, rearranging the terms in
the aforementioned inequality and dropping the negative terms
due to the step-size selection lead to the desired result.

VI. NUMERICAL EXPERIMENTS

In this section, we consider a distributed localization prob-
lem to test the performance of our proposed algorithm. Given a
set of local ellipsoids Xi ≜ {x ∈ [−1, 1]n | ∥Aix− bi∥ ≤ ηi},
for i ∈ N , where Ai ∈ Rpi×n, bi ∈ Rpi , and ηi > 0,
the goal is to solve the following optimization problem:
minx∈Rn{

∑
i∈N fi(x) | x ∈

⋂N
i=1 Xi}, over a network

G = (N , E). To highlight the benefit of our method, we com-
pare ours with a synchronous distributed primal-dual method
(DPDA-S) in [5].

In this experiments, we set n = 100, N = 50, pi = 50,
and fi(x) = 1

2 ∥x∥
2 for all i ∈ N . We generate a vector

x̄ ∈ Rn such that its entries are i.i.d with uniform distribution
on [−1, 1]. For each i ∈ N , Ai is generated with a standard
Gaussian distribution, ηi uniformly at random on [1, 2], and
bi = Aix+ϵi where ϵi is generated with a normal distribution
of mean zero and variance of 0.01. Moreover, to generate the
network G, we generated a random small-world network, i.e.,
we create a cycle over nodes, then we add N/2 edges at
random with uniform probability. This leads to a connected
graph with |E| = 75.



The results are depicted in Figure 1 in terms of sub-
optimality, infeasibility, and consensus violation versus the
number of communications. Note that DPDA-S performs N
communications at each iteration while AD-APD performs
only one communication per iteration. From Figure 1, we see
within the same number of communications AD-APD with
asynchronous updates has a better performance than DPDA-S
with synchronous updates.

(a) suboptimality (b) infeasibility

(c) consensus violation

Fig. 1: Comparison of AD-APD and DPDA-S.
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