

# On gerbe duality and relative Gromov-Witten theory

XIANG TANG AND HSIAN-HUA TSENG

We formulate and study an extension of gerbe duality to relative Gromov-Witten theory.

## 1. Introduction

In this short note, we propose a conjecture about relative Gromov-Witten theory on a general noneffective Deligne-Mumford stack.

Throughout this note, we work over  $\mathbb{C}$ . Let  $G$  be a finite group,  $\mathcal{B}$  a smooth (proper) Deligne-Mumford stack, and

$$\pi : \mathcal{Y} \rightarrow \mathcal{B}$$

a  $G$ -gerbe. In [10], the *dual* of  $\pi : \mathcal{Y} \rightarrow \mathcal{B}$  is a pair  $(\widehat{\mathcal{Y}}, c)$  where  $\widehat{\mathcal{Y}}$  is a disconnected stack with an étale map

$$\widehat{\pi} : \widehat{\mathcal{Y}} = \coprod_i \widehat{\mathcal{Y}}_i \rightarrow \mathcal{B}$$

and  $c$  is a  $\mathbb{C}^*$ -valued 2-cocycle on  $\widehat{\mathcal{Y}}$ .

We briefly recall the construction of  $\widehat{\mathcal{Y}}$  and  $c$ , and refer the readers to [14] for the detail. We focus on describing  $\mathcal{Y}$  locally. A chart of  $\mathcal{B}$  looks like a quotient of  $\mathbb{C}^n$  by a finite group  $Q$  acting linearly on  $\mathbb{C}^n$ . And a  $G$ -gerbe over  $[\mathbb{C}^n/Q]$  can be described as follows. There is a group extension

$$1 \longrightarrow G \longrightarrow H \longrightarrow Q \longrightarrow 1.$$

The group  $H$  acts on  $\mathbb{C}^n$  via its homomorphism to  $Q$ . Locally a chart of  $\mathcal{Y}$  over  $\mathcal{B}$  looks like

$$[\mathbb{C}^n/H] \longrightarrow [\mathbb{C}^n/Q].$$

To construct the dual  $\widehat{\mathcal{Y}}$ , we consider the space  $\widehat{G}$ , the (finite) set of isomorphism classes of irreducible  $G$ -representations. As  $G$  is a normal subgroup of  $H$ ,  $H$  acts on  $G$  by conjugation, which naturally gives an  $H$  action

on  $\widehat{G}$ . Furthermore, as  $G$  acts by conjugation, the  $G$  action on  $\widehat{G}$  is trivial. Therefore, the quotient group  $Q$  acts on  $\widehat{G}$ . The dual space  $\widehat{\mathcal{Y}}$  locally looks like  $[(\widehat{G} \times \mathbb{C}^n)/Q]$ . We notice that the dual  $\widehat{\mathcal{Y}}$  has a canonical map to the quotient  $\widehat{G}/Q$ , and therefore is a disjoint union of stacks over  $\widehat{G}/Q$ .

The construction of  $c$  is from the Clifford theory of induced representations [7]. Given an irreducible  $G$ -representation  $\rho$  on  $V_\rho$ , we want to introduce an  $H$  representation. Let  $[\rho]$  be the corresponding point in  $\widehat{G}$ . Recall that the finite group  $Q$  acts on  $\widehat{G}$ . We denote  $Q_{[\rho]}$  to be the stabilizer group of  $Q$  action on  $[\widehat{G}]$  at the point  $[\rho]$ . For any  $q \in Q_{[\rho]}$ , define  $q(\rho)$ , a representation of  $G$  on  $V_\rho$ , by

$$q(\rho)(g) = \rho(q^{-1}(g)).$$

As  $q$  fixes  $[\rho]$  in  $\widehat{G}$ ,  $q(\rho)$ , as a  $G$ -representation, is equivalent to  $\rho$ . Therefore, there is an intertwining operator  $T_q^\rho$  on  $V_\rho$  such that

$$T_q^\rho \rho = q(\rho) T_q^\rho.$$

In general, the operators  $\{T_q^\rho\}_{q \in Q_{[\rho]}}$  fail to satisfy

$$T_q^\rho \circ T_{\rho'}^\rho = T_{qq'}^\rho.$$

By Schur's lemma, we can check that there is a number  $c^{[\rho]}(q, q') \in \mathbb{C}^*$ , such that

$$T_q^\rho \circ T_{\rho'}^\rho = c^{[\rho]}(q, q') T_{qq'}^\rho.$$

In [14], we explained that these functions  $c^{[\rho]}(q, q')$  glue to a globally defined  $\mathbb{C}^*$ -gerbe over the dual  $\widehat{\mathcal{Y}}$ .

The authors of [10] propose a gerbe duality principle which suggests that there is an equivalence between the geometry of  $\mathcal{Y}$  and that of the pair  $(\widehat{\mathcal{Y}}, c)$ . Several aspects of such an equivalence have been proven in [14]. In [14, Conjecture 1.8], the following conjecture is also explicitly formulated:

**Conjecture 1.1.** As generating functions, the genus  $g$  Gromov-Witten theory of  $\mathcal{Y}$  is equal to the genus  $g$  Gromov-Witten theory<sup>1</sup> of  $(\widehat{\mathcal{Y}}, c)$ ,

$$GW_g(\mathcal{Y}) = GW_g(\widehat{\mathcal{Y}}, c).$$

Conjecture 1.1 has been proven in increasing generalities, see [3], [4], [5], and [15]. In particular, we have obtained the following theorem.

---

<sup>1</sup>It is also called  $c$ -twisted Gromov-Witten theory of  $\widehat{\mathcal{Y}}$ .

**Theorem 1.2.** ([15, Theorem 1.1]) *When  $\mathcal{Y}$  is a banded  $G$ -gerbe over  $\mathcal{B}$ , Conjecture 1.1 holds true.*

A toric Deligne-Mumford stack  $\mathcal{Y}$  is a banded gerbe over an effective DM stack  $\mathcal{B}$ , see e.g. [9]. As a corollary to Theorem 1.2, we can compute the Gromov-Witten theory of  $\mathcal{Y}$  in term of the (twisted) Gromov-Witten theory of the dual toric DM stack  $\widehat{\mathcal{Y}}$ .

From the perspective of Gromov-Witten theory, Gromov-Witten theory *relative* to a divisor is important. Therefore it is natural to consider an extension of Conjecture 1.1 to the relative setting. Let

$$D \subset \mathcal{B}$$

be a smooth (irreducible) divisor. The inverse images

$$\mathcal{D} := \pi^{-1}(D) \subset \mathcal{Y}, \quad \widehat{\mathcal{D}} := \widehat{\pi}^{-1}(D) \subset \widehat{\mathcal{Y}}$$

are smooth divisors. The  $c$ -twisted Gromov-Witten theory of the relative pair  $(\widehat{\mathcal{Y}}, \widehat{\mathcal{D}})$  can be defined using the construction of [2], [11], [12], and [13]. A natural extension of Conjecture 1.1 is the following

**Conjecture 1.3.** As generating functions, the genus  $g$  Gromov-Witten theory of  $(\mathcal{Y}, \mathcal{D})$  is equal to the genus  $g$  Gromov-Witten theory of  $((\widehat{\mathcal{Y}}, \widehat{\mathcal{D}}), c)$ . Symbolically,

$$GW_g(\mathcal{Y}, \mathcal{D}) = GW_g((\widehat{\mathcal{Y}}, \widehat{\mathcal{D}}), c).$$

The purpose of this note is to present some evidence to Conjecture 1.3.

## 2. Evidence to Conjecture 1.3

By taking the divisor  $D$  to be empty, we see that Conjecture 1.3 implies Conjecture 1.1. Next, we explain how to derive Conjecture 1.3 from the full strength of Conjecture 1.1.

Let  $r \geq 1$ . We consider the stack of  $r$ -th roots of  $\mathcal{Y}$  along  $\mathcal{D}$ , denoted by

$$\mathcal{Y}_{\mathcal{D},r}.$$

Consider also the stack of  $r$ -th roots of  $\mathcal{B}$  along  $D$ , denoted by

$$\mathcal{B}_{D,r}.$$

Let  $\rho : \mathcal{B}_{D,r} \rightarrow B$  be the natural map. Consider the Cartesian diagram:

$$\begin{array}{ccc} \rho^* \mathcal{Y} & \longrightarrow & \mathcal{Y} \\ \downarrow & & \downarrow \pi \\ \mathcal{B}_{D,r} & \xrightarrow{\rho} & B. \end{array}$$

The pull-back  $\rho^* \mathcal{Y} \rightarrow \mathcal{B}_{D,r}$  is a  $G$ -gerbe. By functoriality property of root constructions, there is a natural map

$$\mathcal{Y}_{D,r} \rightarrow \rho^* \mathcal{Y},$$

which is an isomorphism. Therefore we have

$$(2.1) \quad GW_g(\mathcal{Y}_{D,r}) = GW_g(\rho^* \mathcal{Y}).$$

Since  $\rho^* \mathcal{Y} \rightarrow \mathcal{B}_{D,r}$  is a  $G$ -gerbe, applying Conjecture 1.1, we have

$$(2.2) \quad GW_g(\rho^* \mathcal{Y}) = GW_g(\widehat{\rho^* \mathcal{Y}}, c'),$$

where  $(\widehat{\rho^* \mathcal{Y}}, c')$  is the dual pair of the gerbe  $\rho^* \mathcal{Y}$ . By construction of the dual pair, we have

$$\widehat{\rho^* \mathcal{Y}} = \rho^* \widehat{\mathcal{Y}}$$

and  $c' = \rho^* c$ . Here  $\rho^* \widehat{\mathcal{Y}}$  fits in the Cartesian diagram

$$\begin{array}{ccc} \rho^* \widehat{\mathcal{Y}} & \longrightarrow & \widehat{\mathcal{Y}} \\ \downarrow & & \downarrow \widehat{\pi} \\ \mathcal{B}_{D,r} & \xrightarrow{\rho} & B. \end{array}$$

By functoriality property of root constructions, we have  $\rho^* \widehat{\mathcal{Y}} \simeq \widehat{\mathcal{Y}}_{\widehat{D},r}$ . Therefore

$$(2.3) \quad GW_g(\widehat{\rho^* \mathcal{Y}}, c') = GW_g(\widehat{\mathcal{Y}}_{\widehat{D},r}, \rho^* c).$$

Combining (2.1)–(2.3), we have

$$(2.4) \quad GW_g(\mathcal{Y}_{D,r}) = GW_g(\widehat{\mathcal{Y}}_{\widehat{D},r}, \rho^* c).$$

The left hand side of (2.4),  $GW_g(\mathcal{Y}_{D,r})$ , is a polynomial in  $r$  for  $r$  large. Furthermore, taking the  $r^0$ -coefficient, we obtain the relative Gromov-Witten

invariants:

$$(2.5) \quad \text{Coeff}_{r^0} GW_g(\mathcal{Y}_{D,r}) = GW_g(\mathcal{Y}, \mathcal{D}).$$

This follows from the arguments of [16], suitably extended to the setting of Deligne-Mumford stacks, see [17], [6].

The right hand side of (2.4),  $GW_g(\widehat{\mathcal{Y}}_{\widehat{\mathcal{D}},r}, \rho^*c)$ , is also a polynomial in  $r$  for  $r$  large. Taking the  $r^0$ -coefficient, we obtain the relative Gromov-Witten invariants:

$$(2.6) \quad \text{Coeff}_{r^0} GW_g(\widehat{\mathcal{Y}}_{\widehat{\mathcal{D}},r}, \rho^*c) = GW_g((\widehat{\mathcal{Y}}, \widehat{\mathcal{D}}), c).$$

This again follows from a suitable extension of [16] as in [17], [6]. Note that the  $\rho^*c$ -twist plays no role in applying the arguments of [16], as they are essentially done at the level of virtual cycles (see [8]), while  $\rho^*c$ -twist takes place at insertions.

Combining (2.5) and (2.6), we arrive at Conjecture 1.3.

**Remark 2.1.** In genus 0, the argument about polynomiality in  $r$  can be replaced by (a suitable extension of) the arguments of [1].

The following result follows directly from Theorem 1.2 and the above discussion.

**Theorem 2.1.** *When  $\mathcal{Y}$  is a banded  $G$ -gerbe over  $\mathcal{B}$ , as generating functions, the genus  $g$  Gromov-Witten theory of  $(\mathcal{Y}, \mathcal{D})$  is equal to the genus  $g$  Gromov-Witten theory of  $((\widehat{\mathcal{Y}}, \widehat{\mathcal{D}}), c)$ . Symbolically,*

$$GW_g(\mathcal{Y}, \mathcal{D}) = GW_g((\widehat{\mathcal{Y}}, \widehat{\mathcal{D}}), c).$$

### 3. Acknowledgment

X. Tang is supported in part by NSF Grant. H.-H. Tseng is supported in part by Simons Foundation Collaboration Grant.

### References

- [1] D. Abramovich, C. Cadman, J. Wise, *Relative and orbifold Gromov-Witten invariants*, Algebr. Geom. 4 (2017), no. 4, 472–500.
- [2] D. Abramovich, B. Fantechi, *Orbifold techniques in degeneration formulas*, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16 (2016), no. 2, 519–579.

- [3] E. Andreini, Y. Jiang, H.-H. Tseng, *Gromov-Witten theory of root gerbes I: structure of genus 0 moduli spaces*, J. Differential Geom. Vol. 99, no. 1 (2015), 1–45.
- [4] E. Andreini, Y. Jiang, H.-H. Tseng, *Gromov-Witten theory of product stacks*, Comm. Anal. Geom., Vol. 24 (2016), no. 2, 223–277.
- [5] E. Andreini, Y. Jiang, H.-H. Tseng, *Gromov-Witten theory of banded gerbes over schemes*, [arXiv:1101.5996](https://arxiv.org/abs/1101.5996).
- [6] B. Chen, C.-Y. Du, R. Wang, *Double ramification cycles with orbifold targets*, [arXiv:2008.06484](https://arxiv.org/abs/2008.06484).
- [7] A. Clifford, *Representations induced in an invariant subgroup*, Ann. of Math. (2) **38** (1937), no. 3, 533–550.
- [8] H. Fan, L. Wu, F. You, *Higher genus relative Gromov-Witten theory and DR-cycles*, J. London Math. Soc. 103 (2021), Issue 4, 1547–1576.
- [9] B. Fantechi, E. Mann, F. Nironi, *Smooth toric Deligne-Mumford stacks*, J. Reine Angew. Math. 648 (2010), 201–244.
- [10] S. Hellerman, A. Henriques, T. Panter, E. Sharpe, *Cluster decomposition, T-duality, and gerby CFTs*, Adv. Theor. Math. Phys., 11 (5) (2007), 751–818.
- [11] J. Li, *Stable morphisms to singular schemes and relative stable morphisms*, J. Differential Geom. 57 (2001), 509–578.
- [12] J. Li, *A degeneration formula of GW-invariants*, J. Differential Geom. 60 (2002), no. 2, 199–293.
- [13] J. Pan, Y. Ruan, X. Yin, *Gerbes and twisted orbifold quantum cohomology*, Sci. China Ser. A, 51 (6) (2008), 995–1016.
- [14] X. Tang, H. -H. Tseng, *Duality theorems for étale gerbes on orbifolds*, Adv. Math. 250 (2014), 496–569.
- [15] X. Tang, H. -H. Tseng, *A quantum Leray-Hirsch theorem for banded gerbes*, J. Differential Geom. 119 (3), 459–511, (2021).
- [16] H.-H. Tseng, F. You, *Higher genus relative and orbifold Gromov-Witten invariants*, Geom. Topol. 24 (2020) 2749–2779.
- [17] H.-H. Tseng, F. You, *A Gromov-Witten theory for simple normal-crossing pairs without log geometry*, [arXiv:2008.04844](https://arxiv.org/abs/2008.04844).

DEPARTMENT OF MATHEMATICS, WASHINGTON UNIVERSITY  
ST. LOUIS, MO 63130, USA  
*E-mail address:* `xtang@math.wustl.edu`

DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY  
COLUMBUS, OH 43210, USA  
*E-mail address:* `hhtseng@math.ohio-state.edu`

