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Abstract. This paper proposes two fully sequential procedures for selecting the best system 
with a guaranteed probability of correct selection (PCS). The main features of the proposed 
procedures include the following: (1) adopting a Bonferroni-free model that overcomes the 
conservativeness of the Bonferroni correction and delivers the exact probabilistic guarantee 
without overshooting; (2) conducting always valid and fully sequential hypothesis tests that 
enable continuous monitoring of each candidate system and control the type I error rate (or 
equivalently, PCS) at a prescribed level; and (3) assuming an indifference-zone-flexible formu
lation, which means that the indifference-zone parameter is not indispensable but could be 
helpful if provided. We establish statistical validity and asymptotic efficiency for the proposed 
procedures under normality settings with and without the knowledge of true variances. 
Numerical studies conducted under various configurations corroborate the theoretical find
ings and demonstrate the superiority of the proposed procedures.
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1. Introduction
The ranking and selection (R&S) problem refers to 
selecting the best system from a finite set of alternatives 
or systems, where the true performance of each system 
is unavailable but can be evaluated through sampling 
or running simulation experiments. R&S problems arise 
in many practical applications, for example, when Inter
net companies consider variations of an application to 
provide the best user experience and when pharma
ceutical companies rank treatment options for a target 
disease, just to name a few.

This paper focuses on the R&S problem of selecting 
the best system defined as the one with the maximum 
expected performance. There has been significant inter
est over the last decades in developing procedures for 
solving this R&S problem. We refer the interested reader 
to Kim and Nelson (2006b, 2007), Branke et al. (2007), 
and Hong et al. (2021) for thorough overviews on exist
ing R&S procedures. Most R&S procedures fall into two 
categories: fixed-precision and fixed-budget approaches. 
The fixed-budget techniques aim to efficiently allocate 
a fixed computing budget among systems to optimize 

an objective (e.g., maximize the posterior probability of 
correct selection (PCS)). Within this category, the most 
widely applied and well-studied algorithms include 
the optimal computing budget allocation (Chen et al. 
2000) and the expected value of information approaches 
(Chick and Inoue 2001).

In this paper, we focus on solving the R&S problem via 
a fixed-precision approach, which intends to achieve a 
prespecified PCS with adaptive sampling. Recent years 
have witnessed a burgeoning literature on fixed-precision 
R&S procedures. Typically, fixed-precision approaches 
assume one of the following three formulations: (a) the 
subset-selection formulation, (b) the indifference-zone for
mulation, and (c) the indifference-zone-free formulation. 
Procedures in the subset-selection formulation guarantee 
to select a subset of systems that includes the best one 
with a prescribed high probability (Gupta 1956, 1965); 
these procedures typically consist of two stages: prelimi
nary evaluation and final elimination. In contrast, proce
dures in the latter two formulations typically proceed 
sequentially and terminate after eliminating all systems 
but one. In particular, procedures in the indifference-zone 
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formulation guarantee to select the best system with a 
prespecified PCS when an indifference-zone parameter 
δ > 0 is specified—The mean performance of the best sys
tem is greater than that of all other systems by at least δ. 
Most of the fixed-precision procedures are indifference- 
zone based. The popular ones include the KN procedure 
(Kim and Nelson 2001), the KN++ procedure (Kim and 
Nelson 2006a), the Bayes-inspired indifference zone pro
cedures (Frazier 2014), and so on. Fan et al. (2016) pro
posed an indifference-zone-free procedure (IZ-free), which 
can deliver a prescribed PCS guarantee without using an 
indifference-zone parameter. However, IZ-free is more 
conservative and computationally expensive than the lead
ing indifference-zone procedures if the indifference-zone 
information is appropriately specified.

There is still an absence of procedures that can bridge 
the indifference-zone and indifference-zone-free formula
tions. The indifference-zone procedures are typically 
(much) more computationally efficient with an appro
priate specification of the indifference-zone parameter 
(Fan et al. 2016). The IZ-free approach is more flexible 
but cannot use the indifference-zone information even if 
it is available. Therefore, we are inspired to propose an 
indifference-zone-flexible formulation, and design corre
sponding procedures that (1) can deliver the PCS guar
antee either with or without using the indifference-zone 
parameter and (2) can take advantage of the parameter if 
specified.

Another persistent issue that hinders the efficiency of 
many leading procedures is the use of the Bonferroni 
adjustment to achieve the prescribed PCS guarantee 
under multiple comparisons (Kim and Nelson 2001, 
2006a; Fan and Hong 2014; Fan et al. 2016). That is, divid
ing the probability of incorrect selection by a factor of 
K – 1, where K denotes the total number of systems under 
consideration. The consequence is that fixed-precision 
procedures relying on the Bonferroni correction become 
computationally expensive and conservative in error rate 
control when applied for solving large-scale R&S pro
blems (i.e., when K is large). A significant breakthrough is 
the Bayes-inspired indifference zone procedures (BIZ) 
developed by Frazier (2014). BIZ can sequentially elimi
nate inferior systems without resorting to the Bonferroni 
correction and is found to outperform leading fixed- 
precision procedures on large-scale R&S problems. It 
is worth noting that researchers have made continual 
efforts to tackle the conservativeness of fixed-precision 
procedures (Wang and Kim 2013; Dieker and Kim 2014, 
2021). A notable effort is Dieker and Kim (2021) who pro
pose the DK procedures using a spherical elimination 
boundary derived from properties of a multidimensional 
Brownian motion. DK is shown to deliver similar or 
better performance than BIZ. Nevertheless, both DK and 
BIZ are tailored for normal distribution and assume the 
indifference-zone formulation.

To address the previous challenges, we propose 
new R&S procedures with the following features: 

1. A multiple composite hypothesis testing model. 
We model the R&S problem as a multiple composite 
hypothesis testing problem so that the developed pro
cedures can achieve the desired error rate control with
out the Bonferroni correction; see Section 2.2 for a more 
detailed discussion.

2. Test martingale-based procedures. We propose a 
fully sequential hypothesis testing meta procedure whose 
test statistics and elimination threshold correspond to a 
test martingale and can be used to continuously monitor 
and control the type I error rate (or equivalently, PCS) at 
a prescribed level; see Section 2.3 for details.

3. Procedures in the indifference-zone-flexible for
mulation. Specific instantiations of the meta procedure 
under normality settings are detailed in Sections 3 and 
4, where the statistical efficiency and the asymptotic 
optimality in terms of the average sample size used are 
verified. These concrete procedures can deliver the pre
scribed PCS guarantee with and without using the 
indifference-zone parameter.

Our proposed procedures have their roots in sequen
tial analysis. Since the seminal work on the sequential 
probability ratio test (SPRT; Wald 1945, Wald and Wol
fowitz 1948), the last eight decades have witnessed the 
significant development of sequential likelihood-based 
hypothesis testing theory and methodologies and their 
applications in various science and engineering do
mains. SPRT formulates the sequential testing of two 
simple hypotheses via the boundary crossing of the 
likelihood ratio statistic, which is shown to be optimal 
in terms of minimal expected sample size for achieving 
prescribed error probabilities. The generalized sequen
tial probability ratio test (GSPRT) provides a natural 
generalization of the SPRT concerning the problem for
mulation and the stopping rule, which tackles the 
sequential testing of two or more composite hypotheses 
and adopts the generalized likelihood ratio (GLR) test 
statistic (Li et al. 2014). Over the years, there has been a 
plethora of work on designing GLR test statistics and 
proving their asymptotic optimality under various con
ditions (Lorden 1976; Lai 1977, 1981; Pavlov 1988, 1991; 
Li et al. 2014). The interested reader is referred to Tarta
kovsky et al. (2014) for a comprehensive discussion of 
sequential analysis and GSPRT. In this work, we formu
late the R&S problem as a multiple composite hypothe
sis testing problem, construct adaptive GLR statistics, 
and provide new R&S procedures; to the best of our 
knowledge, this work is the first to solve the R&S prob
lem from this new perspective.

The rest of this paper is organized as follows. Section 2
provides a high-level overview of the proposed meta pro
cedure developed according to the multiple composite 
hypothesis testing model and associated key properties. 
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Section 3 considers solving the R&S problem of interest 
under normality with known variances by presenting 
concrete procedures developed and proving their stat
istical validity and computational efficiency. Section 4
parallels Section 3 and tackles the R&S problem under 
normality with unknown variances. Numerical studies 
are conducted in Section 5. Section 6 concludes the paper.

2. Problem Statement and Methodology 
Overview

In this section, we formulate the R&S problem of inter
est as a multiple composite hypothesis testing problem, 
propose a meta procedure to solve it, and reveal the 
essential properties of the proposed meta procedure.

2.1. Problem Setup
Let us consider the R&S problem of selecting the best 
system defined as the one with the maximum expected 
performance; that is, we are interested in solving the 
following discrete simulation optimization problem:

arg max
i∈[K]

µ?
i � E[Xi], (1) 

where [K] � {1, 2, : : : , K} denotes the set of all candi
date systems; and we assume that independent and 
identically distributed random observations of system 
i, {Xi,n, n � 1, 2, : : : }, are drawn from a distribution, with 
µ?

i � E[Xi,n] denoting the unknown true mean value of 
system i, ∀i ∈ [K]. Because the distribution correspond
ing to system i may be parameterized by unknown 
parameters other than the mean value, we denote θi �

(µi,ηi,1,ηi,2, : : : ,ηi,p) as the (p + 1)-dimensional parameter 
vector for system i. For instance, under normality with 
an unknown variance, θi � (µi,σ2

i ), ∀i ∈ [K]. Denote the 
true parameter vector of system i by θ?

i , ∀i ∈ [K]. Corre
spondingly, let us denote m � (µ1, µ2, : : : , µK) ∈ U ⊆ RK 

as the mean vector and u � (θ1,θ2, : : : ,θK) ∈Θ ⊆ R(p+1)K 

as the vector comprising all unknown parameters for all 
K systems, where U denotes the parameter space of all 
possible values of m and Θ represents the parameter 
space that contains all possible values of u. Denote m? �

(µ?
1, µ?

2, : : : , µ?
K) as the true mean vector and u? � (θ?

1, 
θ?

2, : : : ,θ?
K) as the true parameter vector.

Let δ > 0 denote the indifference-zone parameter—A 
system is only considered better than all other systems 
if its mean value is greater than the others’ by at least δ. 
Without loss of generality, assume that there exists a 
single best system. Consider partitioning the parameter 
space Θ into (K + 1) disjoint subsets. Specifically, given 
a prescribed value of δ, let Θi denote the set of parame
ter values such that system i is the best among all sys
tems, that is, Θi � {u ∈Θ |µi ≥ µj + δ, ∀j ≠ i, j ∈ [K]}, 
∀i ∈ [K]; the indifference parameter set Θ0 contains all 
possible values of u such that no single system domi
nates the others by at least δ, that is, Θ0 � {u ∈Θ | ∀i ∈

[K], ∃j ≠ i, j ∈ [K] such that µi < µj + δ}. Therefore, {Θ0, 
Θ1,Θ2, : : : ,ΘK} satisfy Θ �∪K

i�0 Θi and Θi ∩Θj � ∅ for 
i ≠ j, i, j ∈ {0} ∪ [K]. In the degenerate case where the 
indifference-zone parameter δ is unspecified, we have 
Θi � {u ∈Θ |µi > µj, ∀j ≠ i, j ∈ [K]} and Θ0 � {u ∈Θ | ∀i 
∈ [K], ∃j ≠ i, j ∈ [K] such that µi ≤ µj}.

2.2. Multiple Composite Hypothesis Testing 
Model for the R&S Problem

In this section, we provide a formal discussion on for
mulating the R&S problem of interest as a multiple 
composite hypothesis testing problem. Let (Ω,F , Pu? )

be the probability space on which a sequence of inde
pendent random observations of the K systems are 
defined, where Pu? denotes the probability measure in 
accordance with the true parameter vector u?. To ease 
the notation, we suppress the dependence of the prob
ability measure on u? hereinafter.

Specifically, the R&S problem in (1) is equivalent to 
the following multiple composite hypothesis testing prob
lem with K hypotheses:

Hi : u? ∈ Θi, i ∈ [K], (2) 

where [K] � {1, 2, : : : , K} and the ith hypothesis states 
that the true parameter vector u? lies in the parameter 
subset Θi, indicating that system i is the best system. 
Under the assumption that there exists a single best 
system (to be made more explicit later), one of the K 
hypotheses must be true. In other words, the R&S 
problem in (1) is now equivalent to identifying the 
one true hypothesis from K of them.

In sharp contrast, the KN family procedures model 
the R&S problem as a multiple comparisons problem, 
whose hypothesis test formulation was first noted by 
Hong et al. (2021). Specifically, for each i ∈ [K], one 
considers the following test with two hypotheses:

H0,i : µ?
i ≤ max

j≠i
µ?

j vs: H1,i : µ?
i > max

j≠i
µ?

j , (3) 

where the pair of hypotheses (H0,i and H1,i) focuses on 
comparisons between system i and all other systems. 
Model (3) can be rewritten using the notation estab
lished in Section 2.1 as follows:

H0,i : u? ∉Θi vs: H1,i : u? ∈Θi, i ∈ [K]: (4) 

Despite their similar appearance, Models (2) and (4) 
differ significantly with respect to error rate manage
ment. Recall from Section 1 that any fixed-precision 
procedure intends to achieve a target PCS level of, 
say, 1 � α (with α ∈ (0, 1)). Here PCS can be expressed 
as PCS � P(select system i?), where i? denotes the in
dex of the true best system; we assume that there is a 
single best system, formal statements of which will be 
provided in the form of assumptions in Sections 3 and 4.

Under the multiple comparisons Model (4), for a 
procedure to correctly select the true best system i?, 

Wang, Wan, and Chen: Bonferroni-Free and Indifference-Zone-Flexible R&S Methods 
Operations Research, Articles in Advance, pp. 1–16, © 2023 INFORMS 3 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[7

3.
15

2.
11

4.
16

1]
 o

n 
26

 A
pr

il 
20

23
, a

t 1
2:

27
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



it must reject H0,i? . To this end, existing procedures 
in the KN family typically proceed sequentially to 
eliminate (K � 1) systems and conduct error rate con
trol according to the following rationale:

PCS � P(reject H0,i? )

� 1 � P(fail to reject H0,j for some j ≠ i?, j ∈ [K])

(5) 
≥ 1 �

X

j∈[K]\{i?}

P(fail to reject H0,j), (6) 

where (5) implies that achieving the PCS guarantee for 
procedures in the KN family is equivalent to controlling 
the type II error rate when testing (K � 1) pairs of hypoth
eses given in (4). Furthermore, to control the type I error 
rate at the prescribed level of α based on (6), these proce
dures rely on the Bonferrorni correction and require

P(fail to reject H0,j) ≤
α

K � 1 , ∀j ≠ i?, j ∈ [K]:

In strong contrast, we propose procedures that directly 
control the error rate achieved for a single hypothesis 
testing problem, that is, the multiple composite hy
pothesis testing Model (2), hence avoiding using the 
Bonferrorni correction to allocate the prescribed error 
probability α over (K � 1) tests. More specifically, the 
PCS of a procedure under Model (2) can be written as

PCS � P(select system i?) � P(fail to reject Hi? ):

We elaborate on how to achieve a prescribed PCS 
guarantee in the next section.

2.3. Meta Procedure and Some 
Essential Properties

In this section, we propose a high-level meta proce
dure according to Model (2) with the three features 
mentioned in Section 1. Specific instantiations of this 
meta procedure along with detailed theoretical guar
antees are provided in Sections 3 and 4.

The meta procedure, referred to as Proc(Λi,n,B), is 
detailed in Algorithm 1. The meta procedure is fully 
sequential and comprises two major components: (i) the 
test statistics, Λi,n ≥ 0 for all i ∈ [K], where Λi,n denotes 
the generalized likelihood ratio statistic corresponding to 
the ith hypothesis in Model (2) and n stands for the itera
tion index; and (ii) the elimination threshold, B, to reject 
the hypotheses corresponding to inferior systems.

Let {Sn ⊆ [K], n ≥ 1} denote a sequence of index sets 
with Sn comprising systems that have not been elimi
nated by the end of the nth iteration. The procedure 
starts with all systems in contention for being the best 
one on the first iteration, i.e., S1 � [K], and keeps elim
inating systems sequentially until |Sτ | ≤ 1, where |A |

denotes the cardinality of set |A | and τ denotes the 
index of the iteration on which the procedure termi
nates. The first n0 iterations are used to warm up the 

procedure, and elimination only takes place on the 
(n0 + 1)th iteration and onward. We note that n0 is a 
tunable parameter that can impact the computational 
efficiency of specific instantiations of the meta proce
dure with no influence on their statistical validity. In 
addition, it is possible for instantiations of the meta 
procedure to return an empty candidate set upon ter
mination, that is, |Sτ | � 0. In practical applications, 
one may select the system with the highest sample 
mean when this occurs; however, this does not impact 
the theoretical guarantees associated with instantia
tions of the meta procedure to be presented later.

Algorithm 1 (Meta Procedure Proc(Λi,n,B))
Inputs: 
1: B � α . Set the elimination threshold to 

a prescribed error level α
2: [K] � {1, 2, : : : , K}

Procedure: 
1: set n ← 1;
2: set S1 ← [K];
3: repeat
4: generate one observation for each system with 

its index in Sn;
5: set Sn+1 ← Sn; . Initialize Sn+1 which will be 

updated later accordingly
6: if n ≥ n0 + 1 then . No elimination is conducted 

in the first n0 iterations
7: for i ∈ Sn do
8: calculate the test statistic Λi,n;
9: if Λi,n < B then
10: set Sn+1 ← Sn+1\{i}; . Eliminate sys

tem i from Sn+1

11: end if
12: end for
13: end if
14: set n ← n + 1;
15: until |Sn | ≤ 1 . Terminate when no more 

than one system is left in 
Sn

16: return Sn

Recall that (Ω,F , P) denotes the probability space 
on which random observations of all K systems are 
defined. Let Fn ⊂ F for n ∈ Z+ � {1, 2, : : : } be a nonde
creasing system of sub-σ-algebras generated by the 
random observations of all K systems obtained by the 
end of the nth iteration.

The meta procedure, Proc(Λi,n,B), can be designed 
to be a valid procedure corresponding to a sequential 
test of power one (Robbins and Siegmund 1974, Sieg
mund 1976), which refers to those sequential tests that 
do not reject the true hypothesis in finite time almost 
surely under P (referred to as almost surely or with 
probability one for short hereinafter). In the context of 
R&S, the meta procedure corresponds to a size α 
sequential test of power one if it admits the following 
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property:

P(τi < ∞)
≤ α, for i � i?;

� 1, for i ≠ i?,

(

(7) 

where τi denotes the elimination time of system i for 
each i ∈ [K] and recall that i? denotes the true best sys
tem’s index. That is, the probability of eliminating sys
tem i? is bounded above by α, and hence the target 
PCS level of 1 � α can be achieved.

The rationale behind the proposed meta procedure 
is to conduct continuous monitoring of the test statis
tics for K hypotheses in Model (2) and reject a hypoth
esis Hi as soon as its corresponding test statistic Λi,n 
becomes smaller than B for the first time. Therefore, 
requiring the meta procedure to fulfill (7) is equivalent 
to designing the major components, Λi,n for all i ∈ [K]

and B, such that

P
�

inf
n≥1
Λi,n ≤ B

� ≤ α, if i � i?;

� 1, if i ≠ i?,

(

(8) 

where i? denotes the index of the true hypothesis in 
Model (2).

For the meta procedure to achieve (8), we propose 
to use the elimination threshold B � α and the test sta
tistics {Λi,n, i ∈ [K], n ≥ 1} that satisfy the following 
conditions: (i) the sequence of test statistics {Λ�1

i?,n, n ≥

1} corresponding to system i? is associated with a test 
martingale; and (ii) the sequence {Λi,n, n ≥ 1} corre
sponding to system i (∀i ∈ [K]\{i?}) converges to zero 
with probability one. Formally, a test martingale is 
defined as a nonnegative martingale {Zn ≥ 0, n ≥ 1}

with E[Z1] � 1 relative to a sequence of σ-algebras 
(Shafer et al. 2011); for ease of exposition, consider 
that the Zn are adapted to the filtration formed by the 
F n defined earlier in the section. Test martingales yield 
the maximal inequality property: For any test martingale 
{Zn, n ≥ 1}, it holds that P(supn≥1Zn ≥ α�1) ≤ α, which 
follows from Doob’s martingale inequality (Revuz and 
Yor 1999). Therefore, if {Λ�1

i?,n, n ≥ 1} for system i? is 
bounded above by a test martingale {Zn, n ≥ 1} surely 
and B � α is adopted, we have (8) fulfilled, because

P
�

inf
n≥1
Λi?,n ≤ B

�
� P sup

n≥1

1
Λi?,n

≥
1
α

 !

≤ α: (9) 

It is worth noting that the meta procedure enables one 
to monitor the test statistics continuously and “peek” 
at the test without compromising the type I error (or 
equivalently, the PCS) guarantee: This feature can be 
best explained through its connection to always valid 
p value processes (Johari et al. 2019). An always valid 
p value process is a sequence of p values {pn, n ≥ 1}

that can control the type I error rate at level α ∈ (0, 1)

uniformly across the entire sample path under the 
true hypothesis—such a process satisfies the following 

two properties: (1) for any α ∈ (0, 1) and any m ≥ 1, 
P(pm ≤ α) ≤ α, which is known as the superuniform 
property; and (2) pm ≥ pm+1 for any m ≥ 1 holds surely, 
which is referred to as the nonincreasing property. As 
noted by Wasserman et al. (2020), unlike “peeking” at 
the fixed-horizon hypothesis testing that can greatly 
inflate the type I error rate, the hypothesis testing built 
on an always valid p value process is able to achieve a 
prescribed type I error level uniformly across the 
entire sample path (i.e., across all time steps m ≥ 1). We 
are now in a position to point out that {infm≥ℓ≥1Λi?,ℓ, m ≥

1} corresponding to system i? is an always valid p value 
process; The second property is satisfied thanks to the 
definition of the sequence (i.e., pm :� infm≥ℓ≥1Λi?,ℓ) and 
the first property follows from (9), because

P(reject Hi? at iteration m) ≤ P
�

inf
m≥ℓ≥1

Λi?,ℓ ≤ α
�

≤ P
�

inf
n≥1
Λi?,n ≤ α

�
≤ α, ∀m ≥ 1:

In this section, we provided the meta procedure and 
proposed to use the elimination threshold B � α together 
with the test statistics {Λi,n, i ∈ [K], n ≥ 1} satisfying some 
conditions (without arguing for their existence). In Sec
tions 3 and 4, we will provide specific instantiations of 
this meta procedure under normality with concrete forms 
of {Λi,n, i ∈ [K], n ≥ 1} provided.

3. Setting of Normality with 
Known Variances

This section considers solving an R&S problem under 
the normality setting with known variances. We first 
present two concrete procedures in the form of the 
meta procedure provided in Section 3.1 and elaborate 
on their theoretical properties in Sections 3.2 and 3.3.

To accommodate the normality setting with known 
variances, the exposition of this section relies on similar 
notation as established in Section 2.1, but with θ, u, and Θ 
replaced by µ, m, and U, respectively. For example, u, the 
vector comprising the unknown parameters of all K sys
tems, becomes m � (µ1, µ2, : : : , µK) ∈ U, where the param
eter space Θ reduces to U ⊆ RK. The other symbols can be 
understood analogously when they arise.

Throughout this section, we stipulate the following 
assumptions.

Assumption 1. The K systems have distinct true mean 
values, that is, µ?

i ≠ µ?
j , for i ≠ j, i, j ∈ [K]. The true mean 

values of the K systems satisfy that µ?
i? ≥ µ?

i + δ for all 
i ≠ i?, i ∈ [K], where i? denotes the index of the best system 
and δ > 0 is the indifference-zone parameter if specified.

Assumption 2. The observations of system i, {Xi,n, n �

1, 2, : : : } are independent and normally distributed with 
mean µ?

i and variance σ2
i , that is, N (µ?

i ,σ2
i ), where σ2

i is 
known and µ?

i is unknown. Furthermore, the observations 
of different systems are statistically independent, that is, 
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Xi,n and Xj,n′ are independent for n, n′ ≥ 1, if i ≠ j, 
i, j ∈ [K].

Assumption 3. The parameter space U ⊆ RK is compact.

Assumption 4. There exists some r ≥ 1 such that 
P∞

m�1 
Ef (· | m?)[ρ(m? , bmm)]

r
< ∞, where bmm represents the maxi

mum likelihood estimate (MLE) of m? obtained using obser
vations from the first m iterations, and ρ(m, m′) denotes the 
Kullback-Leibler (KL) divergence from f (· |m′) to f (· |m)

that can be written as

ρ(m, m′) � Ef (· | m) log f (· |m)

f (· |m′)

� �� �

, 

with Ef (· | m) denoting the expectation taken with respect to 
f (· |m). Here, f (· |m) :�

QK
i�1 gi(· |µi) denotes the joint density 

function of observations from all K systems, and gi(· |µi)

denotes the normal density function corresponding to system i 
with the mean value being specified as µi, ∀i ∈ [K].

Some remarks follow from Assumptions 1–4. Assump
tion 1 is stipulated such that a single best system exists and 
its true mean value is higher than those of all other systems 
by at least a margin of the indifference-zone parameter if 
specified. Assumption 2 requires no dependencies among 
systems so that the eliminations of two distinct systems 
are statistically independent; it can be replaced by a less 
restrictive conditional-independent condition to allow the 
use of common random numbers. Assumptions 2 and 3
imply that the density functions are of normal distri
butions with a compact parameter space. Assumption 4
stipulates that Ef (· | m?)[ρ(m? , bmm)]

r converges to zero suffi
ciently fast for some r ≥ 1. This condition holds for many 
typical distributions in the multivariate exponential family 
including Gaussian, Poisson, Bernoulli, and so on (e.g., see 
condition (5.84) in Tartakovsky et al. (2014)).

3.1. Two Concrete Procedures
In this section, we first provide two concrete procedures 
in the form of the meta procedure given in Algorithm 
1, Proc(Λ(1)

i,n ,α) and Proc(Λ(2)
i,n ,α), which are suitable for 

the normality setting with known variances, then we 
reveal the relationship between them.

3.1.1. Procedure Proc(L(1)

i,n,a). The test statistic used 
in Proc(Λ(1)

i,n ,α) is a generalized likelihood ratio (GLR) 
statistic, denoted by Λ(1)

i,n , which is defined as follows:

Λ(1)
i,n �

supm∈Ui
Ln(m)

πn
, n ≥ n0 + 1, ∀i ∈ [K], (10) 

where Ui � {m ∈ U |µi ≥ µj + δ, ∀j ≠ i, j ∈ [K]} if the 
indifference-zone parameter δ > 0 is specified; other
wise, Ui � {m ∈ U |µi > µj, ∀j ≠ i, j ∈ [K]}. Notice that 
Λ(1)

i,n in (10) is defined for n ≥ n0 + 1, because Proc(Λ(1)
i,n ,α)

does not start any system elimination using the test sta
tistic until the (n0 + 1)th iteration (recall Algorithm 1). 

We may set Λ(1)
i,n � 1 for 1 ≤ n ≤ n0 for completeness; 

however, this is irrelevant to the implementation and the 
statistical validity of Proc(Λ(1)

i,n ,α).
In (10), Ln(m) denotes the likelihood of all observa

tions collected up to the nth iteration (n ≥ 1) for all K 
systems, which is given by

Ln(m) �
Yn

m�1

Y

i∈Sm

gi(Xi,m |µi): (11) 

On the other hand, πn in (10) is defined as

πn � Ln0 (bmn0
) ·

Yn

m�n0+1

Y

i∈Sm

gi(Xi,m | bµi,m�1),

�
Yn0

m�1

Y

i∈Sm

gi(Xi,m | bµi,n0
) ·

Yn

m�n0+1

Y

i∈Sm

gi(Xi,m | bµi,m�1),

n ≥ n0 + 1, (12) 

which consists of two components. The first term, 
Ln0 (bmn0

), denotes the likelihood of obtaining the observa
tions collected during the warm-up period (i.e., the first n0 
iterations) calculated using the MLE of m? attained by the 
end of the warm-up period, bmn0

� (bµ1,n0
, bµ2,n0

, : : : , bµK,n0
). 

The second term, 
Qn

m�n0+1
Q

i∈Sm
gi(Xi,m | bµi,m�1), denotes 

the adaptive maximum likelihood of obtaining the indi
vidual observations after the warm-up period using the 
corresponding most updated MLEs. That is, we use 
bµi,m�1—the MLE of µ?

i attained based on the observations 
of system i (i ∈ Sm) collected up to the (m � 1)th 
iteration—in calculating the likelihood of seeing the mth 
observation for system i, m � n0 + 1, : : : , n.

We next elaborate on the calculation of Λ(1)
i,n . Under 

Assumptions 1–4, the density function gj(· |µj) in (11) 
and (12) follows as

gj(Xj,m |µj) �
1
ffiffiffiffiffiffiffiffiffiffiffi
2πσ2

j

q exp �
(Xj,m � µj)

2

2σ2
j

 !

: (13) 

Denote τ(1)
j as the stopping time for system j, that is, 

the iteration index that system j gets eliminated by 
Proc(Λ(1)

i,n ,α), ∀j ∈ [K]; we have bµj,n, the MLE of µ?
j 

obtained based on the observations of system j collected 
up to the nth iteration, given by

bµj,n :� arg sup
m∈U

Ln(m) �

Pn
m�1 1{τ(1)

j ≥ m}Xj,m
Pn

m�1 1{τ(1)
j ≥ m}

, ∀j ∈ [K]:

Finally, the following result details the calculation of 
supm∈Ui

Ln(m) used in (10), and its proof is given in 
Online Appendix EC.2.2.

Theorem 1. Under Assumptions 1–4, denote bmUi
n :� arg 

supm∈Ui
Ln(m) as the constrained MLE of the mean vector 

m—obtained over the parameter space Ui (∀i ∈ [K])—by the 
end of the nth iteration. Then bmUi

n � (bµ
Ui
1,n, bµUi

2,n, : : : , bµUi
K,n) can 
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be obtained as follows:

bµ
Ui
j,n �

bµ
Ui
·,n + δ, if j � i;

bµ
Ui
·,n, if bµj,n > bµi,n � δ;

bµj,n, if bµj,n ≤ bµi,n � δ,

8
>>><

>>>:

(14) 

where bµUi
·,n denotes the average of all observations from those 

systems whose MLEs are higher than the MLE of system i 
minus δ:

bµ
Ui
·,n �

Pn
m�1
P

j∈Sm
1{bµj,n ≥ bµi,n � δ}Xj,mσ�2

j � nδσ�2
i

Pn
m�1
P

j∈Sm
1{bµj,n ≥ bµi,n � δ}σ�2

j
,

(15) 

with δ > 0 denoting the indifference-zone parameter if spe
cified and δ � 0 otherwise.

3.1.2. Procedure Proc(L(2)

i,n, a). The test statistic for sys
tem i used in Proc(Λ(2)

i,n ,α), Λ(2)
i,n , is defined as follows:

Λ(2)
i,n � min

j≠i, j∈[K]
Λ(2)

i,j,n, n ≥ n0 + 1, ∀i ∈ [K], 

where Λ(2)
i,n is the minimum of all pairwise statistics 

Λ(2)
i,j,ns that are defined as

Λ(2)
i,j,n �

supm∈Ui,j Ln(m)

πn
, n ≥ n0 + 1, j ≠ i, j ∈ [K]: (16) 

The definitions of Λ(2)
i,n and Λ(2)

i,j,n are specified for n ≥

n0 + 1 due to the same reason as given for defining 
Λ(1)

i,n in (10) for Proc(Λ(1)
i,n ,α). We may set Λ(2)

i,n � 1 for 1 ≤

n ≤ n0 for completeness, but this impacts neither the 
implementation nor the statistical validity of Proc(Λ(2)

i,n ,α).
In (16), Ln(m) and πn are, respectively, as given in 

(11) and (12), with Ln(m) being maximized over the 
parameter space Ui,j, where Ui,j � {m ∈ U |µi ≥ µj + δ} if 
δ > 0 is specified; otherwise, Ui,j � {m ∈ U |µi > µj}. 
Notice that Λ(2)

i,j,n essentially gives the likelihood that 
system i is better than system j, and the test statistic 
Λ(2)

i,n is the minimax statistic for the likelihood that sys
tem i dominates all other systems. The calculation of Λ(2)

i,n 
can be carried out in the same vein as that of Λ(1)

i,n in (10); 
hence, we omit the details for the sake of brevity.

We close this section with the following result that sheds 
light on the relationship between the two test statistics Λ(1)

i,n 
and Λ(2)

i,n used in the two concrete procedures. The proof is 
deferred to Online Appendix EC.2.3.

Theorem 2. Under Assumptions 1–4, Λ(2)
i,n ≥ Λ(1)

i,n holds 
true surely for system i, ∀i ∈ [K].

Theorem 2 states that, seeing the same data, Λ(2)
i,n is 

bounded below by Λ(1)
i,n . Because an elimination occurs 

when a test statistic drops below the threshold B, Theo
rem 2 indicates that, with the same observations seen 
by these two concrete procedures, Proc(Λ(1)

i,n ,α) always 
terminates earlier than Proc(Λ(2)

i,n ,α). Hence, Proc(Λ(2)
i,n ,α)

can be regarded as a conservative version of Proc(Λ(1)
i,n ,α). 

This result becomes handy when we analyze the statisti
cal validity and the computational efficiency of these two 
concrete procedures in Sections 3.2 and 3.3; for example, 
see Theorems 3 and 4 and their proofs for details.

3.2. Statistical Validity
In this section, we show that the two concrete proce
dures given in Section 3.1—respectively using the pro
posed test statistics, Λ(1)

i,n and Λ(2)
i,n , together with the 

elimination threshold B � α—can indeed deliver the 
prescribed PCS guarantee.

We first show that Proc(Λ(1)
i,n ,α) and Proc(Λ(2)

i,n ,α) ter
minate in finite time with probability 1; the proof is 
deferred to Online Appendix EC.2.4.

Theorem 3. Under Assumptions 1–4, Proc(Λ(1)
i,n ,α) and 

Proc(Λ(2)
i,n ,α) terminate in finite time with probability one.

Let PCS(1) and PCS(2) denote the probabilities of correct 
selection corresponding to Proc(Λ(1)

i,n ,α) and Proc(Λ(2)
i,n ,α), 

respectively. We next show that Proc(Λ(1)
i,n ,α) and Proc 

(Λ(2)
i,n ,α) can deliver the prescribed PCS guarantee.

Theorem 4. Under Assumptions 1–4, upon termination, 
Proc(Λ(1)

i,n ,α) and Proc(Λ(2)
i,n ,α) select the best system with 

probability at least 1 � α, that is,
PCS(1) ≥ 1 � α, PCS(2) ≥ 1 � α:

Proof of Theorem 4. We consider Proc(Λ(1)
i,n ,α) first 

and show PCS(1) ≥ 1 � α. Recall that m? � (µ?
1, µ?

2, : : : , 
µ?

K) denotes the true mean vector for the K systems. With
out loss of generality, assume that system 1 is the best 
system (i.e., i∗ � 1). Recall the multiple composite hypoth
esis testing Model (2); in this case, the true hypothesis 
among the K hypotheses considered is H1 : m? ∈ U1.

Let τ(1)
i � min{n |Λ(1)

i,n ≤ α} denote the elimination time 
of system i by Proc(Λ(1)

i,n ,α) for any i ∈ [K] and let τ(1)

denote the stopping time of Proc(Λ(1)
i,n ,α). The probability 

of correct selection of Proc(Λ(1)
i,n ,α) can be bounded below 

as follows:
PCS(1) � P(Proc(Λ(1)

i,n ,α) terminates infinite time
and system 1 is not eliminated)

� P((τ(1)

1 > τ(1)) ∩ (τ(1) < ∞))

� P(τ(1)

1 > τ(1))

+ P(τ(1) < ∞) � P((τ(1)

1 > τ(1)) ∪ (τ(1) < ∞))

≥ P(τ(1)

1 > τ(1)) + P(τ(1) < ∞) � 1: (17) 

Recall Theorem 3 that states that Proc(Λ(1)
i,n ,α) termi

nates in finite time with probability one, that is, 
P(τ(1) < ∞) � 1; it follows from (17) that

PCS(1) ≥ P(τ(1)

1 > τ(1)) ≥ 1 � P(τ(1)

1 < ∞): (18) 

By definition, τ(1)

1 � min{n |Λ(1)

1,n ≤ α}; recall the defini
tion of Λ(1)

1,n given by (10) and the assumption that the 
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true best system is system 1, that is, m? ∈ U1, we have

Λ(1)

1,n �
supm∈U1

Ln(m)

πn
≥

Ln(m?)

πn
: (19) 

Define Γn � πn=Ln(m?). It follows that {Γn, n ≥ n0 + 1} is 
a nonnegative martingale. Specifically,

Γn �
πn�1

Ln�1(m?)
·
Y

i∈Sn

gi(Xi,n | bµi,n�1)

gi(Xi,n |µ?
i )

� Γn�1 ·
Y

i∈Sn

gi(Xi,n | bµi,n�1)

gi(Xi,n |µ?
i )

≥ 0:

Hence, it follows that

Ef (· | m?)[Γn |Γn�1] � Γn�1 × Ef (· | m?)

Y

i∈Sn

gi(· | bµi,n�1)

gi(· |µ
?
i )

 !

� Γn�1

Z Y

i∈Sn

gi(· | bµi,n�1)

gi(· |µ
?
i )

·
Yn

m�1

Y

i∈Sm

gi(· |µ
?
i )dXi,m

� Γn�1, for n ≥ n0 + 2:

In addition, we have Ef (· | m?)(Γn) � 1, because

Ef (· | m?)[Γn] �

Z

Γn ·
Yn

m�1

Y

i∈Sm

gi(· |µ
?
i )dXi,m

�

Z Yn0

m�1

Y

i∈Sm

gi(Xi,m | bµi,n0
)

·
Yn

m�n0+1

Y

i∈Sm

gi(Xi,m | bµi,m�1)dXi,m � 1, 

where the last step holds because gis are valid density 
functions.

Given that {Γn, n ≥ n0 + 1} is a nonnegative martingale 
with respect to {Fn, n ≥ n0 + 1} satisfying Ef (· | m?)(Γn) � 1 
(hence a test martingale), it follows immediately from 
Doob’s martingale inequality (Revuz and Yor 1999) that

P max
n0+1≤n≤N

Γn ≥
1
α

� �

≤ α ·Ef (· | m?)(ΓN) � α, ∀N ≥ n0 + 1:

Based on (19) and the definition of Γn, we have Λ(1)

1,n ≥

1=Γn for n ≥ n0 + 1; furthermore,

P
�

min
n0+1≤n≤N

Λ(1)

1,n ≤ α
�

≤ P max
n0+1≤n≤N

Γn ≥
1
α

� �

≤ α,

∀N ≥ n0 + 1:

Given the inessential definition that Λ(1)

1,n � 1 for 1 ≤ n 
≤ n0, it follows that

P(τ(1)

1 < N) � P
�

min
1≤n≤N

Λ(1)

1,n ≤ α
�

� P
�

min
n0+1≤n≤N

Λ(1)

1,n ≤ α
�

≤ α, ∀N ≥ n0 + 1:

(20) 

In light of (18), we have PCS(1) ≥ 1 � P(τ(1)

1 < ∞) ≥ 1 � α:

Next, we consider Proc(Λ(2)
i,n ,α) and show PCS(2) ≥ 1 

�α. Let τ(2)
i � min{n |Λ(2)

i,n ≤ α} denote the elimination 
time of system i (∀i ∈ [K]) by Proc(Λ(2)

i,n ,α) and let τ(2)

denote the stopping time of Proc(Λ(2)
i,n ,α).

With an analogous argument as given in (17), we 
arrive at the following lower bound for PCS(2):

PCS(2) � P(Proc(Λ(2)
i,n ,α) terminates in finite time

and system 1 is not eliminated)

≥ P(τ(2)

1 > τ(2)) + P(τ(2) < ∞) � 1:

In light of Theorem 3, we have P(τ(2) < ∞) � 1. Hence,

PCS(2) ≥ P(τ(2)

1 > τ(2)) ≥ 1 � P(τ(2)

1 < ∞): (21) 

Thanks to Theorem 2 and the inessential definition 
that Λ(2)

1,n � 1 for 1 ≤ n ≤ n0, we have for any N ≥ n0 + 1,

P(τ(2)

1 < N) � P
�

min
1≤n≤N

Λ(2)

1,n ≤ α
�

� P
�

min
n0+1≤n≤N

Λ(2)

1,n ≤ α
�

≤ P
�

min
n0+1≤n≤N

Λ(1)

1,n ≤ α
�

≤ α, (22) 

where the last inequality follows from (20). Finally, 
PCS(2) ≥ 1 � α follows from the last inequality and (21) 
by letting N → ∞. w

Theorem 4 ensures that the two concrete procedures 
select the best system with probability at least 1 � α 
when they terminate. The following result further 
reveals that if Proc(Λ(1)

i,n ,α) (respectively Proc(Λ(2)
i,n ,α)) 

is stopped before the termination criterion is met, that 
is, |Sn | > 1, it still holds that the subset of systems 
returned by Proc(Λ(1)

i,n ,α) (respectively, Proc(Λ(2)
i,n ,α)) 

contains the best system with the prescribed probabi
listic guarantee. The proof of the following result is 
deferred to Online Appendix EC.2.5.

Corollary 1. Suppose that Assumptions 1–4 are satisfied. 
While implementing Proc(Λ(1)

i,n ,α) (respectively, Proc(Λ(2)
i,n ,α)), 

the set Sn contains the best system with probability at least 1 � α 
for any n ≥ 1.

3.3. Asymptotic Efficiency
In this section, we study the asymptotic efficiency of 
the proposed procedures. Without loss of generality, 
assume that system 1 is the best system, that is, µ?

1 
> µ?

i , ∀i ∈ [K] \ {1}, or equivalently, m? ∈ U1. Recall 
that τ(1)

i (respectively, τ(2)
i ) denotes the number of itera

tions used by Proc(Λ(1)
i,n ,α) (respectively, Proc(Λ(2)

i,n ,α)) to 
eliminate system i, ∀i ∈ [K] \ {1}. Let Ui,1 � {m ∈ U |µi ≥

µ1 + δ} denote the set of parameter values such that sys
tem i is better than system 1, if δ > 0 is specified; other
wise, let Ui,1 � {m ∈ U |µi > µ1}, ∀i ∈ [K] \ {1}. We first 
study the asymptotic limit of E[τ(1)

i ] for Proc(Λ(1)
i,n ,α) in 

relation to that of E[τ(2)
i ] for Proc(Λ(2)

i,n ,α) as the error 
probability α approaches zero.
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Theorem 5. Suppose that Assumptions 1–4 are satisfied. 
Under the settings of Proc(Λ(1)

i,n ,α) and Proc(Λ(2)
i,n ,α), as 

α→ 0, the respective expected sample sizes used by the two 
procedures to eliminate system i satisfy

Ef (· | m?)[τ
(1)
i ] ≤ Ef (· | m?)[τ

(2)
i ] ~ log(1=α)

infm∈Ui,1ρ(m?, m)
(1 + o(1)),

∀m? ∈ U1, i ∈ [K] \ {1},
(23) 

where ρ(m?, m) is the KL divergence from f (· |m) to 
f (· |m?) and a ~ b denotes the asymptotic equivalence 
of a and b.

The proof of Theorem 5 is provided in Online 
Appendix EC.2.6. Theorem 5 can be intuitively under
stood as follows. The numerator, log(1=α), denotes the 
amount of “information” to make an elimination deci
sion. The denominator, infm∈Ui,1ρ(m?, m), represents the 
expected amount of “information” regarding the dif
ference between m and m? obtained from observations 
collected on one iteration. The expected sample size to 
reject system i hence is roughly given by log(1=α)=

infm∈Ui,1ρ(m?, m).
In light of Theorem 5, we have the following asymp

totic efficiency result for the normality setting with a 
known equal variance. Proof of Corollary 2 is pro
vided in Online Appendix EC.2.7.

Corollary 2. Suppose that the assumptions of Theorem 5
are satisfied and Xi,n ~ N (µ?

i ,σ2), ∀i ∈ [K]. As α→ 0, the 
respective expected sample sizes used by the two proposed 
procedures to eliminate system i satisfy

Ef (· | m?)[τ
(1)
i ] ≤ Ef (· | m?)[τ

(2)
i ] ~ �4 log(α) · σ2

(µ?
1 � µ?

i + δ)2 , ∀i ∈ [K] \ {1}, 

where δ > 0 denotes the indifference-zone parameter speci
fied and δ � 0 is used when this parameter is unspecified.

We close this section with a comparison of the asymp
totic expected sample sizes of the KN++ procedure, the 
IZ-free procedure, and Proc(Λ(1)

i,n ,α) under the normality 
setting with a known equal variance. The asymptotic 
expected sample sizes used for eliminating system i 
(∀i ∈ [K] \ {1}) by all three procedures can be given 
as functions of the true difference in the mean values 
of the best system and system i (∆ :� µ?

1 � µ?
i ), the 

indifference-zone parameter (δ), and the known variance 
(σ2), as shown in Table 1. Two interesting observations 
can be made. First and foremost, when δ is unspecified, 
Proc(Λ(1)

i,n ,α) adopts δ � 0 and the corresponding ex
pected sample size is of the same order as that of IZ-free 
in terms of the true difference ∆; when δ is specified, 
Proc(Λ(1)

i,n ,α) can use and benefit from this information. 
Second, it is known that a proper specification of δ is 
required for KN++ to work appropriately and the opti
mal choice is δ � ∆, because any other values would 

result in a larger expected sample size. Such an issue 
does not exist for Proc(Λ(1)

i,n ,α), however.

4. Setting of Normality with Unknown 
Variances

This section considers solving an R&S problem under 
the normality setting with unknown variances. The 
R&S problem is as described in Section 2.1 with nota
tion already established there.

Throughout this section, the following assumptions 
are stipulated.

Assumption 5. The K systems have distinct true mean 
values, that is, µ?

i ≠ µ?
j , for i ≠ j, i, j ∈ [K]. The true mean 

values of the K systems satisfy that µ?
i? ≥ µ?

i + δ for all 
i ≠ i?, i ∈ [K], where i? denotes the index of the best system 
and δ > 0 is the indifference-zone parameter if specified.

Assumption 6. The observations of system i, {Xi,n, n �

1, 2, : : : } are independent and normally distributed with 
mean µ?

i and variance σ2?
i , that is, N (µ?

i ,σ2?
i ), with θ?

i �

(µ?
i , σ2?

i ) being unknown. Furthermore, the observations of 
different systems are statistically independent, that is, Xi,n 
and Xj,n′ are independent for n, n′ ≥ 1, if i ≠ j, i, j ∈ [K].

Assumption 7. The parameter space Θ ⊆ R2K is compact.

Assumption 8. There exists some r ≥ 1, such that 
P∞

m�1 
Ef (· | u?)[ρ(u?,bum)]

r
< ∞, where bum represents the MLE of 

u? obtained using observations from the first m iterations, 
and ρ(u, u′) denotes the KL divergence from f (· |u′) to 
f (· |u), which can be written as

ρ(u, u′) � Ef (· | u) log f (· |u)

f (· |u′)

� �� �

, 

with Ef (· | u) denoting the taken expectation with respect to 
f (· |u). Here, f (· |u) :�

QK
i�1 gi(· |θi) denotes the joint density 

function of observations from all K systems, and gi(· |θi)

denotes the normal density function corresponding to system i 
with the parameter vector given by θi � (µi,σ2

i ), ∀i ∈ [K].

Assumptions 5–8 stipulated in this section are in 
parallel with Assumptions 1–4 in Section 3, with the 
parameter space and the parameter sets of interest in this 
section being expanded to accommodate the unknown 
variances. In fact, with the knowledge of the variances, 
Assumptions 5–8 imply Assumptions 1–4.

Table 1. Asymptotic Expected Sample Sizes of KN++

Procedure, IZ-Free Procedure, and Proc(Λ(1)
i,n ,α) as α→ 0

KN++ IZ-free Proc(Λ(1)
i,n ,α)

2γσ2

(∆ � δ=2)δ

2cσ2

∆2
�4 log (α) · σ2

(∆ + δ)2

Notes. For KN++, γ � log((k � 1)=(2α)); for IZ-free, c is a parameter 
whose value can be determined numerically. Results for KN++ and 
IZ-free are available in Fan et al. (2016).
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4.1. Two Concrete Procedures
As in Section 3.1, we elaborate on two concrete proce
dures, Proc(Λ(1)

i,n ,α) and Proc(Λ(2)
i,n ,α), which are suitable 

for the normality setting with unknown variances, and 
provide some insight into their practical implementation.

4.1.1. Procedure Proc(L(1)

i,n, a). To tackle the R&S prob
lem under normality with unknown variances, Proc 
(Λ(1)

i,n ,α) adopts a GLR statistic, denoted by Λ(1)
i,n , which 

is defined as follows:

Λ(1)
i,n �

supu∈Θi
Ln(u)

πn
, n ≥ n0 + 1, ∀i ∈ [K]: (24) 

As noted in Section 3.1, we may set Λ(1)
i,n � 1 for 1 ≤ n ≤

n0 for completeness; however, this is irrelevant to the 
implementation and the statistical validity of Proc(Λ(1)

i,n ,α). 
In (24), Ln(u) denotes the likelihood of all observations col
lected up to the nth iteration (n ≥ 1) for all K systems, 
which is given by

Ln(u) �
Yn

m�1

Y

i∈Sm

gi(Xi,m |θi); (25) 

and πn in (24) is given by

πn � Ln0 (bun0 ) ·
Yn

m�n0+1

Y

i∈Sm

gi(Xi,m | bθi,m�1)

�
Yn0

m�1

Y

i∈Sm

gi(Xi,m | bθi,n0 ) ·
Yn

m�n0+1

Y

i∈Sm

gi(Xi,m | bθi,m�1),

(26) 

which denotes the adaptive maximum likelihood of 
obtaining the observations collected up to the nth iter
ation for n ≥ n0 + 1. The first term in (26), Ln0 (bun0 ), 
denotes the likelihood of obtaining the observations 
collected during the warm-up period calculated using 
the MLE of u? attained by the end of the warm-up 
period, bun0 � (bθ1,n0 , bθ2,n0 , : : : , bθK,n0 ) :� arg supu∈ΘLn0 (u). 
The second term, 

Qn
m�n0+1

Q
i∈Sm

gi(Xi,m | bθi,m�1), denotes 
the adaptive maximum likelihood of obtaining the indi
vidual observations after the warm-up period using the 
corresponding most updated MLEs, where bθi,m�1 de
notes the MLE of θ?

i attained based on the observations 
of system i (i ∈ Sm) collected up to the (m � 1)th iteration, 
m � n0 + 1, : : : , n.

The optimization problem involved in the expres
sion of Λ(1)

i,n in (24) is solvable under normality with 
unknown variances; nevertheless, it may not admit 
a closed-form solution. Because implementing Proc 
(Λ(1)

i,n ,α) requires calculating Λ(1)
i,n for ∀i ∈ [K] on every 

iteration, in case a closed-form solution does not exist, 
the computational cost of implementing Proc(Λ(1)

i,n ,α)

can be prohibitive.

4.1.2. Procedure Proc(L(2)

i,n, a). The test statistic used 
in Proc(Λ(2)

i,n ,α) is constructed based on pairwise sys
tem comparisons as follows:

Λ(2)
i,n � min

j≠i, j∈[K]
Λ(2)

i,j,n, n ≥ n0 + 1, ∀i ∈ [K], 

which denotes the minimum of all pairwise statis
tics Λ(2)

i,j,n, and Λ(2)
i,j,n denotes the generalized likelihood 

ratio of the event that system i is better than system j, 
that is,

Λ(2)
i,j,n �

supu∈Θi,j Ln(u)

πn
, n ≥ n0 + 1, j ≠ i, j ∈ [K], 

where Ln(u) and πn are, respectively, given in (25) and 
(26). Here, Ln(u) is maximized over the parameter set 
Θi,j, where Θi,j � {u ∈Θ |µi ≥ µj + δ} when δ > 0 is spe
cified; otherwise, Θi,j � {u ∈Θ |µi > µj}.

Similarly as in the normality setting with known var
iances, we can show that the following relationship 
between the test statistics adopted in the two concrete 
procedures hold in the normality setting with unknown 
variances. The proof is provided in Online Appendix 
EC.3.2.

Theorem 6. Under Assumptions 5–8, Λ(2)
i,n ≥ Λ(1)

i,n holds 
true surely for system i, ∀i ∈ [K].

We next elaborate on the calculation of Λ(2)
i,j,n in 

Proc(Λ(2)
i,n ,α). Let {Xi,n, n ≥ 1} be a sample of indepen

dent and normally distributed observations of system 
i with unknown mean µ?

i and unknown variance 
σ2?

i , ∀i ∈ [K]. Under Assumptions 5–8, Ln(u) in (25) 
can be written as

Ln(u) �
Yn

m�1

Y

l∈Sm

gl(Xl,m |µl,σ
2
l ), 

where

gl(Xl,m |µl,σ
2
l ) �

1
ffiffiffiffiffiffiffiffiffiffiffi

2πσ2
l

q exp �
(Xl,m �µl)

2

2σ2
l

 !

, ∀l ∈ [K];

recall that Sn contains those systems that have not been 
eliminated by the nth iteration, and bun � (bθ1,n, bθ2,n, : : : , 
bθK,n) :� arg supu∈ΘLn(u) denote the MLE of u? obtained 
at the nth iteration, with bθl,n � (bµl,n, bσ2

l,n) denoting the 
vector of MLEs of the mean µ?

l and the variance σ2?
l for 

all l ∈ [K]. Denote τ(2)

l as the elimination time of system l 
by Proc(Λ(2)

i,n ,α); then bµl,n and bσ2
l,n can be, respectively, 

given as

bµl,n �

Pn
m�1 1{τ(2)

l ≥ m}Xl,m
Pn

m�1 1{τ(2)

l ≥ m}
,

bσ2
l,n �

Pn
m�1 1{τ(2)

l ≥ m}(Xl,m � bµl,n)
2

Pn
m�1 1{τ(2)

l ≥ m}
, ∀l ∈ [K]:
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Let ũn � (θ̃1,n, θ̃2,n, : : : , θ̃K,n) :� arg supu∈Θi,j Ln(u) denote 
the constrained MLE of u? attained at the nth iteration, 
where θ̃l,n � (µ̃l,n, σ̃2

l,n) denotes the vector of constrained 
MLEs of the mean µ?

l and the variance σ2?
l over the 

parameter set Θi,j for all l ∈ [K]. It is easy to see that the 
constrained MLE θ̃l,n and the MLE bθl,n for system l are 
identical, ∀l ∈ [K]\{i, j}. Therefore, under Assumption 
6, Λ(2)

i,j,n can be written explicitly as

Λ(2)
i,j,n � π�1

n

Yn

m�1

Y

l∈Sm\{i, j}
gl(Xl,m | bµl,n, bσ2

l,n)

·
Yn

m�1
gi(Xi,m | µ̃i,n, σ̃2

i,n) · gj(Xj,m | µ̃j,n, σ̃2
j,n), n ≥ n0 + 1:

It is worth noting that an analytical solution for ũn �

arg supu∈Θi,j Ln(u) (in particular, a closed-form expres
sion for θ̃i,n � (µ̃i,n, σ̃2

i,n) and θ̃j,n � (µ̃j,n, σ̃2
j,n)) does not 

exist under normality with unknown variances. Itera
tive algorithms are typically recommended to solve 
such an optimization problem which is nonconvex. 
Hence, we approximate the constrained MLEs by 
repeating the following two steps through iterations: (1) 
updating (µ̃i,n, µ̃j,n) while holding (σ̃2

i,n, σ̃2
j,n) fixed, and (2) 

updating (σ̃2
i,n, σ̃2

j,n) while holding (µ̃i,n, µ̃j,n) fixed. To 
simplify the calculation of Λ(2)

i,j,n in implementation, we 
approximate µ̃i,n, µ̃j,n, σ̃2

i,n, and σ̃2
j,n as follows:

(µ̃i,n, µ̃j,n) ≈

(bµi,n, bµj,n) if bµi,n ≥ bµj,n + δ;

((bµi,n + bµj,n + δ)=2,
(bµi,n + bµj,n � δ)=2) otherwise,

8
>><

>>:

(σ̃2
i,n, σ̃2

j,n) ≈

�
1
ni

Xni

m�1
(Xi,m � µ̃i,n)

2, 1
nj

Xnj

m�1
(Xj,m � µ̃j,n)

2
�

, 

where δ > 0 denotes the indifference-zone parameter if 
specified and δ � 0 is used when this parameter is un
specified, ni � min{n,τi}, and nj � min{n,τj}, ∀i ≠ j, i, 
j ∈ [K]. These expressions are essentially the results 
obtained upon running one iteration of the aforemen
tioned two-step approximation.

In view of the relative ease of calculating Λ(2)
i,n com

pared with Λ(1)
i,n , we remark that Proc(Λ(2)

i,n ,α) is more 
applicable under the normality setting with unknown 
variances. However, in other settings where Λ(1)

i,n ad
mits a closed-form expression, we would recommend 
implementing Proc(Λ(1)

i,n ,α), which can be less conserva
tive than Proc(Λ(2)

i,n ,α).

4.2. Statistical Validity
In this section, we provide an in-depth study of the 
theoretical properties of Proc(Λ(1)

i,n ,α) and Proc(Λ(2)
i,n ,α)

under normality with unknown variances.
The first result establishes that Proc(Λ(1)

i,n ,α) and 
Proc(Λ(2)

i,n ,α) terminate in finite time with probability 

one, whose proof is provided in Online Appendix 
EC.3.3.

Theorem 7. Under Assumptions 5–8, both Proc(Λ(1)
i,n ,α)

and Proc(Λ(2)
i,n ,α) terminate in finite time with probability 

one.

Given that the two procedures terminate in finite time 
with probability one, we further show that they both 
deliver the prescribed PCS guarantee. The proof of the 
following result is deferred to Online Appendix EC.3.4.

Theorem 8. Under Assumptions 5–8, both Proc(Λ(1)
i,n ,α)

and Proc(Λ(2)
i,n ,α) select the best system with probability at 

least 1 � α, that is,

PCS(1) ≥ 1 � α, PCS(2) ≥ 1 � α: (27) 

Theorem 8 establishes that Proc(Λ(1)
i,n ,α) and Proc(Λ(2)

i,n ,α)

select the best system with probability at least 1 � α 
when they terminate. Nonetheless, if Proc(Λ(1)

i,n ,α) and 
Proc(Λ(2)

i,n ,α) are stopped before the termination criterion 
is met, that is, |Sn | > 1, we have that the set Sn contains 
the best system with the prescribed probabilistic guaran
tee. The proof of the following result is provided in 
Online Appendix EC.3.5.

Corollary 3. Suppose that Assumptions 5–8 are satisfied. 
While implementing Proc(Λ(1)

i,n ,α) (respectively, Proc(Λ(2)
i,n ,α)), 

the set Sn contains the best system with probability at least 1 �

α for any n ≥ 1.

4.3. Asymptotic Efficiency
In this section, we investigate the asymptotic effi
ciency. Without loss of generality, assume that system 
1 is the best system, that is, µ?

1 > µ?
i , ∀i ∈ [K] \ {1}, or 

equivalently, u ∈Θ1. Recall that τ(1)
i (respectively, τ(2)

i ) 
denotes the number of iterations used by Proc(Λ(1)

i,n ,α)

(respectively, Proc(Λ(2)
i,n ,α)) to eliminate system i, ∀i 

∈ [K] \ {1}. Recall that Θi,1 denotes the set of parameter 
values such that system i is better than system 1, 
∀i ∈ [K] \ {1}. The following result reveals the asymp
totic limit of E[τ(1)

i ] for Proc(Λ(1)
i,n ,α) and that of E[τ(2)

i ]

for Proc(Λ(2)
i,n ,α) as the error probability α tends to zero. 

The proof is provided in Online Appendix EC.3.6.

Theorem 9. Suppose that Assumptions 5–8 are satisfied. 
Under the settings of Proc(Λ(1)

i,n ,α) and Proc(Λ(2)
i,n ,α), as 

α→ 0, the respective expected sample sizes used by the two 
procedures to eliminate system i satisfy

Ef (· | u?)[τ
(1)
i ] ≤Ef (· | u?)[τ

(2)
i ] ~ log(1=α)

infu∈Θi,1ρ(u?,u)
(1 + o(1)),

∀u? ∈Θ1, i ∈ [K] \ {1}:

5. Numerical Evaluations
In this section, we conduct numerical experiments to 
evaluate the performance of the proposed procedures. 
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In the first study, we evaluate the statistical validity 
and the computational efficiency of Proc(Λ(1)

i,n ,α) for 
solving an R&S problem involving two systems. In 
the second study, we assess the performance of Proc 
(Λ(1)

i,n ,α) in comparison with two state-of-the-art R&S 
procedures in selecting the best system under differ
ent indifference-zone configurations with up to 500 
systems. The third study focuses on evaluating Proc 
(Λ(2)

i,n ,α) in comparison with two leading R&S proce
dures for solving an R&S problem in which all systems 
are subject to unknown heterogeneous variances. It is 
worth noting that we recommend working with the 
logarithms of the likelihoods, the test statistics, and the 
elimination threshold to enhance the proposed proce
dures’ numerical stability.

5.1. Study 1: Statistical Validity and 
Computational Efficiency of Proc(L(1)

i,n,a)

This study focuses on evaluating the statistical validity 
and computational efficiency of Proc(Λ(1)

i,n ,α) proposed 
for solving R&S problems under normality with un
known mean values and known variances (recall Section 3.1).

Consider comparing K � 2 systems with statistically 
independent observations. The observations of system i 
are independent and normally distributed with mean µ?

i 
and variance 1, i � 1, 2. For different combinations of 
the target PCS level (or equivalently, the target error pro
bability level α) and the true mean value difference 
(∆ � µ?

1 � µ?
2), we perform the experiment for 10,000 inde

pendent macro-replications and record the estimated PCS 
and the total sample size consumed by Proc(Λ(1)

i,n ,α). In all 
experiments, Proc(Λ(1)

i,n ,α) is implemented without a spe
cification of the indifference-zone parameter, and it starts 
with n0 � 2 iterations to collect observations from each 
system without conducting elimination.

Table 2 summarizes the average total sample sizes 
(SSize) with 95% confidence interval and the estimated 
PCSs ( dPCS) obtained under different combinations of 
∆ � µ?

1 � µ?
2 and the target PCS level considered. Two 

interesting observations are worth mentioning. First, 
Proc(Λ(1)

i,n ,α) tends to overshoot the target PCS level 

when the gap between the mean values of the two sys
tems, ∆, is large. However, as ∆ decreases, dPCS drops 
steadily to the target PCS level. The reasoning behind 
is that the larger ∆, the more likely the GLR statistic of 
Proc(Λ(1)

i,n ,α) overshoots the elimination threshold, and 
hence the higher dPCS obtained. As ∆ decreases, dPCS 
drops and approaches the target PCS level, which con
firms the statistical validity of Proc(Λ(1)

i,n ,α). Second, as 
∆ decreases by a factor of two, SSize increases approxi
mately by a factor of four, echoing Corollary 2, which 
states that the average total sample size asymptotically 
approaches the limit �4 logα=∆2 as α→ 0.

Figure 1 plots the average total sample size obtained 
across 10,000 macro-replications and the analytical 
sample size given by Corollary 2 against ∆ � µ?

1 � µ?
2 

for each target PCS level considered. Despite some dis
crepancy between the numerical and the analytical 
results, we observe that the average total sample size 
used by Proc(Λ(1)

i,n ,α) approaches the theoretical lower 
bound as ∆ decreases. Two possible explanations for 
this observation can be given. On the one hand, the GLR 
statistic of Proc(Λ(1)

i,n ,α) in the numerical implementation 
is a discrete-time stochastic process, but is approximated 
as a continuous-time stochastic process in the theoretical 
analysis. On the other hand, the analytical result stated in 
Corollary 2 assumes the knowledge of µ?

1 and µ?
2, whereas 

this information is unavailable from the numerical imple
mentation perspective. We conclude that the observations 
made in this study corroborate the theoretical results 
regarding the statistical validity and computational effi
ciency of Proc(Λ(1)

i,n ,α) obtained in Section 3.

5.2. Study 2: Selecting the Best System Under 
Different Indifference-Zone Parameter 
Specifications

This study examines the performance of Proc(Λ(1)
i,n ,α)

under different indifference-zone parameter settings 
in comparison with two benchmarking methods, the 
KN++ procedure and the IZ-free procedure, for solving 
an R&S problem under normality with known variances 
(recall Section 3.1). To facilitate comparison, identical 

Table 2. Study 1: Estimated PCS ( dPCS) and Average Total Sample Size (SSize) with 95% Confidence Interval for 
Proc(Λ(1)

i,n ,α) Under Normality with Unknown Means and Variance 1, Where α ∈ {0:05, 0:025,0:0125}

∆

1 �α � 0.95 0.975 0.9875

SSize dPCS SSize dPCS SSize dPCS

23 6.004 6 0.00 1.000 6:002 6 0:012 1.000 6:112 6 0:032 1.000
22 6.92 6 0.012 1.000 7:10 6 0:13 1.000 7:58 6 0:19 1.000
21 9:98 6 0:25 0.999 11:90 6 0:31 1.000 14:38 6 0:41 1.000
2◦ 25:79 6 1:08 0.997 30:95 6 1:22 0.998 37:26 6 1:57 0.998
2�1 89:86 6 4:67 0.997 109:41 6 5:30 0.998 132:17 6 5:78 0.999
2�2 333:01 6 17:47 0.995 421:91 6 21:22 0.996 513:53 6 23:23 0.998
2�3 1, 227 6 72 0.979 1, 538 6 79 0.988 1, 933 6 88 0.996
2�4 4, 523 6 279 0.970 5, 919 6 333 0.979 7, 583 6 376 0.989
2�5 16, 939 6 1, 109 0.951 23, 499 6 1, 297 0.975 29, 366 6 1, 482 0.988
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experimental settings as considered in Fan and Hong 
(2014) and Fan et al. (2016) are adopted here. It is worth 
noting that a major difference between Proc(Λ(1)

i,n ,α) and 
the two benchmarking procedures is that Proc(Λ(1)

i,n ,α)

does not require the Bonferroni correction.
Consider an R&S problem involving K systems with 

statistically independent observations. The observa
tions of system i are independent and normally distrib
uted with mean µ?

i � 1:5 � 0:5i and variance σ2
i � 10 

for ∀i ∈ [K]. We consider varying the number of sys
tems K ∈ {20,50, 100, 500} and the specification of the 
indifference-zone parameter δ ∈ {2�4, 2�3, 2�2, 2�1, 0}

with zero, indicating that δ is unspecified. Notice that 
δ � 0:5 corresponds to the true gap between the best 
system and the second best: ∆ � 0:5. With the target 
PCS level set to 1 � α � 0:95, under each combination 
of K and δ, we perform the experiment for 1,000 inde
pendent macro-replications and record the estimated 
PCS obtained and the total sample sizes consumed by 
Proc(Λ(1)

i,n ,α) and the two benchmarking methods. The 
implementation of Proc(Λ(1)

i,n ,α) under each combination 
of δ and K starts with n0 � 10 iterations to collect observa
tions from each system without conducting elimination.

Table 3 summarizes the estimated PCSs ( dPCS) and 
the average total sample sizes (SSize) with 95% confi
dence interval obtained under the different combina
tions of δ and K considered. We note that the results 
corresponding to the cases where δ is unspecified do 
not exist for the KN++ procedure, because it applies 

only when δ > 0 is provided. Conversely, the results 
corresponding to the cases where δ > 0 assumes dif
ferent specifications do not exist for the IZ-free pro
cedure, as it does not admit an indifference-zone 
parameter.

Several important observations can be made from 
Table 3. First and foremost, Proc(Λ(1)

i,n ,α) outperforms 
the two benchmarking procedures in terms of the 
average total sample sizes used under all experimen
tal settings. Specifically, compared with KN++, the 
average total sample size used by Proc(Λ(1)

i,n ,α) grows 
much more slowly as the indifference-zone parameter 
δ approaches zero. The results suggest that the com
putational efficiency of KN++ hinges heavily on the 
specification of δ, which declines drastically when δ≪ ∆

(recall ∆ � 0:5 in this study), whereas that of Proc (Λ(1)
i,n , 

α) is much less affected. On the other hand, when δ is 
unspecified, Proc(Λ(1)

i,n ,α) uses much smaller average 
total sample sizes compared with IZ-free to achieve the 
target PCS level. Second, in terms of the dPCS obtained, 
we find that Proc(Λ(1)

i,n ,α) is less conservative than KN++

and IZ-free because both procedures deliver dPCS much 
higher than the target level 0.95 as a result of using the 
Bonferroni correction. We conclude that Proc(Λ(1)

i,n ,α) is 
a statistically valid and computationally efficient R&S 
procedure with and without specifying the indifference- 
zone parameter. Indeed, it helps fill the gap between 
procedures developed under the indifference-zone for
mulation and the indifference-zone-free formulation.

Figure 1. (Color online) Study 1: Log-Log Plot of the Average Total Sample Size (y Axis) Against the True Mean Value Differ
ence (x Axis), Displayed Using Logarithmic Scales on Both Axes 

Note. Solid dots denote the analytical average total sample sizes given by Corollary 2, and solid triangles denote the average total sample sizes 
reported in Table 2.
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5.3. Study 3: Selecting the Best System Under 
Unknown Heterogeneous Variances

In this study, we investigate the performance of Proc 
(Λ(2)

i,n ,α) in comparison with the KN++ procedure and 
the IZ-free procedure for solving an R&S problem 
under the normality setting with unknown, heteroge
neous variances (recall Section 4.1).

Consider solving an R&S problem involving K sys
tems with the target PCS level set to 1 � α � 0:95 and 
the indifference-zone parameter δ being either 0.5 
or unspecified. The random observations of system i 
(∀i ∈ [K]) are independent and normally distributed 
with mean µ?

i � 1:5 � 0:5i and variance σ2?
i , which is spe

cified next. Notice that δ � 0:5 corresponds to the true 
gap between the best system and the second best, 
∆ � 0:5. Three configurations of variances for all i ∈ [K]

are considered, respectively, equal (σ2?
i � 10), monotoni

cally increasing (σ2?
i � 10 × (0:95 + 0:05i)), and monoton

ically decreasing (σ2?
i � 10=(0:95 + 0:05i)). We consider 

varying K ∈ {20, 50, 100}. For each combination of K, δ, 
and the configuration of variances, we perform the ex
periment for 1,000 independent macro-replications and 
record the estimated PCS obtained and the total sample 
sizes consumed by Proc(Λ(2)

i,n ,α) and the two benchmark
ing methods. Every evaluation of Proc(Λ(2)

i,n ,α) under each 
experimental setting uses n0 � 10 iterations to collect obser
vations from all systems without conducting elimination.

Table 4 summarizes the estimated PCSs ( dPCS) and 
the average total sample sizes (SSize) with 95% confi
dence interval obtained under different experimental set
tings, from which we have the following observations. 
First, Proc(Λ(2)

i,n ,α) demonstrates its statistical validity 

across all experimental settings and in particular it deli
vers robust performance under different configurations 
of variances. Second, Proc(Λ(2)

i,n ,α) outperforms the two 
benchmarking procedures in terms of computational effi
ciency under all indifference-zone parameter settings 
considered. Specifically, Proc(Λ(2)

i,n ,α) uses smaller total 
sample sizes on average than KN++, even when δ is spe
cified to be ∆ � 0:5 that brings out the best in KN++. 
Last but not least, in terms of the dPCS obtained, Proc 
(Λ(2)

i,n ,α) is less conservative than KN++ and IZ-free. 
Although the target PCS level is 0.95, both KN++ and 
IZ-free overshoot the target by a sizable margin and con
sume much larger total sample sizes on average.

6. Conclusion
In this paper, we proposed two new fully sequential 
procedures for R&S. Unlike many other leading meth
ods, the new procedures do not use the Bonferroni cor
rection, can continuously monitor and control the type 
I error rate at a prescribed level, and are indifference- 
zone-flexible. Under the settings of normality with and 
without the knowledge of true variances, the proposed 
procedures are shown to be statistically valid and 
asymptotically efficient and provide a prescribed PCS 
guarantee. Numerical studies corroborate the theoreti
cal results and demonstrate the superiority of the pro
posed procedures under various configurations.

There are several future research directions to pursue, 
including, but not limited to (1) developing generalized 
sequential likelihood ratio test-based procedures that 
can achieve a guaranteed probability of good selection 
(this direction is highly relevant to tackling large-scale 

Table 3. Study 2: Estimated PCS ( dPCS) and Average Total Sample Size (SSize) with 95% Confidence Interval Obtained 
from 1,000 Independent Macro-Replications for Implementing Proc(Λ(1)

i,n ,α), KN++ Procedure, and IZ-Free Procedure with 
1 � α � 0:95

K δ

δ specified δ unspecified

KN++ Proc(Λ(1)
i,n ,α) IZ-free Proc(Λ(1)

i,n ,α)

SSize dPCS SSize dPCS SSize dPCS SSize dPCS

20 2�1 1,371 6 16 0.99 490 6 20 0.95 2,816 6 82 0.99 1,156 6 133 0.98
2�2 3,247 6 29 1.00 594 6 52 0.98
2�3 7,045 6 50 1.00 757 6 95 0.95
2�4 14,700 6 70 1.00 830 6 93 0.98

50 2�1 2,014 6 18 1.00 782 6 23 0.95 3,588 6 89 0.99 1,471 6 153 0.99
2�2 4,454 6 33 1.00 866 6 44 0.95
2�3 9,779 6 54 1.00 1,069 6 76 0.97
2�4 20,700 6 80 1.00 1,327 6 130 0.97

100 2�1 2,710 6 20 0.99 1,359 6 20 0.95 4,388 6 89 0.99 1,955 6 159 0.98
2�2 5,506 6 34 1.00 1,428 6 49 0.98
2�3 11,790 6 60 1.00 1,691 6 80 0.98
2�4 25,140 6 90 1.00 1,850 6 116 0.97

500 2�1 7,217 6 21 0.99 5,683 6 21 0.96 9,138 6 102 1.00 6,335 6 143 0.98
2�2 10,770 6 40 1.00 5,873 6 53 0.97
2�3 18,770 6 60 1.00 6,050 6 87 0.97
2�4 36,280 6 90 1.00 6,193 6 106 0.99

Note. Results for KN++ and IZ-free are cited from Fan et al. (2016).
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R&S problems); (2) extending the procedures to solve 
R&S problems with unknown underlying distributions; 
(3) establishing guidelines for setting the parameter n0 
and studying its impact on the proposed procedures’ per
formance; and (4) conducting comprehensive compari
sons with leading Bonferroni-free R&S procedures such 
as BIZ (Frazier 2014) and DK (Dieker and Kim 2021).

Acknowledgments
The authors thank three anonymous reviewers and the 
associate editor for carefully reading the paper and for 
suggestions that significantly improved the paper.

References
Branke J, Chick SE, Schmidt C (2007) Selecting a selection proce

dure. Management Sci. 53(12):1916–1932.
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