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Abstract. This paper proposes two fully sequential procedures for selecting the best system
with a guaranteed probability of correct selection (PCS). The main features of the proposed
procedures include the following: (1) adopting a Bonferroni-free model that overcomes the
conservativeness of the Bonferroni correction and delivers the exact probabilistic guarantee
without overshooting; (2) conducting always valid and fully sequential hypothesis tests that
enable continuous monitoring of each candidate system and control the type I error rate (or
equivalently, PCS) at a prescribed level; and (3) assuming an indifference-zone-flexible formu-
lation, which means that the indifference-zone parameter is not indispensable but could be
helpful if provided. We establish statistical validity and asymptotic efficiency for the proposed
procedures under normality settings with and without the knowledge of true variances.
Numerical studies conducted under various configurations corroborate the theoretical find-
ings and demonstrate the superiority of the proposed procedures.
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1. Introduction

The ranking and selection (R&S) problem refers to
selecting the best system from a finite set of alternatives
or systems, where the true performance of each system
is unavailable but can be evaluated through sampling
or running simulation experiments. R&S problems arise
in many practical applications, for example, when Inter-
net companies consider variations of an application to
provide the best user experience and when pharma-
ceutical companies rank treatment options for a target
disease, just to name a few.

This paper focuses on the R&S problem of selecting
the best system defined as the one with the maximum
expected performance. There has been significant inter-
est over the last decades in developing procedures for
solving this R&S problem. We refer the interested reader
to Kim and Nelson (2006b, 2007), Branke et al. (2007),
and Hong et al. (2021) for thorough overviews on exist-
ing R&S procedures. Most R&S procedures fall into two
categories: fixed-precision and fixed-budget approaches.
The fixed-budget techniques aim to efficiently allocate
a fixed computing budget among systems to optimize

an objective (e.g., maximize the posterior probability of
correct selection (PCS)). Within this category, the most
widely applied and well-studied algorithms include
the optimal computing budget allocation (Chen et al.
2000) and the expected value of information approaches
(Chick and Inoue 2001).

In this paper, we focus on solving the R&S problem via
a fixed-precision approach, which intends to achieve a
prespecified PCS with adaptive sampling. Recent years
have witnessed a burgeoning literature on fixed-precision
R&S procedures. Typically, fixed-precision approaches
assume one of the following three formulations: (a) the
subset-selection formulation, (b) the indifference-zone for-
mulation, and (c) the indifference-zone-free formulation.
Procedures in the subset-selection formulation guarantee
to select a subset of systems that includes the best one
with a prescribed high probability (Gupta 1956, 1965);
these procedures typically consist of two stages: prelimi-
nary evaluation and final elimination. In contrast, proce-
dures in the latter two formulations typically proceed
sequentially and terminate after eliminating all systems
but one. In particular, procedures in the indifference-zone
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formulation guarantee to select the best system with a
prespecified PCS when an indifference-zone parameter
0 > 0 is specified—The mean performance of the best sys-
tem is greater than that of all other systems by at least 0.
Most of the fixed-precision procedures are indifference-
zone based. The popular ones include the KN procedure
(Kim and Nelson 2001), the KN++ procedure (Kim and
Nelson 2006a), the Bayes-inspired indifference zone pro-
cedures (Frazier 2014), and so on. Fan et al. (2016) pro-
posed an indifference-zone-free procedure (IZ-free), which
can deliver a prescribed PCS guarantee without using an
indifference-zone parameter. However, [Z-free is more
conservative and computationally expensive than the lead-
ing indifference-zone procedures if the indifference-zone
information is appropriately specified.

There is still an absence of procedures that can bridge
the indifference-zone and indifference-zone-free formula-
tions. The indifference-zone procedures are typically
(much) more computationally efficient with an appro-
priate specification of the indifference-zone parameter
(Fan et al. 2016). The IZ-free approach is more flexible
but cannot use the indifference-zone information even if
it is available. Therefore, we are inspired to propose an
indifference-zone-flexible formulation, and design corre-
sponding procedures that (1) can deliver the PCS guar-
antee either with or without using the indifference-zone
parameter and (2) can take advantage of the parameter if
specified.

Another persistent issue that hinders the efficiency of
many leading procedures is the use of the Bonferroni
adjustment to achieve the prescribed PCS guarantee
under multiple comparisons (Kim and Nelson 2001,
2006a; Fan and Hong 2014; Fan et al. 2016). That is, divid-
ing the probability of incorrect selection by a factor of
K -1, where K denotes the total number of systems under
consideration. The consequence is that fixed-precision
procedures relying on the Bonferroni correction become
computationally expensive and conservative in error rate
control when applied for solving large-scale R&S pro-
blems (i.e., when K is large). A significant breakthrough is
the Bayes-inspired indifference zone procedures (BIZ)
developed by Frazier (2014). BIZ can sequentially elimi-
nate inferior systems without resorting to the Bonferroni
correction and is found to outperform leading fixed-
precision procedures on large-scale R&S problems. It
is worth noting that researchers have made continual
efforts to tackle the conservativeness of fixed-precision
procedures (Wang and Kim 2013; Dieker and Kim 2014,
2021). A notable effort is Dieker and Kim (2021) who pro-
pose the DK procedures using a spherical elimination
boundary derived from properties of a multidimensional
Brownian motion. DK is shown to deliver similar or
better performance than BIZ. Nevertheless, both DK and
BIZ are tailored for normal distribution and assume the
indifference-zone formulation.

To address the previous challenges, we propose
new R&S procedures with the following features:

1. A multiple composite hypothesis testing model.
We model the R&S problem as a multiple composite
hypothesis testing problem so that the developed pro-
cedures can achieve the desired error rate control with-
out the Bonferroni correction; see Section 2.2 for a more
detailed discussion.

2. Test martingale-based procedures. We propose a
fully sequential hypothesis testing meta procedure whose
test statistics and elimination threshold correspond to a
test martingale and can be used to continuously monitor
and control the type I error rate (or equivalently, PCS) at
a prescribed level; see Section 2.3 for details.

3. Procedures in the indifference-zone-flexible for-
mulation. Specific instantiations of the meta procedure
under normality settings are detailed in Sections 3 and
4, where the statistical efficiency and the asymptotic
optimality in terms of the average sample size used are
verified. These concrete procedures can deliver the pre-
scribed PCS guarantee with and without using the
indifference-zone parameter.

Our proposed procedures have their roots in sequen-
tial analysis. Since the seminal work on the sequential
probability ratio test (SPRT; Wald 1945, Wald and Wol-
fowitz 1948), the last eight decades have witnessed the
significant development of sequential likelihood-based
hypothesis testing theory and methodologies and their
applications in various science and engineering do-
mains. SPRT formulates the sequential testing of two
simple hypotheses via the boundary crossing of the
likelihood ratio statistic, which is shown to be optimal
in terms of minimal expected sample size for achieving
prescribed error probabilities. The generalized sequen-
tial probability ratio test (GSPRT) provides a natural
generalization of the SPRT concerning the problem for-
mulation and the stopping rule, which tackles the
sequential testing of two or more composite hypotheses
and adopts the generalized likelihood ratio (GLR) test
statistic (Li et al. 2014). Over the years, there has been a
plethora of work on designing GLR test statistics and
proving their asymptotic optimality under various con-
ditions (Lorden 1976; Lai 1977, 1981; Pavlov 1988, 1991;
Li et al. 2014). The interested reader is referred to Tarta-
kovsky et al. (2014) for a comprehensive discussion of
sequential analysis and GSPRT. In this work, we formu-
late the R&S problem as a multiple composite hypothe-
sis testing problem, construct adaptive GLR statistics,
and provide new R&S procedures; to the best of our
knowledge, this work is the first to solve the R&S prob-
lem from this new perspective.

The rest of this paper is organized as follows. Section 2
provides a high-level overview of the proposed meta pro-
cedure developed according to the multiple composite
hypothesis testing model and associated key properties.
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Section 3 considers solving the R&S problem of interest
under normality with known variances by presenting
concrete procedures developed and proving their stat-
istical validity and computational efficiency. Section 4
parallels Section 3 and tackles the R&S problem under
normality with unknown variances. Numerical studies
are conducted in Section 5. Section 6 concludes the paper.

2. Problem Statement and Methodology

Overview
In this section, we formulate the R&S problem of inter-
est as a multiple composite hypothesis testing problem,
propose a meta procedure to solve it, and reveal the
essential properties of the proposed meta procedure.

2.1. Problem Setup

Let us consider the R&S problem of selecting the best
system defined as the one with the maximum expected
performance; that is, we are interested in solving the
following discrete simulation optimization problem:

r=E ils
argmax pi; [Xi] @

where [K]={1,2,...,K} denotes the set of all candi-
date systems; and we assume that independent and
identically distributed random observations of system
i, {Xin,n=1,2,...}, are drawn from a distribution, with
u; = E[X;,] denoting the unknown true mean value of
system i, Vi € [K]. Because the distribution correspond-
ing to system i may be parameterized by unknown
parameters other than the mean value, we denote 0; =
(M1, M0 - - -1y ,) @s the (p + 1)-dimensional parameter
vector for system i. For instance, under normality with
an unknown variance, 0; = (,, 0?), Vi € [K]. Denote the
true parameter vector of system i by 67, Vi € [K]. Corre-
spondingly, let us denote p = (yl,yz, ) EUCRE
as the mean vector and 0 = (61,05, ...,0x) € ® C RP*DK
as the vector comprising all unknown parameters for all
K systems, where U denotes the parameter space of all
possible values of u and © represents the parameter
space that contains all possible values of 6. Denote pu* =
(uy, u3,...,ug) as the true mean vector and 0= (67,
05,...,0%) as the true parameter vector.

Let 6 > 0 denote the indifference-zone parameter—A
system is only considered better than all other systems
if its mean value is greater than the others’ by at least 6.
Without loss of generality, assume that there exists a
single best system. Consider partitioning the parameter
space © into (K + 1) disjoint subsets. Specifically, given
a prescribed value of 6, let ©; denote the set of parame-
ter values such that system i is the best among all sys-
tems, that is, ©;={0€O®|y, > 1 +0, Vj#i,j€[K]},
Vi€ [K]; the indifference parameter set ® contains all
possible values of 6 such that no single system domi-
nates the others by at least 0, that is, @) = {0 € ®| Vie

[K],3j #1,j € [K] such that yi t; + 0}. Therefore, {Qy,
©1,0,,...,0x} satisfy © =UK Oé and ©;N©; =0 for
i#7,i,j€{0}U[K]. In the degenerate case Where the
indifference-zone parameter 0 is unspecified, we have
0;={0€O|u,>u, Vj#i,je[K]} and Oy ={0€O| Vi
e[K],Fj+1i,je [K]/ such that y; <y }.

2.2. Multiple Composite Hypothesis Testing
Model for the R&S Problem

In this section, we provide a formal discussion on for-
mulating the R&S problem of interest as a multiple
composite hypothesis testing problem. Let (Q, F,Py-)
be the probability space on which a sequence of inde-
pendent random observations of the K systems are
defined, where Py denotes the probability measure in
accordance with the true parameter vector 8*. To ease
the notation, we suppress the dependence of the prob-
ability measure on 0* hereinafter.

Specifically, the R&S problem in (1) is equivalent to
the following multiple composite hypothesis testing prob-
lem with K hypotheses:

Hi : 0* € ®i/ ie [K], (2)

where [K]={1,2,...,K} and the ith hypothesis states
that the true parameter vector 0" lies in the parameter
subset ©;, indicating that system i is the best system.
Under the assumption that there exists a single best
system (to be made more explicit later), one of the K
hypotheses must be true. In other words, the R&S
problem in (1) is now equivalent to identifying the
one true hypothesis from K of them.

In sharp contrast, the KN family procedures model
the R&S problem as a multiple comparisons problem,
whose hypothesis test formulation was first noted by
Hong et al. (2021). Specifically, for each i€ [K], one
considers the following test with two hypotheses:

Ho;i:p; < max ui o vs. Hy;:opf> r?zxy;, 3)
where the pair of hypotheses (Hp,; and H; ;) focuses on
comparisons between system i and all other systems.
Model (3) can be rewritten using the notation estab-
lished in Section 2.1 as follows:

HO,i 10" ¢ 0O, vs. Hl,i :0°€0;, ic [K] (4)

Despite their similar appearance, Models (2) and (4)
differ significantly with respect to error rate manage-
ment. Recall from Section 1 that any fixed-precision
procedure intends to achieve a target PCS level of,
say, 1 —a (with @ € (0,1)). Here PCS can be expressed
as PCS = P(select system i*), where i* denotes the in-
dex of the true best system; we assume that there is a
single best system, formal statements of which will be
provided in the form of assumptions in Sections 3 and 4.

Under the multiple comparisons Model (4), for a
procedure to correctly select the true best system i*,
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it must reject Hp;. To this end, existing procedures
in the KN family typically proceed sequentially to
eliminate (K — 1) systems and conduct error rate con-
trol according to the following rationale:

PCS = P(reject Ho,-)
=1 — P(fail to reject Hy; for some j # i*, j € [K])

(5)
>1— Z P(fail to reject Ho ), (6)
JelKI\{i*}

where (5) implies that achieving the PCS guarantee for
procedures in the KN family is equivalent to controlling
the type I error rate when testing (K — 1) pairs of hypoth-
eses given in (4). Furthermore, to control the type I error
rate at the prescribed level of a based on (6), these proce-
dures rely on the Bonferrorni correction and require

P(fail to reject Hy ) < _t Vj#i*, je[K].

SX—1
In strong contrast, we propose procedures that directly
control the error rate achieved for a single hypothesis
testing problem, that is, the multiple composite hy-
pothesis testing Model (2), hence avoiding using the
Bonferrorni correction to allocate the prescribed error
probability a over (K — 1) tests. More specifically, the
PCS of a procedure under Model (2) can be written as

PCS = P(select system i) = P(fail to reject H;).

We elaborate on how to achieve a prescribed PCS
guarantee in the next section.

2.3. Meta Procedure and Some

Essential Properties
In this section, we propose a high-level meta proce-
dure according to Model (2) with the three features
mentioned in Section 1. Specific instantiations of this
meta procedure along with detailed theoretical guar-
antees are provided in Sections 3 and 4.

The meta procedure, referred to as Proc(A;,,B), is
detailed in Algorithm 1. The meta procedure is fully
sequential and comprises two major components: (i) the
test statistics, A;, =0 for all i € [K], where A;, denotes
the generalized likelihood ratio statistic corresponding to
the ith hypothesis in Model (2) and # stands for the itera-
tion index; and (ii) the elimination threshold, B, to reject
the hypotheses corresponding to inferior systems.

Let {S, C[K],n > 1} denote a sequence of index sets
with S, comprising systems that have not been elimi-
nated by the end of the nth iteration. The procedure
starts with all systems in contention for being the best
one on the first iteration, i.e., S; = [K], and keeps elim-
inating systems sequentially until |S;| <1, where | A|
denotes the cardinality of set |.A| and 7 denotes the
index of the iteration on which the procedure termi-
nates. The first n, iterations are used to warm up the

procedure, and elimination only takes place on the
(ng + 1)th iteration and onward. We note that n is a
tunable parameter that can impact the computational
efficiency of specific instantiations of the meta proce-
dure with no influence on their statistical validity. In
addition, it is possible for instantiations of the meta
procedure to return an empty candidate set upon ter-
mination, that is, |S;| =0. In practical applications,
one may select the system with the highest sample
mean when this occurs; however, this does not impact
the theoretical guarantees associated with instantia-
tions of the meta procedure to be presented later.

Algorithm 1 (Meta Procedure Proc(A;,, B))
Inputs:
1. B=« > Set the elimination threshold to
a prescribed error level «

2: [K]=11,2,...,K}

Procedure:

1: setn «1;

2: set S; « [K];

3: repeat

4:  generate one observation for each system with

itsindex in S,;

5:  set S,y < S,; > Initialize S,,41 which will be
updated later accordingly

6: if n>ny+1then > No elimination is conducted

in the first iy iterations

7: forie S, do

8: calculate the test statistic A; ;

9: if A;, < B then

10: set Sp41 < Sp1\{i}; > Eliminate sys-
tem 7 from S,

11: end if

12: end for

13:  endif

14: setn«—n+1;

15: until |S,| <1 > Terminate when no more
than one system is left in
Sn

16: return S,

Recall that (Q, F,P) denotes the probability space
on which random observations of all K systems are
defined. Let F, C F forn€ Z* ={1,2,...} be a nonde-
creasing system of sub-c-algebras generated by the
random observations of all K systems obtained by the
end of the nth iteration.

The meta procedure, Proc(A;,, B), can be designed
to be a valid procedure corresponding to a sequential
test of power one (Robbins and Siegmund 1974, Sieg-
mund 1976), which refers to those sequential tests that
do not reject the true hypothesis in finite time almost
surely under P (referred to as almost surely or with
probability one for short hereinafter). In the context of
R&S, the meta procedure corresponds to a size «
sequential test of power one if it admits the following
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property:

p <a, fori=1i* .

(Ti <) =1, fori#i*, @

where 7; denotes the elimination time of system i for

each i € [K] and recall that i* denotes the true best sys-

tem’s index. That is, the probability of eliminating sys-

tem i* is bounded above by a, and hence the target
PCS level of 1 — a can be achieved.

The rationale behind the proposed meta procedure
is to conduct continuous monitoring of the test statis-
tics for K hypotheses in Model (2) and reject a hypoth-
esis H; as soon as its corresponding test statistic A;,
becomes smaller than B for the first time. Therefore,
requiring the meta procedure to fulfill (7) is equivalent
to designing the major components, A;, for all i € [K]
and B, such that

) <a, ifi=i5
P(mf/\l-,n < B) e (8)
nx1 =1, ifi#7,

where i* denotes the index of the true hypothesis in
Model (2).

For the meta procedure to achieve (8), we propose
to use the elimination threshold B = « and the test sta-
tistics {A;n,i€[K],n>1} that satisfy the following
conditions: (i) the sequence of test statistics {A;}n,n >
1} corresponding to system i* is associated with a test
martingale; and (ii) the sequence {A;,,n>1} corre-
sponding to system i (Vi € [K]\{i*}) converges to zero
with probability one. Formally, a test martingale is
defined as a nonnegative martingale {Z, >0, n>1}
with E[Z;] =1 relative to a sequence of c-algebras
(Shafer et al. 2011); for ease of exposition, consider
that the Z,, are adapted to the filtration formed by the
F, defined earlier in the section. Test martingales yield
the maximal inequality property: For any test martingale
{Z,,n>1}, it holds that P(sup,.,Z, > a~') < a, which
follows from Doob’s martingale inequality (Revuz and
Yor 1999). Therefore, if {A;}n,n >1} for system i* is
bounded above by a test martingale {Z,,n > 1} surely
and B = «a is adopted, we have (8) fulfilled, because

. _ 1 1
P(}II;_I{Ai*,n < B) =P (sup Arr > a) <a. C)

n>1

It is worth noting that the meta procedure enables one
to monitor the test statistics continuously and “peek”
at the test without compromising the type I error (or
equivalently, the PCS) guarantee: This feature can be
best explained through its connection to always valid
p value processes (Johari et al. 2019). An always valid
p value process is a sequence of p values {p,,n>1}
that can control the type I error rate at level a € (0,1)
uniformly across the entire sample path under the
true hypothesis—such a process satisfies the following

two properties: (1) for any a €(0,1) and any m >1,
P(pm < a) <, which is known as the superuniform
property; and (2) py > pm+1 for any m > 1 holds surely,
which is referred to as the nonincreasing property. As
noted by Wasserman et al. (2020), unlike “peeking” at
the fixed-horizon hypothesis testing that can greatly
inflate the type I error rate, the hypothesis testing built
on an always valid p value process is able to achieve a
prescribed type I error level uniformly across the
entire sample path (i.e., across all time steps m > 1). We
are now in a position to point out that {].Ilfngzlf\i*’g, m >
1} corresponding to system i* is an always valid p value
process; The second property is satisfied thanks to the
definition of the sequence (i.e., py := infy>r>1A4 ) and
the first property follows from (9), because

P(reject H;» at iteration m) < P( inf Ay, < a)
m=€>1

<P(infAr,<a)<a, Vmz1.
n>1

In this section, we provided the meta procedure and
proposed to use the elimination threshold B = « together
with the test statistics {A; ,, i € [K],n > 1} satisfying some
conditions (without arguing for their existence). In Sec-
tions 3 and 4, we will provide specific instantiations of
this meta procedure under normality with concrete forms
of {A;,i € [K],n > 1} provided.

3. Setting of Normality with

Known Variances

This section considers solving an R&S problem under
the normality setting with known variances. We first
present two concrete procedures in the form of the
meta procedure provided in Section 3.1 and elaborate
on their theoretical properties in Sections 3.2 and 3.3.

To accommodate the normality setting with known
variances, the exposition of this section relies on similar
notation as established in Section 2.1, but with 6, 8, and ©
replaced by i, m, and U, respectively. For example, 6, the
vector comprising the unknown parameters of all K sys-
tems, becomes p = (114, iy, . . ., i) € U, where the param-
eter space © reduces to U C R¥. The other symbols can be
understood analogously when they arise.

Throughout this section, we stipulate the following
assumptions.

Assumption 1. The K systems have distinct true mean
values, that is, p; # u7, for i # j,i,j € [K]. The true mean
values of the K systems satisfy that uj > u;+06 for all
i # i*, i € [K], where i* denotes the index of the best system
and 6 > 0 is the indifference-zone parameter if specified.

Assumption 2. The observations of system i, {X;,,n =
1,2,...} are independent and normally distributed with
mean u¥ and variance o?, that is, N'(u},0?), where o? is
known and y; is unknown. Furthermore, the observations
of different systems are statistically independent, that is,
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Xin and Xj, are independent for n,n’ 21, if i#j,
i,j € [K].

Assumption 3. The parameter space U C RX is compact.

Assumption 4. There exists some r > 1 such that ),
K| wolp(w* )" < co, where m,, represents the maxi-
mum likelihood estimate (MILE) of w* obtained using obser-
vations from the first m iterations, and p(m, w’) denotes the
Kullback-Leibler (KL) divergence from f(-|p') to f(-|pm)
that can be written as

Pl 1) =By o5 (F 185 ) |

with Eg(.) ) denoting the expectatzon taken with respect to

f(-|m). Here, f(-| ) := Hl 18i(+| ;) denotes the joint density
function of observations from all K systems, and g;(-|u;)
denotes the normal density function corresponding to system i
with the mean value being specified as y;, Vi € [K].

Some remarks follow from Assumptions 1-4. Assump-
tion 1 is stipulated such that a single best system exists and
its true mean value is higher than those of all other systems
by at least a margin of the indifference-zone parameter if
specified. Assumption 2 requires no dependencies among
systems so that the eliminations of two distinct systems
are statistically independent; it can be replaced by a less
restrictive conditional-independent condition to allow the
use of common random numbers. Assumptions 2 and 3
imply that the density functions are of normal distri-
butions with a compact parameter space. Assumption 4
stipulates that E(. |, [p(p*, 1,)]" converges to zero suffi-
ciently fast for some r > 1. This condition holds for many
typical distributions in the multivariate exponential family
including Gaussian, Poisson, Bernoulli, and so on (e.g., see
condition (5.84) in Tartakovsky et al. (2014)).

3.1. Two Concrete Procedures

In this section, we first provide two concrete procedures
in the form of the meta procedure given in Algorithm
1, Proc(Af ,a) and Proc(Af ,a), which are suitable for
the normality setting with known variances, then we
reveal the relationship between them.

3.1.1. Procedure Proc(Am, «). The test statistic used
in Proc(Al D a)is a generahzed likelihood ratio (GLR)
statistic, denoted by A" which is defined as follows:

ll’l’

@) _ SUPen,Ln(m)

A= =
n

where Ul—{u€U|(u]>[u]+6 Vj#i,je[K]} if the

, n>nyg+1, Yie[K], (10)

indifference-zone parameter 6 >0 is specified; other-
wise, U; ={pe U]y, > Vj+#1i,je[K]}. Notice that
A(l) in (10) is defined for n > ng + 1, because Proc(Al n,a)
does not start any system elimination using the test sta-
tistic until the (np + 1)th iteration (recall Algorithm 1).

We may set A(l) =1 for 1<n<ny for completeness;
however, this is 1rrelevant to the implementation and the
statistical validity of Proc(A(l) a).

in’

In (10), L,(p) denotes the likelihood of all observa-
tions collected up to the nth iteration (n > 1) for all K
systems, which is given by

La(w) = [T TT 8:Ximl - (11)

m=11ieS,,

On the other hand, 7t,, in (10) is defined as
H H gi(Xi,m |ﬁi,m71)’

m=ny+1i€S,,
no n

= H H gi(Xi,m |[11',n0) : H H gi(Xz‘,m |.u1',m_1)/

m=ng+1i€S,,

m=1ieS,,
n>ny+1, (12)

T = Ling (B, ) -

which consists of two components. The first term,
Ly, (1), denotes the likelihood of obtaining the observa-
tions collected during the warm-up period (ie., the first ng
iterations) calculated using the MLE of u* attained by the
end of the warm-up period, @, = (i, no,yMO sl )
The second term, [T}, 11 [Tics, 8i(Xim|fF;,,_1), denotes
the adaptive maximum likelihood of obtaining the indi-
vidual observations after the warm-up period using the
corresponding most updated MLEs. That is, we use
{£; ,n_1—the MLE of i} attained based on the observations
of system i (i€S,) collected up to the (m—1)th
iteration—in calculating the likelihood of seeing the mth
observation for system 7, m = ny + 1, .

We next elaborate on the calculatlon of A( ). Under
Assumptions 1-4, the density function g;(- |p) in (11)
and (12) follows as

1 (Xj,m - .Ll]‘)2>
(Ximlu,) = exp| ————— . 13
Denote Tj(l) as the stopping time for system j, that is,
the 1terat1on index that system ] gets eliminated by
Proc(Aln,a) Vje[K]; we have /,t o the MLE of 7
obtained based on the observations of system j collected
up to the nth iteration, given by

i, =arg supL,(p) = ="=
pel Zm:l 1{ }1) > m}

Finally, the following result details the calculation of
sup ey, Ln(p) used in (10), and its proof is given in
Online Appendix EC.2.2.

Theorem 1. Under Assumptions 1-4, denote pi.) := arg
SUp ey, L n(p) as the constrained MLE of the mean vector
p—obtained over the parameter space U (Vi e [K])—by the
end of the nth iteration. Then PV = (yl ” [ugjn, o F‘E,n) can
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be obtained as follows:
if j=1
i = ﬁ“,;, i B>, (49

lujn’ lf ﬁjnsﬁin_é’

where [ y | denotes the average of all observations from those
systems whose MLES are higher than the MLLE of system i
minus 6:

[/J\Ui _ an:l ZjGSml{ﬁjn = lul n 6}Xf'mgf2 - 71(50‘;2
o Dot > jes, Wiy, = iy, — 6}0f2 '
(15)

with 6 > 0 denoting the indifference-zone parameter if spe-
cified and 6 = 0 otherwise.

3.1.2. Procedure Proc(Af ,3, ) The test statistic for sys-

tem 7 used in Proc(A, ) ), A, ., is defined as follows:

A? = min A®

, n>nyg+1, Vie|[K],
el ’ 1K

where A(2) is the minimum of all pairwise statistics
AP s that are defined as

ijn
AD SUp ey, Ln (1)

ijn =

- , nzng+1,j#i,je[K]. (16)

The definitions of A(Z) and Afz)n are specified for n >
np+1 due to the same reason as given for defining
A(l) in (10) for Proc(AZ n,a) We may set A @ —1for1<
n<mngy for completeness but this lmpacts nelther the
implementation nor the statistical validity of Proc(A , Q).

In (16), L,(p) and T, are, respectively, as glven in
(11) and (12), with L,(pn) being maximized over the
parameter space U;;, where U;; = {p, eUly, > b+ o} if
0>0 is specrﬁed otherwise, U;;={peUly,> K T
Notice that Af ])n essentially gives the likelihood that
system i is better than system j, and the test statistic
A(z) is the minimax statistic for the likelihood that sys—
tem i dominates all other systems. The calculatron of A
can be carried out in the same vein as that of A in (10)
hence, we omit the details for the sake of brev1ty

We close this section with the following result that sheds
light on the relationship between the two test statistics A(l)
and A(2 used in the two concrete procedures. The proof is
deferred to Online Appendix EC.2.3.

Theorem 2. Under Assumptions 1-4, Afzn) ZA(U holds
true surely for system i, Vi € [K].

Theorem 2 states that seeing the same data, A
bounded below by A . Because an elimination occurs
when a test statistic drops below the threshold 5, Theo-
rem 2 indicates that, with the same observatlons seen
by these two concrete procedures, Proc(Am,a) always
terminates earlier than Proc(Al ). Hence, Proc(Al( , Q)

1
can be regarded as a conservative version of Proc(AE n) , Q).

This result becomes handy when we analyze the statisti-
cal validity and the computational efficiency of these two
concrete procedures in Sections 3.2 and 3.3; for example,
see Theorems 3 and 4 and their proofs for details.

3.2. Statistical Validity
In this section, we show that the two concrete proce-
dures given in Section 3.1—respectively using the pro-
posed test statistics, A(l) and Al(zn), together with the
elimination threshold B a—can indeed deliver the
prescribed PCS guarantee.

We first show that Proc(Agln),a) and Proc(Afzn),a) ter-
minate in finite time with probability 1; the proof is

deferred to Online Appendix EC.2.4.

Theorem 3. Under Assumptions 1-4, Proc(A(l) a) and

in’
Proc(Afzn),a) terminate in finite time with probabzlzty one.

Let PCS™ and PCS® denote the probabilities of correct
selection corresponding to Proc(Afln), @) and Proc(Afzn), ),
M

respectively. We next show that Proc(A;,,a) and Proc
(A?, a) can deliver the prescribed PCS guarantee.

in’

Theorem 4. Under Assumptzons 1-4, upon termination,
Proc(Agln),a) and Proc(Am,a) select the best system with

probabzlzty at least 1 — av, that is,
PCSY >1—-a, PCS?>1-a.

Proof of Theorem 4. We consider Proc(A,(.}n),a) first
and show PCSW >1 —a. Recall that p* = (u}, 13, .- .,
) denotes the true mean vector for the K systems. With-
out loss of generality, assume that system 1 is the best
system (i.e., i* = 1). Recall the multiple composite hypoth-
esis testing Model (2); in this case, the true hypothesis
among the K hypotheses considered is Hy : p* € Uy.

Let T( ) = mrn{n|A < a} denote the elimination time
of system i by Proc(Am,a) for any i€ [K] and let 7"
denote the stopping time of Proc(Af n) , ). The probability
of correct selection of Proc(A; n) ,a) can be bounded below
as follows:

pcsY = P(Proc(Afln) , &) terminates infinite time
and system 1 is not eliminated)
=P((r{" > 1) N (1 < 00))
= P(T(ll) > 1)
+ P(tV < c0) — P((Tgl) >t U (1 < o))
> P(T(l) > 7))+ P(rM < 00) — 1. 17)

zn—

Recall Theorem 3 that states that Proc(Am,a) termi-
nates in finite time with probability one, that is,
P(t < o0) = 1; it follows from (17) that

PCS® > P(z{V > 1) > 1 - P(z!! < o). (18)
By def1n1t1on ’l'g ) = mm{n|A(1) < a}; recall the defini-

1n—

tion of A1 . given by (10) and the assumption that the
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true best system is system 1, that is, u* € U, we have
A(l) _ SUP e, La(p) N I
1n — = .
Ty, T,
Define I', = 1t,, /L, (). It follows that {T',,, n > no + 1} is
a nonnegative martingale. Specifically,

(19)

Ttp—1 Hgl(Xi,nlﬁi,n—l)
n 1(”’*) icS, gz(Xz,nluf)

(Xl
:I‘n_l-Hg( ,Iul,n* V.
= gi(Xi,n“vli)
Hence, it follows that
gl( |/’T1n 1)
Eriun [ Tn | Tho1] = Tuot X Eeg e
f 1w Dn D] = Ty f(Iu)(lel;[ YA
gl( “’lzn 1)
,es &illup)
: H H gz'('Wz*)dXi,m
m=1ieS,,

=T,.1, formn>ng+2.

=T

In addition, we have E(|,+(I'») = 1, because

Erju [Tl = /Tn T s le)dXim

m=1ieS,,

= [Tl

m=1i€S,,

1T TIsXimliE,, dXim=1,

m=ng+1i€S,,

where the last step holds because g;s are valid density
functions.

Given that {I',, n > ny + 1} is a nonnegative martingale
with respect to {F,,n > ny + 1} satisfying IEf(.W)(l"n) =1
(hence a test martingale), it follows immediately from
Doob’s martingale inequality (Revuz and Yor 1999) that

1
> <a- . = > .
P(n(,ﬂ%ﬁNr ) <a-Eeppy(n)=a, VYN2=no+1
Based on (19) and the definition of ', we have A(ll,)i >
1/T,, for n > ny + 1; furthermore,
1
P( min A(l) <a> <P< max I, 2) <q,
no+1<n<N Ln no+1<n<N o

VN >no+1.

Given the inessential definition that /\(1121 =1 for 1<n
< ny, it follows that

P(T(ll) <N)= P( A(l) < a) P( min AP < a>

1<n<N np+1<n<N Ln =
<a, VN=ny+1.

(20)

In light of (18), we have PCS(1 >1-P(tl <0)21—a.
Next, we consider Proc(/\m,a) and show PCS@ >1
—a. Let T; @ - mm{n|Am <a} denote the elimination

time of system i (Vie[K]) by Proc(Am,a) and let 7?

denote the stopping time of Proc(Alzn), @).

With an analogous argument as given in (17), we
arrive at the following lower bound for PCS?:

PCs® = P(Proc(A(z) a) terminates in finite time

in’

and system 1 is not eliminated)
>P(t'? > @) + P(r? < 00) — 1.
In light of Theorem 3, we have P(7? < 00) = 1. Hence,
PCS® > P(t'? > 1) > 1 - P('? < o0). (21)
Thanks to Theorem 2 and the inessential definition
that A(lzr)l =1for1<n<nyg wehave forany N >ng+1,
P(ng) <N)= P( mm A?}l < oc) P( min A(lzi < a)

no+1<n<N

(1)
<p(, i, Al <a) <o @)
where the last inequality follows from (20). Finally,
PCS? >1 — a follows from the last inequality and (21)
by letting N — c0. O

Theorem 4 ensures that the two concrete procedures
select the best system with probability at least 1 —a
when they termmate The following result further
reveals that if Proc(Am,oz) (respectively Proc(Afzn), @))
is stopped before the termination criterion is met, that
is, |Sy]>1, it still holds that the subset of systems
returned by Proc(Aln,a) (respectively, Proc(Am,a))
contains the best system with the prescribed probabi-
listic guarantee. The proof of the following result is
deferred to Online Appendix EC.2.5.

Corollary 1. Suppose that Assumptzons 14 are satisfied.
While implementing Proc(A, s () (respectively, Proc(Afzn) ,a)),

the set S,, contains the best system with probability at least 1 — o
foranyn > 1.

3.3. Asymptotic Efficiency

In this section, we study the asymptotic efficiency of
the proposed procedures. Without loss of generality,
assume that system 1 is the best system that is, uj
> ur, Vie [K][\{1}, or equivalently, m* € U;. Recall
that 7' (respectlvely, T( )) denotes the number of itera-
tions used by Proc(Al " a) (respectively, Proc(A, 1)) to
eliminate system i, Vi€ [K]\ {1}. Let Uj; = {m € Uy, >
i, + 0} denote the set of parameter values such that sys-
tem 7 is better than system 1, if 6 > 0 is specified; other-
wise, let U1 = {m € Uly,; >y}, Vie[K]\{1}. We first
study the asymptotic hrmt of E[T( ] for Proc(Al , @) in
relation to that of ]E[T ] for Proc(A a) as the error
probability a approaches zero.

in’
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Theorem 5. Suppose that Assumptions 1-4 are satisfied. = Table 1. Asymptotic Expected Sample Sizes of KN++

Under the settings Of Proc( A(l),a) and Proc( A(2),a) as Procedure, IZ-Free Procedure, and PrOC(Af ) ,a)asa—0

a — 0, the respective expected sample sizes used by the two

procedures to eliminate system i satisfy KN++ 1Z-free Proc(A)), )
log(1/a) _ 2o 2007 —4log(@)-?

1 2
Byl ] < By 7] = 2 (I+0(1)),  @a-8/20 N B+of

infyeu, p(p*, 1)
Vp el ie K]\ {1},
(23)

where p(p*, m) is the KL divergence from f(-|pm) to
f(-|p*) and a ~ b denotes the asymptotic equivalence
of a and b.

The proof of Theorem 5 is provided in Online
Appendix EC.2.6. Theorem 5 can be intuitively under-
stood as follows. The numerator, log(1/a), denotes the
amount of “information” to make an elimination deci-
sion. The denominator, inf,cy,, p(1*, p), represents the
expected amount of “information” regarding the dif-
ference between p and p* obtained from observations
collected on one iteration. The expected sample size to
reject system i hence is roughly given by log(1l/a)/
infﬂGUi,1 P(M*/ M’)

In light of Theorem 5, we have the following asymp-
totic efficiency result for the normality setting with a
known equal variance. Proof of Corollary 2 is pro-
vided in Online Appendix EC.2.7.

Corollary 2. Suppose that the assumptions of Theorem 5
are satisfied and X, , ~ N(‘ui*,cz), Vie[K]. Asa — 0, the
respective expected sample sizes used by the two proposed
procedures to eliminate system i satisfy

—4log(a) - o?

N<E [P~ — =
S Bl T . /
e (W3 — i + 6)2

(w7}

where 0 > 0 denotes the indifference-zone parameter speci-
fied and 6 = 0 is used when this parameter is unspecified.

We close this section with a comparison of the asymp-
totic expected sample sizes of the KN++ procedure, the
[Z-free procedure, and Proc(Afz), @) under the normality
setting with a known equal variance. The asymptotic
expected sample sizes used for eliminating system i
(Vie[K]\{1}) by all three procedures can be given
as functions of the true difference in the mean values
of the best system and system i (A:=uj—u;), the
indifference-zone parameter (6), and the known variance
(62), as shown in Table 1. Two interesting observations
can be made First and foremost, when 0 is unspecified,
Proc(Am,a) adopts 6 = 0 and the corresponding ex-
pected sample size is of the same order as that of IZ-free
in terms of the true difference A; when 6 is specified,
Proc(Afln),a) can use and benefit from this information.
Second, it is known that a proper specification of 0 is
required for KN++ to work appropriately and the opti-
mal choice is 0 = A, because any other values would

Vie[K]\{1},

Notes. For KN++, y =log((k —1)/(2a)); for 1Z-free, c is a parameter
whose value can be determined numerically. Results for KN++ and
1Z-free are available in Fan et al. (2016).

result in a larger expected sample size. Such an issue

does not exist for Proc(Afln), @), however.

4. Setting of Normality with Unknown
Variances

This section considers solving an R&S problem under
the normality setting with unknown variances. The
R&S problem is as described in Section 2.1 with nota-
tion already established there.

Throughout this section, the following assumptions
are stipulated.

Assumption 5. The K systems have distinct true mean
values, that is, 7} # y]f, for i #j,i,j€[K]. The true mean
values of the K systems satisfy that u} > ur+06 for all
i # i*, i € [K], where i* denotes the index of the best system
and 6 > 0 is the indifference-zone parameter if specified.

Assumption 6. The observations of system i, {X;,,n =
1,2,...} are independent and normally distributed with
mean u¥ and variance o¥*, that is, N'(u},0%*), with 0 =
(ur, o) being unknown. Furthermore, the observations of
different systems are statistically independent, that is, X;,

and X;, are independent for n,n’ > 1,ifi #j,i,j € [K].
Assumption 7. The parameter space ® C R** is compact.

Assumption 8. There exists some r > 1, such that )~
Ef(. 199 [p(07, Om)] < oo, where B,, represents the MLE of
0* obtained using observations from the first m iterations,
and p(0,0) denotes the KL divergence from f(-|@') to
f(-10), which can be written as

p(0,0)=Eyjo) {IOg f(( ||3’)>H

with K q) denoting the taken expectation with respect to
f(-10). Here, f(-]0) := Hl 18i(-16;) denotes the joint density
function of observations from all K systems, and gi(-|6;)
denotes the normal density function corresponding to system i
with the parameter vector given by 6; = (u,,07), Vi€ [K].

Assumptions 5-8 stipulated in this section are in
parallel with Assumptions 14 in Section 3, with the
parameter space and the parameter sets of interest in this
section being expanded to accommodate the unknown
variances. In fact, with the knowledge of the variances,
Assumptions 5-8 imply Assumptions 1-4.
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4.1. Two Concrete Procedures

As in Section 3.1, we elaborate on two concrete proce-
dures, Proc(Afn) ,a) and Proc(Af?z , ), which are suitable
for the normality setting with unknown variances, and

provide some insight into their practical implementation.

4.1.1. Procedure Proc(A(1 a). To tackle the R&S prob-
lem under normality with unknown variances, Proc
(Afln),a) adopts a GLR statistic, denoted by Afln), which
is defined as follows:

AY =M, nemo+1, Vie[K].  (24)
n

As noted in Section 3.1, we may set A W-1fori<ns<

np for completeness; however, this is lrrelevant to the

implementation and the statistical validity of Proc(AEln), a).

In (24), L,,(0) denotes the likelihood of all observations col-

lected up to the nth iteration (1 >1) for all K systems,

which is given by

n
La(0) = [T TT 8:(Xinl00; (25)
m=1ieS,,
and 7, in (24) is given by

nn:Lno(b\no)' H Hgi(Xi,m|§i,m—l)

m=ny+1i€S,,

=111 8XimlOin)- TI TI8:Kin!Osm-1),

m=1ieS,, m=nog+1i€S,,

(26)

which denotes the adaptive maximum likelihood of
obtaining the observations collected up to the nth iter-
ation for n>mng+1. The first term in (26), Lno(ﬂnn)
denotes the likelihood of obtaining the observations
collected during the warm-up period calculated using
the MLE of 0 attained by the end of the warm-up
period, 0,10 —(91n0,92n0, ) 91<,n0) i=arg SUP gL (0).
The second term, []}_, 41 ers,,, Qi(Xim|0im-1), denotes
the adaptive maximum likelihood of obtaining the indi-
vidual observations after the warm-up period using the
corresponding most updated MLEs, where éi,m,1 de-
notes the MLE of 0; attained based on the observations
of system i (i € Sm) collected up to the (m — 1)th iteration,
m=ng+1,.

The opt1m1zat1on problem involved in the expres-
sion of A( ) in (24) is solvable under normality with
unknown Variances nevertheless, it may not admit
a closed-form solution. Because implementing Proc
(Agln),a) requires calculating A(l) for Vie [K] on every
iteration, in case a closed- form solutlon does not ex1st,
the computational cost of implementing Proc(AY, a)
can be prohibitive.

in’s

4.1.2. Procedure Proc(Afn,a) The test statistic used
in Proc(Am,a) is constructed based on pairwise sys-
tem comparisons as follows:

52,1) = min A? n>ng+1, Vie[K],
o J#F JEK]
Wthh denotes the minimum of all pairwise statis-
tics Al s and A, in denotes the generalized likelihood
ratio of the event that system i is better than system j,

that is,
@ _SWPoo,ln(0)

ijn

- , nxzng+1,j#i,je[K],

where L,(0) and 7, are, respectively, given in (25) and
(26). Here, L,(0) is maximized over the parameter set
Oy, where ©;; ={0€O|u; > y; + 6} when 6> 0 is spe-
cified; otherw1se, i =1{0€ ®|H1 > 1 1.

Similarly as in the normality settmg with known var-
iances, we can show that the following relationship
between the test statistics adopted in the two concrete
procedures hold in the normality setting with unknown
variances. The proof is provided in Online Appendix
EC3.2.

Theorem 6. Under Assumptions 5-8, Afzn) ZAI(/ln) holds
true surely for system i, Vi € [K].

We next elaborate on the calculation of Ag)n in

Proc(Afi),a) Let {X;,,n>1} be a sample of indepen-
dent and normally distributed observations of system
i with unknown mean pf and unknown variance
0%, Vi€ [K]. Under Assumptions 5-8, L,(0) in (25)

can be written as

Ln(e) = H Hgl(Xl,m |[ul/012)r

m=11eS,,

o 2
exp <_ (XI,ZOZZHI) ) ’ Vie [K]/

recall that S, contains those systems that have not been
eliminated by the nth iteration, and 0,, = (91 i 62 Hree s
0 K,,) = arg supg.eL,(0) denote the MLE of 6" obtained
at the nth iteration, with an = (yln,a,n) denotmg the
vector of MLEs of the mean (i} and the variance o7 for
all [ € [K]. Denote Tg as the elumnatlon time of system l

where

Xy | gy, 07) =
2no?

by Proc(Am,a) then 1, , and g oln can be, respectively,
given as
PO VYT > myX,

.ul, 2
" Zm 1 1{1—; ) = m}
~2 Zmzl 1{71( ) > m}(Xl,m - 1’“/[1,71)2
Ol = " 0
Yoo Hr, 7 = m}

, Vie[K].
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Let 0, = (é1 n,éz,,, . GKn) = arg supy.e, L,(0) denote
the constrained MLE of 0" attained at the nth iteration,
where 0, = (it 1O, ? ) denotes the vector of Constramed
MLEs of the mean u; and the variance o7 over the
parameter set ©;; for all ] € [K]. It is easy to see that the
constrained MLE 6, ,, and the MLE 0, for system [ are
1dent1ca1 V1e [K]\{i,j}. Therefore, under Assumption
6, A , can be written explicitly as

2 - ~ 2
Az(])n:nnll—[ H gl(Xl/mlul,n’O-l,n)

m=1 ]Esm\{i/j}

n
. Hgi(Xi,m ||i:li,n/6i2,n) - &i(Xjm |.l~1]-,n,512,,,), n>ng+1.

m=1

It is worth noting that an analytical solution for 8, =

arg sUpyeg,, L,(0) (in particular, a closed-form expres-
sion for 61,, (ym,am) and 9] " (y]n,a ) does not
exist under normality with unknown variances. Itera-
tive algorithms are typically recommended to solve
such an optimization problem which is nonconvex.
Hence, we approximate the constrained MLEs by
repeating the following two steps through iterations: (1)
updating (ym,y]n)whlle holding (Om,O' ) fixed, and (2)
updating (57, ) while holdmg (ym,p]n) fixed. To

simplify the calculatlon of AP in implementation, we

ij, n
approximate i1, fi; ,, G 5%, ,and & o , as follows:

(ﬁi,n’ Aﬁj,n)
((I’/Ii,n + ﬁj,n + 6)/2/
(ﬁin +fa\j,n - 6)/2)

1; nj
(Otn’ ( Z(le fuln ’ %Z(Xj’m - Aaj,n)2>’
m=1

where 6 > 0 denotes the indifference-zone parameter if
specified and 0 = 0 is used when this parameter is un-
specified, n; = min{n, 7;}, and n; = min{n, 7;}, Vi#j,i,
j€[K]. These expressions are essentially the results
obtained upon running one iteration of the aforemen-
tioned two-step approximation.

In view of the relative ease of calculatmg Afzn) com-
pared with Am, we remark that Proc(Am,a) is more
applicable under the normality setting with unknown
variances. However, in other settings where A(l) ad-
mits a closed-form expression, we would recommend

if ﬁi,n = laj,n + 6;
(ﬁi,n’l]j,n) ~

otherwise,

implementing Proc(A(l) @), which can be less conserva-

imn’

tive than Proc(Al Q).

4.2. Statistical Validity
In this section, we provide an m—depth study of the
theoretical properties of Proc(Am,a) and Proc(Aln, a)
under normality with unknown variances.

The flrst result establishes that Proc(Afln),a) and
Proc(Am,a) terminate in finite time with probablhty

one, whose proof is provided in Online Appendix
EC33.

Theorem 7. Under Assumptions 5-8, both Proc(Af , Q)
and Proc(A(z),a) terminate in finite time with probabzllty
one.

Given that the two procedures terminate in finite time
with probability one, we further show that they both
deliver the prescribed PCS guarantee. The proof of the
following result is deferred to Online Appendix EC.3.4.

Theorem 8 Under Assumptions 5-8, both Proc(A(l) a)

ll’l’

and Proc(Al n,a) select the best system with probabzlzty at
least 1 — «, that is,
PcSY>1—qa, PCS?P>1-a. (27)

Theorem 8 establishes that Proc(Afln),a) and Proc(Afzn) , Q)
select the best system with probability at least 1 —«
when they terminate. Nonetheless, if Proc(Afln),a) and
Proc(Al 7, ) are stopped before the termination criterion
is met, that is, |S,| > 1, we have that the set S,, contains
the best system with the prescribed probabilistic guaran-
tee. The proof of the following result is provided in

Online Appendix EC.3.5.

Corollary 3. Suppose that Assumptlons 5-8 are satisfied.
While implementing Proc(Al ) (respectively, Proc(Afzn), a)),

the set Sy, contains the best system with probability at least 1 —
aforanyn > 1.

4.3. Asymptotic Efficiency
In this section, we investigate the asymptotic effi-
ciency. Without loss of generality, assume that system
1 is the best system, that is, pj > ur, Vie [K]\ {1}, or
equivalently, 6 € ©;. Recall that ’l'( ) (respectlvely, 2))
denotes the number of iterations used by Proc(A; n) , Q)
(respectively, Proc(Am,a)) to eliminate system i, Vi
€ [K]\ {1}. Recall that ®;; denotes the set of parameter
values such that system i is better than system 1,
Vie [K]\ {1}. The following result reveals the asymp-
totic limit of E[Tl(-l)] for Proc(Al(-,l,f,a) and that of E[TEZ)]
for Proc(A( )

in’

@) as the error probability a tends to zero.
The proof is provided in Online Appendix EC.3.6.

Theorem 9. Suppose that Assumptzons 5-8 are satlsﬁed
Under the settings of Proc(Am,a) and Proc(Am,a) as
a — 0, the respective expected sample sizes used by the two
procedures to eliminate system i satisfy

log(1/a)
Er. 09TV < Ef (o[ T2 ~g—1+01 ,
10T 1 < Epc o077 infoE@,,lp(G*,O)( (1))

VO €0, ic[K]\{1}.

5. Numerical Evaluations
In this section, we conduct numerical experiments to
evaluate the performance of the proposed procedures.
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In the first study, we evaluate the statlstlcal Vahdlty
and the computational efficiency of Proc(Am,a) for
solving an R&S problem involving two systems. In
the second study, we assess the performance of Proc
(Afln),a) in comparison with two state-of-the-art R&S
procedures in selecting the best system under differ-
ent indifference-zone configurations with up to 500
systems The third study focuses on evaluating Proc
(Am,a) in comparison with two leading R&S proce-
dures for solving an R&S problem in which all systems
are subject to unknown heterogeneous variances. It is
worth noting that we recommend working with the
logarithms of the likelihoods, the test statistics, and the
elimination threshold to enhance the proposed proce-
dures’ numerical stability.

5.1. Study 1: Statistical Validity and
Computational Efficiency of Proc(A})), )

This study focuses on evaluating the stahshcal validity

and computational efficiency of Proc(Am,oz) proposed

for solving R&S problems under normality with un-

known mean values and known variances (recall Section 3.1).

Consider comparing K = 2 systems with statistically
independent observations. The observations of system i
are independent and normally distributed with mean p*
and variance 1, i = 1, 2. For different combinations of
the target PCS level (or equivalently, the target error pro-
bability level a) and the true mean value difference
(A = uj — u3), we perform the experiment for 10,000 inde-
pendent macro-replications and record the estimated PCS
and the total sample 51ze consumed by Proc(AEln), @).Inall
experiments, Proc(Al ., ) is implemented without a spe-
cification of the indifference-zone parameter, and it starts
with ng = 2 iterations to collect observations from each
system without conducting elimination.

Table 2 summarizes the average total sample sizes
(SSize) with 95% confidence interval and the estimated
PCSs (PCS ) obtained under different combinations of
A =y — 5 and the target PCS level considered. Two
interesting observations are worth mentioning. First,
Proc(A(D a) tends to overshoot the target PCS level

in’

when the gap between the mean values of the two sys-
tems, A, is large. However, as A decreases, PCS drops
steadily to the target PCS level. The reasoning behind
is that the larger A, the more likely the GLR statistic of
Proc(A(l),a) overshoots the elimination threshold, and
hence the higher PCS obtained. As A decreases, PCS
drops and approaches the target PCS level which con-
firms the statistical validity of Proc(A, n,a). Second, as
A decreases by a factor of two, SSize increases approxi-
mately by a factor of four, echoing Corollary 2, which
states that the average total sample size asymptotically
approaches the limit —4loga /A as @ — 0.

Figure 1 plots the average total sample size obtained
across 10,000 macro-replications and the analytical
sample size given by Corollary 2 against A = uj — i3
for each target PCS level considered. Despite some dis-
crepancy between the numerical and the analytical
results, we observe that the average total sample size
used by Proc(Al n,a) approaches the theoretical lower
bound as A decreases. Two possible explanations for
this observation can be given. On the one hand, the GLR
statistic of Proc(AI n,oz) in the numerical implementation
is a discrete-time stochastic process, but is approximated
as a continuous-time stochastic process in the theoretical
analysis. On the other hand, the analytical result stated in
Corollary 2 assumes the knowledge of 1} and p5, whereas
this information is unavailable from the numerical imple-
mentation perspective. We conclude that the observations
made in this study corroborate the theoretical results
regarding the statlshcal validity and computational effi-
ciency of Proc(Al .1, (v) obtained in Section 3.

5.2. Study 2: Selecting the Best System Under
Different Indifference-Zone Parameter
Specifications

This study examines the performance of Proc(Afln), )

under different indifference-zone parameter settings

in comparison with two benchmarking methods, the

KN++ procedure and the IZ-free procedure, for solving

an R&S problem under normality with known variances

(recall Section 3.1). To facilitate comparison, identical

Table 2 Study 1: Estimated PCS (PCS) and Average Total Sample Size (SSize) with 95% Confidence Interval for

Proc(Al 1) Under Normality with Unknown Means and Variance 1, Where a € {0.05,0.025,0.0125}
1—-a=09 0.975 0.9875

A SSize PCS SSize PCS SSize PCS
23 6.004 = 0.00 1.000 6.002 £0.012 1.000 6.112 £0.032 1.000
22 6.92 =0.012 1.000 7.10+0.13 1.000 758 +0.19 1.000
2! 9.98 £0.25 0.999 11.90 +0.31 1.000 14.38 +£0.41 1.000
2° 25.79 £1.08 0.997 30.95*+1.22 0.998 37.26 =157 0.998
271 89.86 £4.67 0.997 109.41 £5.30 0.998 132.17 £5.78 0.999
272 333.01 +17.47 0.995 42191+21.22 0.996 513.53 +23.23 0.998
273 1,227 £72 0.979 1,538 £79 0.988 1,933 £88 0.996
274 4,523 +279 0.970 5,919 + 333 0.979 7,583 =376 0.989
275 16,939 = 1,109 0.951 23,499 + 1,297 0.975 29,366 = 1,482 0.988
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Figure 1. (Color online) Study 1: Log-Log Plot of the Average Total Sample Size (y Axis) Against the True Mean Value Differ-

ence (x Axis), Displayed Using Logarithmic Scales on Both Axes
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Note. Solid dots denote the analytical average total sample sizes given by Corollary 2, and solid triangles denote the average total sample sizes

reported in Table 2.

experimental settings as considered in Fan and Hong
(2014) and Fan et al. (2016) are adopted here. It 1s worth
noting that a major difference between Proc(A, n,a) and
the two benchmarking procedures is that Proc(Aln, a)
does not require the Bonferroni correction.

Consider an R&S problem involving K systems with
statistically independent observations. The observa-
tions of system i are independent and normally distrib—
uted with mean u*=1.5—0.5i and variance o7 =10
for Vie [K]. We consider varying the number of sys-
tems K € {20,50,100,500} and the specification of the
indifference-zone parameter §€{274,273,272 271 0}
with zero, indicating that 0 is unspecified. Notice that
0 =0.5 corresponds to the true gap between the best
system and the second best: A =0.5. With the target
PCS level set to 1 — a =0.95, under each combination
of K and 6, we perform the experiment for 1,000 inde-
pendent macro-replications and record the estimated
PCS obtained and the total sample sizes consumed by
Proc(A(l),a) and the two benchmarkmg methods. The
implementation of Proc(Al n,a) under each combination
of 6 and K starts with ng = 10 iterations to collect observa-
tions from each system without conducting elimination.

Table 3 summarizes the estimated PCSs (PCS) and
the average total sample sizes (SSize) with 95% confi-
dence interval obtained under the different combina-
tions of 6 and K considered. We note that the results
corresponding to the cases where 0 is unspecified do
not exist for the KN++ procedure, because it applies

only when 6 > 0 is provided. Conversely, the results
corresponding to the cases where 0 >0 assumes dif-
ferent specifications do not exist for the 1Z-free pro-
cedure, as it does not admit an indifference-zone
parameter.

Several important observations can be made from
Table 3. First and foremost, Proc(Al(ln),a) outperforms
the two benchmarking procedures in terms of the
average total sample sizes used under all experimen-
tal settings. Specifically, compared with KN++ the
average total sample size used by Proc(Am,a) grows
much more slowly as the indifference-zone parameter
0 approaches zero. The results suggest that the com-
putational efficiency of KN++ hinges heavily on the
specification of 5, which declines drastically when 6 < A
(recall A =0.5 in this study), whereas that of Proc (Afln),
a) is much less affected On the other hand, when 6 is
unspecified, Proc(A, n,a) uses much smaller average
total sample sizes compared with [Z-free to achieve the
target PCS level. Second in terms of the PCS obtained,
we find that Proc(A, 1, @) is less conservative than KN++
and [Z-free because both procedures deliver PCS much
higher than the target level 0.95 as a result of usmg the
Bonferroni correction. We conclude that Proc(Afn) ,a) is
a statistically valid and computationally efficient R&S
procedure with and without specifying the indifference-
zone parameter. Indeed, it helps fill the gap between
procedures developed under the indifference-zone for-
mulation and the indifference-zone-free formulation.
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Table 3. Study 2: Estimated PCS (PCS) and Average Total Sample Size (SSize) with 95% Confidence Interval Obtained

from 1,000 Independent Macro-Replications for Implementing Proc(AY

a), KN++ Procedure, and IZ-Free Procedure with

ln’

1—-a=095
0 specified 0 unspecified
KN++ Proc(A{)), ) 1Z-free Proc(All), )
K o SSize PC/\S SSize P/C?Q SSize P/CTS SSize P/CTS
20 271 1,371 =16 0.99 490 +20 0.95 2,816 + 82 0.99 1,156 =133 0.98
272 3,247 +29 1.00 594 + 52 0.98
273 7,045 + 50 1.00 757 =95 0.95
274 14,700 = 70 1.00 830+93 0.98
50 271 2,014 +18 1.00 782 +23 0.95 3,588 + 89 0.99 1,471+ 153 0.99
22 4,454 +33 1.00 866 + 44 0.95
273 9,779 =54 1.00 1,069 + 76 0.97
274 20,700 + 80 1.00 1,327 +130 0.97
100 271 2,710 +20 0.99 1,359 + 20 0.95 4,388 + 89 0.99 1,955 * 159 0.98
272 5,506 + 34 1.00 1,428 +49 0.98
273 11,790 + 60 1.00 1,691 * 80 0.98
274 25,140 =90 1.00 1,850 =116 0.97
500 271 7,217 =21 0.99 5,683 +21 0.96 9,138 + 102 1.00 6,335 + 143 0.98
272 10,770 = 40 1.00 5,873 + 53 0.97
273 18,770 + 60 1.00 6,050 =+ 87 0.97
274 36,280 +90 1.00 6,193 + 106 0.99

Note. Results for KN++ and IZ-free are cited from Fan et al. (2016).

5.3. Study 3: Selecting the Best System Under
Unknown Heterogeneous Variances

In th1s study, we investigate the performance of Proc

(Al n,a) in comparison with the KN++ procedure and

the 1Z-free procedure for solving an R&S problem

under the normality setting with unknown, heteroge-

neous variances (recall Section 4.1).

Consider solving an R&S problem involving K sys-
tems with the target PCS level set to 1 —a =0.95 and
the indifference-zone parameter 0 being either 0.5
or unspecified. The random observations of system i
(Vie[K]) are independent and normally distributed
with mean i} = 1.5 — 0.57 and variance 07*, which is spe-
cified next. Notice that 6 = 0.5 corresponds to the true
gap between the best system and the second best,
A =0.5. Three configurations of variances for all i € [K]
are considered, respectively, equal (62* = 10), monotoni-
cally increasing (02* = 10 X (0.95 + 0.05i)), and monoton-
ically decreasing (0?* =10/(0.95 + 0.05{)). We consider
varying K € {20,50,100}. For each combination of K, 6,
and the configuration of variances, we perform the ex-
periment for 1,000 independent macro-replications and
record the estimated PCS obtamed and the total sample
sizes consumed by Proc(Al ,a) and the two benchmark-
ing methods. Every evaluation of Proc(Al 1, ) under each
experimental setting uses 11y = 10 iterations to collect obser-
vations from all systems without conducting elimination.

Table 4 summarizes the estimated PCSs (PCS) and
the average total sample sizes (SSize) with 95% confi-
dence interval obtained under different experimental set-
tings, from WhJCh we have the following observations.
First, Proc(A ,a) demonstrates its statistical validity

across all experimental settings and in particular it deli-
vers robust performance under different configurations
of variances. Second, Proc(Agzn),oz) outperforms the two
benchmarking procedures in terms of computational effi-
ciency under all indifference-zone parameter settings
considered. Specifically, Proc(Afn) ,a) uses smaller total
sample sizes on average than KN++, even when 0 is spe-
cified to be A =0.5 that brings out the best in KN++.
Last but not least, in terms of the PCS obtained, Proc
(Afzn),a) is less conservative than KN++ and IZ-free.
Although the target PCS level is 0.95, both KN++ and
1Z-free overshoot the target by a sizable margin and con-

sume much larger total sample sizes on average.

6. Conclusion

In this paper, we proposed two new fully sequential
procedures for R&S. Unlike many other leading meth-
ods, the new procedures do not use the Bonferroni cor-
rection, can continuously monitor and control the type
I error rate at a prescribed level, and are indifference-
zone-flexible. Under the settings of normality with and
without the knowledge of true variances, the proposed
procedures are shown to be statistically valid and
asymptotically efficient and provide a prescribed PCS
guarantee. Numerical studies corroborate the theoreti-
cal results and demonstrate the superiority of the pro-
posed procedures under various configurations.

There are several future research directions to pursue,
including, but not limited to (1) developing generalized
sequential likelihood ratio test-based procedures that
can achieve a guaranteed probability of good selection
(this direction is highly relevant to tackling large-scale
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Table 4. Study 3: Estimated PCS (P/C\S) and Average Total Sample Size (SSize) with 95% Confidence Interval Obtained

from 1,000 Independent Macro-Replications for Implementing Proc(A?

a), KN++ Procedure, and IZ-Free Procedure with

in’

1-a=095
0=05 0 unspecified
KN++ Proc(A(), a) 1Z-free Proc(AD), )
K Variances SSize PCS SSize PCS SSize PCS SSize PCS
20 Decreasing 1,326 = 16 0.99 806 + 32 0.97 2,780 = 81 0.99 2,302 +78 0.99
Equal 1,371+ 16 0.99 888 =35 0.96 2,816 =82 0.99 2,486 =86 0.99
Increasing 1,473 =17 0.99 985 +41 0.95 2,916 =85 0.99 2,559 + 88 0.98
50 Decreasing 1,881 =17 0.99 1,179 =31 0.97 3,551 =86 0.99 2,840 =97 0.99
Equal 2,014 =18 1.00 1,360 =37 0.97 3,588 =89 1.00 2,938 =99 0.99
Increasing 2,147 18 0.99 1,601 =39 0.96 3,635 90 0.99 3,158 =116 0.97
100 Decreasing 2,592 19 1.00 2,213 +£32 0.97 4,351 =93 1.00 3,657 102 0.99
Equal 2,710 =20 1.00 2,402 +37 0.97 4,388 =89 1.00 3,792 +106 0.98
Increasing 2,934 £20 0.99 2,679 =38 0.95 4,444 =93 0.99 4,005+ 112 0.98

Note. Results for KN++ and IZ-free are cited from Fan et al. (2016).

R&S problems); (2) extending the procedures to solve
R&S problems with unknown underlying distributions;
(3) establishing guidelines for setting the parameter n,
and studying its impact on the proposed procedures’ per-
formance; and (4) conducting comprehensive compari-
sons with leading Bonferroni-free R&S procedures such
as BIZ (Frazier 2014) and DK (Dieker and Kim 2021).
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