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Generic Nonadditivity of Quantum Capacity in Simple Channels
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Determining capacities of quantum channels is a fundamental question in quantum information theory.
Despite having rigorous coding theorems quantifying the flow of information across quantum channels,
their capacities are poorly understood due to superadditivity effects. Studying these phenomena is
important for deepening our understanding of quantum information, yet simple and clean examples of
superadditive channels are scarce. Here we study a family of channels called platypus channels. Its simplest
member, a qutrit channel, is shown to display superadditivity of coherent information when used jointly
with a variety of qubit channels. Higher-dimensional family members display superadditivity of quantum
capacity together with an erasure channel. Subject to the “spin-alignment conjecture” introduced in our
companion paper [F. Leditzky, D. Leung, V. Siddhu, G. Smith, and J. A. Smolin, The platypus of
the quantum channel zoo, IEEE Transactions on Information Theory (IEEE, 2023), 10.1109/
TIT.2023.3245985], our results on superadditivity of quantum capacity extend to lower-dimensional
channels as well as larger parameter ranges. In particular, superadditivity occurs between two weakly
additive channels each with large capacity on their own, in stark contrast to previous results. Remarkably, a
single, novel transmission strategy achieves superadditivity in all examples. Our results show that
superadditivity is much more prevalent than previously thought. It can occur across a wide variety of
channels, even when both participating channels have large quantum capacity.
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Introduction.—A central aim of quantum information
theory is to find out how much information a noisy quantum
channel can transmit reliably—to find a quantum channel’s
capacity [1,2]. In fact, a quantum channel has many
capacities, depending on what sorts of information are to
be transmitted and what additional resources are on hand.
The primary capacities of a quantum channel are the classi-
cal [3-5], private [6-8], and quantum capacities [8—13]. This
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Letter focuses on unassisted capacities, when no additional
resources (such as free entanglement) are available.

The theory of quantum capacities is far richer and more
complex than the corresponding classical theory [14,15].
This richness includes many synergies and surprises:
superadditivity of coherent information [16-30], private
information [31-33], Holevo information [34], super-
activation of quantum capacity [35-39], and private
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communication at a rate above the quantum capacity
[40,41]. Over the past two decades, there have been
numerous exciting discoveries about these phenomena,
but they remain mysterious. As a result, we do not have
a theory of how to best communicate with quantum
channels, and cannot answer many of the sorts of questions
classical information theory does. For example, in quantum
information theory random codes can be suboptimal, and
we can only evaluate capacities in special cases [42-50].
Our understanding of error correction in the quantum
setting is thus incomplete, whether the data are classical,
private, or quantum.

Any quantum channel B can be expressed as an isometry
J:A — BE followed by a partial trace over the environ-
ment E: B(p) = Try(JpJT). Physically, it means that
quantum noise arises from sharing the unclonable quantum
data with the environment which is subsequently lost
(i.e., traced out). Therefore, to understand quantum trans-
mission we must also consider the environment’s view
of the channel, known as the complementary channel:
B¢(p) = Trz(JpJT). Together, the channel and its comple-
ment allow us to define the coherent information of
a channel B on an input state p as A(B,p):=
S[B(p)] — S[B(p)], where S(c) = —Tr(clog o) is the von
Neumann entropy of o. Mathematically, the coherent
information signifies how much more information about
the input is available in system B than in system E.
Operationally, a random coding argument shows that
indeed, for any input state p, the quantity A(5,p) is an
achievable rate for quantum transmission [8,10-13].
Maximizing over all inputs p gives the channel coherent
information Q(")(B).

If the channel coherent information is additive, that is,
OB, ® B,) = QW (B,) + Q) (B,) for any two chan-
nels B; and B,, then the theory of quantum capacity will
resemble its classical analog. However, a rich theory of
quantum capacity originates from two distinct notions of
nonadditivity: violations of weak additivity and violations
of strong additivity.

We first discuss violations of weak additivity. The
quantum capacity can be expressed as [8,10-13,51]

O(B) = lim - QU(5%"), (1)
where B%" is the n-fold tensor product of B. If Q) (B®") =
nQ(B) for all n € N, we say that 3 has weakly additive
coherent information, in which case Q(B) = Q)(B).
However, there are channels B for which Q(l)(B@’") >
nQW (B) holds for some n [16-20,22-25,27-29]. Thus, the
n — oo limit is in general required in the above regularized
expression for the quantum capacity. When a channel does
not have weakly additive coherent information, special
quantum codes can outperform the classical-inspired ran-
dom coding strategy achieved by Q). This unbounded

optimization also means that we can rarely determine the
quantum capacity of a quantum channel.

The second notion of nonadditivity, violations of strong
additivity, can be phrased as follows. For two channels 15,
and B,, we have the general inequality

OB ® B,) = QW (By) + QW (B,). (2)

Letting B be a fixed channel, if equality in Eq. (2) holds
for all channels B,, we say that B, has strongly additive
coherent information. In this case, the quantum capacity
satisfies Q(B; ® B,) = Q(B;) + Q(B,). Note that strong
additivity implies weak additivity. Violations of strong
additivity imply that two different channels can have
strictly superadditive coherent information, or even capac-
ity. As a result, not only do we not know the capacity of
most quantum channels, we also do not know when two
channels used jointly can have capacity exceeding the sum
of the individual channels. A more general notion of a
channel’s capability to transmit quantum data thus depends
on the details of other resources available [35,52,53], and
does not necessarily coincide with its capacity, a drastic
deviation from the classical theory.

Similar to the quantum capacity, a channel’s private
and classical capacities can be defined as the highest rates
of faithful transmission of private and classical informa-
tion, respectively; expressions analogous to Eq. (1) are
known [4,5,7,8]. Both capacities require regularized
expressions [34,54], and the private capacity can be shown
to be nonadditive for some channels [31,55].

For classical capacity, the underlying information quan-
tity is the Holevo information, which was conjectured to
be additive for a long time. In fact, strong additivity
was proved for certain channels such as entanglement-
breaking [43], depolarizing, [45], Hadamard [47,48], and
unital qubit channels [44]. As a result, for these channels the
classical capacity completely characterizes their ability to
faithfully send classical information. Furthermore, the only
known proofs of violation of weak additivity of the Holevo
information [34,56,57] are based on random channel con-
structions and no explicit example has been found yet [2,34].
It is still open if the classical capacity can be nonadditive. It
is furthermore unclear if additivity is more prevalent for
classical data transmission, or if proofs are simply harder to
come by since the Holevo information involves a more
complex optimization compared to coherent information.

The situation for quantum information transmission is
quite different. There is a plethora of concrete channels
with superadditive coherent information [16-19,22-29].
The only known class of channels with strongly additive
coherent information are the entanglement-breaking
channels, but they are somewhat trivial—their quantum
capacity is zero. Degradable channels [46,58] have weakly
additive coherent information, and two degradable chan-
nels have additive coherent information, yet surprisingly
degradability does not imply strong additivity for a
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channel. Even weakly additive channels like some (anti)
degradable [46] and positive partial transpose channels [59]
may have superadditive quantum capacity in combination
with suitable channels [35,38,55]. A common feature in
these violations of strong additivity is that one or both of
the channels are manifestly noisy, that is, with vanishing or
small quantum capacity. Most of these proofs come from a
qualitative inability for the channels to transmit quantum
data; in addition, nearly noiseless channels are indeed
limited in their nonadditivity [60].

In this Letter, we provide qualitatively new examples of
superadditivity of quantum capacity. The phenomenon
seems prevalent, does not involve channels engineered to
exhibit the effect, and can involve pairs of channels with
large quantum capacity. Our findings show an even more
complex landscape of nonadditivity than hitherto appre-
ciated. Yet, our channels and the proofs are simple, and thus
we hope they improve our understanding of the subject.

Main results.—Our first main result is that a simple qutrit
“platypus channel,” defined via Eq. (3), violates strong
additivity of coherent information when used together with
a variety of simple and well-known qubit channels such as
the erasure, amplitude damping, depolarizing, and even
randomly constructed qubit channels. Even more remark-
ably, the same simple code achieves nonadditivity in all
cases. Our findings strongly suggest that superadditivity is
much more prevalent and generic than previously thought.

Second, as proved in our companion paper [61], platypus
channels have weakly additive coherent information if the
spin-alignment conjecture introduced in Ref. [61] holds. As
the erasure channel and the amplitude damping channel also
have weakly additive coherent information, we have an
example of nonadditivity of quantum capacity between
two weakly additive channels. The only known prior example
revolves around superactivation [35], and requires substantial
fine-tuning to demonstrate the effect. In contrast, our channel
requires no such tuning, and both channels exhibit non-
additivity over a wide range of parameters, including regimes
where both channels have substantial capacity themselves.

Third, we show that higher-dimensional platypus chan-
nels have similar nonadditive behavior. In particular, when
used jointly with a higher-dimensional erasure channel, it
exhibits superadditivity of quantum capacity uncondition-
ally, i.e., without relying on the spin-alignment conjecture.
The underlying mechanism at work achieving all of these
nonadditivity results is qualitatively different from previous
results in Refs. [35,38,55], as explained in the Discussion
section below.

In the following paragraphs we discuss our main results;
see the Supplemental Material [62] for additional details.
MATLAB and PYTHON codes used to obtain the numerical
results mentioned above will be made available at Ref. [73].

Qutrit  platypus  channel—The qutrit platypus
channel N is defined by the following isometry
Fo: Hyo—>H, @ He:

F;|0) = v/5/0) ® [0) + V1 = s|1) ® [1),
F[1) = 2) ® |0).
Fi2) =2) ® 1), (3)

where 0 < s <1/2, and the input H,, output H,, and
environment H_. have dimension three, three, and two,
respectively. This channel [27,74] is extensively studied in
the companion paper [61]. From Refs. [27,61], the channel
coherent information is always positive and can be attained
on inputs of the form o(u) == (1 — u)|0)(0] + u|2)(2]:

OW(N) = max AN, o(u)] > 0.

u€l0,1]

Conditioned on the spin-alignment conjecture formulated in
Ref. [61], the channel coherent information Q") (\/;) can be
proved to be weakly additive, and thus Q(N,) = QW ().
Without the spin-alignment conjecture, we have the upper
bound Q(N) <log(1+ V1 —3).

Violation of strong additivity.—We find that /; displays
superadditivity in the strong sense,

QU ® K) > QW) + QW(K).,  (4)

when used with just about any small channel K. Since
QW (N) > 0, the additional channel K is said to amplify
QW (N). We consider various well-known and physically
relevant channels /C, such as the qubit erasure channel,
E(p) = (1 =A)p+ ATr(p)|e){e| with erasure probability
A € [0, 1], the qubit amplitude damping channel, A, (p) =
NopNj + NipN| with damping probability y € [0, 1]
and Kraus effects Ny =1[0)(0| + /1 —y|1)(1| and
Ny = /7|0)(1], and the qubit depolarizing channel,
D,(p) = (1 —4p/3)p +2p/3I with depolarizing param-
eter p € [0, 1]. For erasure and amplitude damping chan-
nels the quantum capacity equals the channel coherent
information [42,46,75]. The amplification in Eq. (4) not
only occurs when each of the channels &;, Ay, and Dp has
zero coherent information (see Fig. 1), but it persists
for a wide range of channel parameters 0 <s < 1/2,
j'min < A < /?'max’ Y min < 4 < Y max> and Pmin < p < Pmax
(see Supplemental Material [62]).

Remarkably, the amplification of Q(l)(N ;) by all three
channels &;, A,, and D, can be achieved by a single input
state ansatz for V', ® K,

p(e, ri, r2) = r1|00)(00] + r2|01)(01]
+ (1= ri = ra)lre) el (5)

where |y.) =1 —¢€|20) + \/¢|11), and the parameters
satisfy the constraints e, ry, ry, r; + r, € [0,1]. In more
detail, we find that A*(N ® K,) :== max,, ., AN, ®
Ky, ple, ri,r5)] exceeds QW(N,) + QW (K,), where K,
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FIG. 1. Amplification of coherent information for the channel

N, and various additional channels. We plot Q)(N, ® K) —
QM(Ny) for K = &1, (solid magenta line), K = A, (solid
blue line), and K = D, (solid green line). Here, £, and A,
are the symmetric erasure and amplitude damping channels,
respectively, D, is the qubit depolarizing channel with
p*~0.1893, so that all three channels have zero coherent
information Q((K) = 0. We also plot R,(N,) — QW (N))
(dashed orange line), where R, (-) with @ = 1 + 275 is the upper
bound (UB) on the quantum capacity Q(-) derived in Ref. [76].

isone of £;, A,, or D,,. Since all three channels £, A,, and
D, have well-known symmetries, one may suspect that the
amplification strategy Eq. (5) coincides because of these
symmetries. We find this not to be the case. Numerics
reveal that amplification of Q(V) (N, /2) using Eq. (5) occurs
even when KC is defined in terms of a random qubit channel.
Superadditivity occurs both when Q(!)(K) > 0 or when the
coherent information of /C itself vanishes.

Unconditional superadditivity of quantum capacity.—In
the previous section we showed superadditivity of the
coherent information of A/, when used in parallel with other
channels such as £, or A,. The latter channels are known to
satisfy Q(&,) = QW (&,) and Q(A,)) = QW (A,).Moreover,
conditioned on the spin-alignment conjecture [61], we also
have Q(W(N,) = Q(N,). Hence, the superadditivity of
QW in Eq. (4) can be elevated to superadditivity of the
quantum capacity Q, provided the spin-alignment conjecture
is true.

We now show that, remarkably, this result can be
strengthened to an unconditional superadditivity of quan-
tum capacity. To this end, we consider a channel M,
introduced in Ref. [61] that generalizes V', /2 to d input and
output dimensions, and d — 1 environment dimensions,
with d > 3. The isometry G:'H, — H, ® H,. acts on an

orthonormal input basis {|i)}¢=} as

and defines the channel M(+) := Tr.(G - G7).
Comparing Eq. (6) to the isometry Eq. (3) for NV 5, we
see that Mz =N,,, and hence M, is indeed a
d-dimensional generalization of Ay . The coherent infor-
mation Q(”(Md) is evaluated in Ref. [61], and similar to
N2 we have Q(M,) = QY (M) modulo (a generalized
version of) the spin-alignment conjecture. However, we do
not make use of this (conjectured) identity here and instead

use the following upper bound on the quantum capacity of
M, derived in Ref. [61]:

1 1 1
O(My) <lo <1+7)S— .
(M) g T—1 n2vd—1

(7)

This upper bound follows from evaluating the “trans-
position bound” on the quantum capacity of a quantum
channel [77]. It is phrased in terms of the diamond norm
and can be evaluated using semidefinite programming
techniques.

The quantum capacity of M, is superadditive when
used together with the d-dimensional erasure channel &, 4
where 4 € [0, 1]. More precisely, we show that

QM ® E,4) > QMyyy) + Q(Era) (8)

for suitable A and d in two steps. First, using the upper bound
Eq. (7) on Q(M) and the fact that the quantum capacity of
E,.q1s given by Q(E&; ;) = max{(1 —24)logd, 0} [42], we
obtain an upper bound,

u(2,d) =1log(1 + 1/Vd) +max{(1 —22)logd,0}, (9)

on the right-hand side of Eq. (8). Second, letting H, and H
be the input Hilbert spaces for M, | and &, 4, respectively,
we find an input state p,, with coherent information
AMyi ® &4, puwr) exceeding u(A, d):

QM) + Q(Era) L u(4, d)
<AMys1 ® E14-Puat)
< Q(Myp ® Era)- (10)

This chain of inequalities proves Eq. (8).
The input state achieving Eq. (10) i8 p,or = Tt [W]4parr»
where for w € [0, 1] we define
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1 d—1
|W>ara’r’ =Vl1 _W|0>r|0>a_ |i>r’|i>a’
V Vas

IO =S i ). (1)
Vd
i=1

and the reference spaces H, and H, have dimensions two
and d, respectively. The pure state |y),,,, iS a super-
position of two orthogonal “pieces” with amplitudes
V1 —w and /w, respectively. By itself, the first piece
only generates coherent information via &, 4, as the input of
M. in'H, is in a product state with both the input to £, ,
and the reference. The second piece by itself generates
no coherent information, since the joint input system
H, ® H, is unentangled with the reference H, ® H, .
Optimizing over the parameter w € [0, 1], this super-
position of coding strategies results in a coherent informa-
tion of the joint channel M, ® &, , that exceeds the
upper bound u(4,d) on QM)+ Q(&,4). We first
show this numerically for 4 € [0.37,0.57] and sufficiently
large d. This is summarized in Fig. 2, where we plot the
minimal values A2, (d) (dashed blue line) and Afu(d)
(dashed magenta line) of A4 as a function of d such that
Eq. (8) holds numerically for all 1€ [12 (d), ASux(d)].

min

A

0.6 -

0.5

0.3+ .

0.2 - =

Lol 1 1

Lo il 1 Lol

10* 102 103
d

FIG. 2. Plot of the region of superadditivity of coherent
information and quantum capacity of the quantum channel
My ® &4 The solid lines are the minimal values A, (d)
(blue) and maximal values Ay, (d) (magenta) between
which M,,; ® £, , has superadditive coherent information,
QW My ® E14) > QW (Myyy) + QV(E,4). The dashed
lines are the minimal values A2, (d) (blue) and maximal values
Agax (d) (magenta) between which M| ® &, , has superadditive
quantum capacity, QMg ® €;4) > QMi1) + 2Exa)-

Note that £, ; has positive quantum capacity when 1 < 1/2,
and hence for suitable d and /4 we obtain superadditivity of
quantum capacity Eq. (8) for two channels, M, and &, 4,
each with strictly positive Q.

In Fig. 2 we also plot the minimal values A,;,(d) (solid
blue line) and A,,,(d) (solid magenta line) such that the
coherent information of M, | ® &; ,is superadditive for all
A€ [Amin(d),Amax (d)]. While the interval [A,(d), Anax (d)]
marks the “true” extent of the superadditivity of quantum
capacity (modulo the spin-alignment conjecture), we stress
once again that the superadditivity of quantum capacity
within the interval [A2, (d), 4. (d)] is unconditional.

We can further strengthen the numerical results of Fig. 2
by proving analytically that the superadditivity of quantum
capacity in Eq. (8) indeed holds for all 1€ (0,1) and
sufficiently large d. The proof is based on a log-singularity-
like argument [27], and applied for any A € (0,1), by a
suitable choice of the parameter w in the state Eq. (11).
Details of this calculation can be found in the Supplemental
Material [62].

Discussion.—Interestingly, a single ansatz Eq. (11) is
responsible for superadditivity of Q1) when N, is used with
a variety of other channels &, .Ay, D,, and randomly
constructed qubit channels. A higher-dimensional version
of this ansatz gives rise to superadditivity of quantum
capacity when M, is used with &, ;. The mechanism and
extent of this superadditivity is distinct from superactivation,
where the private capacity of a zero quantum capacity
channel V is transformed into quantum capacity when used
jointly with an antidegradable channel A. This transforma-
tion has efficiency at most 1/2, and thus one obtains
superactivation when 0 = Q(N') < P(N')/2. By contrast,
Q(N) > P(N)/2 > 0, thus ruling out the superactivation
mechanism as the cause for our superadditivity involving
N ; our protocol Eq. (11) employs a different mechanism.

Like superactivation our protocol works robustly [38]
when A = &, ; and 4 is varied, but unlike superactivation
we find superamplification, i.e., superadditivity even when
both channels M, and &, ; have nonzero quantum capac-
ity. Similar superadditivity of quantum capacity arises in
high-dimensional rocket and half-rocket channels when
used with zero capacity channels [31,41]. These noisy
channels, carefully constructed to display superadditivity,
have quantum capacity well below the dimensional bound
r = Q/logd <« 1. By contrast, M, is simply constructed
by hybridizing a degradable qubit channel with a useless
channel, with the goal to support weak additivity of Q).
Yet, it exhibits superadditivity of Q even when it has
modest input dimension and noise; for instance, super-
additivity occurs at d = 5 and r > 0.2. Our result on M,
also contrasts with those obtainable by extending super-
activation via continuity arguments. The superactivating
channels can be perturbed to have positive capacities, but
these capacities are necessarily very small. Moreover,
superadditivity involving M, occurs over a wide range
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of erasure probabilities that is well beyond what one may
expect from such perturbations. For instance, at d = 10,
r~0.075, and superadditivity holds over erasure proba-
bilities 0.43 < 1 < 0.53, and the erasure channel can have
substantial capacity. Using M, with a symmetric channel
S of unbounded dimension leads to superadditivity,
OM; ®S) > 9(M,) + Q(S) for any d>7, where
PMy/2>Q(M,) [61], since OQM,®S)>
P(M,)/2 [35]. These superadditivity results can be
strengthened and simplified further if the spin-alignment
conjecture is proven. The simplicity of the channels
involved in superadditivity here raises the question of
whether qualitatively similar constructions are possible
for investigating superadditivity of private and classical
capacities.
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