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Determining capacities of quantum channels is a fundamental question in quantum information theory.

Despite having rigorous coding theorems quantifying the flow of information across quantum channels,

their capacities are poorly understood due to superadditivity effects. Studying these phenomena is

important for deepening our understanding of quantum information, yet simple and clean examples of

superadditive channels are scarce. Here we study a family of channels called platypus channels. Its simplest

member, a qutrit channel, is shown to display superadditivity of coherent information when used jointly

with a variety of qubit channels. Higher-dimensional family members display superadditivity of quantum

capacity together with an erasure channel. Subject to the “spin-alignment conjecture” introduced in our

companion paper [F. Leditzky, D. Leung, V. Siddhu, G. Smith, and J. A. Smolin, The platypus of

the quantum channel zoo, IEEE Transactions on Information Theory (IEEE, 2023), 10.1109/

TIT.2023.3245985], our results on superadditivity of quantum capacity extend to lower-dimensional

channels as well as larger parameter ranges. In particular, superadditivity occurs between two weakly

additive channels each with large capacity on their own, in stark contrast to previous results. Remarkably, a

single, novel transmission strategy achieves superadditivity in all examples. Our results show that

superadditivity is much more prevalent than previously thought. It can occur across a wide variety of

channels, even when both participating channels have large quantum capacity.

DOI: 10.1103/PhysRevLett.130.200801

Introduction.—A central aim of quantum information

theory is to find out how much information a noisy quantum

channel can transmit reliably—to find a quantum channel’s

capacity [1,2]. In fact, a quantum channel has many

capacities, depending on what sorts of information are to

be transmitted and what additional resources are on hand.

The primary capacities of a quantum channel are the classi-

cal [3–5], private [6–8], and quantum capacities [8–13]. This

Letter focuses on unassisted capacities, when no additional

resources (such as free entanglement) are available.

The theory of quantum capacities is far richer and more

complex than the corresponding classical theory [14,15].

This richness includes many synergies and surprises:

superadditivity of coherent information [16–30], private

information [31–33], Holevo information [34], super-

activation of quantum capacity [35–39], and private

PHYSICAL REVIEW LETTERS 130, 200801 (2023)

0031-9007=23=130(20)=200801(8) 200801-1 © 2023 American Physical Society



communication at a rate above the quantum capacity

[40,41]. Over the past two decades, there have been

numerous exciting discoveries about these phenomena,

but they remain mysterious. As a result, we do not have

a theory of how to best communicate with quantum

channels, and cannot answer many of the sorts of questions

classical information theory does. For example, in quantum

information theory random codes can be suboptimal, and

we can only evaluate capacities in special cases [42–50].

Our understanding of error correction in the quantum

setting is thus incomplete, whether the data are classical,

private, or quantum.

Any quantum channel B can be expressed as an isometry

J∶A ↦ BE followed by a partial trace over the environ-

ment E: BðρÞ ¼ TrEðJρJ†Þ. Physically, it means that

quantum noise arises from sharing the unclonable quantum

data with the environment which is subsequently lost

(i.e., traced out). Therefore, to understand quantum trans-

mission we must also consider the environment’s view

of the channel, known as the complementary channel:

BcðρÞ ¼ TrBðJρJ†Þ. Together, the channel and its comple-

ment allow us to define the coherent information of

a channel B on an input state ρ as ΔðB; ρÞ ≔
S½BðρÞ� − S½BcðρÞ�, where SðσÞ ¼ −Trðσ log σÞ is the von
Neumann entropy of σ. Mathematically, the coherent

information signifies how much more information about

the input is available in system B than in system E.
Operationally, a random coding argument shows that

indeed, for any input state ρ, the quantity ΔðB; ρÞ is an

achievable rate for quantum transmission [8,10–13].

Maximizing over all inputs ρ gives the channel coherent

information Qð1ÞðBÞ.
If the channel coherent information is additive, that is,

Qð1ÞðB1 ⊗ B2Þ ¼ Qð1ÞðB1Þ þQð1ÞðB2Þ for any two chan-

nels B1 and B2, then the theory of quantum capacity will

resemble its classical analog. However, a rich theory of

quantum capacity originates from two distinct notions of

nonadditivity: violations of weak additivity and violations

of strong additivity.

We first discuss violations of weak additivity. The

quantum capacity can be expressed as [8,10–13,51]

QðBÞ ¼ lim
n→∞

1

n
Qð1ÞðB⊗nÞ; ð1Þ

whereB⊗n is the n-fold tensor product ofB. IfQð1ÞðB⊗nÞ ¼
nQð1ÞðBÞ for all n ∈ N, we say that B has weakly additive

coherent information, in which case QðBÞ ¼ Qð1ÞðBÞ.
However, there are channels B for which Qð1ÞðB⊗nÞ >
nQð1ÞðBÞ holds for some n [16–20,22–25,27–29]. Thus, the
n→ ∞ limit is in general required in the above regularized

expression for the quantum capacity. When a channel does

not have weakly additive coherent information, special

quantum codes can outperform the classical-inspired ran-

dom coding strategy achieved by Qð1Þ. This unbounded

optimization also means that we can rarely determine the

quantum capacity of a quantum channel.

The second notion of nonadditivity, violations of strong

additivity, can be phrased as follows. For two channels B1

and B2, we have the general inequality

Qð1ÞðB1 ⊗ B2Þ ≥ Qð1ÞðB1Þ þQð1ÞðB2Þ: ð2Þ

Letting B1 be a fixed channel, if equality in Eq. (2) holds

for all channels B2, we say that B1 has strongly additive

coherent information. In this case, the quantum capacity

satisfies QðB1 ⊗ B2Þ ¼ QðB1Þ þQðB2Þ. Note that strong
additivity implies weak additivity. Violations of strong

additivity imply that two different channels can have

strictly superadditive coherent information, or even capac-

ity. As a result, not only do we not know the capacity of

most quantum channels, we also do not know when two

channels used jointly can have capacity exceeding the sum

of the individual channels. A more general notion of a

channel’s capability to transmit quantum data thus depends

on the details of other resources available [35,52,53], and

does not necessarily coincide with its capacity, a drastic

deviation from the classical theory.

Similar to the quantum capacity, a channel’s private

and classical capacities can be defined as the highest rates

of faithful transmission of private and classical informa-

tion, respectively; expressions analogous to Eq. (1) are

known [4,5,7,8]. Both capacities require regularized

expressions [34,54], and the private capacity can be shown

to be nonadditive for some channels [31,55].

For classical capacity, the underlying information quan-

tity is the Holevo information, which was conjectured to

be additive for a long time. In fact, strong additivity

was proved for certain channels such as entanglement-

breaking [43], depolarizing, [45], Hadamard [47,48], and

unital qubit channels [44]. As a result, for these channels the

classical capacity completely characterizes their ability to

faithfully send classical information. Furthermore, the only

known proofs of violation of weak additivity of the Holevo

information [34,56,57] are based on random channel con-

structions and no explicit example has been found yet [2,34].

It is still open if the classical capacity can be nonadditive. It

is furthermore unclear if additivity is more prevalent for

classical data transmission, or if proofs are simply harder to

come by since the Holevo information involves a more

complex optimization compared to coherent information.

The situation for quantum information transmission is

quite different. There is a plethora of concrete channels

with superadditive coherent information [16–19,22–29].

The only known class of channels with strongly additive

coherent information are the entanglement-breaking

channels, but they are somewhat trivial—their quantum

capacity is zero. Degradable channels [46,58] have weakly

additive coherent information, and two degradable chan-

nels have additive coherent information, yet surprisingly

degradability does not imply strong additivity for a
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channel. Even weakly additive channels like some (anti)

degradable [46] and positive partial transpose channels [59]

may have superadditive quantum capacity in combination

with suitable channels [35,38,55]. A common feature in

these violations of strong additivity is that one or both of

the channels are manifestly noisy, that is, with vanishing or

small quantum capacity. Most of these proofs come from a

qualitative inability for the channels to transmit quantum

data; in addition, nearly noiseless channels are indeed

limited in their nonadditivity [60].

In this Letter, we provide qualitatively new examples of

superadditivity of quantum capacity. The phenomenon

seems prevalent, does not involve channels engineered to

exhibit the effect, and can involve pairs of channels with

large quantum capacity. Our findings show an even more

complex landscape of nonadditivity than hitherto appre-

ciated. Yet, our channels and the proofs are simple, and thus

we hope they improve our understanding of the subject.

Main results.—Our first main result is that a simple qutrit

“platypus channel,” defined via Eq. (3), violates strong

additivity of coherent information when used together with

a variety of simple and well-known qubit channels such as

the erasure, amplitude damping, depolarizing, and even

randomly constructed qubit channels. Even more remark-

ably, the same simple code achieves nonadditivity in all

cases. Our findings strongly suggest that superadditivity is

much more prevalent and generic than previously thought.

Second, as proved in our companion paper [61], platypus

channels have weakly additive coherent information if the

spin-alignment conjecture introduced in Ref. [61] holds. As

the erasure channel and the amplitude damping channel also

have weakly additive coherent information, we have an

example of nonadditivity of quantum capacity between

twoweakly additive channels. The only known prior example

revolves around superactivation [35], and requires substantial

fine-tuning to demonstrate the effect. In contrast, our channel

requires no such tuning, and both channels exhibit non-

additivity over a wide range of parameters, including regimes

where both channels have substantial capacity themselves.

Third, we show that higher-dimensional platypus chan-

nels have similar nonadditive behavior. In particular, when

used jointly with a higher-dimensional erasure channel, it

exhibits superadditivity of quantum capacity uncondition-

ally, i.e., without relying on the spin-alignment conjecture.

The underlying mechanism at work achieving all of these

nonadditivity results is qualitatively different from previous

results in Refs. [35,38,55], as explained in the Discussion

section below.

In the following paragraphs we discuss our main results;

see the Supplemental Material [62] for additional details.

MATLAB and PYTHON codes used to obtain the numerical

results mentioned abovewill be made available at Ref. [73].

Qutrit platypus channel.—The qutrit platypus

channel N s is defined by the following isometry

Fs∶ Ha ↦ Hb ⊗ Hc:

Fsj0i ¼
ffiffiffi

s
p

j0i ⊗ j0i þ
ffiffiffiffiffiffiffiffiffiffi

1 − s
p

j1i ⊗ j1i;
Fsj1i ¼ j2i ⊗ j0i;
Fsj2i ¼ j2i ⊗ j1i; ð3Þ

where 0 ≤ s ≤ 1=2, and the input Ha, output Hb, and

environment Hc have dimension three, three, and two,

respectively. This channel [27,74] is extensively studied in

the companion paper [61]. From Refs. [27,61], the channel

coherent information is always positive and can be attained

on inputs of the form σðuÞ ≔ ð1 − uÞj0ih0j þ uj2ih2j:

Qð1ÞðN sÞ ¼ max
u∈½0;1�

Δ½N s; σðuÞ� > 0:

Conditioned on the spin-alignment conjecture formulated in

Ref. [61], the channel coherent informationQð1ÞðN sÞ can be
proved to beweakly additive, and thusQðN sÞ ¼ Qð1ÞðN sÞ.
Without the spin-alignment conjecture, we have the upper

bound QðN sÞ ≤ logð1þ
ffiffiffiffiffiffiffiffiffiffi

1 − s
p

Þ.
Violation of strong additivity.—We find thatN s displays

superadditivity in the strong sense,

Qð1ÞðN s ⊗ KÞ > Qð1ÞðN sÞ þQð1ÞðKÞ; ð4Þ

when used with just about any small channel K. Since

Qð1ÞðN sÞ > 0, the additional channel K is said to amplify

Qð1ÞðN sÞ. We consider various well-known and physically

relevant channels K, such as the qubit erasure channel,

EλðρÞ ¼ ð1 − λÞρþ λTrðρÞjeihej with erasure probability

λ ∈ ½0; 1�, the qubit amplitude damping channel, AγðρÞ ¼
N0ρN

†

0
þ N1ρN

†

1
with damping probability γ ∈ ½0; 1�

and Kraus effects N0 ¼ j0ih0j þ ffiffiffiffiffiffiffiffiffiffi

1 − γ
p j1ih1j and

N1 ¼
ffiffiffi

γ
p j0ih1j, and the qubit depolarizing channel,

DpðρÞ ¼ ð1 − 4p=3Þρþ 2p=3I with depolarizing param-

eter p ∈ ½0; 1�. For erasure and amplitude damping chan-

nels the quantum capacity equals the channel coherent

information [42,46,75]. The amplification in Eq. (4) not

only occurs when each of the channels Eλ, Aγ , and Dp has

zero coherent information (see Fig. 1), but it persists

for a wide range of channel parameters 0 ≤ s ≤ 1=2,
λmin ≤ λ ≤ λmax, γmin ≤ γ ≤ γmax, and pmin ≤ p ≤ pmax

(see Supplemental Material [62]).

Remarkably, the amplification of Qð1ÞðN sÞ by all three

channels Eλ, Aγ , and Dp can be achieved by a single input

state ansatz for N s ⊗ K,

ρðϵ; r1; r2Þ ¼ r1j00ih00j þ r2j01ih01j
þ ð1 − r1 − r2Þjχϵihχϵj; ð5Þ

where jχϵi ¼
ffiffiffiffiffiffiffiffiffiffi

1 − ϵ
p

j20i þ ffiffiffi

ϵ
p j11i, and the parameters

satisfy the constraints ϵ; r1; r2; r1 þ r2 ∈ ½0; 1�. In more

detail, we find that Δ
�ðN s ⊗ KxÞ ≔ maxϵ;r1;r2 Δ½N s ⊗

Kx; ρðϵ; r1; r2Þ� exceeds Qð1ÞðN sÞ þQð1ÞðKxÞ, where Kx
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is one of Eλ,Aγ, orDp. Since all three channels Eλ,Aγ, and

Dp have well-known symmetries, one may suspect that the

amplification strategy Eq. (5) coincides because of these

symmetries. We find this not to be the case. Numerics

reveal that amplification ofQð1ÞðN 1=2Þ using Eq. (5) occurs
even whenK is defined in terms of a random qubit channel.

Superadditivity occurs both whenQð1ÞðKÞ > 0 or when the

coherent information of K itself vanishes.

Unconditional superadditivity of quantum capacity.—In

the previous section we showed superadditivity of the

coherent information ofN s when used in parallel with other

channels such as Eλ orAγ. The latter channels are known to

satisfyQðEλÞ¼Qð1ÞðEλÞ andQðAγÞ¼Qð1ÞðAγÞ.Moreover,

conditioned on the spin-alignment conjecture [61], we also

have Qð1ÞðN sÞ ¼ QðN sÞ. Hence, the superadditivity of

Qð1Þ in Eq. (4) can be elevated to superadditivity of the

quantum capacityQ, provided the spin-alignment conjecture

is true.

We now show that, remarkably, this result can be

strengthened to an unconditional superadditivity of quan-

tum capacity. To this end, we consider a channel Md

introduced in Ref. [61] that generalizesN 1=2 to d input and

output dimensions, and d − 1 environment dimensions,

with d ≥ 3. The isometry G∶Ha → Hb ⊗ Hc acts on an

orthonormal input basis fjiigd−1i¼0
as

Gj0i ¼ 1
ffiffiffiffiffiffiffiffiffiffi

d− 1
p

X

d−2

j¼0

jji⊗ jji;

Gjii ¼ jd− 1i⊗ ji− 1i; for i¼ 1;…; d− 1; ð6Þ

and defines the channel Mdð·Þ ≔ TrcðG ·G†Þ.
Comparing Eq. (6) to the isometry Eq. (3) for N 1=2, we

see that M3 ¼ N 1=2, and hence Md is indeed a

d-dimensional generalization of N 1=2. The coherent infor-

mation Qð1ÞðMdÞ is evaluated in Ref. [61], and similar to

N 1=2 we haveQðMdÞ ¼ Qð1ÞðMdÞmodulo (a generalized

version of) the spin-alignment conjecture. However, we do

not make use of this (conjectured) identity here and instead

use the following upper bound on the quantum capacity of

Md derived in Ref. [61]:

QðMdÞ ≤ log

�

1þ 1
ffiffiffiffiffiffiffiffiffiffiffi

d − 1
p

�

≤
1

ln 2

1
ffiffiffiffiffiffiffiffiffiffiffi

d − 1
p : ð7Þ

This upper bound follows from evaluating the “trans-

position bound” on the quantum capacity of a quantum

channel [77]. It is phrased in terms of the diamond norm

and can be evaluated using semidefinite programming

techniques.

The quantum capacity of Mdþ1 is superadditive when

used together with the d-dimensional erasure channel Eλ;d

where λ ∈ ½0; 1�. More precisely, we show that

QðMdþ1 ⊗ Eλ;dÞ > QðMdþ1Þ þQðEλ;dÞ ð8Þ

for suitable λ and d in two steps. First, using the upper bound
Eq. (7) onQðMdÞ and the fact that the quantum capacity of

Eλ;d is given by QðEλ;dÞ ¼ maxfð1 − 2λÞ logd; 0g [42], we

obtain an upper bound,

uðλ; dÞ ≔ logð1þ 1=
ffiffiffi

d
p

Þ þmaxfð1 − 2λÞ logd; 0g; ð9Þ

on the right-hand side of Eq. (8). Second, lettingHa andHa0

be the input Hilbert spaces forMdþ1 and Eλ;d, respectively,

we find an input state ρaa0 with coherent information

ΔðMdþ1 ⊗ Eλ;d; ρaa0Þ exceeding uðλ; dÞ:

QðMdþ1Þ þQðEλ;dÞ ≤ uðλ; dÞ
< ΔðMdþ1 ⊗ Eλ;d; ρaa0Þ
≤ QðMdþ1 ⊗ Eλ;dÞ: ð10Þ

This chain of inequalities proves Eq. (8).

The input state achieving Eq. (10) is ρaa0 ¼ Trrr0 ½ψ �ara0r0 ,
where for w ∈ ½0; 1� we define

Ref. 76

FIG. 1. Amplification of coherent information for the channel

N s and various additional channels. We plot Qð1ÞðN s ⊗ KÞ −
Qð1ÞðN sÞ for K ¼ E1=2 (solid magenta line), K ¼ A1=2 (solid

blue line), and K ¼ Dp� (solid green line). Here, E1=2 and A1=2

are the symmetric erasure and amplitude damping channels,

respectively, Dp� is the qubit depolarizing channel with

p� ≈ 0.1893, so that all three channels have zero coherent

information Qð1ÞðKÞ ¼ 0. We also plot R̂αðN sÞ −Qð1ÞðN sÞ
(dashed orange line), where R̂αð·Þ with α ¼ 1þ 2−5 is the upper

bound (UB) on the quantum capacity Qð·Þ derived in Ref. [76].
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jψiara0r0 ¼
ffiffiffiffiffiffiffiffiffiffiffi

1 − w
p

j0irj0ia
1
ffiffiffi

d
p

X

d−1

i¼0

jiir0 jiia0

þ
ffiffiffiffi

w
p

j1irj0ir0
1
ffiffiffi

d
p

X

d

i¼1

jiiaji − 1ia0 ; ð11Þ

and the reference spaces Hr and Hr0 have dimensions two

and d, respectively. The pure state jψiara0r0 is a super-

position of two orthogonal “pieces” with amplitudes
ffiffiffiffiffiffiffiffiffiffiffi

1 − w
p

and
ffiffiffiffi

w
p

, respectively. By itself, the first piece

only generates coherent information via Eλ;d, as the input of

Mdþ1 inHa is in a product state with both the input to Eλ;d

and the reference. The second piece by itself generates

no coherent information, since the joint input system

Ha ⊗ Ha0 is unentangled with the reference Hr ⊗ Hr0 .

Optimizing over the parameter w ∈ ½0; 1�, this super-

position of coding strategies results in a coherent informa-

tion of the joint channel Mdþ1 ⊗ Eλ;d that exceeds the

upper bound uðλ; dÞ on QðMdþ1Þ þQðEλ;dÞ. We first

show this numerically for λ ∈ ½0.37; 0.57� and sufficiently

large d. This is summarized in Fig. 2, where we plot the

minimal values λQminðdÞ (dashed blue line) and λQmaxðdÞ
(dashed magenta line) of λ as a function of d such that

Eq. (8) holds numerically for all λ ∈ ½λQminðdÞ; λQmaxðdÞ�.

Note that Eλ;d has positive quantum capacity when λ < 1=2,

and hence for suitable d and λ we obtain superadditivity of

quantum capacity Eq. (8) for two channels, Md and Eλ;d,

each with strictly positive Q.

In Fig. 2 we also plot the minimal values λminðdÞ (solid
blue line) and λmaxðdÞ (solid magenta line) such that the

coherent information ofMdþ1 ⊗ Eλ;d is superadditive for all

λ∈ ½λminðdÞ;λmaxðdÞ�. While the interval ½λminðdÞ;λmaxðdÞ�
marks the “true” extent of the superadditivity of quantum

capacity (modulo the spin-alignment conjecture), we stress

once again that the superadditivity of quantum capacity

within the interval ½λQminðdÞ; λQmaxðdÞ� is unconditional.
We can further strengthen the numerical results of Fig. 2

by proving analytically that the superadditivity of quantum

capacity in Eq. (8) indeed holds for all λ ∈ ð0; 1Þ and

sufficiently large d. The proof is based on a log-singularity-
like argument [27], and applied for any λ ∈ ð0; 1Þ, by a

suitable choice of the parameter w in the state Eq. (11).

Details of this calculation can be found in the Supplemental

Material [62].

Discussion.—Interestingly, a single ansatz Eq. (11) is

responsible for superadditivity ofQð1Þ whenN s is usedwith

a variety of other channels Eλ, Aγ , Dp, and randomly

constructed qubit channels. A higher-dimensional version

of this ansatz gives rise to superadditivity of quantum

capacity when Md is used with Eλ;d. The mechanism and

extent of this superadditivity is distinct from superactivation,

where the private capacity of a zero quantum capacity

channelN is transformed into quantum capacity when used

jointly with an antidegradable channel A. This transforma-

tion has efficiency at most 1=2, and thus one obtains

superactivation when 0 ¼ QðN Þ < PðN Þ=2. By contrast,

QðN sÞ > PðN sÞ=2 > 0, thus ruling out the superactivation

mechanism as the cause for our superadditivity involving

N s; our protocol Eq. (11) employs a different mechanism.

Like superactivation our protocol works robustly [38]

when A ¼ Eλ;d and λ is varied, but unlike superactivation

we find superamplification, i.e., superadditivity even when

both channels Md and Eλ;d have nonzero quantum capac-

ity. Similar superadditivity of quantum capacity arises in

high-dimensional rocket and half-rocket channels when

used with zero capacity channels [31,41]. These noisy

channels, carefully constructed to display superadditivity,

have quantum capacity well below the dimensional bound

r ¼ Q= log d ≪ 1. By contrast, Md is simply constructed

by hybridizing a degradable qubit channel with a useless

channel, with the goal to support weak additivity of Qð1Þ.
Yet, it exhibits superadditivity of Q even when it has

modest input dimension and noise; for instance, super-

additivity occurs at d ¼ 5 and r > 0.2. Our result on Md

also contrasts with those obtainable by extending super-

activation via continuity arguments. The superactivating

channels can be perturbed to have positive capacities, but

these capacities are necessarily very small. Moreover,

superadditivity involving Md occurs over a wide range

FIG. 2. Plot of the region of superadditivity of coherent

information and quantum capacity of the quantum channel

Mdþ1 ⊗ Eλ;d. The solid lines are the minimal values λminðdÞ
(blue) and maximal values λmaxðdÞ (magenta) between

which Mdþ1 ⊗ Eλ;d has superadditive coherent information,

Qð1ÞðMdþ1 ⊗ Eλ;dÞ > Qð1ÞðMdþ1Þ þQð1ÞðEλ;dÞ. The dashed

lines are the minimal values λQminðdÞ (blue) and maximal values

λQmaxðdÞ (magenta) betweenwhichMdþ1 ⊗ Eλ;d has superadditive

quantum capacity, QðMdþ1 ⊗ Eλ;dÞ > QðMdþ1Þ þQðEλ;dÞ.
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of erasure probabilities that is well beyond what one may

expect from such perturbations. For instance, at d ¼ 10,

r ≃ 0.075, and superadditivity holds over erasure proba-

bilities 0.43 ≤ λ ≤ 0.53, and the erasure channel can have

substantial capacity. Using Md with a symmetric channel

S of unbounded dimension leads to superadditivity,

QðMd ⊗ SÞ ≥ QðMdÞ þQðSÞ for any d ≥ 7, where

PðMdÞ=2 > QðMdÞ [61], since QðMd ⊗ SÞ >
PðMdÞ=2 [35]. These superadditivity results can be

strengthened and simplified further if the spin-alignment

conjecture is proven. The simplicity of the channels

involved in superadditivity here raises the question of

whether qualitatively similar constructions are possible

for investigating superadditivity of private and classical

capacities.
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