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Abstract—In this article, we propose and analyze
SParsified Action Regulated Quantized–Stochastic
Gradient Descent (SPARQ-SGD), a communication-efficient
algorithm for decentralized training of large-scale machine
learning models over a graph with n nodes, where commu-
nication efficiency is achieved using compressed exchange
of local model parameters among neighboring nodes,
which is triggered only when an event (a locally computable
condition) is satisfied. Specifically, in SPARQ-SGD, each
node takes a fixed number of local gradient steps and
then checks if the model parameters have significantly
changed compared to its last update; only when the
change is beyond a certain threshold (specified by a design
criterion), it compresses its local model parameters using
both quantization and sparsification and communicates
them to its neighbors. We prove that SPARQ-SGD
converges as O( 1

nT
) and O( 1√

nT
) in the strongly convex

and nonconvex settings, respectively, matching the
convergence rates of plain decentralized SGD. This
demonstrates that we get communication efficiency
achieved by aggressive compression, local iterations, and
event-triggered communication essentially for free. We
evaluate SPARQ-SGD over real datasets to demonstrate
significant amount of savings in communication over the
state-of-the-art while achieving similar performance.

Index Terms—Consensus, convergence, decentralized
algorithms, efficient-communication, event-triggered, mul-
tiagent systems, stochastic optimization.

I. INTRODUCTION

THERE has been a recent interest in communication-
efficient decentralized training of large-scale machine

learning models [1]–[3]. In decentralized training, the nodes do
not have a central coordinator, and are not directly connected
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to all other nodes, but are connected through a communication
graph. This implies that the communication is inherently more
efficient, as the local connection (degree) of such graphs could
be a small constant, independent of the network size. In this
article, we propose SPARQ-SGD,1 an optimization algorithm
to improve communication-efficiency in decentralized train-
ing through event-driven exchange of quantized and sparsified
model parameters between the nodes.

Over the past few years, a number of different methods
have been developed to achieve communication efficiency in
distributed SGD, where there exists a central coordinator. These
can be broadly divided into two categories. In the first category,
to reduce communication, workers send compressed updates
either with sparsification [4]–[8] or quantization [9]–[12] or a
combination of both [13].2 In another class of algorithms that
are based on the idea of infrequent communication, workers do
not communicate in each iteration; rather, they send the updates
after performing a fixed number of local gradient steps [13]–[16].
The idea of compressed communication, using quantization or
sparsification, has been extended to the setting of decentralized
optimization [2], [3], [17].

In this article, we propose SPARQ-SGD, which combines
compression with event-triggered communication, where a node
initiates a (compressed communication) action regulated by a
locally computable triggering condition (event), thereby further
reducing the communication among nodes. In particular, the
proposed triggering condition is such that at least a fixed number
of local gradient steps or iterations (say, H local iterations) are
first completed and after that the condition checks if there is a
significant change (beyond a certain threshold) in its local model
parameter vector since the last time communication occurred.
Only if the change in model parameter exceeds the prescribed
threshold, does a node trigger compressed communication. As
far as we know, such an idea of event-triggered and compressed
communication has not been proposed and analyzed in the con-
text of decentralized (stochastic) training of large-scale machine
learning models.

1Acronym stands for SParsified Action Regulated Quantized–Stochastic Gra-
dient Descent.

2In sparsification, the vector sparsification is done by selecting either its top
k entries (in terms of the absolute value) or random k entries, where k is less
than the dimension of the vector. Quantization consists of discretization of the
vector by rounding off its entries either randomly or deterministically (in the
extreme case, this can be just the sign operator).
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As mentioned earlier, in addition to event-triggered com-
munication, we also incorporate compression of the model
parameters: When a node communicates with its neighbors,
it sends a quantized and sparsified version of its local model
parameters. We therefore combine the recent ideas applied
to communication efficient training (quantization and sparsi-
fication) with our event-triggered communication to propose
SPARQ-SGD;3 see Algorithm 1. We analyze the performance of
our algorithm for both convex and (smooth) nonconvex objective
functions, in terms of its convergence rate as a function of the
number of iterations T (and also the number of communication
rounds) and the amount of communication bits exchanged to
learn a model to a certain accuracy. We prove that SPARQ-SGD
converges with rates O( 1

nT ) and O( 1√
nT

) in strongly convex
and nonconvex settings, respectively, demonstrating that such
aggressive compression, including event-triggered communica-
tion does not affect the overall convergence rate as compared
to a uncompressed decentralized training [1]. Moreover, we
show that SPARQ-SGD yields significant amount of saving in
communication over the state-of-the-art; see Section VII for
more details.

Related Work: In decentralized setting, Tang et al. [2] and
Reisizadeh et al. [18] propose unbiased stochastic compression
for gradient exchange. Assran et al. [19] and Tatarenko and
Touri[20] analyze Stochastic Gradient Push algorithm for non-
convex objectives, which approximates distributed averaging
instead of compressing the gradients. Our work most closely
relates to [3], which proposed CHOCO-SGD that uses com-
pressed (sparsified or quantized) updates; the distinction is that
we propose an event-triggered communication where sparsified
and quantized model parameters are transmitted only if they
have changed significantly after performing some fixed number
of local iterations, further reducing communication. The idea
of event-triggered communication has been explored previously
in the control community [21]–[25] and in optimization litera-
ture [26]–[32]. These papers focus on continuous-time, deter-
ministic optimization algorithms for convex problems; in con-
trast, we propose event-driven, compressed, stochastic gradient
descent algorithms for both convex and nonconvex problems.
Chen et al.[33] propose an adaptive scheme to skip gradient
computations in a distributed setting for deterministic gradients;
moreover, their focus is on saving communication rounds, and do
not have any compressed communication. Sub-gradient descent
with quantization for deterministic decentralized optimization
has been studied in [34] and [35] for convex objectives only,
with the former showing convergence only within a neigh-
borhood of the optimum and the latter employing an adaptive
quantization scheme to recover rates attained by un-quantized
schemes. Decentralized consensus with quantization over time
varying topology has been analyzed in [36]. Pu et al. [37]
consider inexact proximal gradient with quantization in decen-
tralized optimization for strongly convex objectives, showing

3The idea of combining compression and fixed number of local iterations has
been carried out in a distributed setting (the master-worker architecture) in [13].
In this work, in addition to extending this combination to the decentralized
setting, we also propose and analyze event-triggered communication.

convergence to the global optimum. As far as we know, ours
is the first article which uses event-triggered (incorporating
infrequent communication) and compressed communication for
decentralized stochastic optimization of both strongly convex
and nonconvex objectives.

Contributions: We study optimization in a decentralized
setup, where n different workers, each having a different dataset
Di (with an associated local objective function fi : Rd → R),
are linked through a connected graph G = ([n], E), where [n] :=
{1, 2, . . . , n}. Vertex i in G corresponds to the ith worker
who can only communicate with its neighbors Ni = {j ∈ [n] :
{i, j} ∈ E}. We consider the loss function

f(x) =
1

n

n∑

i=1

fi(x) (1)

where fi(x) = Eξi∼Di [Fi(x, ξi)], where ξi ∼ Di denotes a ran-
dom data sample from Di and Fi(x, ξi) denotes the risk as-
sociated with the data sample ξi w.r.t. x at the ith worker
node. We solve the decentralized optimization in (1) using
SPARQ-SGD. Our theoretical results are the convergence anal-
yses for both strongly convex and nonconvex objectives in
the synchronous setting; see Theorems 1 and 2, respectively.
In the strongly convex setting, we show a convergence rate
ofO( 1

nT ) +O( c0
δ2T (1+ε) ) +O( H2

δ4ω2T 2 ) +O( H3

ω3δ6T 3 ) for some
ε ∈ (0, 1). Here c0 is for triggering threshold,H is for number of
local iterations, ω quantifies compression, and δ is the spectral-
gap of the connectivity matrix of the graph G. Note that all
these factors for communication-efficiency appear in the higher
order terms. Thus, for large enough T , they do not affect the
dominating term O( 1

nT ), which, in fact, is the convergence rate
of centralized vanilla SGD with mini-batch size of n. Similar
observation is also made in the nonconvex setting, where we
get a convergence rate of O( 1√

nT
); see Corollaries 1, 2, and

the following remarks for more details. Hence, for both the
objectives, we get essentially the same convergence rate as
that of vanilla SGD, even after applying SPARQ-SGD to gain
communication efficiency; and hence, we get communication ef-
ficiency essentially “for free”. We compare our algorithm against
CHOCO-SGD [17], which is the state-of-the-art in compressed
decentralized training and provide theoretical justification for
communication efficiency of SPARQ-SGD over CHOCO-SGD
to achieve the same target accuracy. We corroborate our theoret-
ical understanding with numerical results in Section VII where
we demonstrate that SPARQ-SGD yields significant savings
in communication bits. For a convex objective simulated on
the MNIST dataset, SPARQ-SGD saves total communicated
bits by a factor of 40× compared to CHOCO-SGD [3] and
by 1000× compared to vanilla SGD to converge to the same
target accuracy. Similarly, for a nonconvex objective simulated
on the CIFAR-10 dataset [38], we save total bits by a factor of
40× compared to CHOCO-SGD [17] and around 3K× com-
pared to vanilla SGD to reach the same target accuracy. We
further provide experiments comparing total training time when
communicating over bandlimited links, showing a speedup by
a factor of 60× and 700× compared to CHOCO-SGD [3] and
vanilla SGD, respectively, to achieve the same target accuracy.
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Article Organization: We describe SPARQ-SGD, our pro-
posed algorithm, in Section II. Our main results are stated in
Section III for strongly convex and nonconvex objectives and we
prove them in Section V. Intermediate lemmas used for proving
these theorems concerning consensus among nodes are proved in
Section VI. We validate our theoretical findings with numerical
experiments in Section VII. Omitted proof details and additional
experiments are provided in our extended article [39].

II. OUR ALGORITHM: SPARQ-SGD

In this section, we describe SPARQ-SGD, our decentralized
SGD algorithm with compression and event-triggered commu-
nication. First, we need to define its main ingredients.

Definition 1 (Compression, [7]): A (possibly randomized)
function C : Rd → Rd is called a compression operator, if there
exists a positive constant ω < 1, such that the following holds
for every x ∈ Rd:

EC [‖x− C(x)‖22] ≤ (1− ω)‖x‖22 (2)

where expectation is taken over the randomness of C. We assume
C(0) = 0.

It is known that some important sparsifiers as well as quan-
tizers are examples of compression operators: 1) Topk and
Randk sparsifiers (in which we select k entries; see Foot-
note 2) with ω = k/d [7], 2) stochastic quantizer Qs from [9]4

with ω = (1− βd,s) for βd,s < 1, and 3) deterministic quan-

tizer ‖x‖1
d Sign(x) from [12] with ω = ‖x‖21

d‖x‖22
. It was shown

in [13] that if we compose these sparsifiers and quantiz-
ers, the resulting operator also gives compression and out-
performs their individual components. For example, for any
Compk ∈ {Topk, Randk}, the following are compression op-
erators: (iv) 1

(1+βk,s)
Qs(Compk) with ω = (1− k

d(1+βk,s)
)

for any βk,s ≥ 0, and (v) ‖Compk(x)‖1SignCompk(x)
k with ω =

max{ 1
d ,

k
d (

‖Compk(x)‖21
d‖Compk(x)‖22

)}.
Event-Triggered Communication: As mentioned in Section I,

our proposed event-triggered communication consists of two
phases: In the first phase, nodes perform a fixed number H
of local iterations, and in the second phase, they check for
the communication-triggering condition (event), if satisfied,
then they send the (compressed) updates to their neighbors.
Let IT ⊆ [T ] denote a set of indices at which workers check
for the triggering condition. Since we are in the synchronous
setting, we assume that IT is same for all workers. Let
IT = {I(1), I(2), . . . , I(k), . . .}. The gap of IT is defined
as gap(IT ) := maxi∈[k−1]{(I(i+1) − I(i))}, [14], which is
equal to the maximum number of local iterations a worker
performs before checking for the triggering condition. Note
that gap(IT ) = 1 is equivalent to the case when workers check
for the communication triggering criterion in every iteration.

Our algorithm, SPARQ-SGD, for optimizing (1) in a decen-
tralized setting is presented in Algorithm 1. For designing this,
in addition to combining sparsification and quantization, we

4Qs : Rd → Rd is a stochastic quantizer, if for every x ∈ Rd, we have
(i) E[Qs(x)] = x and (ii) E[‖x−Qs(x)‖22] ≤ βd,s‖x‖22. Qs from [9]

satisfies this definition with βd,s = min{ d
s2

,
√
d
s }.

carefully incorporate local iterations and event-triggered5 com-
munication into the CHOCO-SGD algorithm from [3], which
uses only sparsified or quantized updates. This poses several
technical challenges in proving the convergence; see the proofs
of Theorems 1, 2, and in particular, the proof of Lemma 2. The
resulting algorithm is presented in Algorithm 1.

In SPARQ-SGD, each node i ∈ [n] maintains a local param-
eter vector x(t)

i , and their goal is to achieve consensus among
themselves on the value of x that minimizes (1), while allowing
only for compressed and infrequent communication. Node i

updates x(t)
i in each iteration t by a stochastic gradient step (line

4). An estimate x̂(t)
i of x(t)

i is also maintained at each neighbor
j ∈ Ni and at i itself. Thus, each node maintains an estimate
of all its neighbors’ local parameter vectors and of itself. In
our algorithm, IT is the set of indices for which the workers
check for the triggering condition and take a consensus step.
We also allow the triggering threshold ct to vary with t with
the requirement that ct is o(t). At time-step t, if (t+ 1) ∈ IT ,
the nodes check for the triggering condition (line 6), if satisfied,
then each node i ∈ [n] sends to all its neighbors the compressed
difference between its local parameter vector and its estimate
that its neighbors have (line 12); and based on the messages
received from its neighbors, the ith node updates x̂(t)

j —the
estimate of the jth node’s local parameter vector (line 13), and
then every node performs the consensus step (line 15).

III. MAIN RESULTS

Our main results are under the following assumptions.
Assumptions: 1) L-Smoothness: Each local function fi for

i ∈ [n] is L-smooth, i.e, ∀x,y ∈ Rd, we have fi(y) ≤ fi(x) +
〈∇fi(x),y − x〉+ L

2 ‖y − x‖2. 2) Bounded variance: For ev-
ery i ∈ [n], we have Eξi‖∇Fi(x, ξi)−∇fi(x)‖2 ≤ σ2

i , for
some finite σi, where ∇Fi(x, ξi) is the unbiased gradient
at worker i such that Eξi [∇Fi(x, ξi)] = ∇fi(x). We define
the average variance across all workers as σ̄2 := 1

n

∑n
i=1 σ

2
i .

3) Bounded second moment6: For every i ∈ [n], we have
Eξi‖∇Fi(x, ξi)‖2 ≤ G2, for some finite G.

Before stating the main results, we need some notations about
the underlying communication graph G first. Let W ∈ Rn×n

denote the weighted connectivity matrix of G, withwij for every
i, j ∈ [n] being its (i, j)th entry, which denotes the weight on
the link between worker i and j. W is assumed to be symmetric
and doubly stochastic, which implies that all its eigenvalues
λi(W ), i = 1, 2, . . . , n, lie in [−1, 1]. Without loss of gener-
ality, assume that |λ1(W )| > |λ2(W )| ≥ . . . ≥ |λn(W )|. Since
W is doubly stochastic, we have λ1(W ) = 1, and since G is
connected, we have λ2(W ) < λ1(W ). Let the spectral gap of
W be defined as δ := 1− |λ2(W )|. Since |λ2(W )| ∈ [0, 1), we
have that δ ∈ (0, 1]. Simple matrices W with δ > 0 are known
to exist for every connected graph [3].

5The Zeno phenomenon [21] does not occur in our setup as we have a discrete
sampling period as well as a fixed number of local iterations, giving a lower
bound to the event intervals of at least H times the sampling period.

6Bounded second moment is a standard assumption in stochastic optimization
with compressed communication [7], [8].
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Algorithm 1: SPARQ-SGD: SParsified Action Regulated
Quantized SGD.

1: Initial values x(0)
i ∈ Rd on each node i ∈ [n],

consensus stepsize γ, SGD stepsizes {ηt}t≥0,
threshold sequence {ct}t≥0, compression operator C
having parameter ω, communication graph
G = ([n], E) and mixing matrix W , set of
synchronization indices IT , initialize x̂(0)

i := 0 for all
i ∈ [n]

2: for t = 0 to T − 1 in parallel for all workers i ∈ [n] do
3: Sample ξ(t)i , stochastic gradient

g(t)
i := ∇Fi(x

(t)
i , ξ(t)i )

4: y(t+1)
i := x(t)

i − ηtg
(t)
i

5: If (t+ 1) ∈ IT then
6: If ‖y(t+1)

i − x̂(t)
i ‖22 > ctη2t then

7: Set q(t)
i := C(y(t+1)

i − x̂(t)
i )

8: else
9: Set q(t)

i := 0
10: end if
11: for neighbors j ∈ Ni ∪ i do
12: Send q(t)

i and receive q(t)
j

13: x̂(t+1)
j := q(t)

j + x̂(t)
j

14: end for
15: x(t+1)

i = y(t+1)
i + γ

∑
j∈Ni

wij(x̂
(t+1)
j − x̂(t+1)

i )
16: else
17: x̂(t+1)

i = x̂(t)
i and x(t+1)

i = y(t+1)
i

18: end if
19: end for

Now we state the main results of this article both for strongly
convex and nonconvex objectives. As mentioned in Section I,
even after using compression and infrequent communication,
we prove a convergence rate matching with that of vanilla SGD
in both strongly convex and nonconvex settings.

Theorem 1 (Smooth and strongly convex objective with
decaying learning rate): Suppose fi, for all i ∈ [n] is L-
smooth and µ-strongly convex. Let C be a compression op-
erator with parameter equal to ω ∈ (0, 1]. Let gap(IT ) ≤
H . If we run SPARQ-SGD with consensus step-size γ =

2δω
64δ+δ2+16β2+8δβ2−16δω (where β = maxi{1− λi(W )}), an in-
creasing threshold function ct ≤ c0t1−ε for all t where constant
c0 ≥ 0 and ε ∈ (0, 1) and decaying learning rate ηt =

8
µ(a+t) ,

where a ≥ max{5H
p , 32L

µ } for p = γδ
8 , and let the algorithm

generate {x(t)
i }T−1

t=0 for i ∈ [n], then the following holds:

Ef(x(T )
avg)− f ∗ ≤ µa3

8ST
‖x(0) − x∗‖2 + 4T (T + 2a)

µST

σ̄2

n

+
Z1TG2H2

µ2ST p2
(2L+µ)+

Z2c0ωT (2−ε)

µ2(2− ε)ST

(
2L+ µ

p

)

where x̄(T )
avg = 1

ST

∑T−1
t=0 wtx̄(t), where x̄(t) = 1

n

∑n
i=1 x

(t)
i ,

weights wt = (a+ t)2, ST =
∑T−1

t=0 wt ≥ 1
3T

3 and Z1, Z2 are
universal constants.

We provide a proof of Theorem 1 in Section V-A. The analysis
provided also works for any ct = o(t); however, we provide
it for ct ≤ c0t1−ε to highlight the main idea. Observe that the
consensus step-size γ does not appear explicitly in the above rate
expression, but it does affect the convergence indirectly through
p = γδ/8. Note that δ ∈ (0, 1], β ≤ 2, and ω ≥ 0. Substituting
these in the expression of γ and p gives γ ≥ 2δω

161 and p ≥ δ2ω
644 ;

see also the proof of Lemma 2. Now we simplify the above
expression to gain further insights as to how our techniques for
reducing communication is affecting the convergence rate.

Corollary 1: Using E‖x(0) − x∗‖22 ≤ 4G2

µ2 (from [40, Lemma

2]) and p ≥ δ2ω
644 , hiding constants (including L) in the O nota-

tion, the rate expression in Theorem 1 is simplified as

E[f(x̄(T )
avg)]− f ∗ ≤ O

(
σ̄2

µnT

)
+O

(
c0

µ2δ2T (1+ε)

)

+O
(

G2H2

µ2δ4ω2T 2

)
+O

(
G2H3

µω3δ6T 3

)
.

Remark 1: Observe that the dominating term O( σ̄2

µnT ) is
not affected by the compression factor ω, the number of local
iterations H , the factor c0 in the triggering condition, and
the topology of the underlying communication graph (which
is controlled by the spectral gap δ)—they all appear in the
higher order terms. In order to ensure that they do not affect
the dominating term while converging at a rate of O( σ̄2

µnT ),

we would require T ≥ T0 := C ×max{( nc0
µδ2σ̄2 )

1
ε , ( nH2G2

µσ̄2δ4ω2 )}
for sufficiently large constant C. This implies that for large
enough T , we get benefits of all these techniques in saving
communication bits, without affecting the convergence rate.

Now we analyze the effect of ω, H, c0, δ on T0: 1) If we com-
press the communication more, i.e., smallerω, thenT0 increases,
as expected; 2) if we take more number of local iterations H ,
T0 would again increase, as expected, because increasing H
means communicating less frequently; 3) if we increase c0,
which means that the triggering threshold has become bigger,
we expect less frequent communication, thus T0 increases, as
expected; 4) if the spectral gap δ ∈ (0, 1] is closer to 1, which
implies that the graph is well-connected, then the threshold T0

decreases, which is also expected, as good connectivity means
faster spreading of information, resulting in faster consensus.7

Additional experiments to support the arguments made in this
remark can be found in the extended version [39].

Remark 2: Observe that after a large enough T ≥ T0, we
get the same rate as that of distributed vanilla SGD and also
a distributed gain of n with the number of nodes. Thus, we
essentially converge at the same rate as that of vanilla SGD,
while significantly saving in terms of communication bits among
all the workers; this can be seen in our numerical results in
Section VII.

Now we state our result for nonconvex objectives.
Theorem 2 (Smooth and nonconvex objective with fixed learn-

ing rate): Suppose fi, for all i ∈ [n] be L-smooth. Let C be a

7If we are to design the underlying communication graph, one possible choice
is to consider the expander graphs [41], that will simultaneously give low
communication and faster convergence, as they have constant degree and large
spectral gap [42].
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compression operator with parameter equal to ω ∈ (0, 1]. Let
gap(IT ) ≤ H . If we run SPARQ-SGD for T ≥ 64nL2 itera-
tions with fixed learning rateη =

√
n
T , a fixed threshold function

ct such that ct <
c0

η1−ε for all t where ε ∈ (0, 1), some con-
stant c0, and consensus step-size γ = 2δω

64δ+δ2+16β2+8δβ2−16δω

(where β = maxi{1− λi(W )}), and let the algorithm gener-
ate {x(t)

i }T−1
t=0 for i ∈ [n], then the averaged iterates x̄(t) :=

1
n

∑n
i=0 x

(t)
i satisfy

∑T−1
t=0 E‖∇f(x̄(t))‖22

T
≤

4
(
f(x̄0)− f ∗ + Lσ̄2

)
√
nT

+
Z̃1G2H2L2n

Tpδ2ω
+

Z̃2G2H2L3n3/2

T 3/2pδ2ω

+
Z̃3L2ωc0

√
n(1+ε)

p
√
T (1+ε)

+
Z̃4L3ωc0

√
n(2+ε)

p
√
T (2+ε)

Here p = γδ
8 and Z̃1, Z̃2, Z̃3, Z̃4, are universal constants.

We prove Theorem 2 in Section V-B. As mentioned after
Theorem 1, though the consensus step-size γ does not appear in
the rate expression, it does affect the convergence through the
parameter p. As argued after Theorem 1, we can show similarly
show that p ≥ δ2ω

644 . Now we simplify the above expression in
the following corollary.

Corollary 2: Let f(x̄(0))− f ∗ ≤ J2, where J2 < ∞ is a
constant. Using p ≥ δ2ω

644 , and hiding constants (including L) in
theO notation, we can simplify the rate expression in Theorem 2
to the following:
∑T−1

t=0 E‖∇f(x̄(t))‖22
T

≤ O
(
J2 + σ̄2

√
nT

)
+O

((
n

T
+

n3/2

T 3/2

)(
G2H2

ω2δ4

)
+

n
1+ε
2

T
1+ε
2

(
1 +

√
n

T

)( c0
δ2

))
.

Remark 3: Observe that ω, H, δ do not affect the dominat-
ing term O(J

2+σ̄2
√
nT

). Since Theorem 2 provides nonasymptotic
guarantee, we need to decide the horizon T before running the
algorithm; so, to ensure that the dominating term does not get
affected by these different factors, while converging at a rate
of O(J

2+σ̄2
√
nT

), we would be required to fix T ≥ T1 := C1 ×

max{( c20n
(2+ε)

(J2+σ̄2)2δ4 )
1/ε, n3G4H4

(J2+σ̄2)2ω4δ4 } for sufficiently large con-
stant C1. This implies that for large enough T , we get the
benefits of all these techniques in saving the communication
bits, essentially for “free,” without affecting the convergence
rate by too much. The rest of Remark 1 and Remark 2 are also
applicable here.

Theoretical Justification for Communication Gain:
The convergence result for SPARQ-SGD highlights savings

in communication compared to CHOCO-SGD [3]. For the
sake of argument, consider the case when SPARQ-SGD only
performs local iterations and no threshold based triggering
(ct = 0, ∀t). For the same compression operator ω used for
both SPARQ and CHOCO, to transmit the same number of
bits (i.e., having same number of communication rounds), T
iterations of CHOCO would correspond to T ×H iterations
of SPARQ (due to H local SGD steps). Thus, for the same

number of bits transmitted, the bound on suboptimality for
convex objective for CHOCO is O(1/µnT) +O(G2/ω2δ4µ2T 2),
while for SPARQ, it is O(1/µnHT) +O(G2/ω2δ4µ2T 2). Thus,
for the same amount of communication (same number of com-
munication rounds), SPARQ-SGD has a better performance
compared to CHOCO-SGD (the first dominant term is affected
byH). Similarly, for the same number of communication rounds,
the bound on suboptimality for CHOCO-SGD for nonconvex
objectives is O(1/

√
T) +O(1/T), while for SPARQ-SGD, it is

O(1/
√
HT) +O(H/T). Thus, it can be seen that for large values

of T , the performance of SPARQ-SGD is better than that of
CHOCO-SGD for the number of communicated bits. Thus, there
is theoretical justification for our algorithm to have a better
performance while using less bits for communication and this
claim is also supported through our experiments.

IV. PRELIMINARIES

In this section, we define the matrix notation which would
be used throughout the proofs of Theorems 1 and 2 given in
Section V.

Consider the set of parameters {x(t)
i }ni=1 at the nodes at

timestep t and estimates of the parameter {x̂(t)
i }ni=1. The matrix

notation is given by

X(t) := [x(t)
1 , . . . ,x(t)

n ] ∈ Rd×n

X̂(t) := [x̂(t)
1 , . . . , x̂(t)

n ] ∈ Rd×n

X̄(t) := [x̄(t), . . . , x̄(t)] ∈ Rd×n

∇F(X(t),ξ(t)) := [∇F1(x
(t)
1 , ξ(t)1 ), . . . ,∇Fn(x

(t)
n , ξ(t)n )]

∈ Rd×n

where ∇Fi(x
(t)
i , ξ(t)i ) denotes the stochastic gradient at node

i at timestep t and the vector x̄(t) := 1
n

∑n
i=1 x

(t)
i denotes the

average of node parameters at time t.
Let Γ(t) ⊆ [n] be the set of nodes that do not communicate at

time t. We defineP(t) ∈ Rn×n, a diagonal matrix withP(t)
ii = 0

for i ∈ Γ(t) and P(t)
ii = 1 otherwise.

SPARQ-SGD in Matrix Notation: Consider Algo-
rithm 1 with synchronization indices given by the set
{I(1), I(2), . . . , I(k), . . .}. Using the above notation, the
sequence of parameters updates from synchronization index
I(t) to I(t+1) is given by

YI(t+1) = XI(t) −
∑I(t+1)−1

t′=I(t)
ηt′∇F(X(t′), ξ(t

′))

X̂I(t+1) = X̂I(t) + C((YI(t+1) − X̂I(t))P(I(t+1)−1))

XI(t+1) = YI(t+1) + γX̂I(t+1)(W − I)

where C(.) denotes the compression operator applied column-
wise to the argument matrix and I is the identity matrix. We now
note some useful properties of the iterates in matrix notation,
which would be used throughout the article.

1) Since W ∈ [0, 1]n×n is a doubly stochastic matrix

X̄(t) = X(t) 1

n
11T , X̄(t)W = X̄(t). (3)
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Here 1 ∈ Rn is all ones vector. The first expression fol-
lows from the definition of X̄(t). The second expression
follows as X̄(t) 1

n11
T = X̄(t) and 1TW = 1T , which

imply X̄(t)W = X̄(t) 1
n11

TW = X̄(t) 1
n11

T = X̄(t).
2) The average of the iterates in Algorithm 1 follows:

X̄(t+1) = Ȳ(t+1) + 1(t+1)∈IT

[
γX̂(t+1)(W − I)

1

n
11T

]

= Ȳ(t+1) (4)

where IT denotes the set of synchronization indices of
Algorithm 1 and 1(t+1)∈IT is the indicator variable taking
value 1 if time instant (t+ 1) ∈ IT or 0 otherwise. The
above follows from the observation that W1 = 1 as W
is a doubly stochastic matrix.

Fact 1: Consider any two matrices A ∈ Rd×n, B ∈ Rn×n.
Then, the following holds:

‖AB‖F ≤ ‖A‖F ‖B‖2 (5)

where ‖.‖F denotes the Frobenius norm.
Fact 2: (Triggering rule) Consider the set of nodesΓ(t) which

do not communicate at time t. For a threshold sequence {ct}T−1
t=0 ,

the triggering rule in Algorithm 1 dictates

‖y(t+1)
i − x̂(t)

i ‖22 ≤ ctη
2
t ∀i ∈ Γ(t).

Using the matrix notation, since |Γ(t)| ≤ n, this implies∥∥∥(Y(t+1) − X̂(t))(I−P(t))
∥∥∥
2

F
≤ nctη

2
t . (6)

Fact 3 (Lemma 16 in [3]): For a doubly stochastic matrix W
with second largest eigenvalue 1− δ = |λ2(W)| < 1 and for
any non-negative integer k, we have∥∥∥∥W

k − 1

n
11T

∥∥∥∥
2

= (1− δ)k. (7)

Fact 4: Consider the set of synchronization indices
{I(1), I(2), . . . , I(k), . . .} ∈ IT with the maximum gap between
any two consecutive elements bounded by H . Then, for
I(k), I(k+1) ∈ I and ξ := {ξ(t′) : I(k) ≤ t′ ≤ I(k+1)}

Eξ





∥∥∥∥∥∥

I(k+1)−1∑

t′=I(k)

ηt′∇F(X(t′), ξ(t
′))

∥∥∥∥∥∥

2

F



 ≤ η2I(k)
H2nG2. (8)

Fact 5 (Variance bound for workers): Consider the vari-
ance bound on the stochastic gradient for nodes i ∈ [n]:
Eξi‖∇Fi(x, ξi)−∇fi(x)‖2 ≤ σ2

i , where Eξi [∇Fi(x, ξi)] =
∇fi(x). Then, we have

Eξ(t)

∥∥∥∥∥∥
1

n

n∑

j=1

(
∇fj(x

(t)
j )−∇Fj(x

(t)
j , ξ(t)j )

)
∥∥∥∥∥∥

2

≤ σ̄2

n
(9)

where ξ(t) = {ξ(t)1 , ξ(t)2 , . . . , ξ(t)n } denotes the stochastic sam-

ples for the nodes at any timestep t and
∑n

j=1 σ2
j

n = σ̄2.

V. PROOFS OF THEOREMS 1 AND 2

In this section, we give proofs of Theorems 1 and 2.
Our proof outlines take inspiration from [3], [17], with sig-
nificant changes in the proof details arising due to the use
of local iterations and event-triggered communication. The

main idea of our proof involves using the perturbed iter-
ate analysis [43] for the update of the global parameter
vector

x̄(t+1) = x̄(t) − ηt

n

n∑
j=1

∇Fj(x
(t)
j , ξ(t)j ). (10)

This requires carefully bounding the term
∑n

i=1 ‖x̄(t) − x(t)
i ‖

even when performing compression, local iterations, and event-
based triggering, and forms the main ingredient in our con-
vergence analyses. More importantly, since we are in a de-
centralized setting, this result also establishes that the worker
nodes reach a consensus when optimizing the global ob-
jective (1). We provide proof of this result in Lemmas 2
and 3.

A. Proof of Theorem 1

Omitted details for this proof can be found in the extended
version of our article [39]. To proceed with the proof, we first
note the following lemma from [3, Lemma 20].

Lemma 1: Let {x(i)
t }T−1

t=0 be generated according to Algo-
rithm 1 with stepsize ηt and define x̄t =

1
n

∑n
i=1 x

(i)
t . Then, we

have the following result for x̄(t):

Eξ(t)‖x̄(t+1) − x∗‖2 ≤
(
1− ηtµ

2

)
‖x̄(t) − x∗‖2 + η2t σ̄

2

n

+ ηt

(
2ηtL2 + L+ µ

n

) n∑

j=1

‖x̄(t) − x(t)
j ‖2

− 2ηt(1− 2Lηt)(f(x̄
(t))− f ∗)

where ξ(t):={ξ(t)1 , ξ(t)2 , . . . , ξ(t)n } is the set of random samples
at each worker at time step t and σ̄2 = 1

n

∑n
i=1 σ

2
i

Using result of Lemma 1 and taking expectation with respect
to the whole process, we have

E‖x̄(t+1) − x∗‖2 ≤
(
1− ηtµ

2

)
E‖x̄(t) − x∗‖2 + η2t σ̄

2

n

− 2ηt(1− 2Lηt)(Ef(x̄(t))− f ∗)

+ ηt

(
2ηtL2 + L+ µ

n

) n∑

j=1

E‖x̄(t) − x(t)
j ‖2.

(11)
As our algorithm uses multiple iterations of local gradient
steps, it is useful to include it in the analysis. Let I(t)0 denote
the latest synchronization step before or equal to t. Then, we
have

X(t) = XI(t)0 −
t−1∑

t′=I(t)0

ηt′∇F(X(t′), ξ(t
′))

X̄(t) = X̄I(t)0 −
t−1∑

t′=I(t)0

ηt′∇F(X(t′), ξ(t
′)) 1n11

T .

Thus, the following holds:

E‖X(t) − X̄(t)‖2F = E
∥∥XI(t)0 − X̄I(t)0

−
t−1∑

t′=I(t)0

ηt′∇F(X(t′), ξ(t
′))
(
I− 1

n11
T
)
∥∥∥∥∥

2

F
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≤ 2E‖XI(t)0 − X̄I(t)‖2F

+ 2E

∥∥∥∥∥∥

t−1∑

t′=I(t)0

ηt′∇F(X(t′), ξ(t
′))

(
I− 1

n
11T

)∥∥∥∥∥∥

2

F

.

Using (5) for the second term in above and noting that
E‖
∑t−1

t′=I(t)0
ηt′∇F(X(t′), ξ(t

′))‖2F ≤ η2I(t)0
H2nG2 from (8)

and ‖ 1
n11

T − I‖22 = 1, we get

E‖X(t) − X̄(t)‖2F ≤ 2E‖XI(t)0 − X̄I(t)0 ‖2F
+ 2η2I(t)0

H2nG2. (12)

We now note the following lemma to bound the first term in
RHS of (12), which is proved later in Section VI-A.

Lemma 2: (Consensus—contracting deviation of local iter-
ates and the averaged iterates). Under the assumptions of Theo-
rem 1, for any I(t) ∈ IT , we have

E‖XI(t) − X̄I(t)‖2F ≤
20nAI(t)η

2
I(t)

p2

where AI(t) = 4p(8H2G2( 1p + 4
ω ) + ωcI(t)) with cI(t) denot-

ing the triggering threshold at time I(t).
Note that {At}T−1

t=0 is an increasing sequence, which follows
because {ct}T−1

t=0 is increasing sequence. Now, since I(t)0 is the
last synchronization index before t, we have AI(t)0

≤ At. We
also note the following relation for the learning rate:

ηI(t)0
ηt

=
8/µ(a+I(t)0 )

8/µ(a+t)
≤

a+ I(t)0 +H

a+ I(t)0
≤
(
1 +

H

a

)
(a≥H)
≤ 2.

Using these and the bound in Lemma 2 in (12) gives

E‖X(t)−X̄(t)‖2F ≤ 40nAt(4η2t )

p2
+2(4η2t )H

2nG2.

Using the above bound for the last term in (11) gives

E‖x̄(t+1) − x∗‖2 ≤
(
1− ηtµ

2

)
E‖x̄(t) − x∗‖2 + η2t σ̄

2

n

− 2ηt(1− 2Lηt)(Ef(x̄(t))− f ∗)

+ 4ηt

(
2ηtL2 + L+ µ

n

)(
40nAt

p2
+ 2nH2G2

)
η2t .

For ηt =
8

µ(a+t) and a ≥ max{ 32L
µ , 5H

p }, we have ηt ≤ 1
4L .

This implies 2Lηt − 1 ≤ − 1
2 and (2ηtL2 + L+ µ) ≤ (2L+

µ). Using these in the above equation gives

E‖x̄(t+1) − x∗‖2 ≤
(
1− ηtµ

2

)
E‖x̄(t) − x∗‖2 − ηtEf(x̄(t))

+ ηtf
∗ +

η2t σ̄
2

n
+ 4η3t (2L+ µ)

(
40At

p2
+ 2H2G2

)
.

Substituting value of At = 4p(8H2G2( 1p + 4
ω ) + ωct):

E‖x̄(t+1) − x∗‖2 ≤
(
1− ηtµ

2

)
E‖x̄(t) − x∗‖2

− ηt(Ef(x̄(t))− f ∗) +
η2t σ̄

2

n

+ Y1η
3
t (2L+ µ)

(
1

p2
+

1

pω
+

ωct
pH2G2

+ 2

)
G2H2

where Y1 is a universal constant. This gives a recursive relation
for the error E‖x̄(t) − x∗‖2. We now use define the following
for the sequence relation above:

at = E‖x̄(t) − x∗‖2, et = Ef(x̄(t))− f ∗, P = 1, Q =
σ̄2

n

R = Y1 (2L+ µ)

(
1

p2
+

1

pω
+ 2

)
G2H2

Ut = Y1

(
2L+ µ

p

)
ωct

using the variant of [7, Lemma 3.3] (proved in [39]), for wt =
(a+ t)2 and et = Ef(x̄(t))− f ∗, we have

1

ST

T−1∑

t=0

wtet ≤
µa3

8ST
a20 +

4T (T + 2a)

µST

σ̄2

n

+
Y ′
1T

µ2ST
(2L+ µ)

(
1

p2
+

1

pω
+ 2

)
G2H2

+
Y ′
2c0ωT

(2−ε)

µ2(2− ε)ST

(
2L+ µ

p

)

where ε ∈ (0, 1) andY ′
1 andY ′

2 are constants. From the convexity
of f , we finally have

Ef(x(T )
avg)− f ∗ ≤ 1

ST

T−1∑

t=0

wtet

where x̄(T )
avg = 1

ST

∑T−1
t=0 wtx̄(t). We finally use the fact that p ≤

ω (as δ ≤ 1 and p := γ∗δ
8 with γ∗ ≤ ω). This implies that the

above expression can be simplified as

Ef(x(T )
avg)− f ∗ ≤ µa3

8ST
a20 +

4T (T + 2a)

µST

σ̄2

n

+
Z1T

µ2ST

(2L+ µ)

p2
G2H2 +

Z2c0ωT (2−ε)

µ2(2− ε)ST

(
2L+ µ

p

)

where Z1, Z2 are constants, completing proof of Theorem 1.

B. Proof of Theorem 2

We start the proof with learning rate set to ηt. We do not use
any algebraic property of the learning rate until (18), thus the
analysis remains the same till then for both constant learning
rate ηt = η and for decaying ηt. We do this to reuse the analysis
till (18) in the proof for nonconvex objective with varying step
size provided in extended version [39].

Initial part of the proof uses techniques from [17, Th. A.2].
Consider expectation taken over sampling at time instant t:
ξ(t) = {ξ(t)1 , ξ(t)2 , . . . , ξ(t)n } and using X̄(t+1) = Ȳ(t+1) [from
(4)] which gives x̄(t+1) = x̄(t) − ηt

n

∑n
j=1 ∇Fj(x

(t)
j , ξ(t)j ).

Thus, we have

Eξ(t)f(x̄(t+1)) = Eξ(t)f



x̄(t) − ηt
n

n∑

j=1

∇Fj(x
(t)
j , ξ(t)j )



 .

Using L-smoothness of f , we get

Eξ(t)f(x̄(t+1)) ≤ f(x̄(t))+Eξ(t)

L

2
η2t

∥∥∥∥∥∥

n∑

j=1

∇Fj(x
(t)
j , ξ(t)j )

n

∥∥∥∥∥∥

2

2
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− Eξ(t)

〈
∇f(x̄(t)),

ηt
n

n∑

j=1

∇Fj(x
(t)
j , ξ(t)j )

〉
. (13)

To estimate the second term in (13), we note that

− ηtEξ(t)

〈
∇f(x̄(t)),

1

n

n∑

j=1

∇Fj(x
(t)
j , ξ(t)j )

〉

= − ηt

〈
∇f(x̄(t)),

1

n

n∑

j=1

∇fj(x
(t)
j )

〉

(a)
= ηt〈∇f(x̄(t)),∇f(x̄(t))− 1

n

n∑

j=1

∇fj(x
(t)
j )〉

−ηt‖∇f(x̄(t))‖22

= ηt〈∇f(x̄(t)),
1

n

n∑

j=1

(∇fj(x̄
(t))−∇fj(x

(t)
j ))〉

−ηt‖∇f(x̄(t))‖22
(b)
≤ − ηt

2
‖∇f(x̄(t))‖22 +

ηt
2n

n∑

j=1

‖∇fj(x̄
(t))−∇fj(x

(t)
j )‖2

where in (a) we add and subtract ∇f(x̄(t)) and (b) follows
by noting that 〈p,q〉 ≤ ‖p‖2+‖q‖2

2 for any p,q ∈ Rd. Using L-
Lipschitz continuity of gradient of fj for j ∈ [n], we have

− ηtEξ(t)

〈
∇f(x̄(t)),

1

n

n∑

j=1

∇Fj(x
(t)
j , ξ(t)j )

〉
≤

− ηt
2
‖∇f(x̄(t))‖22 +

ηtL2

2n

n∑

j=1

‖x̄(t) − x(t)
j ‖2. (14)

To estimate the last term in (13), we add and subtract∇f(x̄(t)) =
1
n

∑n
j=1 ∇fi(x̄t) and 1

n

∑n
j=1 ∇fj(x

(j)
t )

L

2
η2t Eξ(t)

∥∥∥∥∥∥
1

n

n∑

j=1

∇Fj(x
(t)
j , ξ(t)j )

∥∥∥∥∥∥

2

2

= Eξ(t)



L
2
η2t

∥∥∥∥∥∥
1

n

n∑

j=1

(∇Fj(x
(t)
j , ξ(t)j )−∇fj(x

(t)
j ))

+
1

n

n∑

j=1

(∇fj(x
(t)
j )−∇fj(x̄

(t))) +∇f(x̄(t))

∥∥∥∥∥∥

2

2





≤ Lη2t Eξ(t)

∥∥∥∥∥∥
1

n

n∑

j=1

(∇Fj(x
(t)
j , ξ(t)j −∇fj(x

(t)
j ))

∥∥∥∥∥∥

2

2

+
2Lη2t
n

n∑

j=1

∥∥∥(∇fj(x
(t)
j )−∇fj(x̄

(t)))
∥∥∥
2

2

+ 2Lη2t

∥∥∥∇f(x̄(t))
∥∥∥
2

2
.

Using the variance bound (5) for the first term and L-Lipschitz
continuity of gradients of fj for j ∈ [n] for the second term in

above, we get

L

2
η2t Eξ(t)

∥∥∥∥∥∥
1

n

n∑

j=1

∇Fj(x
(t)
j , ξ(t)j )

∥∥∥∥∥∥

2

2

≤ Lη2t σ̄
2

n

+
2L3η2t

n

n∑

j=1

∥∥∥x(t)
j − x̄(t)

∥∥∥
2

2
+ 2Lη2t

∥∥∥∇f(x̄(t))
∥∥∥
2

2
. (15)

Substituting (14) and (15) to (13) and taking expectation with
respect to the entire process gives

E[f(x̄(t+1))] ≤ Ef(x̄(t))− ηt

(
1

2
− 2Lηt

)
E‖∇f(x̄(t))‖22

+
Lη2t σ̄

2

n
+

(
ηtL2

2n
+

2L3η2t
n

)∑n
j=1 E‖x̄(t) − x(t)

j ‖2.

(16)

Let I(t+1)0 denote the latest synchronization step before or equal
to (t+ 1). Then, we have

X(t+1) = XI(t+1)0 −
t∑

t′=I(t+1)0

ηt′∇F(X(t′), ξ(t
′))

X̄(t+1) = X̄I(t+1)0 −
t∑

t′=I(t+1)0

ηt′∇F(X(t′), ξ(t
′)) 1n11

T .

Thus, the following holds:

E‖X(t+1) − X̄(t+1)‖2F = E
∥∥XI(t+1)0 − X̄I(t+1)0

−
t∑

t′=I(t+1)0

ηt′∇F(X(t′), ξ(t
′))
(
I− 1

n11
T
)
∥∥∥∥∥

2

F

≤ 2E‖XI(t+1)0 − X̄I(t+1)0 ‖2F

+ 2E

∥∥∥∥∥
t∑

t′=I(t+1)0

ηt′∇F(X(t′), ξ(t
′))
(
I− 1

n11
T
)
∥∥∥∥∥

2

F

.

Using (5) for the second term in above and noting that
E‖
∑t

t′=I(t+1)0
ηt′∇F(X(t′), ξ(t

′))‖2F ≤ ηI(t+1)0
nH2G2 and

‖ 1
n11

T − I‖22 = 1 from (8) and (7) (with k = 0) respectively,
we have

E‖X(t+1) − X̄(t+1)‖2F ≤ 2E‖XI(t+1)0 − X̄I(t+1)0 ‖2F
+ 2H2nη2I(t+1)0

G2. (17)

By noting that
∑n

j=1 E‖x̄(t) − x(t)
j ‖2 = E‖X(t) − X̄(t)‖2F , we

use (17) to bound the last term in (16), which gives

E[f(x̄(t+1))]≤Ef(x̄(t))−
(ηt
2
−2Lη2t

)
E‖∇f(x̄(t))‖22+

Lη2t σ̄
2

n

+

(
ηtL2

n
+

4L3η2t
n

)
[E‖XI(t)0−X̄I(t)0 ‖2F+H2nη2I(t)0G

2].

(18)
We now replace ηt with a fixed learning rate η

E[f(x̄(t+1))]≤Ef(x̄(t))−
(η
2
−2Lη2

)
E‖∇f(x̄(t))‖22 +

Lη2σ̄2

n

+

(
ηL2

n
+

4L3η2

n

)[
E‖XI(t)0−X̄I(t)0 ‖2F+H2nη2G2

]
.

(19)
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We now note the following lemma, which is proved in Sec-
tion VI-B, to bound the second term in RHS of (19).

Lemma 3: (Bounded deviation of local iterates and the av-
eraged iterates). Under the assumptions of Theorem 2, for any
I(t) ∈ IT , we have

E‖XI(t) − X̄I(t)‖2F ≤ 4nAη2

p2

where constant A = 4p(8H2G2( 4
ω + 1

p ) +
ωc0

η(1−ε) ).
Remark 4: Lemma 3 is about consensus with bounded error,

i.e., the nodes do not reach a consensus, but within an error
proportional to the learning rateη. Note that if we take a decaying
learning rate ηt (as in the strongly convex case), then, as shown
in Lemma 2, different nodes will asymptotically reach to a
consensus; however, the convergence rate of our algorithm will
no longer be O( 1√

T
), but we will only get a rate of O( 1

logT ),
which, though matches the convergence rate of running vanilla
SGD with decaying learning rate on nonconvex objectives, is
much slower than what we can get with a fixed learning rate. We
provide convergence result of SPARQ-SGD with a decaying
learning rate on smooth nonconvex objectives in our extended
article [39].

Using Lemma 3, for A = 4p(8H2G2( 4
ω + 1

p ) +
ωc0

η(1−ε) ), we

get E‖XI(t)0 − X̄I(t)0 ‖2F ≤ 4nAη2

p2 . Substituting in (19)

Ef(x̄(t+1)) ≤ Ef(x̄(t))− η

(
1

2
− 2Lη

)
E‖∇f(x̄(t))‖22

+
Lσ̄2η2

n
+

(
ηL2

2n
+

2L3η2

n

)(
8An

p2
+ 2nH2G2

)
η2

For η =
√

n
T and T ≥ 64nL2, we have η ≤ 1

8L , giving

Ef(x̄(t+1)) ≤ Ef(x̄(t))− η

4
E‖∇f(x̄(t))‖22 +

Lσ̄2η2

n

+
L2

2

(
8A
p2

+ 2H2G2

)
η3+2L3

(
8A
p2

+ 2H2G2

)
η4.

Rearranging terms and summing from 0 to T − 1, we get
T−1∑

t=0

ηE‖∇f(x̄(t))‖22 ≤ 4
(
f(x̄0)− Ef(x̄(t))

)

+ 2L2

(
8A
p2

+ 2H2G2

) T−1∑

t=0

η3 +
4Lσ̄2

n

T−1∑

t=0

η2

+ 8L3

(
8A
p2

+ 2H2G2

) T−1∑

t=0

η4.

Dividing both sides by ηT and using Ef(x̄(t)) ≥ f ∗

∑T−1
t=0 E‖∇f(x̄(t))‖22

T
≤ 4 (f(x̄0)− f ∗)

ηT
+

4Lσ̄2

n
η

+ C1L
2

(
A

p2
+H2G2

)
η2 + C2L

3

(
A

p2
+H2G2

)
η3

where C1, C2 are constants. Noting that A
p2 ≥ H2G2, we get

∑T−1
t=0 E‖∇f(x̄(t))‖22

T
≤ 4 (f(x̄0)− f ∗)

ηT
+

D1L2A

p2
η2

+
D2L3A

p2
η3 +

4Lσ̄2

n
η

for universal constant D1, D2. Substituting the value of A =
4p (8H2G2( 4

ω + 1
p ) +

ωc0
η(1−ε) ), we have

∑T−1
t=0 E‖∇f(x̄(t))‖22

T

≤ 4 (f(x̄0)− f ∗)

ηT
+

D′
1G

2H2L2

p
η2(1 + Lη)

(
4

ω
+

1

p

)

+
D′

2L
2ωc0
p

η(1+ε)(1 + Lη) +
4Lσ̄2

n
η

for some constants D′
1, D

′
2. Substituting η =

√
n
T , we get the

convergence rate as
∑T−1

t=0 E‖∇f(x̄(t))‖22
T

≤
4
(
f(x̄0)− f ∗ + Lσ̄2

)
√
nT

+
D′

1G
2H2L2n

Tp

(
4

ω
+

1

p

)
+

4D′
1G

2H2L3n3/2

T 3/2p

(
4

ω
+

1

p

)

+
D′

2L
2ωc0

√
n(1+ε)

p
√
T (1+ε)

+
4D′

2L
3ωc0

√
n(2+ε)

p
√
T (2+ε)

for some ε ∈ (0, 1). We finally use the fact that p ≤ ω (as
δ ≤ 1 and p := γ∗δ

8 with γ∗ ≤ ω). This completes the proof of
Theorem 2.

VI. PROOFS OF LEMMAS 2 AND 3

In this section, we provide proofs for Lemmas 2 and 3 and
bound

∑n
j=1 E‖x̄I(t) − x

I(t)
j ‖2, thereby, establishing consensus

among the nodes.

A. Proof Sketch for Lemma 2

We first provide a proof sketch of Lemma 2, which states
that e(1)I(t)

:=
∑n

j=1 E‖x̄I(t) − x
I(t)
j ‖2—the expected difference

between local and the average iterates at the synchronization in-
dices – decays asymptotically to zero for decaying learning rate
ηt. We first define another quantity e(2)I(t)

:=
∑n

j=1 E‖x̂I(t+1)

j −

x
I(t)
j ‖2 which is the sum of expected difference between the

local iterates and their copies.
We now note the following lemmas, which recursively bound

e(1)I(t+1)
and e(2)I(t+1)

in terms of e(1)I(t)
and e(2)I(t)

.

Lemma 4: Under the setting of Theorem 1, e(1)I(t+1)
:=

∑n
j=1 E‖x̄I(t+1) − x

I(t+1)

j ‖2 satisfies

e(1)I(t+1)
≤ (1 + α−1

5 )R1e
(1)
I(t)

+ (1 + α−1
5 )R2e

(2)
I(t)

+Q1η
2
I(t+1)

where R1 = (1 + α1)(1− γδ)2, R2 = (1 + α−1
1 )γ2λ2 and

Q1 = 4H2nG2(1 + α5)(R1 +R2). Here α1,α5 are constants
strictly greater than 0.

Lemma 5: Under the setting of Theorem 2, e(2)I(t+1)
:=

∑n
j=1 E‖x̂I(t+2)

j − x
I(t+1)

j ‖2 satisfies

e(2)I(t+1)
≤ (1 + α−1

5 )R3e
(2)
I(t)

+ (1 + α−1
5 )R4e

(1)
I(t)

+ η2I(t+1)
Q2
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where R3 = (1 + γλ)2(1 + α4)(1 + α3)(1 + α2)(1− ω),
R4 = γ2λ2(1 + α−1

4 )(1 + α3)(1 + α2)(1− ω) and Q2 =
4H2nG2((1 + α5)(R3 +R4) + (1 + α−1

2 ) + (1 + α−1
3 )(1 +

α2)(1− ω)) + (1 + α2)ωncI(t+1)
. Here α2,α3,α4 > 0 and

α5 > 0 is the same as used in Lemma 4.
We prove both Lemmas 4 and 5 in Appendix A.
Proof of Lemma 2: To proceed with the proof, we first define

the total error at synchronization index I(t+1) as

eI(t+1)
:= e(1)I(t+1)

+ e(2)I(t+1)
. (20)

Note that Lemmas 4 and 5 provide bounds for the first and the
second term in the RHS of (20). Substituting them in (20) gives

eI(t+1)
≤ (R1 +R4)(1 + α−1

5 )e(1)I(t)
+ (R2 +R3)

(1 + α−1
5 )e(2)I(t)

+ (Q1 +Q2)η
2
I(t+1)

. (21)

Define the following:

π1(γ) := R2 +R3 = γ2λ2(1 + α−1
1 )

+ (1 + γλ)2(1 + α4)(1 + α3)(1 + α2)(1− ω)

π2(γ) := R1 +R4 = (1− δγ)2(1 + α1)

+ γ2λ2(1 + α−1
4 )(1 + α3)(1 + α2)(1− ω)

πt := Q1 +Q2 ≤ 4H2nG2(1 + α5)(R1 +R2 +R3 +R4)

+ 4H2nG2((1 + α−1
2 ) + (1− ω)(1 + α−1

3 )(1 + α2))

+ (1 + α2)ωnct.

With these substitutions, eI(t+1)
in (21) can be bounded as

eI(t+1)
≤ (1 + α−1

5 )max{π1(γ),π2(γ)}
[
e(1)I(t)

+ e(2)I(t)

]

+ πI(t+1)
η2I(t+1)

. (22)

Technical details for calculation ofmax{π1(γ),π2(γ)} andπI(t)
can be found in [39], where we show that
max{π1(γ),π2(γ)} ≤ (1− γ∗δ

8 ) ≤ (1 − δ2ω
644 ) and πt ≤

(16H2nG2( 1p + 4
ω ) + 2ωnct), where p := γ∗δ

8 and γ∗ =
2δω

64δ+δ2+16λ2+8δλ2−16δω is the consensus step size. Substituting
these and α5 = 2

p (used to bound πt) for p = δγ∗

8 in (22) gives

eI(t+1)
≤
(
1 +

p

2

)(
1− δγ∗

8

)[
e(1)I(t)

+ e(2)I(t)

]

+

(
16H2nG2

(
1

p
+

4

ω

)
+ 2ωncI(t+1)

)
η2I(t+1)

.

Define zt := πt = (16H2nG2( 1p + 4
ω ) + 2ωnct). Since

cI(t+1)
η2I(t+1)

≤ 4cI(t)η
2
I(t)

(see Claim 2 in [39]) and
ηI(t+1)

≤ ηI(t) , we have that zI(t+1)
η2I(t+1)

≤ 4zI(t)η
2
I(t)

.
Thus, we have the following recurrence relation for eI(t) :

eI(t+1)
≤
(
1 +

p

2

)
(1− p)eI(t) + 4zI(t)η

2
I(t)

.

Define At :=
2pzt
n . Thus, we have the following relation:

eI(t+1)
≤
(
1− p

2

)
eI(t) +

2nAI(t)

p
η2I(t) . (23)

The recursion for eI(t) in (23) can be bounded as

eI(t) ≤
20

p2
nAI(t)η

2
I(t)

, ∀I(t) ∈ IT .

Note that we also have e(1)I(t)
≤ eI(t) . Thus, we get the following

result for any synchronization index I(t) ∈ IT :

e(1)I(t)
= E‖X̄I(t) −XI(t)‖2F ≤ 20

p2
nAI(t)η

2
I(t)

whereAI(t) = 4p(8H2G2( 1p + 4
ω ) + ωcI(t)), p = δγ∗

8 ≤ 1, δ ∈
(0, 1], β ∈ [0, 1), ω ∈ (0, 1], γ∗ = 2δω

64δ+δ2+16λ2+8δλ2−16δω is
the chosen consensus step size, and {ct}t≥0 is the triggering
threshold sequence. This completes the proof for Lemma 2. !

Remark 5: Note that [3] also proved analogous inequalities
to Lemmas 4 and 5 with Q1 = Q2 = 0. Here Q1, Q2(t) are
non-zero (with Q2(t) possibly varying with t) and arise due to
the use of local iterations and event-triggered communication,
which makes the proof of these inequalities significantly more
involved than the corresponding inequalities in [3].

B. Proof Sketch for Lemma 3

Lemma 3 is essentially about consensus with bounded error,
i.e., the nodes do not reach to a consensus, but within an error
that is proportional to the learning rate η.

Proof of Lemma 3: The proof follows similar steps to proof
of Lemma 2. Note that in proof of either Lemma 4 or Lemma
5 (provided in Appendix A), we do not use any properties of
the learning rate sequence, and thus the bounds derived in these
lemmas also hold with constant8 step-size η. Following along
the same steps as proof of Lemma 2 till (23), we can define the
recurrence relation like (23), but with constant η as

eI(t+1)
≤
(
1− p

2

)
eI(t) +

2nAI(t)

p
η2

where At :=
2p
n (16H2nG2( 4

ω + 1
p ) + 2ωnct). As we restrict

our triggering sequence ct ≤ c0
η(1−ε) ∀ t, for some ε ∈ (0, 1)

eI(t+1)
≤
(
1− p

2

)
eI(t) +

2nA

p
η2 (24)

where constant A = 4p (8H2G2( 4
ω + 1

p ) +
ωc0

η(1−ε) ). Using the
recursive definition of eI(t) in (24), it can be shown that for all
I(t) ∈ IT , we have

eI(t) ≤
4nAη2

p2
.

Note that we also have e(1)I(t)
≤ eI(t) . Thus, we get the following

result for any synchronization index I(t) ∈ IT :

e(1)I(t)
= E‖X̄I(t) −XI(t)‖2F ≤ 4nAη2

p2

where A = 4p (8H2G2( 4
ω + 1

p ) +
ωc0

η(1−ε) ) for p = δγ∗

8 , ε > 0

and γ∗ = 2δω
64δ+δ2+16β2+8δβ2−16δω is the chosen consensus step

size. This completes the proof for Lemma 3 !

8As a small note, we use ηI(t) ≤ 2ηI(t+1)
in proof of Lemma 4, however,

when η is constant, it is easy to see that the bound of Lemma 4 still holds.
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Fig. 1. (a) and (b) For convex objective showing test error vs. number of communication rounds and test error vs. total number of bits
communicated, respectively, for different algorithms. (c) and (d) For nonconvex objective showing loss vs. epochs and Top-1 accuracy vs. total
number of bits communicated, respectively.

VII. EXPERIMENTS

In this section, we provide experimental results for our al-
gorithm SPARQ-SGD and comparison with CHOCO-SGD [3],
[17], which is the current state-of-the-art in efficient decentral-
ized training, and vanilla decentralized training [1]. We compare
these algorithms in terms of communication efficiency and train-
ing time over bandlimited links, and further perform an ablation
study for the individual techniques comprising SPARQ-SGD.
Additional experiments to support our argument in Remark 1
can be found in the extended article [39].

A. Communication Efficiency

We first show advantage of our algorithm in communication
efficiency to reach a target test accuracy for both convex and non-
convex objectives. We compare SPARQ-SGD with CHOCO-
SGD [3], [17] and vanilla decentralized SGD [1].

1) Convex Objectives: To simulate a convex objective, we
consider the multiclass cross-entropy loss to model the local
objectives fi, i ∈ [n] on the MNIST dataset [44]. We consider
n = 60 nodes connected in a ring topology, each processing a
mini-batch size of 50 per iteration and having heterogeneous
distribution of data across classes. We work with learning rate
ηt = 1/(t+ 10) and local iterations H = 5 for SPARQ-SGD.
For compression, we use the composed operator SignTopK
[13] with top k = 1% (70 out of 7840 length parameter vec-
tor for MNIST dataset). For our experiments, we initially set
the triggering constant c0 = 130 in SPARQ-SGD (line 6) and
keep it unchanged until a certain number of iterations and then
increase it periodically under assumptions of Theorem 1; this
is to prevent all the workers satisfying the triggering criterion
in later iterations, as ηt eventually becomes very small. We also
provide a plot for using the composedSignTopK operator with-
out local iterations or threshold triggering titled “SPARQ-SGD
(Sign-TopK)” for comparison.

a) Results: We use SignTopK compression
in SPARQ-SGD and compare its performance against
CHOCO-SGD. In Fig. 1(a), we observe that on account
of using multiple SGD iterations, SPARQ-SGD can reach
a target test error in fewer communication rounds while
converging at a similar rate to vanilla SGD. The advantage to
SPARQ-SGD comes from the significant savings in the number
of bits communicated to achieve a desired test error, as seen in

Fig. 1(b): To achieve a test error of around 0.1, SPARQ-SGD
gets 100× savings as compared to CHOCO-SGD with Sign
quantizer, around 40× savings than CHOCO-SGD with TopK
sparsifier, and around 1000× savings than vanilla decentralized
SGD.

2) Nonconvex Objectives: We match the setting in
CHOCO-SGD and perform our experiments on the CIFAR-
10 [38] dataset and train a ResNet-20 [45] model with n = 8
nodes connected in a ring topology. Learning rate is initialized
to 0.1, following a schedule consisting of a warmup period of 5
epochs followed by piecewise decay of 5 at epoch 200 and 300
and we stop training at epoch 400. The SGD algorithm is imple-
mented with momentum with a factor of 0.9 and minibatch size
of 256. SPARQ-SGD consists ofH = 5 local iterations followed
by checking for a triggering condition, and then communicating
with the composed SignTopK operator, where we take top 1%
elements of each tensor and only transmit the sign and norm of
the result. The triggering threshold follows a schedule piecewise
constant: initialized to 2.5 and increases by 1.5 after every 20
epochs till 350 epochs are complete; while maintaining that
ct < 1/η for all t. We compare performance of SPARQ-SGD
against CHOCO-SGD with Sign, TopK compression (taking
top 1% of elements of the tensor) and decentralized vanilla
SGD [1].

b) Results: We plot the global loss function evaluated
at the average parameter vector across nodes in Fig. 1(c),
where we observe SPARQ-SGD converging at a similar rate as
CHOCO-SGD and vanilla decentralized SGD. Fig. 1(d) shows
the performance for a given bit-budget, where we show the
Top-1 test accuracy as a function of the total number of bits
communicated. For target Top-1 test-accuracy of around 90%,
SPARQ-SGD requires about 40× less bits than CHOCO-SGD
with Sign or TopK compression, and around 3K× less bits
than vanilla decentralized SGD.

B. Training Over Bandlimited Links

We now demonstrate that SPARQ-SGD is particularly suited
for training over bandlimited links, where the communication
time between nodes can be a bottleneck. For the following re-
sults, we consider the same setup as the convex setting described
in Section VII-A1.
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Fig. 2. (a)–(c) Demonstration of the time taken for each scheme when training over bandlimited links. (a) Comparison of test error vs. time taken
when communicating over a rate pipe limited to 100 Kbps. (b) Computation time (in seconds) for a single worker as a function of iterations in the
algorithms. (c) Total time (computation and communication) for all the schemes for the same number of iterations. (d) An ablation study for the
different techniques comprising SPARQ-SGD, where we compare test error as a function of communication bits.

Fig. 1(b) shows the total communicated bits to achieve desired
test accuracy. We remark that communicating large amount of
data over rate limited channels can pose a significant bottleneck.
To demonstrate this, we assume that the communication between
nodes is rate-limited to 100 Kbps. This is typical average rate
of wireless edge devices sharing a common bandwidth with
other devices, therefore devices cannot have sustained high
rates. Fig. 2(a) shows the time taken for a single worker (as
communication with neighbors happens in parallel) to commu-
nicate over 100-Kbps rate links. This provides a comparison for
communication time of each scheme over bandlimited links to
achieve desired test accuracy. We will now include the compu-
tation time for each scheme. Fig. 2(b) shows the time taken for
computation (performing gradient evaluation, compression and
setting up triggering if required) for each node during training,
and is lowest for SGD as expected. We note that SPARQ-SGD
skips local iterations and thus does not require performing
compression in every round, which makes it computationally
efficient than CHOCO-SGD (Sign/TopK) [17]. We finally add
the communication time over rate limited links [Fig. 2(a)] and
the computation time [Fig. 2(b)] to demonstrate the test error
performance with total time taken in Fig. 2(c). We observe
that to achieve a test accuracy of around 90% in Fig. 2(c),
SPARQ-SGD is about 60× faster in total time than the closest
competitor CHOCO-SGD (TopK). Compared to vanilla SGD
training, SPARQ-SGD is about 700× faster to achieve the same
test accuracy when training over bandlimited networks.

C. Ablation Study

We now demonstrate the individual savings from each tech-
nique: compression, local iterations, and threshold-based com-
munication which comprise our algorithm SPARQ-SGD. We
consider the same setup as the convex setting described in
Section VII-A1. In Fig. 2(d), we plot the test error as a func-
tion of total communicated bits on the log scale. All schemes
are trained for a total of 5000 iterations (i.e., T = 5000). We
observe that using only SignTopK compression (without local
iterations or triggering) in SPARQ-SGD (SignTopK) saves about
5× total bits compared to the closest competitor [CHOCO-
SGD (TopK)]. Including local iterations (without triggering) in
SPARQ-SGD (SignTopK+LI) saves about 20× bits compared to

CHOCO-SGD (TopK), while further utilizing event-triggering,
to comprise our proposed algorithm SPARQ-SGD, saves a factor
of 50× in total communicated bits compared to CHOCO-SGD
(TopK). This also shows that SPARQ-SGD (employing event-
triggered communication) can save about a factor of two in a
number of communication rounds to achieve target test accuracy
compared to SPARQ-SGD (SignTopK + LI) on account of
suppressing, on average, half the total number of nodes in each
communication round.

APPENDIX A
SUPPORTING LEMMAS FOR PROOF OF LEMMA 2 AND

LEMMA 3

In the main article, we define e(1)I(t)
:=
∑n

j=1 E‖x̄I(t) −

x
I(t)
j ‖2, which is the sum of expected difference between local

and the average iterates at the synchronization index I(t) and

another quantity e(2)I(t)
:=
∑n

j=1 E‖x̂I(t+1)

j − x
I(t)
j ‖2, which is

the sum of expected difference between the local iterates and
their copies.

In this section, we bound e(1)I(t+1)
and e(2)I(t+1)

in terms of e(1)I(t)

and e(2)I(t)
, and establish a recurrence relations between them.

Using the matrix notation established in Section IV, we have

e(1)I(t+1)
= E‖XI(t+1) − X̄I(t+1)‖2F

e(2)I(t+1)
= E‖XI(t+1) − X̂I(t+2)‖2F .

We now state and prove these recurrence results.
Lemma (Restating Lemma 4): Consider the sequence of up-

dates in Algorithm 1 in matrix form (refer IV for the matrix form
of Algorithm 1). The expected deviation between the local node
parameters XI(t+1) and the global average parameters X̄I(t+1)

evaluated at some I(t+1) ∈ IT satisfies

E‖XI(t+1) − X̄I(t+1)‖2F ≤ (1 + α−1
5 )R1E‖XI(t) − X̄I(t)‖2F

+ (1 + α−1
5 )R2E‖XI(t) − X̂I(t+1)‖2F +Q1η

2
I(t+1)

where R1 = (1 + α1)(1− γδ)2, R2 = (1 + α−1
1 )γ2λ2 and

Q1 = 4H2nG2(1 + α5)(R1 +R2). Here α1,α5 > 0, δ is the
spectral gap, H is the synchronization gap, γ is the consensus
stepsize, and λ := ‖W − I‖2, where W is a doubly stochastic
mixing matrix.
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Proof: Using the definition of XI(t+1) from Section IV, we
have

‖XI(t+1)−X̄I(t+1)‖2F

= ‖YI(t+1)−X̄I(t+1)+γX̂I(t+1)(W − I)‖2F .
Noting that X̄I(t+1) = ȲI(t+1) from (4) and ȲI(t+1)(W − I) =
0 from (3), we get

‖XI(t+1) − X̄I(t+1)‖2F
= ‖(YI(t+1)−ȲI(t+1))((1− γ)I+γW)

+ γ(X̂I(t+1) −YI(t+1))(W − I)‖2F .
Using the fact ‖A+B‖2F ≤ (1 + α1)‖A‖2F + (1 +
α−1
1 )‖B‖2F for any α1 > 0,

‖XI(t+1) − X̄I(t+1)‖2F ≤

(1 + α1)‖(YI(t+1) − ȲI(t+1))((1− γ)I+ γW)‖2F

+ (1 + α−1
1 )‖γ(X̂I(t+1) −YI(t+1))(W − I)‖2F .

Using ‖AB‖F ≤ ‖A‖F ‖B‖2 as per (5), we have

‖XI(t+1) − X̄I(t+1)‖2F ≤

(1 + α1)‖(YI(t+1) − ȲI(t+1))((1− γ)I+ γW)‖2F

+ (1 + α−1
1 )γ2‖(X̂I(t+1) −YI(t+1))‖2F .‖(W − I)‖22. (25)

To bound the first term in (25), we use the triangle inequality for
Frobenius norm, giving us

‖(YI(t+1) − ȲI(t+1))((1− γ)I+ γW)‖F ≤

(1− γ)‖YI(t+1) − ȲI(t+1)‖F + γ‖(YI(t+1) − ȲI(t+1))W‖F .
It follows from (3) that (YI(t+1) − ȲI(t+1)) 1n11

T = 0. Adding
this inside the last term above, we get

‖(YI(t+1) − ȲI(t+1))((1− γ)I+ γW)‖F ≤

(1− γ)‖YI(t+1) − ȲI(t+1)‖F

+ γ

∥∥∥∥(Y
I(t+1) − ȲI(t+1))

(
W − 1

n
11T

)∥∥∥∥
F

.

Using ‖AB‖F ≤ ‖A‖F ‖B‖2 from (5) and then using (7) with
k = 1, we can simplify the above to

‖(YI(t+1) − ȲI(t+1))((1− γ)I+ γW)‖F ≤

(1− γδ)‖YI(t+1) − ȲI(t+1)‖F .
Substituting the above in (25) and using λ = maxi{1−
λi(W)} ⇒ ‖W − I‖22 ≤ λ2, we get

‖XI(t+1) − X̄I(t+1)‖2F ≤

(1 + α1)(1− γδ)2‖YI(t+1) − ȲI(t+1)‖2F

+ (1 + α−1
1 )γ2λ2‖YI(t+1) − X̂I(t+1)‖2F .

Taking expectation with respect to the entire process, we have

E‖XI(t+1) − X̄I(t+1)‖2F ≤

(1 + α1)(1− γδ)2E‖YI(t+1) − ȲI(t+1)‖2F

+ (1 + α−1
1 )γ2λ2E‖YI(t+1) − X̂I(t+1)‖2F .

Define R1 = (1 + α1)(1− γδ)2, R2 = (1 + α−1
1 )γ2λ2. Using

the update algorithm, we have
E‖XI(t+1) − X̄I(t+1)‖2F ≤

R1E

∥∥∥∥∥∥
X̄I(t)−XI(t)−

I(t+1)−1∑

t′=I(t)

ηt′∇F(X(t′),ξ(t
′))

(
1

n
11T−I

)∥∥∥∥∥∥

2

F

+R2E

∥∥∥∥∥∥
X̂I(t+1) −XI(t)+

I(t+1)−1∑

t′=I(t)

ηt′∇F(X(t′), ξ(t
′))

∥∥∥∥∥∥

2

F

.

Thus, for any α5 > 0, we have

E‖XI(t+1) − X̄I(t+1)‖2F ≤ R1(1 + α−1
5 )E

∥∥X̄I(t) −XI(t)
∥∥2

+R1(1 + α5)E

∥∥∥∥∥∥

I(t+1)−1∑

t′=I(t)

ηt′∇F(X(t′), ξ(t
′))

(
1

n
11T−I

)∥∥∥∥∥∥

2

F

+R2(1 + α5)E

∥∥∥∥∥∥

I(t+1)−1∑

t′=I(t)

ηt′∇F(X(t′), ξ(t
′))

∥∥∥∥∥∥

2

F

+R2(1 + α−1
5 )E

∥∥∥X̂I(t+1) −XI(t)
∥∥∥
2
.

Using ‖AB‖F ≤ ‖A‖F ‖B‖2 from (5) to split the third term,
and ‖ 1

n11
T − I‖2 = 1, and further using the bound in (8) for

the third and fourth terms, the above can be rewritten as

E‖XI(t+1) − X̄I(t+1)‖2F ≤ R1(1 + α−1
5 )E

∥∥X̄I(t) −XI(t)
∥∥2

+R2(1 + α−1
5 )E

∥∥∥X̂I(t+1) −XI(t)
∥∥∥
2

+ η2I(t)H
2nG2(1 + α5)(R1 +R2).

Noting that ηI(t) ≤ 2ηI(t+1)
9 and defining Q1 = 4H2nG2(1 +

α5)(R1 +R2) completes the proof of Lemma 4. !
Lemma (Restating Lemma 5): Consider the sequence of up-

dates in Algorithm 1 in matrix form (refer IV) with the threshold
sequence {ct}T−1

t=0 such that ct = o(t), and decaying learning
rateηt = b

(a+t) , for some b > 0. The expected deviation between

the local node parameters XI(t+1) and their estimates X̂I(t+2) at
a synchronization time step I(t+1) satisfies

E‖XI(t+1) − X̂I(t+2)‖2F ≤ (1 + α−1
5 )R3E‖XI(t) − X̂I(t+1)‖2F

+ (1 + α−1
5 )R4E‖XI(t) − X̄I(t)‖2F + η2I(t+1)

Q2

where R3 = (1 + γλ)2(1 + α4)(1 + α3)(1 + α2)(1− ω),
R4 = γ2λ2(1 + α−1

4 )(1 + α3)(1 + α2)(1− ω) and Q2 =
4H2nG2((1 + α5)(R3 +R4) + (1 + α−1

2 ) + (1 + α−1
3 )(1 +

α2)(1− ω)) + (1 + α2)ωncI(t+1)
. Here α2,α3,α4 > 0,α5 >

0 are the same as used in Lemma 4, δ is the spectral gap, H
is the synchronization gap, γ is the consensus stepsize, and
λ = ‖W − I‖2, where W is a doubly stochastic mixing matrix.

Note that in the above expression, Q2 depends on t (as
captured by cI(t) in the expression) as we allow for our triggering
threshold to change with time.

9
ηI(t)

ηI(t+1)
=

I(t+1)+a

I(t)+a ≤
I(t)+H+a

I(t)+a = 1+ H
I(t)+a ≤ 1 + H

a ≤ 2. The

last inequality follows from that a ≥ 5H
p ≥ H .
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Proof: Note that X̂I(t+2) = X̂I(t+1) + C((YI(t+2) −
X̂I(t+1))P(I(t+2)−1)); see Section IV in main article.
Substituting this in E‖XI(t+1) − X̂I(t+2)‖2F , we get

E‖XI(t+1) − X̂I(t+2)‖2F =

E‖XI(t+1) − X̂I(t+1) − C((YI(t+2) − X̂I(t+1))P(I(t+2)−1))‖2F .
Adding and subtracting YI(t+2) and rearranging terms

E‖XI(t+1) − X̂I(t+2)‖2F =

E‖YI(t+2) − X̂I(t+1) +XI(t+1) −YI(t+2)

− C((YI(t+2) − X̂I(t+1))P(I(t+2)−1))‖2F .
Using ‖A+B‖2F ≤ (1 + α2)‖A‖2F + (1 + α−1

2 )‖B‖2F for
any α2 > 0,

E‖XI(t+1) − X̂I(t+2)‖2F ≤ (1 + α2)E‖YI(t+2) − X̂I(t+1)

− C((YI(t+2) − X̂I(t+1))P(I(t+2)−1))‖2F
+ (1 + α−1

2 )E‖XI(t+1) −YI(t+2)‖2F

= (1 + α2)E‖YI(t+2) − X̂I(t+1)

− C((YI(t+2) − X̂I(t+1))P(I(t+2)−1))‖2F

+ (1 + α−1
2 )E

∥∥∥∥∥∥

I(t+2)−1∑

t′=I(t+1)

ηt′∇F(Xt′ , ξt
′
)

∥∥∥∥∥∥

2

F

. (26)

Bounding the last term in (26) using (8), we get

E‖XI(t+1) − X̂I(t+2)‖2F ≤ (1 + α2)E‖YI(t+2) − X̂I(t+1)

−C((YI(t+2)−X̂I(t+1))P(I(t+2)−1))‖2F
+(1 + α−1

2 )η2I(t+1)
H2nG2.

Note that both P(I(t+2)−1) and I−P(I(t+2)−1) are
diagonal matrices, with disjoint support on the diagonal
entries, which implies that E‖YI(t+2) − X̂I(t+1)‖2F =
E‖(YI(t+2) − X̂I(t+1))P(I(t+2)−1)‖2F + E‖(YI(t+2) −
X̂I(t+1))(I−P(I(t+2)−1))‖2F . We get

E‖XI(t+1) − X̂I(t+2)‖2F

≤ (1 + α2)E‖(YI(t+2) − X̂I(t+1))P(I(t+2)−1)

− C((YI(t+2) − X̂I(t+1))P(I(t+2)−1))‖2F

+ (1 + α2)E‖(YI(t+2) − X̂I(t+1))(I−P(I(t+2)−1))‖2F
+ (1 + α−1

2 )η2I(t+1)
H2nG2.

Using the compression property of operator C as per (2), we have

E‖XI(t+1) − X̂I(t+2)‖2F ≤ (1 + α−1
2 )η2I(t+1)

H2nG2

+ (1 + α2)(1− ω)E‖(YI(t+2) − X̂I(t+1))P(I(t+2)−1)‖2F

+ (1 + α2)E‖(YI(t+2) − X̂I(t+1))(I−P(I(t+2)−1))‖2F .
Adding and subtracting (1 + α2)(1− ω)E‖(YI(t+2) −
X̂I(t+1))(I−P(I(t+2)−1))‖2F , we get

E‖XI(t+1) − X̂I(t+2)‖2F ≤ (1 + α−1
2 )η2I(t+1)

H2nG2

+ (1 + α2)(1− ω)E‖YI(t+2) − X̂I(t+1)‖2F

+ (1 + α2)ωE‖(YI(t+2) − X̂I(t+1))(I−P(I(t+2)−1))‖2F .
To bound the third term in the RHS above, note that
X̂I(t+2)−1 = X̂I(t+1) , because X̂ does not change in
between the synchronization indices, which implies that
E‖(YI(t+2) − X̂I(t+1))(I−P(I(t+2)−1))‖2F = E‖(YI(t+2) −
X̂I(t+2)−1)(I−P(I(t+2)−1))‖2F , which we can upper bound
using (6) byncI(t+2)−1η2I(t+2)−1. From Claim 2 provided in [39],
it follows that cI(t+2)−1η2I(t+2)−1 ≤ 4cI(t+1)

η2I(t+1)
. Substituting

this in the above gives

E‖XI(t+1) − X̂I(t+2)‖2F

≤ (1 + α2)(1− ω)E‖YI(t+2) − X̂I(t+1)‖2F
+ (1 + α2)ωn4cI(t+1)

η2I(t+1)
+ (1 + α−1

2 )η2I(t+1)
H2nG2

= (1+α2)(1−ω)E‖XI(t+1)−
I(t+2)−1∑

t′=I(t+1)

ηt′∇F(Xt′ , ξt
′
)−X̂I(t+1)‖2F

+ (1 + α−1
2 )η2I(t+1)

H2nG2 + (1 + α2)ωn4cI(t+1)
η2I(t+1)

≤ (1 + α3)(1 + α2)(1− ω)E‖XI(t+1) − X̂I(t+1)‖2F

+ (1 + α−1
3 )(1 + α2)(1− ω)E‖

I(t+2)−1∑

t′=I(t+1)

ηt′∇F(Xt′ , ξt
′
)‖2F

+(1 + α−1
2 )η2I(t+1)

H2nG2+(1+α2)ωn4cI(t+1)
η2I(t+1)

(27)

where in the last inequality, we have used bound on the sum10

and α3 > 0. Using (8) to bound the penultimate term in (27)

E‖XI(t+1) − X̂I(t+2)‖2F

≤ (1 + α3)(1 + α2)(1− ω)E‖XI(t+1) − X̂I(t+1)‖2F
+ (1 + α−1

3 )(1 + α2)(1− ω)η2I(t+1)
H2nG2

+ (1 + α2)ωn4cI(t+1)
η2I(t+1)

+ (1 + α−1
2 )η2I(t+1)

H2nG2

= (1 + α3)(1 + α2)(1− ω)E‖YI(t+1)

+ γX̂I(t+1)(W − I)− X̂I(t+1)‖2F
+ (1 + α−1

3 )(1 + α2)(1− ω)η2I(t+1)
H2nG2

+ (1 + α2)ωn4cI(t+1)
η2I(t+1)

+ (1 + α−1
2 )η2I(t+1)

H2nG2

= (1 + α3)(1 + α2)(1− ω)E‖(YI(t+1) − X̂I(t+1))

× ((1 + γ)I− γW) + γ(YI(t+1) − ȲI(t+1))(W − I)‖2F
+ (1 + α−1

3 )(1 + α2)(1− ω)η2I(t+1)
H2nG2

+ (1 + α2)ωn4cI(t+1)
η2I(t+1)

+ (1 + α−1
2 )η2I(t+1)

H2nG2

where in the last equality, we have used ȲI(t+1)(W − I) = 0.
For α4 > 0, using result stated in Footnote 10 gives us

E‖XI(t+1) − X̂I(t+2)‖2F ≤ (1 + α4)(1 + α3)(1 + α2)

10For any two matrices A,B ∈ Rp×q and for any α > 0, we have

‖A+B‖2F ≤ (1 + α) ‖A‖2F + (1 + α−1) ‖B‖2F
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× (1− ω)E‖(YI(t+1) − X̂I(t+1))((1 + γ)I− γW)‖2F
+ (1 + α−1

4 )(1 + α3)(1 + α2)(1− ω)

× E‖γ(YI(t+1) − ȲI(t+1))(W − I)‖2F
+ (1 + α−1

3 )(1 + α2)(1− ω)η2I(t+1)
H2nG2

+ (1 + α2)ωn4cI(t+1)
η2I(t+1)

+ (1 + α−1
2 )η2I(t+1)

H2nG2.

Using ‖(1 + γ)I− γW‖2 = ‖I + γ(I−W)‖2 = 1 + γ‖I−
W‖2 = 1 + γλ (by definition of λ = maxi{1− λi(W)}) and
‖I−W‖2 = λ along with ‖AB‖F ≤ ‖A‖F ‖B‖2 from (5)

E‖XI(t+1) − X̂I(t+2)‖2F ≤ (1 + γλ)2(1 + α4)

× (1 + α3)(1 + α2)(1− ω)E‖YI(t+1) − X̂I(t+1)‖2F
+ γ2λ2(1 + α−1

4 )(1 + α3)(1 + α2)

× (1− ω)E‖YI(t+1) − ȲI(t+1)‖2F
+
(
(1 + α−1

2 ) + (1 + α−1
3 )(1 + α2)(1− ω)

)
η2I(t+1)

H2nG2

+ (1 + α2)ωn4cI(t+1)
η2I(t+1)

.

Define R3 = (1 + γλ)2(1 + α4)(1 + α3)(1 + α2)(1− ω),
R4 = γ2λ2(1 + α−1

4 )(1 + α3)(1 + α2)(1− ω) and R5 =
((1 + α−1

2 ) + (1 + α−1
3 )(1 + α2)(1− ω))H2nG2 + (1 +

α2)ωn4cI(t+1)
, then the above can be rewritten as

E‖XI(t+1) − X̂I(t+2)‖2F ≤ R3E‖YI(t+1) − X̂I(t+1)‖2F
+R4E‖YI(t+1) − ȲI(t+1)‖2F +R5η

2
I(t+1)

.

Using the update rule, this can be expanded as

E‖XI(t+1) − X̂I(t+2)‖2F ≤

R3E‖X̂I(t+1)−XI(t)+

I(t+1)−1∑

t′=I(t)

ηt′∇F(X(t′), ξ(t
′))‖2F +R5η

2
I(t+1)

+R4E

∥∥∥∥∥∥
X̄I(t)−XI(t)−

I(t+1)−1∑

t′=I(t)

ηt′∇F(X(t′), ξ(t
′))

(
11T

n
−I

)∥∥∥∥∥∥

2

F

.

For the same α5 > 0 as used in Lemma 4, we get

E‖XI(t+1) − X̂I(t+2)‖2F ≤ R3(1 + α−1
5 )E

∥∥∥X̂I(t+1) −XI(t)
∥∥∥
2

+R4(1 + α−1
5 )E

∥∥X̄I(t) −XI(t)
∥∥2

+R4(1 + α5)E

∥∥∥∥∥∥

I(t+1)−1∑

t′=I(t)

ηt′∇F(X(t′), ξ(t
′))

(
1

n
11T−I

)∥∥∥∥∥∥

2

F

+R3(1 + α5)E

∥∥∥∥∥∥

I(t+1)−1∑

t′=I(t)

ηt′∇F(X(t′), ξ(t
′))

∥∥∥∥∥∥

2

F

+R5η
2
I(t+1)

.

Using ‖AB‖F ≤ ‖A‖F ‖B‖2 as per (5) to split the third term
and then using ‖ 1

n11
T − I‖ ≤ 1, and further using the bound

in (8) for the third and fourth terms, the above can be rewritten
as

E‖XI(t+1) − X̄I(t+2)‖2F ≤ R3(1 + α−1
5 )E

∥∥∥X̂I(t+1) −XI(t)
∥∥∥
2

+R4(1 + α−1
5 )E

∥∥X̄I(t) −XI(t)
∥∥2

+ η2I(t)H
2nG2(1 + α5)(R3 +R4) +R5η

2
I(t+1)

.

Noting that ηI(t) ≤ 2ηI(t+1)
(see Footnote 9) and defin-

ing Q2 = 4H2nG2((1 + α5)(R3 +R4) + (1 + α−1
2 ) +

(1 + α−1
3 )(1 + α2)(1− ω)) + 4(1 + α2)ωncI(t+1)

≥
4H2nG2(1 + α5)(R3 +R4) +R5 completes the proof of
Lemma 5. !
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[30] X. Cao and T. Başar, “Decentralized online convex optimization with
event-triggered communications,” IEEE Trans. Signal Process., vol. 69,
pp. 284–299, Dec. 2020.

[31] Z. Wu, Z. Li, Z. Ding, and Z. Li, “Distributed continuous-time optimization
with scalable adaptive event-based mechanisms,” IEEE Trans. Syst., Man,
Cybern.: Syst., vol. 50, no. 9, pp. 3252–3257, Sep. 2020.

[32] C. Liu, H. Li, and Y. Shi, “Resource-aware exact decentralized optimiza-
tion using event-triggered broadcasting,” IEEE Trans. Autom. Control,
vol. 66, no. 7, pp. 2961–2974, Jul. 2021.

[33] T. Chen, G. Giannakis, T. Sun, and W. Yin, “LAG: Lazily aggregated
gradient for communication-efficient distributed learning,” in Proc. Neural
Inf. Process. Syst., 2018, pp. 5050–5060.

[34] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “Distributed
subgradient methods and quantization effects,” in Proc. IEEE Conf. Decis.
Control, 2008, pp. 4177–4184.

[35] T. T. Doan, S. T. Maguluri, and J. Romberg, “Fast convergence rates of
distributed subgradient methods with adaptive quantization,” IEEE Trans.
Autom. Cont., vol. 66, no. 5, pp. 2191–2205, 2020.

[36] A. Nedich, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “On distributed
averaging algorithms and quantization effects,” IEEE Trans. Autom. Con-
trol, vol. 54, no. 11, pp. 2506–2517, Nov. 2009.

[37] Y. Pu, M. Zeilinger, and C. N. Jones, “Quantization design for distributed
optimization,” IEEE Trans. Autom. Control, vol. 62, no. 5, pp. 2107–2120,
May 2017.

[38] A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” Citeseer, 2009. [Online]. Available: http://www.cs.toronto.edu/
kriz/cifar.html

[39] N. Singh, D. Data, J. George, and S. Diggavi, “SPARQ-SGD: Event-
triggered and compressed communication in decentralized stochastic op-
timization,” 2019, arXiv:1910.14280.

[40] A. Rakhlin, O. Shamir, and K. Sridharan, “Making gradient descent
optimal for strongly convex stochastic optimization,” in Proc. Int. Conf.
Mach. Learn., 2012, pp. 1571–1578.

[41] Y. T. Chow, W. Shi, T. Wu, and W. Yin, “Expander graph and
communication-efficient decentralized optimization,” in Proc. 50th Asilo-
mar Conf. Signals, Syst. Comput., 2016, pp. 1715–1720.

[42] S. Hoory, N. Linial, and A. Wigderson, “Expander graphs and their
applications,” Bull. Amer. Math. Soc., vol. 43, no. 4, pp. 439–561, 2006.

[43] H. Mania, X. Pan, D. Papailiopoulos, B. Recht, K. Ramchandran, and
M. I. Jordan, “Perturbed iterate analysis for asynchronous stochastic
optimization,” SIAM J. Optim., vol. 27, no. 4, pp. 2202–2229, 2017.

[44] Y. LeCun, C. Cortes, and C. Burges, “MNIST handwritten digit database,”
ATT Labs, vol. 2, 2010.

[45] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Proc. Neural Inf. Process. Syst., 2016,
pp. 2074–2082.

Navjot Singh (Student Member, IEEE) received the B.Tech. and
M.Tech. degrees in electrical engineering from the Indian Institute of
Technology, Bombay, India, in 2018. He is currently working toward the
Ph.D. degree with the Electrical and Computer Engineering Department,
University of California, Los Angeles, CA, USA.

Deepesh Data received the B.Tech. degree in computer science and
engineering from IIIT Hyderabad, Hyderabad, India, in 2011, and the
M.Sc. and Ph.D. degrees from the School of Technology and Computer
Science, TIFR Mumbai, Mumbai, India, in 2017.

He was a Postdoctoral Fellow with IIT Bombay, India, and with Univer-
sity of California, USA, in 2018. His research interests include federated
machine learning, differential privacy, distributed optimization, cryptog-
raphy, algorithms, and information and coding theory.

Dr. Data has received the Best Paper Award from ACM Conference on
Computer and Communications Security (CCS) 2021, ACM India Doc-
toral Dissertation Award (Honorable Mention), TIFR-Sasken Best Ph.D.
Thesis Award in Technology and Computer Sciences, and a Microsoft
Research India Ph.D. Fellowship 2014–2017.

Jemin George (Member, IEEE) received the M.S. and Ph.D. degrees in
aerospace engineering from the State University of New York at Buffalo,
Buffalo, NY, USA, in 2007 and 2010, respectively.

He was a Summer Research Scholar with the U.S. Air Force Research
Laboratory’s Space Vehicles Directorate, in 2008, and with National
Aeronautics and Space Administration Langley Aerospace Research,
in 2009. From 2009 to 2010, he was a Research Fellow with the
Department of Mathematics, Technische Universität Darmstadt, Darm-
stadt, Germany. He was with U.S. Army Research Laboratory in 2010.
From 2014 to 2017, he was a Visiting Scholar with the Northwestern
University, Evanston, IL, USA. His research interests include distributed
learning, stochastic systems, control theory, nonlinear filtering, informa-
tion fusion, and distributed sensing and estimation.

Suhas Diggavi (Fellow, IEEE) received M.Sc and Ph.D. degrees in
electrical engineering from IIT, Delhi, India, and from Stanford University,
Stanford, CA, USA.

He is currently a Professor of Electrical and Computer Engineering
with University of California, Los Angeles, CA, USA, where he is the
Director of Information Theory and Systems Laboratory. He was a
Principal Member Research Staff with AT&T Shannon Laboratories and
Director of the Laboratory for Information and Communication Systems
(LICOS), EPFL, Lausanne, Switzerland. His research interests include
information theory and its applications to several areas, including learn-
ing, security and privacy, data compression, wireless networks, cyber-
physical systems, genomics, and neuroscience.

Dr. Diggavi has received several recognitions for his research from
IEEE and ACM, including the 2013 IEEE Information Theory Society
and Communications Society Joint Paper Award, 2021 ACM CCS Best
Paper Award, 2013 ACM Mobihoc Best Paper Award, 2006 IEEE Donald
Fink Prize Paper Award, 2019 Google Faculty Research Award, and
the 2020 Amazon Faculty Research Award, 2021 Facebook Faculty
Award. He was selected as a Guggenheim Fellow in 2021. He has also
organized several IEEE and ACM conferences.

Authorized licensed use limited to: UCLA Library. Downloaded on August 21,2023 at 19:43:10 UTC from IEEE Xplore.  Restrictions apply. 

http://www.cs.toronto.edu/kriz/cifar.html
http://www.cs.toronto.edu/kriz/cifar.html

