Collective spin modes in Fermi liquids with spin-orbit coupling
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A combination of spin-orbit coupling and electron-electron interaction gives rise to a new type
of collective spin modes, which correspond to oscillations of magnetization even in the absence of
the external magnetic field. We review recent progress in theoretical understanding and experimen-
tal observation of such modes, focusing on three examples of real-life systems: a two-dimensional
electron gas with Rashba and/or Dresselhaus spin-orbit coupling, graphene with proximity-induced
spin-orbit coupling, and the Dirac state on the surface of a three-dimensional topological insulator.
This paper is dedicated to the 95th birthday of Professor Emmanuel I. Rashba.

I. INTRODUCTION

Spin-orhit coupling (SOC) plays an important and, sometimes decisive, role iIn many condensed matter systems,
including two-dimensional (2D) electron and hole gases in semiconductor heterostructures, |1, 2] non-centrosymmetric
normal metals [3] and superconductors,[4, 5| bismuth tellurchalides [6], a variety of iridates and vanadates, [7], sur-
face/edge states of three-dimensional (3D)/2D topological insulators,[8-12] conducting states at oxide interfaces,[13]
2D transition metal dichalcogenides (TMD),[14, 15| graphene on TMD substrates [16] atomic Bose[17, 18] and
Fermi[19, 20| gases in simulated non-Abelian magnetic fields, etc. Coupling between electron spins and momenta leads
to a number of fascinating consequences, such as the electric-dipole spin resonance (EDSR), [21-23] current-induced
spin polarization, [24-26| persistent spin helices, [27-29] quantum spin [30-32] and anomalous Hall effects,[33-35] to
name just a fow. An interesting and still largely open question is the interplay between spin-orbit and electron-electron
interactions. Such interplay gives rise to new phases of matter, e.g., topological Mott insulator,[36, 37| gyrotropic
and multipolar orders in normal metals, [38] helical Fermi liquid (FL),[39] Gor'kov-Rashba superconductor with mixed
singlet-triplet order parameter,[40] topological Kondo insulators, [41] ete. It also affects in a non-trivial way many
physical phenomena, e.g., optical conductivity,[42, 43| plasmon spectra,[44-46] RKKY interaction,[47-49] non-analytic
behavior of the spin susceptibility,[50-52] etc., and gives rise to spin-dependent electron-electron interaction.[53

In this paper, we review recent progress in theoretical understanding and experimental observation of a new type
of collective spin modes in 2D FLs with SOC. Such modes are perhaps the most direct manifestation of an interplay
between spin-orbit and electron-clectron interactions, as their existence hinges on both components being present.
Unlike the conventional Silin mode in a partially spin-polarized FL,[54] these modes exist even in the absence of an
external magnetic field; in addition, they modify in a characteristic way the Silin mode if both SOC and magnetic
fiold are present. As long as S0OC is weak, the new modes correspond to oscillations of the magnetization which
are decoupled from the oscillations of charge. The origin of the new modes can be traced to the effective spin-orbit
magnetic field, which depends on the orientation and magnitude of the electron momentum, and also on the position
of electron valley in the Brillouin zone (for multi-valley systems, such as graphene with procdamity-induced SOC).
Some of these modes have already been observed experimentally in Cdy_zMn;Te quantum wells (in the presence of
the magnetic field)[55-60] and in the surface state of a three-dimensional (3D) topological insulator (TT) BisSes (in
zero magnetic field);[61] however, many more predictions are still awaiting their experimental confirmation.

The rest of the paper 1= organized as follows. In See. IT A, we introduce three systems considered in the rest of the
article: 1) a 2D electron gas (2DEG) with Rashba and for Dresselhaus SOC, 2) graphene with prosamity-induced SOC,
and 3) a Dirac helical state on the surface of a 3D TL. In Sec. ITB, we describe the single- and two-valley FL theories,
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which will be applied to study the collective spin modes in 2DEGs and graphene, respectively, given that SOC and /or
magnetic field are weak. In Sec. IIC, we explain why a FL theory cannot be applied to the cases of arbitrarily strong
SOC and/or magnetic field. Sec. IIT serves as a short reminder of collective modes in a FL without SOC, in general,
and of the Silin modes in a partially spin-polarized FL, in particular. In Sec. IV, we discuss collective spin modes in
a 2DEG. Sec. IV A describes the FL theory for the case of Rashba SOC. In Sec. IV B, we show that the FL kinetic
equation for a 2DEG with Rashba and/or Dresselhans SOC and in the presence of the magnetic field can be mapped
onto an effective tight-binding model for an artificial one-dimensional (1D) lattice, whose sites are labeled by the
projections of the angular momentum. Within this mapping, the role of FL interaction is to produce “defects”, both
of the on-site and bond types, and the collective modes arise as bound states due to such defects. In Sec. IVC, we
llustrate how this mapping works for the case of a 2DEG with Rashba SOC and in the presence of the magnetic field
using the s-wave appraximation for the Landaun function. Sec. V deals with collective spin modes in Dirac systems.
In Sec. V A we apply a two-valley version of the FL theory to graphene with proxamity-induced SOC. In Sec. VB, we
derive the spectrum of inter-band spin excitations in a Dirac surface state within the ladder approximation. In Sec. VI,
we discuss the spatial dispersion of collective spin modes. Sec. VII is devoted to damping due to both disorder and
clectron-clectron interaction. In See. VIII, we discuss both the current and future experiment. Sec. VIII A summarizes
the results of a series of Raman experiments on Cdy_:Mn;Te. In Sec. VIII B, we provide a summary of recent Raman
spectroscopy of a collective spin mode on the surface of BisSes. Sec. VIIIC contains the theoretical predictions for
clectron spin resonance (ESR) and EDSR experiments on graphene with proxdamity-induced SOC, both in zero and
strong (compared to SOC) magnetic field. Our conclusions are given in Sec. T3

II. MODEL SINGLE-PARTICLE HAMILTONIANS AND ELECTRON-ELECTRON INTERACTION
A. Model single-particle Hamiltonians for spin-orbit coupling

Despite the variety of real-life systems, the effects of SOC on the electron spectrum can be deseribed by just
a fow low-energy Hamiltonians, constructed by using the symmetry arguments. In this paper, we will consider
three examples of two-dimensional electron systems: a two-dimensional electron gas (2DEG) sandwiched between
two dissimilar semiconductors, monolayer graphene with substrate-induced SOC, and the surface state of a three-
dimensional (3D) topological insulator (TT).

The effect of SOC on a 2DEG sandwiched between two dissimilar centrosymmetric semiconductors is described by
the venerable Rashba Hamiltonian[62, 63]
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where & = (&, &y, &z) i1s a vector of Pauli matrices which describe electron spin, £ is a unit vector along the normal
to the 2DEG plane, and o 15 a phenomenological parameter (with units of velocity). The simplest way to arrive at
this Hamiltonian is to notice that a combination (& x k) - % is the only scalar which can be formed out of an axial
vector (&) and two polar vectors (k and £).

In a bulk non-centrosymmetric semiconductor, e.g., of the AIB5 family (GaAs, CdTe, ete.), symmetry allows for a
cubic (Dresselhaus) coupling between momentum and spin.[64] A quantum well on the surface of such a semiconductor
15 described by a 2D Dresselhans Hamiltonian with linear coupling between spin and momentum obtained by projecting
the bulk Dresselhaus term onto the quantum-well plane.[65, 66] A particular form of the 2D Dresselhaus Hamiltonian
depends on the orientation of the quantum-well plane with respect to crystallographic axes. We will consider the
most common case of a quantum well grown along the (001) direction. With the r-axis along the (100) direction and
y-aoais along the (010) the direction, the Dresselhans Hamiltonian reads

2
Ho = 5+ Blkats ~ lyy). @
In heterostructures made from non-centrosymmetric semiconductors the Rashba and Dresselhaus types of SOC usually
occur simultaneously, and the total spin-orbit part of the Hamiltonian is the sum of the Rashba and Dresselhauns terms.
Without loss of generality, we assume that o, § > (.
Another popular system is graphene adsorbed on a transition-metal-dichalcogenide (TMD) substrate, such as WS,
WSes and MoS5.[67-80] In this case, the induced SOC is expected to be a mixture of two types:|68, 81, 82| of Rashha
SOC and valley-Zeeman (VZ) or Ising SOC, which acts as an out-of-plane magnetic field whose direction alternates



between the K and K valleys of graphene. We focus on the case of monolayer graphene with prosamity-induced SOC,
described by the following low-energy Hamiltonian:
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where vp 18 the Dirac velocity, k is the electron momentum measured either from the K or K' point of the graphene
Brillouin zone, Ap and Ay are the coupling constants of the Rashba and VZ spin-orbit interactions, respectively, A
1s the gap due to substrate-induced asymmetry between the A and B sites of the honeycomb lattice, iy (i = x,y) are
the Pauli matrices in the sublattice (pseudospin) subspace, and v, = +1 labels the K and K' points. (An expression
of the type 4% is to be understood as a tensor product of two matrices. A single matrix in one of the subspaces
implies that it is tensor product with a unity matrix in the other subspace.) In Eq. (3), we neglected the intrinsic,
Kane-Mele type of SOC,[83] which is much weaker than the induced ones.!

Finally, the surface of a 3D TI, e.g., BiasSes, harbors a Dirac helical state. If the hexagonal warping of the energy
contours due to underlying erystal lattice can be neglected, this state is described by the Rashba-like Hamiltonian
without the parabolic term[89)]

Hy = vp(6 x k) - & (4)

In all cases presented abowve, the effect of an in-plane magnetic field of magnitude B and at angle v to the r-axis is
accounted for by adding the usual Zeeman term

Hy = 307 (cos 52 +siny &) (5)
to the corresponding Hamiltonian. Here, Ay = gugB 1s the Zeeman splitting, g is the effective Landé factor (assumed
to be isotropic) and pg is the Bohr magneton.

The propertics of Hamiltonians (1)-(4) are well-understood by now and we will not reproduce the known results
here. It suffices to say that Rashba and Dresselhaus types of SOC lead to spin textures in the momentum space, which
can be interpreted as the effect of an effective magnetic field, while the VZ type of S0C in (3) acts as an out-of-plane
magnetic field whose orientation alternates between the K and K valleys.

B. Models of electron-electron interaction

Since the focus of this article 1s on the collective modes, we need to invoke the electron-electron interaction as it is
essential to induce collective behaviour. In all cases, we assume that our system 1s doped, such that the Formi energy
(Ew) is significantly larger than the spin-orbit and/or Zeeman splitting of the electron spectrum. An exception is
the surface state of a TI, where SOC forms the spectrum rather than modifies the already existing one. With this
exception, SOC can be treated as a perturbation imposed on a single-valley (2DEG) or two-valley (graphene) Fermi
liqgmd. Modulo renormalizations by the interaction, the spin-orbit and Zeeman energy scales determine the frequencies
of the corresponding collective modes. Therefore, to leading order in these energy scales, one can neglect the effect
of S0OC and magnetic field on the Landan interaction function. For the single-valley case, the latter 1s given by the
usual form [90-92]

N f(k,K) = F*(9) + 6 - 0'F*(9), (6)

where N is the total (including the spin degeneracy), renormalized density of states at the Fermi energy, 4 is the
angle between the momenta k and k' of two quasiparticles on the Fermi surface (|k| = |k'| = kg), functions F® and
F® describe the interaction in the symmetric (direct) and asymmetric (exchange) channels, and unprimed /primed
g-matrices refer to the spin state of the first /second quasiparticle.

The valley degree of freedom in graphene allows for more interaction channels. In addition to direct and exchange
interactions between electrons within a single valley, one now also has an exchange interaction between the valleys,
and a mixed spin-valley exchange interaction. If doping is low enough to neglect the trigonal warping of the Fermi
contours, the Landau function of a two-valley FL can be written as[93]

! Theoretical estimates place the Kane-Mele coupling in the range from 1 eV [B4, 85] to 25-50 ueV [B6, 87] while a recent ESR experiment
reports the value of 42.2 peV [R5
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Figure 1. Interaction vertices for intra-valley (o and &) and inter-valley (¢ and d) scattering processes. The solid {dashed)
lines refer to electrons in the K {K‘] valley. Diagrams o and b also have exchange partners with outgoing states swapped (not
shown). Diagram d involves a large momentum transfer = |K — K'|. Reproduced with permission from Ref. 94. Copyright
2021 of the American Physical Society.
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where where Nj is the total (including the spin and valley degeneracies), renormalized density of states, ) = rrz+y1'u
and unprimed /primed T-matrices refer to the valley state of the first /second quasiparticle. Sca.ttenng processes in
a two-valley FL are depicted diagrammatically in Fig. 1, where the solid {dashed) lines refer to electrons in the K
(K"} valley and 51 2 (53,4) label the spin indices of the m.ltla.] (final) states. Diagrams a and b describe intra-valley
processes, while diagram ¢ describes an inter-valley process with small momentum transfers, in which electrons stay
in their respective valleys. Diagram d corresponds to an inter-valley process with large (= |K — K’|) momentum
transfer, in which electrons are swapped between the valleys. For Coulomb interaction, the corresponding matric
clement 1s smaller than the matrix clements in diagrams a — e, If the inter-valley matrix element is neglected, then
the rotational symmetry in the valley space is restored,[93] ie., GU(#) = G*H(F) and H(d) = HoL ().

Collective modes of a FL in the presence of SOC and/or Zeeman magnetic field (i.e., a field that affects only
electron spins but not their orbital motion) can be found from the self-consistent FL kinetic equation for the {matrix)
occupation number fi(k, r, t)

-

fiyi) 1 1
i + 'i[f, ﬁ] + E [V, -V} — E {Vet, -V} =0,

(8)

where [d;, i3] = 185 — figdy, {A;,42} = 4, - i3 + 85 - 4, and £(k, 1,t) is the functional of quasiparticle energy. In the
most general case, £(k,r,t) can be written as

gk, r,t) = £o(k) + Eso(k) + £z + Epu(k, 1, ), (9)

where £g is the equilibrium quasiparticle energy in the absence of SOC and Zeeman field, £55,7 are the changes in
the energy due to SOC/Zeeman field, and

fpp(k, T, ) = Tr’f = }D_f (k, K')#'(K', T, 1) (10)

accounts for the interaction of a given quasiparticle with the rest. The effect of oscillatory magnetic and electric fields,
applied in the ESR and EDSR measurements, are accounted for by adding the corresponding terms to the right-hand
side (RHS) of Eq. (9).

A number of comments are In order.

1) In the case of graphene with broken A /B symmetry, the kinetic equation (8) needs to be modified to include
the effect of a non-Abelian Berry curvature, which arises due to the combined effect of broken A/B symmetry
and Rashba S0C.[95] In this case, the term Vi is replaced by the covariant derivative Dt = Vit — i [A, 1),
where A is the non-Abelian Berry connection.[96-98] This leads to an effective orbital magnetic field which, in
its turn, gives rise to an EDSR peak in the Hall conductivity, see Sec. VAL

1) Equation & neglects scattering of quasiparticles either by external sources (disorder, phonons) or by other
quasiparticles, which lead to damping of collective modes. These effects will be discussed separately in Sec. V1L



1i) The FL theory cannot describe a collective spin excitation that condenses out of the continuum of spin-flip
transitions between the lower and upper cones of the Dirac surface state described by Eq. (4). The reason is
that the energy of such an excitation is comparable to 2E g, while the FL theory can only describe physics at
energies much smaller than Ep. In this case, one has to use microscopic, rather than phenomenclogical methods
to describe the electron-electron interaction, see Sec. VIIIB.

) If the reader is content with our assumption that the effects of S0OC and Zeeman field on a FL can be treated
perturbatively, they can skip the next section and go directly to Sec. II1. A more demanding reader is invited to
read the next section, which explains why the FL theory cannot deal with strong SOC and/or strong Zecman
ficld.

C. Does the Fermi-liguid theory work for arbitrarily strong spin-orbit coupling and /or magnetic field?

At first glance, the answer to the question in the title of this section is in the affirmative. All one needs to do is
to construct a new Landau interaction function, accounting for broken rotational invariance in the spin space and, in
the case of 50C, for coupling between momentum and spin. A modification of the Landan function in Eq. (6) for
the case of a ferromagnetic metal was proposed long time ago in Ref. 99. For the case of Rashba 50C, the modified
Landau function was composed in Ref. 100, but it 1= too long to be displayed here. It suffices to say that it contains
cight instead of two components which, in contrast to Eq. (6), depend not only on the angle between k and k' but
also on the magnitudes of these momenta. And this 1= the first sign of a problem with the FL theory. To make this
problem more evident, we consider the case of non-interacting electrons with Rashba spectrum (cef. Fig. 2a):

. _ K

El’- = E + k. {11}

If both Rashba branches of the spectrum are occupied, the Fermi surface consists of two concentric circles with radn
k% = Fma + 4/ (ma)? + 2mEF, as shown in Fig. 2b. Let us calculate the spin susceptibility. In the diagrammatic
language, the ij component of the spin susceptibility is given by a polarization bubble with the corresponding Pauli
matrices at the vertices. In the absence of SOC, the spin susceptibility comes from the states in the immediate vicinity
of the Formi surface. This 1= not so in the presence of SOC. The simplest case 1z when the Zeeman magnetic field 1s
applied along the normal to the 2DEG plane, 1.e., i = j = z, see Fig. 2c. In this case the T' = 0 static susceptibility
arises solely from transitions between the two Rashba branches:

_ BB fm dkk np(s; ) — nr(sy)
Az= 2 Jo 2 gf —=p

_gHE f"‘“ dk _ g*ppm (19)
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where np(g) 1s the Formi function. We see that the integral over k does not come from the vicinity of either Fermi
circle, but rather from the entire interval between the Ferm circles of width Akp = ki — kf = 2ma? It is not a
problem for a non-interacting case, hecause the spectrum is known for arbitrary k. But it does become a problem
for the interacting system. Indeed, the concept of quasiparticles is applicable only to long-lived states in the vieinity
of each of the Fermi circle, see Fig. 2d. But states away from each of the Fermi circles (shown by red shaded regions)
are just some complicated many-body states, which the FL theory cannot describe.

Suppose that one ignores this warning and goes ahead with calculating the renormalized g-factor, using the Landan
function modified by Rashba SOC from Ref. 100. The only modification which matters here 1s that, because SOC
breaks spin-rotational invariance, the & - 8'F® term in Eq. (6) is replaced by a combination & - &‘I"lf“"{k, k') +
G264 f* (k, k'), where &) = &.% + 6y¥. With this modification, one follows the same procedure as for a usual FL
[90, 91) and arrives at the integral equation, for e.g., the out-of-plane g-factor

Ky rpalp pr
G (k) =g f LS UL

e +— 2z
k;+ m E&r _E&a

(13)

2 The in-plane components, Y., = Xyy: consist of two parts: one is the Ferm-surface contribution, as in the absence of S0C, and another
one 18 the contribution from the entire interval Akp.

4 Note that the integral in Eq. (12) can be also solved by rewriting it as x .. = (1/dma) f;’“ dk nF(E:] —ng (s, )| and then integrating
by parts. In this way, one obtains the same result as the sum of two contributions from the Fermi circles. i5 means that spin
susceptibility is an anomalous quantity in the field-theoretical sense, i.e., it can be viewed equivalently either as low-energy or high-
energy contribution [101] But this equivalence is lost in the presence of interactions.



where * indicates a renormalized quantity. (Note that the Lutti theorem guarantees only that the total area of
the Fermi surface is not renormalized, i.e., that k5** + k;*? = k1* + k5”, which does exclude renormalizations of ki
ndividually.)

A brief inspection of Eq. (13) shows that, in general, it does not make sense. Indeed, the integral on its RHS
involves energies of quasiparticles at an arbitrary point between two Fermi circles. However, as we explained before,
quasiparticle states are not well-defined away from either of the Fermi circles. Therefore, the renormalization of the
g-factor cannot be calculated within the FL theory. Only if SOC 1s weak and thus Akp < kp, one can replace E;i by
their quasiparticle forms. But in this case the width of the integration interval cancels out with the energy splitting
due to SOC, and we are back to the usual result for the renormalized g-factor: g* = g/(1 + F'). (For weak SOC, the
difference between the in-plane and out-of-plane components of the exchange interaction becomes negligible, and we
replaced Fg'" by Fg at the last step.)

A similar conclusion had eventually been reached in regard to a FL in the Zeeman magnetic field: if the Zecman
splitting is comparable to the Fermi energy, the FL theory does not work.[102-105] Interestingly, problems with
applying the FL theory to the cases of strong spin polarization, ferromagnetism, and SOC had been forescen by
Conway Herring as early as in 1966.[106] The problem discussed above is a generic feature of systems with broken
SU7(2) symmetry.

What was said above does not imply that an interacting system of electrons with strong S0C belong to the
category of non-Foermi liquids. Indeed, momentum-resolved probes, such as angular-resolved photoemission, would
find well-defined quasiparticles near each of the Fermi circles. What it means is that the thermodynamic quantities
characterizing the spin sector of such a FL cannot be described by a (small) set of Landan parameters, but must
imvolve the information about states away from the Fermi surfaces.

This is not such an unusual situation. For example, renormalization of the effective mass of a Galilean-invariant FL
18 described by a single Landau parameter: m* = m(1 + F}'). However, if the system is not Galilean-invariant (but
still isotropic), the last formula changes to m* = m(1 + F}'), where @ involves integrals of the interaction vertices
over the entire momentum space, [92, 107] and thus the effective mass in this case cannot be described by any finite

number of Landau parameters.

> quasiparticles
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Figure 2. a) Spectrum of the Rashba Hamiltonian (1). b) The Fermi surface of the Rashba-split spectrum for non-interacting
electrons. ¢) Diagrammatic representation of the out-of-plane spin susceptibility, x... * label the Green's functions of the
Rashba subbands. d) Same as in b) for interacting electrons. Red shaded regions denote states away from the Fermi circles
which cannot be described by the Fermi-liquid theory.



III. PREAMBLE: SILIN MODES IN A PARTTALLY SPIN-POLARIZED FERMI LIQUID

Switching to the subject of collective modes, it is instructive to begin with a short reminder about the collective
modes in a single-valley FL without SOC.[54, 91, 92| A neutral FL, e.g., normal *He, supports long-lived collective
excitation in the (charge) density sector: zero-sound waves with acoustic spectrum (hine ¢ZS in Fig. 3a). In a charged
FL, the I = 0 branch of zero-sound waves a replaced by plasmons, which are gapped in 3D (curve Pip) and gapless
mn 2D (curve Fap). The spin zero-sound mode does not fare that well. There is no general theorem that such a
mode cannot be long-lived. However, as long as the interaction between fermions is repulsive (which corresponds to
the attractive exchange interaction) and under reasonable assumptions about the harmonics of the Landan function
F(#) in Eq. (6), Le., Fj < FJ' < 0, etc., the mode is subsumed by the particle-hole continuum and thus overdamped
(line sZ8 in Fig. 3a).

The situation changes in the presence of the Zeeman magnetic field, which gaps out the continnum of particle-hole
cxcitations accompanied by spin-flips, see Fig. 3b. At g = 0 the gap in the continuum is equal to the renormalized
Zeeman energy Ay = Ag /(1 + F§'), then it decreases as g increases, and vanishes eventually at g = Ag /vf, where v
1s the renormalized Formi velocity. The region below the lower boundary of the continuum 1s now free of particle-hole
excitations and can support long-lived collective modes.

The frequencies of these modes at ¢ = 0 are found by writing the occupation number as ni(k,t) = np +
n’ [A%/2 + u(k,#) - &] and the quasiparticle energy as £(k, ) = 5o+ A$b - & /2 + £p(K, t), where b is the unit vector
in the direction of the magnetic field and n} = 8np () /0=, and using Eq. (8) without the gradient term.[91, 92] This

gives an equation of motion for the vector u

r

ia;ll{kp,t} =‘&§Ex [U{kp?t}+f‘;}'%1ll: ;7‘3”1?“':19} 1
(14)

where kr = krk/k and ki, = kpk'/F', dO' is the element of the solid angle subtended by the vector ki, and Op is the
full solid angle in I? dimensions. Equation (14), which describes precession of the vector 1 around the magnetic field,
is an eigenmode equation for the Silin collective modes.[54] The frequencies of these modes depend on the angular
momentum, £, in 3D or its projection onto the normal to the plane of motion, m, m 2D [92]

1+F2
= A1+ FY) = Ao (15)
with n = £ in 3D and n = m in 2D. Here, F§ are the harmonics of the Landau function defined by
Fo(d) = (26 + 1) F{Pu(9) (16)
£
and
Fo(d) =Y Fae™® (17)

m

in 3D and 2D, respectively, and Pg(1¥) are the Legendre polynomials. Although there is, in principle, an infinite
number of Silin modes, only the n = 0 mode couples to an oscillatory magnetic field, applied in an ESR or muclear
magnetic resonance (NMR) measurements. Indeed, the magnetization is expressed solely through the zeroth harmonic
of the function u(kp,t): § = —(1/2)g*upN} [ dOu(ky,t)/Op = (1/2)g*usNEu®(t).

As we see from Eq. (15), the frequency of the n = 0 mode 15 not renormalized by the interaction and coincides with
the Larmor frequency for free fermions. This i1s a general property of Hamiltonians with interactions that conserve
spin and do not depend on velocities.[108] Diagrammatically, the results comes about as a cancellation between the
self-energy and vertex corrections the spin susceptibility.[108]

The difference hetween spin precession of free fermions and FL quasiparticles 1s illustrated in Fig. 4. Although the
spins of free fermions (on the left) and FL quasiparticles {on the right) precess with the same frequencies, the phases
of the former are not correlated but the phases of the latter are locked.

The n = 0 Silin mode disperses down with g, at first quadratically, and then grazes the continuum of spin-
flip excitations, as shown in Fig. 3b. The downward sign of the dispersion can be explained by attraction in the
exchange channel of the interaction.|55] Unlike the frequency at g = 0, which is not renormalized by the interaction,
the functional form of the dispersion encapsulates all harmonics of F®. In particular, the quadratic part contains
harmonics Fj (which can be also extracted from the spin susceptibility, if the effective mass is measured independently



8

from the specific heat) and F? (which cannot). The dispersion of the Silin mode in normal *He was studied extensively
by NMR experiments in a spatially varying magnetic field which produced confined waves, see Ref. 109 and references
therein. In solid-state systems, the Silin modes where measured in the late 60s by ESR on alkali metals. [110, 111]
More recently, the dispersion of the Silin mode was measured by high-precision, finite-g Raman spectroscopy in a
Cdy_:Mn;Te quantum wells.[55-60] In this case, however, the Silin mode bears clear fingerprints of both Rashba and
Diresselhans S0Cs, which are discussed in Sec. VIITA. A tantalizing proposal to observe Silin modes in a quantum
spin liquid with spinon Fermi surface has recently been put forward in Ref. 112.
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Figure 4. Precession of spins in a Fermi gas (left) and Fermi liguid (right). Although the frequencies of the n = 0 mode are
the same in both cases, the phases of precessing sping are uncorrelated in a Fermi gas and locked in a Fermi liquid.

IV. CHIRAL SPIN WAVES IN TWO-DIMENSIONAL ELECTRON GASES

A. Chiral spin waves with Rashba spin-orbit coupling

We now proceed with discussing the main subject of this paper—collective spin modes in the presence of SOC-
starting from the simplest case of a single-valley 2DEG with Rashba SOC, studied first in Ref. 113. The single-particle
Hamiltonian is given by Eq. (1) and the Landau function is given by Eq. (6). It is convenient to introduce a set of
rotated Pauli matrices which depend on the electron momentum|[113]

VoK) = —dz, By(k) = cos dyde + sin dydy,
¥.(k) = sindrdr — cos dudy, (18)

where ¢y is the azimuthal angle of k. When taken at the same momentum, ¥’s obey the usual algebra [2& (k), ﬁﬁ {kj] =
ie®#1$3. (k), where €®®" is the Levi-Civita tensor, while [fy{k},ﬁ; {k’}] _ i%,(K) cos(dx — ). In this basis,
1, .
fso = gArY:(k), (19)
where Ap = 2akp. Treating £5p as a static perturbation, we obtain the renormalized value of the Rashba splitting[113,
114]
k= Ar/(1+F7). (20)

This energy marks the end point of the continnum of particle-hole excitations which involve spin-flip transitions
between the branches of the Rashba spectrum, see Fig. 3c. In a non-interacting system, the continuum at g = 0
occupies a finite region of width Af) = 4ma®. However, the FL theory is valid only to first order in «, therefore,
within this theory the continuum shrinks to a single point at £ = A,

Now we consider a time-dependent perturbation of the occupation number

5i(k, ) = nlp %ﬁ;‘lﬁz{k}+u(k¢t}-i}{k} .
(21)
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Substituting this form into Eq. (8) (without the gradient term) and linearizing with respect to u, we obtain the
following equations of motion for angular harmonies of u:

1
Bl = —Aju [1+§{F;_1+F;+1)], (222)
Bl = Apuf (1+F2), (220)
Bu™ = 0. (22¢)

The last equation implies that uf* = const and can thus be ignored. The eigenvalues of this system are the frequencies
of a new type of collective modes: chiral spin resonances.[113] Their frequencies are

O = a.;a\/ [1 4 5P + F“_ﬂ] (1+F3).
(23)

(Note that ©_; = Oy because F? = F5.) Asin the case of the Silin mode, there is an infinite number of chiral-spin
resonances. Now, however, only two modes with m = 00 and m = 1 couple to the external magnetic field. This 15
because the magnetization

s— —%g*pBN;.Trf% [u(kp,t} : i:(kp}] & (24)

contains not only the 0*" but also +1% harmonics of u due to the angular dependence of matrices £, (k). The m = 0
mode with frequency

Q=0 = Afy/(1+ F)(1 + FP) (25)
corresponds to oscillations of the z-component of &, while the doubly-degenerate m = +1 mode with frequency

iy = = ﬁh\/[l + % (F§ + F&‘J] (1+F7) (26)

corresponds to oscillations of the in-plane components of §. Provided that Ff < F3, we have 1, < {1}, which is the
case shown in Fig. 3c. Since spin is not a conserved quantity anymore, the frequencies of all modes are renormalized
away from Ag.

The chiral spin resonances are the g = 0 end points of the dispersive modes: chiral spin waves (CSW).[46, 115
Once the direction of q in the plane is chosen, the degeneracy of the two in-plane mode is lifted and there are now two
modes with frequencies £-(q) and £,,(q), polarized along and perpendicular to q, respectively. The dispersions of
these modes are shown schematically in Fig. 3c. The in-plane modes run into the continuum at some values of g and
disappear from the spectrum. The out-of-plane mode behaves similarly to the Silin mode: it disperses down with g
and grazes the continuum of particle-hole excitations. We will discuss the spatial dispersion of CSW in more detail
in Sec. VL

The equations of motion (22a)-(22c) allow for a simple physical interpretation.[116] Namely, one can think of vector
u™(t) as a classical spin on site m of a linear spin chain, aligned along the y-axis as in Fig. 5. Spins do not interact
with each other but are subject to an effective magnetic field due to Rashba SOC, directed along the z axis and
of magnitude AR /2. The effective Landé factor of these spins is anisotropic in the (z,y) plane with components
Jr =2+ Fo + Fp_y and " = 2(1 + F). The spin chain is non-uniform because +{" and 73" depend on the
lattice site. Both anisotropy and site-dependence of the g-factor arise from the FL interaction. Because uf* = const,
the spins precess around the Rashba field. The effective-lattice interpretation will be even more instructive in the
case of both Rashba SOC and Zeeman field being present, which is discussed in the next section.

B. Effective lattice model

Now we add a Zeeman field aligned along the r-axis. The total Hamiltonian is the sum of Eqgs. (1) and (5), and
the additional term in the quasiparticle energy in Eq. (9) is

£y — ‘&25 5 % [ms:ﬁkiz{k}+sin¢kfu(k} .

= —Fp =

(27)
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Figure 5. a) An interpretation of collective modes in a Fermi liquid with Rashba spin-orbit coupling in terms of a linear spin
chain. b) The spectrum of the system consists of an infinite number of discrete levels, converging towards the continuum at
AgL. Reprinted with permission from Ref. 116. Copyright 2017 by the American Physical Society.

Correspondingly, the equations of motion for vector u become

Bl = ~Aju |14 2 (Foy + Fihar) | — 5% (™ — o) (14 F2)
o ARl (Fay — i) + 3A% (uf ™ +ul) (14 Fa), (2%a)
O = At (1+F5) + A% [u = (14 Fgy) — ™ (14 Fay)] (285)
1
B = —gAF [ur ™ (1+ Foy) + o7 (14 P (28¢)

Note that the angular dependence of the Zeeman energy in the ¥-basis in Eq. (27) leads to a non-locality in the m-
space: the Zeeman terms in the equation of motion shift the angular momentum by +1. Now the equations of motion
resemble those for the tight-binding (TB) model with three orbitals per site, in which the Rashba and Zeeman terms
play the roles of on-site and hopping energies, respectively. To make this analogy more transparent, we climinate
components uy’' and ul" and introduce the “Bloch wavefunction”

. (29)

Assuming the oscillatory time dependence with frequency (2, the equation for ¥y is reduced to the TB form:[116]

Fo, +F®
VP = [a;f(nﬁ;:} (1+—"‘+‘;r S

F2 + F& F%_, +F&
—ALAL [(1 + "‘T’““) (1+Fryy) ¥mar + (1 + %) (1+Fpn_,) "n{"m—l] . (30)

) L AR +F,5;:F] Ym

In the absence of interaction, Eq. (30) 15 simplified to

P = (Ak + A7) ¥m — ArAz (Ymt1 + Pm-1). (31)
The eigenvalue of this equation

Qdn) = [AL + A2 — 28 Az cos ]

(32)
1s nothing but the difference between the energies of the Rashba subbands at a given direction of k (modulo a phase
shift inflicted by the transformation (29)). (d¢y) disperses with ¢y € (0, 27), which 1= a conjugate variable to m.
Therefore, ¢y plays the role of “quasimomentum” confined to the first Brillonin zone (0, 2x). The minimum and
maximum values of Q(dy), Qe = Ar +Ag and Qi = |Ag — Ag|, mark the edges of the “conduction band”, which
1s nothing but the particle-hole continnum. At Ay = Ap the gap in the continuum collapses to zero. At this value of
the magnetic field, the Fermi contours of the Rashba branches touch at one point and thus a transition between the
two branches costs no energy.

We now come back to the interacting version of Eq. (30), which allows for a simple physical interpretation. Imagine
a 1D lattice with sites labeled by index m = 0, %1, .... The Bloch wavefunction vy, resides on these sites. The first
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Table I. Mapping of the Fermi-liguid kinetic equation onto an effective 1D tight-binding model.

Fermi-liguid kinetic egquation 1D tight-binding model
angular momentum m lattice site m
arimuthal angle of momentum k (¢ quasimomentum
m™ harmonic of the spin part of the occupation number v | Bloch wavefunction on site m
Rashba spin-orbit coupling on-site energy
Feeman splitting nearest-neighbor hopping
Diresselhaus spin-orbit coupling next-to-nearest neighbor hopping
harmonics of the Landau function on-site and bond defects
continuum of spin-flip particle-hole excitations conduction band
collective modes bound states

term on the RHS of Eq. (30) is the energy on site m, the last two terms describe hopping between site m and its the
nearest neighbors, m £ 1. If we artificially remove all F}},'s from the equation but keep the renormalized values of Ay
and Az, we will obtain the renormalized band (continuum) with boundaries £, = Af + A3 and Q7 = |AR — Az
The role of F2's is to renormalize both on-site energies and hopping matrix elements. Because Ff, depends on m,
both the on-site energics and hopping matrix elements vary along the lattice. In other words, Ff's introduce both

one-site and bond defects.

In principle, F5 is non-zero for any m. Therefore, each site of our lattice 1s different from the others, and we
can view our lattice as an ordered alloy composed from an infinite variety of chemically distinet atoms. But if we
keep only a fow first harmonics of F*(4) and neglect the rest, the central region of the lattice will contain defects,
while the outer regions will be defect-free. Lattice defects produce bound states which split off the band. In this
language, therefore, the collective modes of a FL are the bound states of an effective 1D lattice. Studying a much
more transparent problem of bound states, one can understand a more complicated case of a FL with SOC and in
the presence of the magnetic field.

The case of Dresselhans SOC can be analyzed in a similar way. According to Eq. (2), the corresponding term in
the quasiparticle energy reads

Ab
2
*
D

= A [cus Eiﬁ'jciy(k} + sin Eﬁiz (kj] 3

£30 (cos ¢ty — sin gredy)

(33)

where A, = Ap/i(l1 + F'). A double angle in this equation implies that the corresponding terms in the equations
of motion shift the angular momentum by £2. In the lattice interpretation, this corresponds to hopping between
next-to-nearest neighbors. A complete dictionary of mapping between the FL kinetie equation and TB model is given
in Table L.

We note that the zero-sound modes of a 2D FL in the absence of SOC and Zeeman field can also be understood as
bound states of a 1D lattice. In this case, hopping between sites arises due the gradient term in the kinetic equation,
which also shifts the harmonic index by +1. For example, the shear zero-sound waves of a 2D FL were analyzed in
this way in Ref. 117.

C. Effective lattice model for Rashba spin-orbit coupling and Zeeman magnetic field

We now illustrate how the lattice model works for the case when both Rashba SOC and Zeeman magnetic field are
present. In addition, we assume that the Landau function is isotropic and thus contains only the zeroth harmonic:

FL = 8 oFy (the s-wave approximation). In a dimensionless form and in the s-wave approximation, Eq. (30) can be

written as

Wihm = Witm — J (¥me1 + Ym—1) + Uom otm + Ut (5m.1 + 0m—1) ¥m — 6J0m 0 (Y1 + ¥_1) — 87" (8m.1 + 8m.—1) Yo,
(34)



14

Uy J+ &1 Uo T+ &

a)—O-—@)OO—».——

f+fﬁ'uf+fﬁ'
Uy Up Uy
= —~ =
b) —@ (@) () @) @
2 4 a4 o 1 1 1

Figure 6. a) Effective lattice for the FL kinetic equation (34) with Rashba spin-orbit coupling and in-plane magnetic field,
and in the s-wave approximation for the Landan function. Filled circles represent sites of ideal lattice with on-site energies W,
connected by bonds with hopping amplitudes J. The m = 0, £1 sites are occupied by “impurities” with on-site energies U
and ['3q, respectively, connected by “defective” bonds with hopping amplitudes .J £ 4.J. b) A simplified version of the effective
lattice with on-site disorder onlv. Reprinted with permission from Ref. 116. Copyright 2017 by the American Physical Society.

where
w = QfAp, J=A%/Ag, W=1+J2 (35a)
Fﬂ
Uo =F“[1+J‘3|:‘2+PE§'}],U1=T” (35b)
Fo Eg
a7 =J2,6J’ T”{E+PE§'}. (35¢)

[Note that, according to Eq. (20), Ag is not renormalized in the s-wave approximation.| The corresponding lattice
i1s shown pictorially in Fig. Ga. The first two terms on the RHS of Eq. (34) describe an ideal lattice with “on-site
energies” W oand “hopping amplitudes” between the nearest neighbors J. The rest of the terms represent “defects”.
The third and fourth term correspond to three *impurities” on sites m = 00 and m = %1 with on-site energies Uy and
[7;, respectively. The last two terms describe defective bonds between the 0" and +1* sites. The amplitudes are
equal to J + 4J for hopping from 0 to +1 and J + 4J" for hopping in the opposite direction, 1.e., the bond defects
are chiral. This means that the effective TB Hamiltonian is non-Hermitian. This does not present any difficulties,
however, because the eigenvalues of Eq. (34) are real.

To solve Eq. (34), we choose wavefunctions 1y and 143 as independent variables, and assume that, starting from
sites m = £2, the wavefunctions of the bound states decreases exponentially with m :

Vigmiszy =€ T gy, (36)

with Reld = 0. This yields a transcendental equation for A, whose solutions are presented in Fig. 7. The left panel is
for magnetic fields below the gap closing point (A3 < Ag). There are two collective modes in zero field-these are the
same modes as given by Eqgs. (25) and (26). An in-plane magnetic field Lifts the double degeneracy of the £2)) mode
(similar to the case of finite g in Fig. d¢) and, at finite but small Aj there are three modes. The in-plane modes run
into the continuum at some critical values of A3, but the out-of-plane mode continues to graze the continuum down
the gap-closing point. For Af > Ag, the single mode appears again, see Fig. 7, right. Its frequency increases with
the magnetic field and, in the limit of A% & Ag, the mode evolves into the Silin mode with frequency Ag.

A rather complex spectrum shown in Fig. 7 can be understood in terms of simplified versions of the TB model.
Namely, the merging of the two in-plane modes with the continuum can be understood qualitatively by ignoring bond
defects, 1.e., by setting 4J = §J' = (. In this case, we have a TB model with identical bonds between all sites and
three impurities on sites m = 0, £1, see Fig. 6b. For an even simpler case of a single impurity in a 1D lattice, it
15 well- known that there always exists a bound state located either below (for an attractive impurity) or above (for
a repulsive impurity) the conduction band. For realistic values —1 < Ef < 0, our *impurities” are attractive, and
thus the bound state is below the band. Given that a single impurity has at least one bound state, it i1z natural to
cxpect that a complex of three impurities will have up to three bound states, which is indeed confirmed by an explicit
solution of the TB model (see Appendix A.lb in Ref 116). Qualitatively, this can be understood in the contimimm
limit, in which a three-impurity complex is replaced by a 1D potential well of finite width (a) and depth (7). Such
a well has at least one bound state but may also have two, three, ete. states, if the product Ua exceeds some critical
values.

Our original problem corresponds to a TB model with parameters given by Eqs. (35a-35¢). In the lmit Aj < Ag
and not too weak interaction |Fj| ~ 1, the potential energies of the impurity sites are of the order of 1, which is much
larger than the bandwidth 2J = 2A5 /AR < 1. Thus we have three strong impurities with the maximum number
of bound states, equal to three. As Aj increases, the bandwidth increases linearly whereas the potential energies
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Figure 7. Collective modes of a FL with Rashba SOC and in the presence of the in-plane magnetic field. The Landau function
is taken in the s-wave approximation: F°(#) = Fj = —0.3. A% is the (renormalized) Zeeman energy and Ag is the Rashba
energy splitting. Left: AL < Ag. Right: AL > Ag. Inset: Same as in main panel for a wider range of fields. Reprinted with
permission from Ref. 116. Copyright 2017 by the American Physical Society.

increase only as A%?. Therefore, the impurities get relatively weaker (compared to the bandwidth), and we lose first
the highest and then next-to-highest bound state. The lowest bound state also disappears but only at the gap-closing
point. This seoms to contradict the fact that there is at least one bound state in a 1D problem regardless to its
parameters. However, this statement is true only for the continuum Schroedinger equation, which does not have the
notion of bonds. In our full problem, two bonds are defective and there is an interesting competition between the
on-site and bond defects, which does allow the bound state to disappear precisely at Aj = Ag.[116]

As the field increases beyond the gap-closing point (A3 > Ag), the m = 0 impurity becomes stronger while the
m = %1 impurities remain the same. Therefore, we are back to a single-impurity problem with only one bound state
or, equivalently, one collective mode.

From the solution of the kinetic equation one can also deduce the polarization of the collective modes. Figure 8
shows how the polarization of chiral spin modes changes with the magnetic field.[118] In zero field, there are linearly
polarized modes. At finite B < B, where B, is the field at which the gap in the continnum closes, along the r-axis,
the longitudinal mode (with the magnetization along the field) remains linearly polarized, while two transverse mode
{with the magnetizations perpendicular to the field) are elliptically polarized (as long as they are located outside the
continium). When the single wave emerges on the other side of the gap-closing point (B > B.), it is elliptically
polarized, with the magnetization vector precessing around the magnetic field. As the field becomes much larger than
B,, the wave transforms gradually into the Silin mode with circular polarization.

(2)
(y)
>
(XJ ()

0<B<B. B B>>B

Figure 8. Polarizations of chiral spin modes at different values of the magnetic fields applied along the r-axis. B, is the
gap-closing field, at which A% = A%L. Reprinted with permission from Ref. 118, Copyright 2016 by the American Physical
Society.

If the Landan function contains a large or infinite numbers of harmonies, one has to resort to numerical diagonal-
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Figure 9. Collective modes of a FL. with Rashba SOC (left) and in the presence of the in-plane magnetic field (right) for a
model form of the Landau function: F5 = Fﬁ’exp[—mgfmﬁ] with Ff' = —0.3 and mp = 10. Reprinted with permission from
Ref. 116. Copyright 2017 by the American Physical Society.

1zation of Eq. (30). Figure 9 shows the result of such diagonalization for a model form of the Landaun function, given
by F2 = Ff exp(—m?/m2). In this case, the modes are very densely spaced and form a quasi-continuum.

V. COLLECTIVE SPIN MODES IN DIRAC SYSTEMS
A. Graphene with proximity-induced spin-orbit coupling

The case of graphene with proximity-induced SOC differs from the one considered in the previous section in two
important aspects. First, at the single-particle level, the Hamiltonian (3) contains the valley-Zeeman (VZ) term, in
addition to the Rashba term. Second, at the many-body level, the Landan function contains exchange interaction
between the valleys. In this section, we ignore the asymmetry gap as it has no interesting consequences for the
spectrum of the collective mode. Furthermore, we will neglect a process in which electrons are swapped between the
valleys (see Fig. 1d). Then the Landau function becomes isotropic not only in the spin but also in valley subspaces:

Nif(K) = F*(0)+ 6 -6'F*(d) ++ - #'G(d) + (& - &")(F - #")H (). (37)

Since we are interested in collective modes with frequencies <€ Ep, the valence band can be projected out by using
Lowdin method,[119] and the effective single-particle Hamiltonian for the conduction band becomes|94]

. AR - A
H, — vpk+TR{kx&}-i+ ;z‘r;ﬁ';. (38)

Accordingly, the change in the quasiparticle energy due to SOC is now given by *

Ai i )"‘*.-’z A A
£so(k) = ?{kx&}~i+ 5 202
At Mo
= ?Rﬂz — %Tz)i,, (39)

while the non-equilibrium part of the occupation number can be written as
Sk, t) = nly [u{k, t) - B(k) + wk,t) - #

+Mag(k, t)7aLa ()|, (40)

4 Note that in 7, is just &1 in Eq. (38, but it is a matrix 7, in Eq. (39).
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where the rotated set of Pauli matrices is defined by Eq. (18).Vector 1 and tensor Mug describe oscillations of the

uniform

s = Jf% {;ﬂk Tr [671(K, ) 6] (41)
and valley-staggered magnetization
_ gue [ &k . .
e f G e 00 7:6), (42)

respectively. The vector W describes valley polarization, which 1s decoupled from the spin sector and will not be
considered below.

Collective modes of our system correspond to coupled oscillations of the uniform and valley-staggered magneti-
zations. In the absence of VZ such oscillations are decoupled. The spectrum of collective excitations consists of a
doublet of in-plane modes and a single out-of plane mode in each of the sectors, to a total of six modes. VZ SOC
mixes the & and M sectors. Solving the coupled system of equations of motion, one obtains the following expressions
for the frequencies of the in-plane modes|94]

+ hh
0 =AY (mTJr) + A7z (f+h+ + f- h—) + 02, (43a)
where
1/2

o _ | yeaf ff+ —hhy hhi\? L 2, ys2ys2 43h
Qg = | AR B + Az (f-hye + A fo ) + AR AR (Ff- + Rh_)(f-hy + h_f4) ' (43b)

F§+ F§ — F¢

.f=1+F1:.f+_1+ ?.f—_%?

Hy +H2 _Hﬂ-Hﬂ

ho=1+Hy, hy =1+
(44)

and Al = Ap/(1+ F{) and My = Myz/(1 + Hp) are the renormalized spin-orbit coupling constants. The frequencies
of the out-of-plane modes are given by

08 4 = h[(hy +h)NE + IXE]
03 = F[(fe+ FONE + BT (45)

Finite g and/or Zeeman magnetic field Lift the degeneracy of the in-plane modes. The spectrum of the collective
modes in these cases is a subject of the on-going study.[120]

B. Dirac surface state of a 3D topological insulator

The Dirac state on the surface of a 3D topological insulator, described by the Hamiltonian (4), is characterized by
locking of the spin and charge degrees of freedom. Indeed, Eq. (4) implies the charge current and spin densities are
related by an operator identity[45]

j=ewptr x & (46)

Dhue to this coupling, the system supports a new kind of collective modes: spin-plasmons.[45] Although the dispersion
of spin-plasmons at small ¢ is similar to that of usual plasmons in 2DEGs (w o 4/g), the nature of the two modes is
quite different becaunse a spin-plasmon corresponds to coupled oscillations of spin and charge densities. For example,
the weight of the spin part at small g is much larger than that of the charge part.

Low-energy excitations of a doped surface state can be described by the effective theory of helical FL, obtained by
projecting out the occupied Dirac cone.[39] While the charge sector of such a FL can be described by a few Landau
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Figure 10. a) Spectrum of the Dirac state on the surface of a 3D topological insulator. b) Spectrum of the collective modes
of the surface state. w, denotes the spin-plasmon [45], wy and w; , denote the out- and in-plane collective spin modes,
and w— = 2EF is the lower boundary of the continuum of spin-flip particle-hole excitations. c) Ladder diagrams for the spin
susceptibility x oz (@, 8 = x,y, z). Panel b) is reprinted with permission from Ref. 61. Copyright 2017 by the American Physical
Society.

parameters, description of the spin sector runs into difficulties similar to those discussed in Sec. ITC. Namely, the
total spin susceptibility contains contribution from high-energy states which cannot be accounted for within the FL
theory. Nevertheless, the FS contribution to the spin susceptibility can be expressed through the Landan parameters
of a helical FL.[39]

In what follows, we will be interested in a collective mode of the spin-excitonic type observed in Ref. 61; see
Sec. VIIIB for more details on the experiment. This mode condenses out of the continuum of inter-band particle-hole
excitations. In a non-interacting system with Dirac spectrum such a continnum starts at the Pauli threshold w = 2ER,
see Fig. 10a, and disperses with g as shown by the shaded region in Fig. 10b. The blue shaded region depicts the
continuum of gapless intra-band particle-hole excitations. With interactions, one expects to see the spin-plasmon
mode (blue curve) and inter-band collective spin modes (red curves). By the same symmetry arguments as given in
Sec. IV A, there are one out-of-plane mode and two in-plane modes at finite g; the latter become degenerate at g = (.
Inter-band excitations with energies comparable to E'p cannot be described within the FL theory, and one has to treat
clectron-clectron interaction explicitly. The simplest method 1= the ladder appraoxdmation, shown diagrammatically in
Fig. 10c. For a Hubbard-like interaction and at g = 0, one obtains the spin susceptibility as [46]

_ g .P"B Map(52)
Xap () = ~0as5 7 + 5ap(2)’ “n

where the components of the polarization bubble I are obtained by analytic continuation of the corresponding
Matsubara expressions

Mas (i) —TZ f {Eﬂ}ETr [6aCalk,igm + i) 35Co(K, ism)] (48)

-1
with o, f = z,y, z and Gp(k, iem) = (ir_-'m _ Hm) ia the Green’s fanction of the Hamiltonian {4).

For Dirac spectrum, the momentum integrals for I, diverge in the ultraviclet and need to be cut off at some
momentum A, chosen from the condition that the cubic term in the dispersion due to hexagonal warping[29] becomes
comparable to the linear one. With such a cutoff, we obtain

) . (49)

4+ 2Eg
0 —2Ep

1 1 Q
Rellzr (£2) = Rellyy (f2) = Emzz{ﬂ} = e (ﬁ + E]n
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The poles of Eq. (47) give the frequencies of the collective modes. At weak coupling, the modes are exponentially
close to the boundary of the continuum:

), =2Bp — Ve /", Q) = 2By —Ve VY, (50)

where u = UEr /2mvd is the dimensionless coupling constant and V' = 4Ep exp(A/2kr).

A reader familiar with the semiconductor literature of the 60s may notice that the derivation presented above
is very close to that of “Mahan excitons” in degenerate semiconductors.[121] Indeed, because of the relation (46)
the in-plane components of the spin susceptibility and conductivity are proportional to each other. [45] The same
analysis, therefore, would predict that the optical conductivity of a helical state should have a peak at (1 = ),. This is
exactly what Mahan obtained by (effectively) resumming the ladder series for the optical conductivity of a degenerate
semiconductor; the only difference is that he considered Coulomb rather than Hubbard interaction but this difference
i1s not significant. Indeed, a similar analysis for the Coulomb case shows that the collective modes are exponentially
close to the continuum boundary as well, namely[122]

o T 1 A
260 {1 G o [-gr (5 -y )}

o T 1 A
o = 25 {1 Go g (5 o )|

where o = &2 /vp is the dimensionless coupling constant of the Coulomb interaction.

Subsequent analysis showed, however, that the ladder approximation is not adequate for this problem:[123, 124]
because electrons and holes interact not in vacuum (as it is the case for an undoped semiconductor) but in the presence
of the Fermi sea, the excitonic state is overdamped due to Auger-like electron-hole interactions processes, which start
at the indirect threshold of (t = Ep. Moreover, damping due to electron-electron and electron-hole interactions starts
already at 2 < Ep, and is still operational at {} ~ E.[125, 126] Both types of damping give rise to the linewidth
proportional to u? (or o”), whereas the binding energy is exponentially small in 1/u (or 1/a). Therefore, collective
modes (and Mahan excitons) must be totally washed out at weak coupling.

Nevertheless, Eq. (47) describes very well a spin-resolved collective mode ohserved by Raman spectroscopy in BiaSes,
which effectively probes the zz-component of the spin susceptibility, see Ref. 61 and Sec. VIIIB. The frequency of
the observed mode 1= about Ep, which implies that the system is not in the weak-coupling regime. On the other
hand, an order-of magnitude estimate for the linewidth due to all types of electron- and electron-hole interactions
15 also of order Ep for @} ~ Ep and u ~ 1 (or & ~ 1), so one would expect to see only a very broad peak at best.
Nevertheless, the observed peak i1s quite sharp: its hnewidth is only about 1 /20 of its position. Moreover, the linewidth
does not vary with temperature as the latter is raised up to 300 K, which indicates that the broadening i= due to
impurity scattering. Therefore, damping due to electron- and electron-hole interactions 1= significantly weaker than
a naive, order-of-magnitude estimate would suggest. We believe that the reason is purely numerical: as analytical
and numerical results show, the linewidth due to both processes is only 5 x 107*Ef for a 2D helical state.[122, 126
Therefore, the ladder approximation works much better than it might have been expected to.

T

(51)

VI. SPATIAL DISPERSION OF COLLECTIVE SPIN MODES

The dispersion of the transverse n = 0 Silin mode is quadratic in g for g < A} /v}:[54, 105, 108, 127]

B UEQEE
Qg) = Az +as({F'}) A, (52)

where as({F*}) depends on the angular harmonics of the Landau function; explicitly, as = (1+F8)2(1+F) /(F2—F§).
Note that as < 0 for —1 < Fj < F|' < 0 and thus dispersion is downward, as shown in Fig. 3. A quadratic scaling of
the dispersion g° follows from the invariance of the spin subspace with respect to rotations about the magnetic field,
which requires the dispersion to be isotropic, and from analyticity, which requires that an expansion in g starts from
the quadratic term.

If only Rashba SOC is present, the group symmetry of the system is C..y, Le., the system is invariant with respect
to rotations by an arbitrary angle about the normal to the plane. Therefore, as in the Silin's case, the dispersion is
isotropic and, by analyticity, starts with a g° term. For the lowest three modes,[46, 115, 128, 129

_ u*ﬂqﬂ
Qalg) = 2o + ﬂg({ﬁ}lz—ﬂ7 (53)
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where o € {||z, ||y, L}, the g = 0 frequencies are given by Egs. 25 and Eqs. 26, and a5({F"}) some functions of
Fg, FY ... If only Dresselhaus SOC is present, the Hamiltonian (2) can be transformed back to the Rashba one (1)
by by reflecting the spatial coordinates about a mirror plane that contains the (110) axis, upon which kr — &y and
ky —+ kz. Therefore, the spectrum of the collective modes is the same as in Eq. (53) with Agr being replaced by Ap.

If both Rashba and Dresselhans SOCs are present, the symmetry is lowered to Doy, which only allows rotations by
7 and mirror reflections about the two diagonals. The linear term in the dispersion is absent because by symmetry it

can only be /g2 + '13* which is not allowed by analyticity, while a bilinear term is of the ¢1(g2 + qﬁ] + cagrqy form,
where €1 3 are constants.

An in-plane magnetic field breaks the rotational symmetry. Now, linear-in-g terms in the dispersion are allowed
and, indeed, they have been observed experimentally.[55-60] The structure of such terms can be deduced just from the
symmetries uf Cowp and Doy groups. [57 58, 129] In both cases, we need to form a scalar out of a polar vector g and
axial vector B. In the O, group, thisis un]:..r possible by furrl:ung the Rashba invariant B.q,— B q, = Bgsin(¢q—¢g),
were ¢iq and ¢g are the azimuthal angles of q and B, respectively. Likewise, the only scalar that can be constructed
in the Dag group is the Dresselhaus invariant Brgr — Bygy = Bycos(dq + -:,1.':'3}.

In addition to linear-in-g terms, an in-plane magnetic field also gives rise to the dependence of the mode frequency
at g = 0 on the direction of the magnetic field. However, this effect needs both Rashba and Dresselhaus S50Cs to be
present. Indeed, since Rashba SOC has continuous rotational symmetry, the direction of the magnetic field 1s irrelevant
in this case, while the case of pure Dresselhaus SOC is reduced back to pure Rashba one. If both types of SOC are
present, the Doy symmetry implies that mode frequency depends on the direction of B as {1,(g = 0) o sin 2¢g.[59, 129]

To be specific, from this point onwards we will focus on the case when Ay & Ag,Ap # 0, which i1s relevant
for Raman experiments on Cdy_;Mn.Te quantum wells.[55-59] In this case, the mode frequency at g = 0 is given
primarily by the (bare) Zeeman energy. The correction due to SOC must be quadratic in both Ag and Ap and
symmetric on Ag ++ Ap, ie., to be of the form A% + A}, The anisotropic term at the g = 0 exists only of both
Mg and Ap are non-zero which, in the limit considered, implies that the corresponding term must be proportional to
AgAp. The linear-in-g terms due to Rashba and Dresselhaus SOC must be proportional to A and Ap, respectively.
Finally, the bilinear-in-q 1= almost the same as for the Silin mode modulo an anisotropic correction, which arises again
only due to the combined effect of Rashba and Dresselhans SOCs, and thus is also proportional to AgAp. Combining
all the arguments given above, we arrive at the following form of the dispersion[58, 59, 129]

#2 2

0(q B) = 2(B) +w(q, Bg + S(Q) 5,

(54)
where

2 2

Q(B) — Az +aﬂ{{Fﬂ}jﬁR+zﬂD

+ ao((F*N 22 in s,

Ag
w(g,B) = vpai({F"}) [—Slﬂ(i}q )
Ap
+ﬂt_z cos(gg + -:,153}]
a ﬂnﬁn

S(q) = aa({F"}) +aa({F"}) sin 2¢q, (55)

and the coefficient as({F®}) is the same as for a pure Silin mode, Eq. (52). In the equation above we omitted
isotropic g° terms proportional to A} and A. The coefficients ag, ap, and a; were calculated in Ref. 129 in the
s-wave approximation for the Landau function, see Eq. (20) in there. It was argued in Refs. 58 and 59 that, to linear
order in SOC, the dispersion can be obtained by a canonical transformation of the Hamiltonian, which amounts to
replacing q in the dispersion of the Silin mode, Eq. (52), by q + qg, where qg 1= proportional to Ag and Ap. This
would imply that the coefficients of the g and ¢ terms in Eq. (55) are related as |a;| = 2|as|. However, a microscopic
calculation[118] shows that such relation is satisfied only in the weak-coupling limit (|F§| < 1).
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Figure 11. Damping of collective spin modes by non-magnetic disorder via D'yvakonov-Perel' mechanism. Asp and A are
the splittings of the energy spectrum due to SOC and magnetic field, respectively, T is the transport mean free time due to
scattering by disorder. In the region outside the red square the spin collective modes are underdamped. The frequency of
the collective mode (£2) and spin relaxation time (7:) are indicated for each region. Within the red square, the modes are
overdamped and thus cannot be observed.

VII. DAMPING OF COLLECTIVE SPIN MODES

Spin-orbit coupling is the reason for the collective spin modes, described in this paper, to exist. At the same time,
however, it couples spin and momentum and thus enables damping of spin excitations via momentum relaxation due
to scattering by non-magnetic degrees of freedom: non-magnetic disorder, phonons, ete.

Non-magnetic disorder in combination with SOC leads to spin relaxation via the Elliott-Yaffet and IV’ yakonov-Perel’
(DP) mechanisms.[66] The former is present in both centro- and non-centrosymmetric systems, while the latter is
specific for non-centrosymmetric systems, considered in this article, and in this case the DP mechanism iz usually the
dominant one. If 7 1z a characteristic time of momentum relaxation by disorder (to be defined more precisely later)
and Agg i1s the energy splitting due to SOC, then the spin dynamies 1= ballistic with the DP spin relaxation time
T, ~ T for AggT & 1, and diffusive with the DP spin relaxation time 7, ~ 1/A2 7 for AggT < 1. On the other
hand, the frequency of the collective mode is set by the largest of two energy scales: Agp and the Zecman energy Ag.
The spin collective mode can be resolved only when it is underdamped, which corresponds to the region outside the
red square in Fig. 11. This requires clean samples and strong SOC /magnetic fields.

One concrete example 15 a single-valley 2D FL with disorder and Rashba SOC. In this case, the width of the chiral
spin resonance at g = 0 is controlled by two relaxation times, renormalized by the FL interaction. For Aj7 % 1, the
width of the resonance is[113]

1 1

= Irim + 2x9(1 + za/Tp)ma’ (56)




T Gy I

(a) (b) (c)

C T D >

(d) (e)

Figure 12. Diagrams contributing to damping of the collective modes by dynamically screened Coulomb interaction (wavy
line). The filled circles denote the corresponding vertices. For the case of spin collective modes, the vertices are Pauli matrices.
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(57)

nj 1s the number density of impurities, and u((}) is the Fourier transform of the single-impurity potential. Note that
71 15 the transport time that enters the mobility.

Another source of damping is electron-electron interaction. Because the collective modes lie outside the particle-
hole continuum, they are not affected by Landau damping, which involves excitation of a single particle-hole pair.
However, excitations involving multiple pairs are possible due to the residual interaction between FL quasiparticles,
and such excitations give finite width even to modes outside the continuum. For example, plasmons, [125, 130-134]
Silin mode in a partially spin-polarized FL,[105, 108, 127] and magnons in a ferromagnetic FL[105, 127, 135] are all
damped via this mechanism. Figure 12 shows diagrams that contribute to damping to lowest order in a dynamically
sereened Coulomb interaction.®

Out of the examples listed above, the Silin mode is the closest one to collective spin modes due to SOC. However,
there is an important difference. Namely, conservation of the spin component along the field ensures that the Silin
mode is not damped at g — 0.[136] On the contrary, spin is not a conserved quantity in a FL with SOC. Therefore,
collective modes in this case are damped even at g = 0. Evaluation of diagrams in Fig. 12 leads to an intuitively clear
result: at T = 0, the width of the resonance is given by[137]

where T, = 1/(1 + F5)

2

]

1 i‘rN;.nif ;‘?(1 — cosni)

Tn m

ﬂﬂ
[oe ~ E—iﬂf In AL, (58)

where A = e2/vp is the dimensionless coupling constant of the Coulomb interaction. The quadratic dependence on
Asgp is an expected scaling of a relaxation rate in a FL.5

Modes with finite g are damped by the electron-electron interaction even in the absence of SOC. The same arguments
of rotational invariance and analyticity that we used in Sec. VI to determine the g-dependence of the dispersion, can
be applied to the damping rate. Namely, in the presence of rotational symmetry, the damping rate is proportional to
g*.[105, 108] If both types of SOC and an in-plane magnetic field are present, the damping rate contains a linear-in-g
term, whose structure is the same as of the linear term in the dispersion.[59, 60

& Although the two last (Aslamazov-Larkin) diagrams appear to be higher order in the Coulomb interaction than the first three, they
actually contribute to the same order in the dimensionless coupling constant Ezlilﬁ'l'.lp'.

& A single-particle relaxation rate in a 2D FL has an additional logarithmic factor, but it is canceled out between the diagrams for the
spin relaxation rate, as guaranteed by the gauge invariance.



VIII. EXPERIMENT:
OBSERVATIONS AND PREDICTIONS

A. Collective spin waves in Cdi—:Mn.Te quantum wells

The dispersion of collective spin waves in Cdy_:Mn;Te quantum wells was measured in a series of detailed Raman
experiments.[35-59] This system has both Rashba and Dresselhaus SOCs and thus should have chiral spin waves even
in the zero magnetic field. However, the corresponding energy scales are below the resolution of Raman spectroscopy,
and one has to apply an in-plane magnetic field to increase the energies of spin-flip excitations. Even a moderate field
of 2 T leads to a significant spin polarization due the exchange interaction between magnetic moments of Mn dopants
and conduction electron spins, and the effective Zeeman energy is larger than the spin-orbit one. To get some sense
of the numbers, for the reported values of o* =~ 1.8 meV-A and 5* =~ 3.8 meV-A (Ref 58),7 the combined spin-orbit
splitting 1s A, = \#ﬂ"ﬁﬁ - ﬂ*ni #= 0.1meV at n = 2.7 x 10"em =2, while the measured frequency of the collective
mode varies from ~ 0.4 meV at g = 0 in samples with lower Mn fraction(r = 0,013, Ref. 58 ) to ~ 3mev in samples
with higher Mn fraction (x = 0.8, Ref. 55). Therefore, the effective Zeeman splitting 1s 4-30 times larger than the
spin-orhit one, and the experimental situation corresponds to the right panel of Fig. 7 for Ay > AR (with AR replaced
by AZg), 1.e., there is a single collective mode, which evolves into a pure Silin mode in the limit of AF — oo, At lower
Mn fractions, howeover, the effects of SOC on the dispersion and damping of this mode are quite pronounced.

Panels a-d in Fig. 13 show experimental data for a [001] CdsyMngp 13Te quantum well, reproduced from Refs. 57 and
Refs. [59]. In the experiment, the in-plane magnetic field and vector g were kept at 90° to each other, while the pair
of vectors was rotated by angle ¢ measured from the [100] direction, as shown in panel a. The Raman signal in panel
b exhibits a well-resolved peak which disperses with g. Interestingly, the dispersion is not purely quadratic but has a
sizable linear term, which is revealed by flipping the direction of q, as shown in panel . Panels e-g, reproduced from
Ref. 59, show the angular dependence of the mode frequency (Ey), spin-wave velocity (E), and spin-wave stiffness
(E3).

Now we compare the experimental results with the theory presented in Sec. VL. Under the condition ¢g—¢q = £7/2,
parameters of the dispersion in Eq. (55) are reduced to

2 2
Q(B) = Az +ao((F) SR EED
+ ao((F*)ROR din g,
¥
w(B) — upay({F) 2R =200 20
- fil ﬂRﬂD .
S(B) = a({F°) - a({F N EL sindgn, (59)

Figure 14 shows the theoretical results for {15(B) (inset in panel a), w(B) (panel a), and the g- dependence of the
dispersion for two opposite orientations of the magnetic field, at /4 and —w /4 (panel b). The value of Ay = 0.4 meV
at B = 2T was taken from the experiment, while the Rashba and Dresselhans coupling constants, and Fjj were used
as fitting parameters. The fitted values of o and 7 (1.9 mev A and 3.8 mev A) are very close to that reported in
Ref. 58 (1.83 £ 0.08meV A and 3.79 £ 0.11 meV A, respectively), while the fitted value F? = —0.41 is quite close
to the Hartree-Fock estimate F§ = —0.3 for a CdTe quantum well with n = 2.7 x 10''em™2.[129] We sce that the
spin-wave velocity (w) is indeed w-periodic and very close in magnitude the experimental result in panel f of Fig. 13.
The m-modulation of {5(B), shown in the inset of panel a, is much smaller than that of w because the former effect
is second order in SOC.[59, 129] This is consistent with panel e of Fig. 13. The linear term in the dispersion is
ovident from panel b of Fig. 14 and consistent with panel ¢ of Fig. 13. Finally, the experiment also observes small
w-modulation of the spin stiffness (panel g), which is consistent with this effect being also second order in SOC.

B. Collective spin mode on the surface of BizSes

Figure 15 summarizes the results of polarization-resolved Raman spectroscopy of the surface state of a topologieal
msulator BisSes.[61] To enhance the signal from the surface states, the frequency of incident light was tuned to the

T We assigned stars to @ and 8 because the experiment measures only the renormalized values of the spin-orbit parameters.
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Figure 13. Experimental results for collective spin waves in Cdi—=Mn:Te quantum wells. a) Geometry of the Raman
experiment. b) Raman signal. ¢} g-dependences of the spin-wave frequency. d) Angular dependence of the spin-wave velocity
[denoted by w({B) in the main text]. Panels e-g: angular dependence of the mode frequency at g = 0 [denoted by 2(B) in
the main text|, and spin-wave stiffness [denoted by S{B) in the main text], respectively. Solid and dashed lines represent the

numerical and analytical results of Ref. 59. Panels a-d and e-f are reproduced with permission from Ref. 57 and 59, respectively.
Copyright 2015, 2017 of the American Physical Society.
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Figure 14. Theoretical results for the parameters of the spin-wave dispersion presented in Eq. (59). Reprinted with permission
from Ref. 120, Copyright 2017 by the American Physical Society.

transition between two surface Dirac points: near the Fermi energy (551) and about Ag = 1.8 eV above 1t (552), see
panel I in Fig. 15. The Raman response shows a well-resolved peak at /= 150 meV, while the Pauli threshold for this
sample is at 2Ep s 260 meV. The peak is most pronounced for the incident frequency of 1.83 eV (panel Ilc), which 15
the closest to Ag. This proves that the signal is indeed due to the surface rather than the bulk states. (Broader peaks
at higher frequency, interpreted as the result of excitonic photoluminescence,[138] were eliminated by subtracting
the hatched areas from the data.) Furthermore, polarization-resolved experiments reveal a magnetic nature of the
150 meV excitation. As shown in panel I1d, the signal is much stronger in the RR channel, when right-polarized
photons are scattered into right-polarized ones, 1.e, when the angular momenta of the incident and scattered photons
differ by 2#, than in the RL channel, when right-polarized photons are scattered into left-polarized ones, 1.e., without
a change in the angular momentum. For linearly polarized light, the signal is the strongest in the cross-polarization
channel (XY), when the polarization axis is rotated by 7/2. Decomposing the signal into components corresponding
to irreducible representations of the Cgy group, one finds that the 150 meV excitation belongs primarily to the As
representation, which is the pseudovector representation of Cgy, see panels 111 a-c. Noticeably, the excitation is very
robust—it is observed up to 300K, see panel Il1e.

Given the findings summarized above, one 1z prompted to interpret the 150 meV excitation as the g = 0 collective
spin mode discussed in Sec. VB, namely, as the out-of-plane mode with frequency €1, , because in the experiment
both the incident and scattered beams were along the normal to the surface. This interpretation is confirmed by
the theoretical analysis, which shows that the Raman intensity is proportional to the zz-component of the spin
susceptibility|61]

Tr
RO T) x w, T 60
(O.1) o xexle D s, (60)

where (15, is the frequency of incident light and ¢ 1s the linewidth of the resonance. y;:(w,T') was calculated within
the ladder approcimation for a realistic spectrum of the surface state and at finite temperature, and without using the
weak-coupling assumption employed in Sec. V B. [For reasons discussed in Sec. VB, the ladder approximation works
better than it might have been expected to, thanks to (accidental) numerical smallness of damping due to electron-
and electron-hole interactions.| Since the linewidth of the observed peak is independent of temperature, the primary
source of damping must be due to disorder. To mimic the effect of damping, the caleulated y::(w,T) was artificially
broadened to produce the observed linewidth of = 8 meV. In addition to the linewidth, the coupling constant of a
Hubbard-like interaction was treated as a fitting parameter. The theoretical results, presented in panel I11d, reproduce
very well not only the profile of the peak as a function of frequency but also its temperature dependence. In particular,
the theory reproduces the pronounced decrease of the resonance frequency with increasing temperature. This happens
because the continuum broadens as T increases, which pushes the resonance peak down to lower frequency. The inset
of panel 111d shows a zoom on the interval between the resonance peak and continuum boundary, which is supposed to
be at 2E'p m= 260 meV. We see, however, that the continuum is barely discernible because most of its spectral weight
1s transferred to the collective mode. The best fit was obtained for the Hubbard coupling w #= (.6, This is consistent
with the estimate for the screened Coulomb interaction between electrons on the surface of BigSes.
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Figure 15. 1) Bandstructure of BizSes around the Brillouin zone center. The two groups of Dirac States (551 and 552,
respectively) are separated by As =& 1.BeV. The frequency of incident photons €2, is tuned to a resonance transition between
the 551 and 552 states. II) Raman scattering data for different polarization geometries of the incoming and scattered photons,
and different incident photon energies. The collective mode at the Raman shift of 150 meV is resonantly enhanced by the
1.83 eV photon. III (a)-(c): Raman scattering data decomposed into different channels, corresponding to Fa2, Ap, and Az
irreducible representations of the Oy, group, respectively. III (d): Theoretical results for the Raman response within the ladder
approximation. Reprinted with permission from Ref. 61. Copyright 2017 by the American Physical Society.

In summary, the results discussed above present strong evidence for a new type of the collective spin mode, arising
from the combined effect of SOC and Coulomb interaction. Further experiments measuring the spatial dispersion of
this mode would be highly desirable.

C. Predictions for future experiments
i. ESR and EDSR in 2DEGs

The rate of ahsorption of electromagnetic wave at normal incidence by a 2DEG with Rashba and/or Dresselhaus
S0C can be written as

1
Q=5 [FEx[() + /()] B2, (61)

where Eom 1s the amplitude of the electric field of the wave, «(f1) is the conductivity of a 2DEG and x(£2) is the
in-plane component of its spin suscoptibility. The first term represents absorption due to ESR, which can be observed
even in the absence of SOC. However, its magnitude is proportional to 1/¢® (in the Gaussian unit system) and thus
small. In 2D systems instead of ESR one typically measures electrically-detected spin resonance, ohserved as a peak
in the longitudinal resistivity under microwave radiation in the regime of integer Hall effect. [28, 130-142

The second term in Eq. (61) represents absorption due to EDSR.[143-145] Its origin is an effective magnetic field
acting on electron spins due to SOC and with magmtude proportional to k. The driving electrie field (either from
a de current or electromagnetic wave) gives rise to a How of electrons with a non-zero drift velocity, and hence the



L

clectron system as a whole experiences an effective magnetic field due to SOC. This effect gives rise to a range of
spectacular phenomena, e.g., a strong enhancement of microwave ahsorption in a geometry when the driving electric
field is in the plane of a 2DEG [21] and a shift of the spin resonance frequency by dec current. [22, 23]

Collective spin modes described in the previous parts of the paper correspond to oscillations of the electron mag-
netization even in the absence of the external magnetic field. Therefore, they should be detectable both via ESR and
EDSR which, in contrast to the conventional setup, should be present even in zero magnetic field. The structure of
the signal can be understood qualitatively from Fig. 7, where one just has to replace Ag — /Ag + Ap to account
for Dresselhans SOC. In the absence of the magnetic field (A% = 0), the signal consists of two peaks, at frequencies
1, and €. At finite field, the peak at (), splits into two. Upon further increase of the field, the {1}, peaks merge
with the continnum and die out, while the @) peak continues to be present all the way till the gap closing point
(A% = /AL + A]), and then emerges again at fields above this point.

To estimate the relative strength of the ESR and EDSR signals, we note that the conductivity in Eq. (61) i1s the
sum of the Drude and spin-orbit parts: o'(£2) = o, (£}) + 05, (%2). Since for the Hamiltonians (1) and (2) the electric
current is proportional to magnetization, the spin-orbit part of the conductivity and spin susceptibility are related
by a45(2) ~ € max{a?, A2 }x"(€2)/0). Provided that the Drude part at the resonance frequency £); can be neglected,
the ratio of the EDSR to ESR signals can be estimated as[113]

P (m{m ﬁ}mf)ﬁ
Orsr &
Ap 201, for Ay < max{Agr,An},
~ ( ) (E{ﬁ.&_nl)ﬂ?

Ay

(62)

where Ap = 2uw/kp is the Fermi wavelength and An = 27/mec = 2.4 x 107 ¢m is the Compton wavelength. For
electron number densities in the interval n = 10'! — 102 cm 2, the factor (Ar /Ag)? ~ 10° —10°, and the EDSR signal
is stronger than the ESR one by many orders of magnitude, even if SOC i1s weak.

However, there is a caveat in this estimate, namely, it is valid provided that the Drude part of the conductivity is
much smaller then the spin-orbit part, which imposes rather stringent conditions on the strength SOC and sample
quality. Near the resonance, the spin-orbit part of the conductivity can be estimated as[113, 137)

2 r
oho(Q) ~ —m* max{a?, g} —— 63
£o(@) ~ G max(a? B} (63)
Assuming that the linewidth of the resonance iz due to D}'akonav—Pm'el mechanism in the ballistic regime {c:f

Sec. VII), e, I' ~ 1/7, and that the Drude conductivity is controlled by the same scattering mechanism, ie.,
ah () ~ (&2 ,fh:lEF /S¥27, we obtain for the ratio of the two parts of the conductivity right at the resonance:

oto(fk)  m*max{a®, 5%}
ap(fk) Ep

K = (1),

(64)

Therefore, even if the resonance 1s underdamped, 1.e., 7 % 1, it can be still masked by the Drude part if the first
factor on the RHS of Eq. (64) 1= sufficiently small.

Estimates[137] show that the resonance in zero magnetic field, when €; ~ max{Ag, Ap}, would be completely
masked in a GaAs/GaAlAs heterostructure even with a record-hight mobility of 107 em®/Vs because, due to a
relatively weak SOC in this system (o ~ 8 ~ 1mevA), K is only ~ 0.1. The problem is further exacerbated by
the fact that, in the presence of both Rashba and Dresselhans SOCs, the lower edge of the continuum is located at

_ = | — S|kp, which pushes the energies of the collective modes further down.

A better candidate is an InGaAs/InAlAs quantum well, where SOC is much stronger, i.e., @ ~ 100 meV A (Ref. 146),
which helps to compensate for smaller mobilities typical for these structures; the highest mobilities reported for
InGaAs/InAlAs samples are in the range p = (2 — 5) x 10° em®/Vs (Refs. 147 and 148). Also, SOC in these
structures is predominantly of the Rashba type,[146, 149] which alleviates the problem with a competition between
the Rashba and Dresselhaus mechanisms. For a high-mobility InGaAs/InAlAs quantum well, K ~ 1 and a detailed
calculation confirms that the zero-filed EDSR peak should be visible against the Drude background.[137)

2  ESR and EDSR in graphene with provimity-induced spin-orbit coupling
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Figure 16. Theoretical predictions for the zero-field electron spin resonance (ESR) and electric-dipole spin resonance (EDSR)
in graphene with proximity-induced spin-orbit coupling (SOC). (a) ESR signal. Vertical axis: the imaginary part of the
dynamical spin susceptibility. The frequency on the horizontal axis is scaled with Ao = 1,.-"}.;‘13 - Jn.,‘;..zi ., where AL and AS, are
{renormalized) couplings of the Rashba and valley-Zeeman (VZ) types of SOC, respectively. {24 are the resonance frequencies,
given by Eqgs. (43a) and (43b). Dashed line: non-interacting system. Red solid line: a two-valley Fermi liguid (FL) with
parameters Fj = —0.5500, F7' = —0.2750, F§ = —0.1375, Hg = —0.5000, Hy = —0.2500, and Ha = —0.1250. The ratio
Mg/ AR = 0.5, The choice of FL. parameters is the same for all panels of the figure. (b) ESR signal in a FL for several values
of Ayz /AR, as indicated in the legend. (c) EDSR signal. Vertical axis: the real part of the optical conductivity. Dashed line:
non-interacting system. Solid line: FL. (d) EDSR signal in a FL for two values of Ay /AL, as indicated in the legend. To
account for smearing of the resonances by disorder, we added a damping term, —én(k, t) /7., to the right-hand side of the kinetic
equation (8). In all panels of Fig. 16, 1/7 = 0.04A%00, where Afqo = +/ }.ﬁj + Ju.{rzj . For Af = 15.0meV and A = 7.5meV,
the spin relaxation time is 1/7, = 1 ps. Reprinted with permission from Ref. %4. Copyright 2021 by the American Physical
Society.

a. Zero magnetic field. The zero-field ESR and EDSR in graphene with proximity-induced spin-orbit coupling
are predicted to have some interesting features.[94] In the presence of electron-electron interactions and bhoth types
of SOC (Rashba and valley-Zecman), both ESR and EDSR signals consist of two peaks, centered at the frequencies
of coupled oscillations of the uniform and valley-staggered magnetizations, see panels a and ¢ in Fig. 16. Splitting
of the resonance occurs as long as the Landau function in Eq. (7) has more than just the m = 0 harmonic in the
spin-exchange and spin-valley-exchange channels, which is always the case for graphene. Next, oven if the (interacting)
system has only one type of S0C, there are still two resonance modes, £1, and ©_, but one of them is both ESR-
and EDSR-silent, because the spectral weights of the corresponding resonances vanish. This effect is illustrated in
panels b and d of Fig. 16. Another interesting feature is that the two ESR (EDSR) peaks have different (comparable)
magnitudes. Therefore, EDSR iz better way to probe the two-peak structure of the resonance.

It 1= worth pointing out that the relative strengths of the Rashba and VZ components of SOC in graphene on TMD
substrates is currently an open issue. While weak antilocalization experiments on monolayer graphene find VZ SOC to
be much stronger than the Rashba one,[74, 75, 78| the opposite conclusion is reached in, e.g., Refs. 68-70, and 76. On
the other hand, strong evidence for Rashba SOC being the dominant type in bilayer graphene on WSes follows from
the dependence of the splitting of the ShdH frequencies on the carrier number density.[69] Without getting deeper into
this discussion, we note that the ESR and EDSR experiments can be used as an independent test for the dominant
type of SOC. Indeed, the coupling between the electric field and electron spins is possible only due to Rashba SOC.
Therefore, if the experiment shows no EDSR signal, while the ESR signal contains only a single peak, this would be
a clear indication that VZ SOC is the dominant mechanism. On the contrary, if single peaks (at the same frequency)
are observed both by EDSR and ESR, this would indicate that Rashba SOC is the dominant mechanism. Finally, if
both ESR and EDSR signals are split into two peaks, this would indicate that the Rashba and VZ types of SOC are
of comparable strength. A quantitative analysis of the signal shape would allow one not only to obtain the spin-orbit
coupling constants, but also to extract up to six FL parameters in the m = 0,1, 2 angular momentum channels, which



are hard, if at all possible, to be deduced from other types of measurements.

b.  Strong magnetic field. The opposite case of a strong (compared to SOC) in-plane magnetic field was analyzed
in Ref. 95 at g =0 and at finite g in Ref. 150. If the effect of SOC on the spectrum of collective modes 1s neglected,
the latter consists of the Silin modes, corresponding to oscillations of the uniform magnetization with frequencies as
in Eq. (15), and of an additional set of modes, corresponding to oscillations of the valley-staggered magnetization
with frequencies

- 1+HL
= wﬂz, (65)

where Hz is the m'™ harmonic of the function H-(#) in Eq. (7). In the ahsence of SOC, an external magnetic field
couples only to the m = 0 Silin mode while the electric field does not couple to either of the modes. If both Rashba
and valley-Zeeman types of SOC are present and, in addition, the Dirac point is gapped due to the breaking of the
A_B symmetry of the honeycomb lattice by the substrate, the external electric field couples to the m =0 and m =2
Silin modes, and to the m = 0 and m = 1 valley-staggered modes. Therefore, the EDSR spectrum consists, in general,
of four peaks. In addition, the resonances occurs not only in the longitudinal conductivity, but also in the transverse
(Hall) one, although the external magnetic field does not affect the electron orbits. This last effect occurs due to the
Berry curvature of the gapped Dirac point, and its mechanism can be understood already for non-interacting electrons
as follows.[95]

Initially, all particle spins are polarized along the external magnetic field, which we take to be along the % axs.
Upon application of an external field E.p(t) the particle spins feel an effective Rashba magnetic field By oc £ x j,
where j is the electric current density, and therefore experience a spin torque T o % % By o %j;. The © component
of the current j; is composed of regular and anomalous pieces, shown in the left of Fig. 17,

2
E°n. T

Je(w) = ————22% _ 2N B, (k)Eem g, (66)

twm*

where n is the number density, m* = kg /€| |k—k, is the effective mass, and B(k) = T3 A/2(vik? + A?)*/2% is the
Berry curvature of the gapped Dirac points in the K (K') valleys. The first term in Eq. (66) creates identical torques in
both valleys, while the second one, being proportional to the Berry curvature, yields valley-staggered torques depicted
in the right panel of Fig. 17. The component of Egp along B causes a valley-uniform torque on the spin, exciting
the Silin mode spin, while the component of E.yp transverse to B causes a valley-staggered torque, and thus excites
the valley-staggered spin mode. Because the charge-to-spin conversion in both cases is proportional to the Rashba
coupling, this leads to a term in the conductivity proportional to a%. Furthermore, the Silin mode contributes to
zr, While the valley-staggered mode contributes to gy,

IX. CONCLUSIONS

In this review, we summarized recent progress in theoretical understanding and experimental observation of a new
type of collective spin modes, arising from an interplay between spin-orbit coupling (SOC) and electron-electron
interaction. We focused on three types of real systems: 1) a two-dimensional (2D) electron gas (2DEG) with Rashba
and for Dresselhaus SOC, 1) graphene with proximity-induced SOC, and 111) the Dirac state on the surface of a three-
dimensional topological insulator. Provided that SOC and for external magnetic field are weak, 1.e., the corresponding
energy scales are much smaller than the Formi energy, collective modes in systems 1) and 1) can be described within
the single-valley or two-valley versions of the Fermi-liquid (FL) theory, respectively. A transparent physical picture of
such collective modes arises due to mapping of a kinetic equation for a 2D FL onto an effective tight-binding model for
an artificial one-dimensional lattice, whose sites are labeled by the projections of angular momentum on the normal to
the 2DEG plane (m). Rashba S0C plays the role of on-site energies, while Zeeman and Dresselhaus terms correspond
to hopping between the nearest and next-to-nearest neighbors, respectively, whereas the m-dependent components of
the Landau interaction function create “defects” of both on-site and bond types. Within this mapping, the continuum
of particle-hole excitations plays a role of the conduction band, while collective modes are the bound states produced
by defects.

We discussed the results of recent Raman experiments on Cdy_;Mn,Te quantum wells[55-60] and the Dirac state
on the surface of BisSes,[61] in which some of the predicted collective modes have been observed, and formulated pre-
dictions for future electron spin resonance (ESR) and electric-dipole spin resonance (EDSR) experiments on graphene
with prodmity-induced SOC.

The new type of collective modes, discussed in this paper, may have potential applications in spintronics, magnonics,
optoclectronics, and quantum sensing. Indeed, such modes can be thought of as massive “particles”, with masses
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Figure 17. Left: Electric-dipole spin resonance in graphene with proximity-induced spin-orbit coupling in the presence of strong
in-plane magnetic field. The regular, j; o E ., and anomalous, j, o« BxE_, currents at the K (orange) and K' (purple) points
in the Brillouin zone, induced by the electric field Eem of the incident electromagnetic wave. Here, B is the valley-stagzered
Berry curvature. Right: Anomalous fields and torques. Spins are initially polarized along the static magnetic field B. The
anomalous current-induced effective Hashba fields, Br,a o Ar (2 % ja), produce valley-specific torques Ta o« B % Br,a, thus
exciting the valley-staggered spin mode with an intensity proportional to |E., = B|. Reprinted with permission from Ref. 95.
Copyright 2022 by the American Physical Society.

fixed by the FL interaction, moving in a potential profile produced by SOC.[115] By modulating the strength of SOC
along the plane of motion, e.g., by gating, one can confine the modes to waveguides and use them to transmit signals.
Diespite inherent disorder and other sources of damping, the so far observed modes of this type are quite sharp and
robust; for example, the collective mode on the surface of BiaSes is observed up to 300 K.[61]
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