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X-ray fluorescence spectroscopy (XRF) plays an important role for elemental analysis in a wide range of

scientific fields, especially in cultural heritage. XRF imaging, which uses a raster scan to acquire spectra

pixel-wise across artworks, provides the opportunity for spatial analysis of pigment distributions based on

their elemental composition. However, conventional XRF-based pigment identification relies on time-

consuming elemental mapping facilitated by the interpretation of measured spectra by experts. To

reduce the reliance on manual work, recent studies have applied machine learning techniques to cluster

similar XRF spectra in data analysis and to identify the most likely pigments. Nevertheless, it is still

challenging to implement automatic pigment identification strategies to directly tackle the complex

structure of real paintings, e.g. pigment mixtures and layered pigments. In addition, pigment

identification based on XRF on a pixel-by-pixel basis remains an obstacle due to the high noise level.

Therefore, we developed a deep-learning based pigment identification framework to fully automate the

process. In particular, this method offers high sensitivity to the underlying pigments and to the pigments

present in low concentrations, therefore enabling robust mapping of pigments based on single-pixel XRF

spectra. As case studies, we applied our framework to lab-prepared mock-up paintings and two 19th-

century paintings: Paul Gauguin's Poèmes Barbares (1896) that contains layered pigments with an

underlying painting, and Paul Cezanne's The Bathers (1899–1904). The pigment identification results

demonstrated that our model achieved comparable results to the analysis by elemental mapping,

suggesting the generalizability and stability of our model.

1 Introduction

X-ray uorescence spectroscopy (XRF) is a well-established

workhorse technique for elemental analysis in a wide range of

scientic elds,1 such as geochemistry,2–4 forensic science5,6 and

archaeology.7 Few areas of research benet from its use as much

as the investigation of cultural heritage that oen necessitates

in situ investigations that take place under ambient conditions

as is offered by open-architecture and hand-held versions of the

XRF instrument. To fully characterize the heterogeneous nature

and complex history of many artworks, XRF oen requires

a high number of measurements that are best implemented in

the form of raster-based imaging. To form an XRF image, the

instrument moves across the surface of an object, such as

a painting, while collecting spectra point-by-point that are

spatially redressed to their 2-D locations.8 XRF imaging allows

for spatial analysis of pigment distributions based on their

elemental composition.

Conventional XRF-based pigment identication uses spec-

trum evaluation methods9 to generate elemental maps, which

existing XRF analysis soware, for example, PyMCA,10 can fully

support. However, identifying the pigments that cause these

elemental maps and their spectra requires input from experts

that have prior knowledge of the painting technique. Moreover,

many artworks consist of varying pigment mixtures layered in

complicated stratigraphies.11–13 To assist the manual work of

evaluating spectra, machine learning techniques have recently

been applied to pigment identication by clustering pigment-

related spectral features.14 For example, XRFast, an open-
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source unsupervised sparse dictionary learning algorithm

developed recently by our group, nds maps of correlated

elements to help in pigment identication, which is an

improvement over the traditional approach that calculates

image correlations.15 Today, deep learning (DL) has been widely

applied to assist with XRF analysis and has the potential to

perform fully automatic identication of elements and their

sources. For example, Shugar et al. identied 48 different wood

species with the XRF dataset using convolutional neural

networks, reaching an accuracy of 99%.16 They found the range

between 0.7–1.7 keV the most important portion of the spectra

for wood classication, which covers the elements calcium,

aluminum and magnesium. Moreover, Kim et al. applied

a neural network on micro XRF data to generate mineral maps

on natural rocks. They showed that DL was a good way to

improve the description of mineral reactivity to rock samples of

different origin, size, and thickness.17 Most recently, Jones et al.

proposed a deep-learning-based method to directly identify

pigments from XRF spectra.18 By training a convolutional neural

network, they classied XRF spectra into one of the 15 pigment

classes with an high accuracy, but claimed that it was still

challenging to apply the model to more complex scenarios,

including layered pigments and pigment mixtures. Therefore,

focusing on the complicated stratigraphies of real paintings,

this work builds on these previous studies by proposing a con-

volutional neural networks to automatically identify pigment

mixtures in layered structures and to display 2D pigment maps

based on the probability of their occurrence.

Here we propose an end-to-end pigment identication

framework, including pigment library creation, XRF spectra

simulation, mock-up preparation, a pigment identication DL

model, and 2D pigment map generation. As a case study, we

applied our framework to a 19th-century painting, Paul Gau-

guin's Poèmes Barbares (1896), focusing on a set of 19-century

pigments previously identied in this painting.19 In addition,

previous analysis revealed a hidden painting beneath the

surface, which tremendously increased the difficulty of pigment

interpretation. Therefore, our DL model targets pigment iden-

tication in the multilayered matrices of the painting. By

training the DL model using 16 224 simulated XRF spectra of

three-layered pigments, followed by netuning of the model

using 20% of the experimental XRF spectra (i.e., 1320 XRF

spectra) from mock-ups, the DL model demonstrated satisfying

performance of pigment identication on the mock-ups as well

as the painting Poèmes Barbares. In particular, a high sensi-

tivity toward identifying pigments present in low concentra-

tions is shown.

To further demonstrate the applicability of this approach, we

applied the netuned model to Paul Cezanne's The Bathers

(1899–1904). This is a single-layered painting created from

a comparable time period to Poèmes Barbares, composed of

similar but fewer pigments. The DL model achieved high

probabilities in identifying the pigments in The Bathers, sug-

gesting our model's generalizability and stability.

In all, our framework provides an automatic and quick

pigment identication strategy based on non-invasive XRF

imaging, in particular targeting the paintings' complex layered

structure to the XRF response. The trained model does not

require expertise or extensive familiarity working with XRF and

pigments, but directly answers where the pigment might exist.

Although the type of pigments are limited to those trained in

the current work, our framework shows great potential for

extension to other types of pigments and paintings, as well as

XRF-based identication problems in the elds beyond cultural

heritage.

2 Experimental method

XRF data from gathered from three sources to build, train, and

test our framework: from existing paintings, from oil-paint

‘mock-ups’ of crossed paint stripes of different pigment

mixtures, and simulated spectra of multilayered pigments.

2.1 XRF datasets

Paul Gaugin's Poèmes Barbares (1896) was selected to test our

pigment identication approach. This painting is representa-

tive of the challenging pigment identication tasks present in

many 19th-century paintings, which oen involve a plethora of

pigments made available aer the industrial revolution. In

addition, the types of pigments and the structure of the paint

layers of Poèmes Barbares were studied previously by

combining XRF, reectance imaging spectroscopy and cross-

section analysis,19 therefore providing us with reliable ground-

truth measurements of this historical work.

These previous studies show that Poèmes Barbares consists

of a visible (top) painting and a hidden (bottom) painting, each

constructed with multiple paint layers and various mixtures of

pigments.19 To accommodate this complex layer structure for

the DL approach, we simplied it into a three-layer structure:

one top pigment layer, one bottom pigment layer, and one

ground layer. Referring to the chemical analysis of multiple

cross-sections of the painting, we chose 11 distinct pigments of

interest (Table 1) and calcium carbonate as the ground layer.

Next, we made our own set of layered oil paint mock-ups to

better measure how the layers affect the pigments' XRF spectra.

For these layered paintings (Fig. 1), we chose a range of the

pigment fractions, binder ratios, and layer thicknesses as

related to Poèmes Barbares. We then created sets of 3-layer

mock-ups consisting of crossed strips of paint with these values

and prepared them for XRF measurement, generating 6605 XRF

spectra including 64 pigment layer structures. Unfortunately,

the experimental data caused the overtting of the deep

learning model due to the lack of variation in the pigment layer

structure. To tackle this problem, we further generated a simu-

lation dataset for these same pigments and thicknesses to train

and validate the deep learning model.

2.1.1 Experimental dataset. The experimental dataset con-

tained XRF spectra of mock-ups with known pigment layer

structure and was used for training and testing the deep

learning model. We prepared the three-layered mock-ups with

various combinations of pigments: six pigment mixtures as the

bottom paint layer (mainly varying in the pigments' mass frac-

tions, providing 16 bottom layers in total) and four mixtures as

This journal is © The Royal Society of Chemistry 2022 J. Anal. At. Spectrom., 2022, 37, 2672–2682 | 2673
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the top paint layer, making up 64 different layer structures

(Table 2). Fig. 1 illustrated the structure of our mock-up

samples: the rst and second layer both contained multiple

strips of pigment layers, where the combination of pigments in

each strip was selected from Table 2; the third layer was a xed

ground layer of calcium carbonate.

A tape casting coater (model MSK-AFA-HC100, MTI Corpo-

ration (Richmond, CA)) was used to deposit the paint layer

sequentially with adjustable thicknesses. A new layer was

painted aer the previous layer completely dried. In all mock-

ups, we applied a calcium carbonate ground layer of 150–200

mm thickness to match that of Poèmes Barbares. As for the

pigment layers, the type of mixtures simulated the palette of

both the bottom and top painting in Poèmes Barbares. To

include the XRF effects commonly found in layered systems and

pigment mixtures, such as shielding and matrix effects, we

varied the pigment fractions in the bottom paint layers (e.g.

Bottom 1A, Bottom 1B, Bottom 1C in Table 2), while the top

paint layer differed in its layer thickness (30–200 mm).

In preparing the mock-ups, commercial pigments and the

binder were hand-ground for 10 min to obtain a uniform

mixture.20 Since the organic binder would not signicantly

affect the XRF signal, we used Galkyd Lite (Gamblin Artists

Colors (Portland, OR)) for its fast-drying property. A pigment-to-

binder ratio (w%/w%) of 3 : 1 was applied to achieve the

mobility required by the tape casting coater. For lead-

containing paint mixtures which appeared dryer, we added

drops of Gamsol odorless mineral spirits (Gamblin Artists

Colors) to further dilute the mixture. All pigment mixtures were

deposited on pH-neutral art boards (Crescent (Wheeling, IL)).

To collect the experimental XRF dataset, we scanned the

mock-ups with the XGLab ELIO XRF imaging spectrometer

system. The XRF spectra of the mock-ups were acquired at 40 kV

and 40 mA. We set the acquisition time at 10.0 s per point to

increase the signal-to-noise ratio required for deep learning.

The raster scan was executed using a 100 × 100 mm motorized

X–Y linear stage mount (Zaber T-LSM100A) with a step size of 1

× 1 mm.

2.1.2 Simulation dataset. To ensure a sufficient dataset size

for training our DL model, we generated a simulation dataset of

16 224 XRF spectra in total. The spectra were calculated using

the matrixSpectrum function in PyMca5.PyMcaGui.physics.xrf.

Table 1 Pigment library for selected pigments

Index Pigmenta Chemical formula

1 Calcium carbonate CaCO3

2 Chrome oxide green (CrG) Cr2O3

3 Chrome yellow (CrY) PbCrO4

4 Cobalt blue (CB) CoO$Al2O3

5 Emerald green (EG)b Cu(CH3COO)2$3Cu(AsO2)2
6 Iron oxide (IO) Fe2O3

7 Lead white (LW) 2PbCO3$Pb(OH)2
8 Prussian blue (PB) Fe[Fe2(CN)6]3
9 Red lead (RL) Pb3O4

10 Carmine (CM)c SnO2

11 Vermilion (VM) HgS
12 Zinc white (ZW) ZnO

a Calcium carbonate, chrome oxide green, cobalt blue, verdigris, iron
oxide red (120 M), lead white, Prussian blue, and vermilion were
purchased from Kremer Pigmente (New York, NY). Chrome yellow and
red lead were purchased from Rublev Colours (Willits, CA). Zinc oxide
was obtained from Gamblin Artists Colors (Portland, OR). Sodium
arsenite ($90%) and tin oxide (99.99%) were obtained from Sigma
Aldrich. b Due to the current unavailability of commercial emerald
green pigment, we mixed the copper carbonate pigment verdigris (VG,
CuCH3COO2$2Cu(OH)2) and sodium arsenite (SA, NaAsO2) to
approximate the XRF signal of emerald green, in which the Cu–As
mass ratio was set accordingly. c Since the chemical analysis
suggested that tin oxide (SnO2) was the support of carmine, we solely
used the SnO2 powder in preparing the mock-ups to represent
carmine in the XRF dataset.

Fig. 1 The structure of mock-up samples. The first and second layers
both contained multiple strips of pigment layers, each strip with its
pigment combination selected from Table 1; the third layer was
a ground layer consisting of calcium carbonate.

Table 2 Summary of pigment mixtures in the mock-ups

Pigment mixture Compounda Mass fraction (%)

Top 1 LW, CM, PB, CB 55, 10, 25, 10

Top 2 VM, CM, CB 30, 30, 40

Top 3 VM, CrY, IO, VG, SA 39, 6, 39, 6, 10

Top 4 VM 100
Bottom 1A ZW, LW, RL, VM 10, 10, 10, 70

Bottom 1B ZW, LW, RL, VM 10, 20, 50, 20

Bottom 1C ZW, LW, RL, VM 10, 50, 20, 20

Bottom 2A ZW, LW, VM 10, 85, 5
Bottom 2B ZW, LW, VM 10.7, 88.7, 0.6

Bottom 2C ZW, LW, VM 10, 50, 40

Bottom 3A ZW, LW, CB, CrG 10, 15, 15, 60
Bottom 3B ZW, LW, CB, CrG 10, 15, 60, 15

Bottom 3C ZW, LW, CB, CrG 10, 60, 15, 15

Bottom 4A ZW, LW, CrY, VG, SA 10, 45, 15, 12, 18

Bottom 4B ZW, LW, CrY, VG, SA 10, 30, 30, 12, 18
Bottom 4C ZW, LW, CrY, VG, SA 10, 15, 15, 24, 36

Bottom 5A ZW, VM, CrY, VG, SA 10, 5, 5, 32, 48

Bottom 5B ZW, VM, CrY, VG, SA 78, 6, 6, 4, 6

Bottom 5C ZW, VM, CrY, VG, SA 10, 15, 15, 24, 36
Bottom 6 VM 100

a The pigments and their corresponding abbreviations used in this
manuscript are listed as below: CB: cobalt blue, CrG: chrome oxide
green, CM: carmine, CrY: chrome yellow, EG: emerald green, IO: iron
oxide, LW: lead white, PB: Prussian blue, RL: red lead, SA: sodium
arsenite, VG: verdigris, VM: vermilion, ZW: zinc white.
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McaAdvancedFit of the PyMCA Python package.10 These func-

tions were used outside the PyMCA graphical user interface

(GUI) in a Jupyter Notebook running Python. Basic functionality

and use can be found on the NU-ACCESS Github (https://

github.com/NU-ACCESS). Based on the fundamental

parameter approach,21 the matrixSpectrum function simulates

XRF spectra for multilayer samples. In generating the

simulation dataset, we applied a three-layer structure (top

pigment layer – bottom pigment layer – ground layer) similar

with the mock-up paintings. Each of the top and the bottom

layers consisted of a single pigment from the pigment library

(Table 1), with a layer thickness of 50–200 mm (10 mm interval)

and 100–150 mm (10 mm interval), respectively.

2.2 Data preprocessing

Before feeding the experimental and simulation datasets into

the DL model, several preprocessing steps were necessary. First,

based on preliminary ablation studies, the overlaps between the

sulfur-K lines (2.31 keV) and the lead-M (2.34 keV) or mercury-M

lines (2.20 keV) confused the DL model in distinguishing these

elements. As a result, both the experimental and simulation

Fig. 2 The architecture of the deep learningmodel. It contained 1D convolutional layers (Conv), normalization layers (Norm), max pooling layers
(Max Pool), a flatten layer, a dropout layer and a fully-connected layer. The input size of each XRF spectrumwas 3815× 1. The output predictions
were in 11 classes (one per pigment). # kernel and kernel size stood for the number and the size of the kernel at the corresponding convolutional
layer, respectively.

Table 3 The classification results for each pigment class among the models trained from three different datasets: the simulation dataset, the
experimental dataset without finetuning, and the experimental dataset acquired from the mock-ups with finetuninga

Pigment class

Simulation Experimental (no netune) Experimental (netune)

Accuracy Sensitivity F1 Accuracy Sensitivity F1 Accuracy Sensitivity F1

Cobalt blue 0.950 0.997 0.782 0.870 0.973 0.890 0.899 0.985 0.916

Emerald green 0.964 1.0 0.861 0.773 0.821 0.820 0.859 0.870 0.871

Iron oxide 0.882 0.732 0.687 0.659 0.506 0.550 0.998 0.995 0.997
Prussian blue 0.878 0.572 0.592 0.869 0.771 0.746 0.996 0.994 0.993

Carmine 1.0 1.0 1.0 0.653 0.664 0.685 0.995 0.992 0.995

Vermilion 0.987 0.997 0.955 0.918 0.994 0.952 0.947 0.978 0.970
Zinc white 0.952 1.0 0.813 0.916 0.918 0.956 0.916 0.953 0.954

Chrome yellow 0.933 0.981 0.708 0.631 0.642 0.687 0.831 0.862 0.842

Chrome oxide green 0.942 0.982 0.781 0.563 0.569 0.587 0.798 0.887 0.620

Red lead 0.871 0.653 0.626 0.508 0.458 0.556 0.868 0.687 0.634
Lead white 0.858 0.634 0.629 0.755 0.767 0.860 0.836 0.957 0.886

a The results sum up the number of pigment class predictions of both the top- and bottom-layered pigments. The results are averaged from ve-fold
cross-validation.

Fig. 3 “Poèmes Barbares” (1896), oil on canvas, 64.8 × 48.3 cm
(unframed), painted by the French artist Paul Gauguin (1848–1903),
Harvard Art Museums/Fogg Museum, Bequest from the Collection of
Maurice Wertheim, Class of 1906. Object Number: 1951.49 © Presi-
dent and Fellows of Harvard College.
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datasets were adonized to start at 2.80 keV to improve the

performance of the DL model.

Also, the simulated XRF spectra lacked the underlying

spectral background signal caused by X-ray scattering and the

equipment properties. Therefore, we estimated this spectral

background from the mean of the measured spectra using

Statistics-sensitive Non-linear Iterative Peak-clipping (SNIP)

algorithm,22 which contains a low statistics digital lter and

a multipass peak clipping loop. Then we added the estimated

background to the simulation dataset to better mimic their

experimental counterpart, without signicantly changing the

key elemental peaks.

Since the XRF sensitivity to different elements varies, both

the experimental and simulated spectra exhibited skewness of

more than one order of magnitude, while the elemental

concentrations were generally comparable. To reduce this

skewness, a log–log square root transformation (eqn (1)) of the

original spectrum X followed by normalization to X′ was

applied. This normalization step further enhanced the recog-

nition of the elements with low peak intensities in the spec-

trum. X′ was the nal input features to the DL model.

X
0 ¼ loge

�

1þ loge

�

1þ
ffiffiffiffi

X
p ��

; (1)

2.3 Model architecture

The model consisted of 5 convolutional blocks, where each

block was made up of a 1D convolutional layer, an activation

function LeakyReLU,23 a batch normalization layer, and a max-

pooling layer, as shown in Fig. 2. According to preliminary

ablation studies, the number and size of the kernels of each 1D

convolutional layer were set at 64, 64, 64, 64, 128 and 5, 3, 3, 3, 3,

respectively. The activation function LeakyReLU, i.e., f(x) =

max(0.01x, x), kept the positive part of its input while preventing

“the dead ReLU issue” by using a small value when the input

was negative.23 The batch normalization layer sped up the

training process by distributing the input for every layer around

the same mean and standard deviation. The max-pooling layer

downsampled the dimension of the input to half. Finally, the

model was followed by a post-convolutional layer with 128

kernels with a size of 3, a normalization layer, a dropout layer

with a rate of 0.25, and one fully-connected layer of 11 classes,

outputting the probabilities of each class (each pigment)

between 0 to 1. The output layer used a sigmoid activation

function sðzjÞ ¼
1

1þ e�zj
, where zj was the predicted score from

the model of each class. The probabilities as predicted further

built the pigment maps of the paintings. Two datasets, the

simulation and experimental datasets, were used to train the

model and compared. The two training processes applied the

same architecture as described but differed in the initial

weights. The model trained with the simulation dataset used

randomly initialized weights. It was then applied as a pre-

trained model, its weights used as the initial value and

further netuned in training the model with the experimental

dataset, a strategy known as Transfer Learning (TL).24

TL is a popular technique that uses the pre-trained weights

from an initial model as the starting point on another model,

which reduces or eliminates the risk of overtting and allows

for better training speed andmodel performance.25 Therefore in

this paper, we pre-trained the model on the simulation dataset

and then rened it using the experimental dataset. Specically,

when training with the experimental dataset, the pre-trained

weights from the simulation dataset were rst xed (i.e.,

untrainable) in all convolutional layers, whereas only the fully

connected layers were netuned with the targeted dataset. Next,

all layers were trainable and were further netuned with the

experimental dataset. The model performances with and

without netuning were compared in the result section to show

the effectiveness of TL.

Moreover, the loss was calculated to optimize the perfor-

mance of the model by averaging the binary cross entropy of

each predicted class, as dened in eqn (2).

Loss ¼ � 1

N

X

N

i¼1

X

K

j¼1

�

ẑj$log
�

zj
�

þ
�

1� ẑj
�

$log
�

1� zj
��

; (2)

where ẑ was the ground truth label, z was the score predicted

from the model for each class, K was the number of the class,

and N was the number of batch size.

2.4 Training strategy

The training process was completed in two steps. The model

proposed in Fig. 2 was rst pre-trained on the simulation

dataset. A total of 16 224 simulated XRF spectra were split into

a testing dataset and a training dataset with a ratio of 1 : 4. In

training the model, we applied the ve-fold cross-validation26 by

further dividing the training dataset into ‘5’ groups of equal size

and iteratively selecting one group as the validation set, while

the rest remaining as the training set. Therefore, with the full

iteration, the model's performance was evaluated by the testing

dataset ve times. All cohorts of the dataset were preprocessed

following Section 2.2. The model was trained with the Adam

optimizer27 with an initial learning rate of 0.001. Adam was

chosen for the model due to its robustness, less convergence

time and fewer parameters for tuning. The batch size was 64,

and on average, it took about 0.95 hours for each fold in the 5-

fold cross-validation for 150 epochs with early stopping

settings. Next, the experimental dataset had 6604 XRF spectra

Fig. 4 The Bathers (1899–1904), oil on canvas, 51.3 × 61.7 cm,
painted by the French artist Paul Cezanne (1839–1906), The Art
Institute of Chicago, Amy McCormick Memorial Collection. Object
Number: 1942.457 © The Art Institute of Chicago.

2676 | J. Anal. At. Spectrom., 2022, 37, 2672–2682 This journal is © The Royal Society of Chemistry 2022

JAAS Paper

P
u
b
li

sh
ed

 o
n
 0

8
 N

o
v
em

b
er

 2
0
2
2
. 
D

o
w

n
lo

ad
ed

 b
y
 N

o
rt

h
w

es
te

rn
 U

n
iv

er
si

ty
 o

n
 8

/2
1
/2

0
2
3
 9

:0
4
:4

2
 P

M
. 

View Article Online



from the two-layer pigment areas, which we manually picked

from all mock-ups with known ground truth. To conrm the

effect of netuning on pigment identication, we tested the

model before and aer netuning by the experimental dataset.

Specically, to test the model before netuning, which was

trained with the simulation dataset, all experimental datasets

were used as the testing dataset. The model aer netuning was

initialized with the weights that performed the best among the

ve-fold cross-validation and was further netuned with 20% of

the randomly selected data from the experimental dataset, i.e.

1320 XRF spectra. The remaining 80% (5284 XRF spectra) was

used as the testing dataset. Similar to the training process of the

Fig. 5 Pigment identification results of Poèmes Barbares from the model without finetuning (left half), and the results from the finetuned model
(right half), with results from one pigment on each row. The first column of images in each row shows the pigment map, with highest probability
in red. The second column of images show the elemental map(s) for the pigment calculated by PyMCA, with highest concentrations in green or
blue. The third column images overlay the first two for comparison: it combines the red pigment map with the elements maps in green and
(sometimes) blue. Yellow or white areas depict strong agreement between pigment maps and their corresponding elemental maps. The fourth
column scatter plot compares pigment probability and element concentration data for all image points, where element concentration sets the x-
axis value (or for the bottom row, the minimum concentration of two elements), and the pigment probability sets the y-axis value. The right half
of the figure shows how finetuning our DL model improves its results, and depicts images in the same arrangement used in the figure's left half.
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model trained with the simulation dataset, the netuned model

was trained with the Adam optimizer with a lower learning rate

of 0.0005. The batch size was 64, and it took an average of 0.2

hours for each of the 5 groups or ‘folds'. All training and testing

processes were performed on an NVIDIA GeForce RTX 2070 GPU

using Tensorow 2.0 in Python 3.7.

3 Results
3.1 Pigment identication model performance

Table 3 shows the effectiveness of different training approaches

for pigment classication; rst trained solely with simulation

Fig. 6 Pigment identification results of The Bathers from the finetuned model, including cobalt blue, vermilion, and emerald green from top to
bottom. The first, second and third columns display the pigment map, element map(s) and the comparison figure and scatter plots, respectively.

Fig. 7 Photo image of one mock-up that contains top 2, top 1, top 3,
top 4 (from top to bottom) as top layers and bottom 2 with three
differentmass fractions (A, B and C), bottom 1with three differentmass
fractions (A, C and B) (from left to right) as bottom layers.

Fig. 8 Comparison between pigment maps and elemental maps for
themock-up. (a) The ground truth of the location of vermilion (VM). (b)
The Hg-L element map directly generated from PyMCA. (c) The VM
pigment map generated from the model without finetuning identifies
Hg in the 1, 3, and 4 rows and the 3 and 4 columns. It can barely detect
Hg in the 5 and 6 columns. (d) The VM pigment map generated from
the finetuned model indicates VM presence in the 1, 3, and 4 rows and
1, 3, 4, 5, and 6 columns with high probabilities. The only missing
column of the VM pigment map is the second column, which contains
0.6% of vermilion.
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data, then with experimental data without netuning, then with

the experimental data with netuning. The overall accuracy,

sensitivity, and F1 score were calculated for each class (each

pigment) averaged from the ve fold validation groups of

experimental data on the testing datasets. Accuracy and sensi-

tivity are dened in eqn (3) and (4).

Accuracy ¼ TPþ TN

TPþ TNþ FNþ FP
; (3)

Sensitivity ¼ TP

TPþ FN
: (4)

F1 score (the harmonic mean of precision and sensitivity)

evaluates the imbalanced classes, as dened in eqn (5).

F1 ¼ 2� Precision� Sensitivity

Precisionþ Sensitivity
; (5)

where

Precision ¼ TP

TPþ FP
: (6)

The output predictions are classied into TP, TN, FP, and

FN, which are short for true positive, true negative, false posi-

tive, and false negative, respectively. True or false denotes

whether the class exists or not according to the ground truth.

Positive or negative suggests if the (pigment) class is predicted

as existing or non-existing. All four evaluation metrics range

from 0 to 1, and the closer to 1, the better the performance of

the model. The analyses are performed on the same GPU using

the scikit-learn package in Python 3.7.

As shown in Table 3, the model trained from the simulation

dataset generally provided satisfactory accuracy, which ranges

from 0.858 to 1.0. Sensitivity varies from 0.572 to 1.0, and F1

score varies from 0.592 to 1.0. According to the sensitivity and

F1 score, two groups of pigments – iron-containing-only Prus-

sian blue and iron oxide, and lead-containing-only red lead and

lead white – perform worse than other pigments due to the

similar elemental proles within each group. This model can be

generalized to the experimental data without netuning but

with relatively worse performance on carmine (tin-based,

according the cross-section analysis), chrome oxide green, and

chrome yellow. Compared with the simulation data, tin has

a much lower concentration in carmine,28 causing a bigger error

and therefore a lower accuracy for the experimental data. In the

simulation dataset, there is no pigment mixture. Chrome oxide

green only contains Cr and chrome yellow contains Cr and Pb,

which helps the model to separate them. But Pb also exists in

other pigments in the mock-ups, which confuses the model.

However, netuning the model on the experimental data

signicantly improves the classication results, reaching an

overall accuracy ranging from 0.798 to 0.998, sensitivity from

0.687 to 0.995, and F1 from 0.634 to 0.997. The next section will

further explain our netuning strategy.

3.2 Tests on Paul Gauguin's Poèmes Barbares

Building on the ability to identify the pigments in the mock-up

samples, we applied the models to the XRF dataset obtained

from Poèmes Barbares (Fig. 3), which was collected also by the

XGLab ELIO XRF imaging spectrometer system.19 The red rect-

angle Fig. 3 marks the area of investigation.

As shown in Fig. 5, the pigment maps suggest the probability

of pigments' existence as predicted by the pigment identica-

tion model, where an increased pixel brightness suggests

a higher probability. The probability ranges from 0–100%,

calculated directly from the XRF spectrum image. Their corre-

sponding 2D elemental maps generated from PyMCA are also

shown in Fig. 5 for comparison, where a brighter pixel suggests

a higher elemental concentration. In addition, each pigment

Fig. 9 Our model distinguishes Prussian blue (PB) and iron oxide (IO)
in onemock-up. (a) The ground truth of PB and IO locations. (b) The Fe
elementmap directly generated from PyMCA contains both PB and IO.
(c) The PB pigment map generated from our model. (d) The IO
pigment map generated from our model.

Fig. 10 XRF spectra of the mock-up painting comparing the effect of
highly absorbing pigments. (a) One single layer M that contains lead
white (LW), red lead (RL), vermilion (VM) and zinc white (ZW). The lead
peaks marked in red have high intensities. (b) The single layer M
covered by one layer of vermilion (VM). The existence of VM in the top
layer significantly blocks the XRF signal of the lead-containing
pigments at the bottom, challenging our model's ability to detect the
hidden lead element.
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map and its corresponding elemental map were merged to

better visualize their pixel differences. Note here that as the

elemental maps have a higher dynamic range than the pigment

maps, we adjusted the max limit of the color bar to 99th

percentile of the concentration data to balance the brightness

between the two maps. To further evaluate the performance of

the pigment identication model, Fig. 5 also includes a series of

scatter plots, which summarize the relationship between the

predicted pigment probability and its actual elemental

concentration at each pixel location. With a higher accuracy in

identifying the pigments, the points remain higher in the plot.

If the model identies a pigment accurately, the probability (y

value) will approach to zero at zero concentration, but will

rapidly increase with any non-zero elemental concentration (x

value).

As shown in Fig. 5, the DL model trained and netuned

solely on the mock-ups is applicable to the paintings and

simulations as well. Fig. 5 displays the results of six pigments:

cobalt blue, carmine, vermilion, zinc white, and emerald green,

each with a unique elemental spectral prole. By comparing the

models with and without netuning, the scatter plots suggest

signicant effect of netuning on improving the sensitivity and

accuracy in identifying all pigments, particularly for the situa-

tion of low elemental concentrations such as carmine. As for the

remaining six pigments (chrome oxide green, chrome yellow,

iron oxide, Prussian blue, red lead, lead white), the current

model has not yet been able to distinguish the pigments that

share the same elements (Fig. S2 and S3 in ESI†), as discussed

below.

3.3 Tests on Paul Cezanne's The Bathers

To further demonstrate that our model is also applicable to

other paintings, we applied our same netuned model to the

XRF dataset of Paul Cezanne's The Bathers (Fig. 4). The XRF

mapping was executed with a MA-XRF system at 40 kV and 1 A,

with an acquisition time of 100 ms per point and a step size of 1

mm. As shown in Fig. 6, pigment maps of cobalt blue, camine

and emerald green perfectly match with their elemental maps

and achieve high probabilities with concentrations increasing.

The pigment identication of this painting shows results

comparable to the Gauguin painting, highlighting the general-

izability and stability of our model. A complete set of the

elemental maps and the pigment maps with and without ne-

tuning are given in Fig. S4 and S6 in ESI.†

4 Discussion
4.1 Finetune the model

Finetuning is a general technique popularized in deep learning

models, especially on 2D images, to take advantage of weights

trained on a huge dataset for another similar but smaller

dataset. This technique has shown success in many elds, such

as image recognition,29 medical diagnosis30 and unsupervised

learning.31 In applying this method, the model initially learned

the spectral features from the large simulation dataset followed

by netuning on the limited experimental data. Table 3

suggests that netuning, even using a small subset of the

dataset, can signicantly improve the performance of pigment

identication. In particular for the cases of low elemental

concentrations, such as carmine, the accuracy, sensitivity, and

F1 score increased from 0.653 to 0.995, 0.664 to 0.992, and 0.685

to 0.995, respectively.

To better visualize the effect of netuning, we generated 2D

pigment maps for one mock-up painting (Fig. 7) as an example.

As shown in Fig. 8(a), the vermilion pigment (VM) was present

in three horizontal paint strips (top pigment layer) and all six

vertical strips (bottom pigment layer), but at different concen-

trations. However, neither the Hg elemental map nor the VM

pigment map detected it reliably without netuning. While

Fig. 8(b) and (c) may reveal the existence of VM at low concen-

trations, netuning signicantly improved the identication

result of VM at low concentrations in Fig. 8(d), reaching its limit

near 0.6% concentration as shown in the second vertical strip.

To our best knowledge, this work is the rst to apply transfer

learning to pigment classication using XRF spectra. By ne-

tuning on only 20% randomly selected of the experimental data,

we observed signicant improvements in pigment identica-

tion. On one hand, it improved the model performance even

with a limited training dataset. On the other hand, since mock-

ups are hard to make, it releases the pressure of preparing

a huge experimental dataset. However, as mentioned previ-

ously, since the pigment combination in the experimental

dataset is limited, the netuned model may overt. Neverthe-

less, the netuning technique contributes to extracting the

features related to some specic pigment mixtures in the

painter's palette, which helps the identication of pigments,

especially in a specic painting, with similar painting styles.

Therefore, this netuning technique can be applied to many

different elds using XRF spectra.

4.2 Pigments with similar elemental proles

Three groups of pigments in our pigment library posed chal-

lenges due to similar elemental proles: the chromium-

containing group (chrome oxide green and chrome yellow),

the iron-containing-only group (Prussian blue and iron oxide),

and the lead-containing-only group (lead white and red lead).

Although the two pigments in the chromium-containing group

slightly vary in their elemental map (chrome oxide green only

contains Cr and chrome yellow contains Cr and Pb), the model

failed to distinguish between these two pigments. This is

possibly caused by Pb, which exists almost everywhere in the

painting, oen mixed with other pigments (e.g. lead white).

For the other two pigment groups that share similar

elemental proles, the model before netuning cannot distin-

guish them and shows low to medium probability for all areas

that contain the element(s). However, the netuned model can

distinguish between those pigments when present in different

pigment mixtures, but this only applies when the testing dataset

contains the same pigment mixtures as the netuning dataset.

One special case in our result is that the netune model can

distinguish Prussian blue (PB) and iron oxide (IO) in our mock-

ups. For example, in the mock-up in Fig. 7, PB exists in the
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second row, and IO appears in the third row (Fig. 9(a)). The only

element detectable by XRF in Prussian blue and iron oxide is Fe.

Therefore, the Fe element map (Fig. 9(b)) shows the location of

both pigments and cannot be used to separate one from the

other. However, Prussian blue pigment map (Fig. 9(c)) and iron

oxide pigment map (Fig. 9(e)), generated from our netuned

model, show promising results of distinguishing these two

pigments. The two pigment maps both have high probabilities

at the ground truth location of the pigment and fairly low

probabilities at the ground truth location of the other pigment.

At the same time, we notice the pigment maps incorrectly

identify where the Fe element has low concentration or does not

exist, especially for the Prussian blue pigment map, which may

be related to the high tinting strength, and therefore low

concentration where used, of Prussian blue.19,32,33 This situation

also appears in the Gauguin and Cezanne painting results:

when the pigment concentration is low, the probability might

vary from 0 to 100%. We infer that this is due to the normali-

zation process during the spectrum preprocessing. Specically,

the small peaks (low intensities) are enlarged aer the

normalization, enhancing both useful information and noise

level. In the Fe element map (Fig. 9(b)), Fe concentration is

much higher in iron oxide than in Prussian blue. Therefore, the

iron oxide pigment map only has a few noisy points at the blank

area (only the ground layer), while the Prussian blue pigment

map shows high probabilities at the 1, 2, 5, 6 columns and the

blank area.

4.3 X-ray absorbent materials

Some pigments can strongly absorb photons at energies needed

for X-ray uorescence measurements, and absorption by top

layers of a painting can severely distort the spectra detected

from uorescence of elements in the bottom layers. For

example, the presence of vermilion in the top layer diminishes

the lead peaks of lead white and red lead in the bottom layer

(Fig. 10). In particular, as the energy of the Pb-Lb radiation is

above the Hg-L3 edge, it is absorbed by vermilion in the top

layer, decreasing the Pb-Lb to Pb-La ratio. At the same time, the

absorption gives rise to orescent emission from Hg-La,

increasing the Hg-La to Hg-Lb ratio. The shis in line ratios for

both elements create an extraordinary case the simulated data

did not adequately describe and our model cannot distinguish

from the underlying lead-containing pigments. This effect was

previously observed in manual data evaluation as well.34

5 Conclusions

XRF-based pigment identication problems have long required

expert analysis and previous knowledge. In this paper, we

pursued an automatic XRF data evaluation framework using

deep learning. Our initial attempts at automatically identifying

individual and overlapped pigments directly from XRF spectra

show promise. While our model only tests a small number of

pigments (11) and a small number of layers (2 + base) in this

current stage, it automatically identied pigments in two

different 19th-century paintings and in the training mock-ups

and simulations they inspired. We intend this paper to stimu-

late further work in deep-learning assisted XRF studies for

layered-pigment identication, and prompt more discussion of

their feasibility and practicality for broader uses.

We focused on a set of representative pigments identied or

considered present in Paul Gauguin's Poèmes Barbares (1896)19

as a starting point and then created mock-ups to generate

experimental datasets to capture nonlinear effects of layer

structures. We added a simulation dataset to reduce the need

for prohibitively tedious and difficult mock-up preparation.

Aer data preprocessing, we trained the convolutional neural

network with the simulation dataset and then netuned it with

the experimental dataset, therefore obtaining the pigment

identication model.

Pigment maps are the visualization of the probability output

of our model. The comparison of pigment maps and their cor-

responding element maps shows that our model can success-

fully identify pigments, especially in low concentration or in

overpainted layers. However, the model still has some short-

comings: (a) the model cannot always distinguish pigments

with similar elemental proles; (b) it does not work when high

absorbing pigments block the radiation emitted from the

hidden layer; (c) the netuned model needs experimental data

with at least a small set of ground truth measurements to

prevent limited pigment mixtures in the mock-ups from

causing model overtting and wrong predictions.

This research is still in its early stages, and there are multiple

directions to extend the current work. First of all, including data

from other techniques, such as spectral imaging to get molec-

ular structures, might better differentiate pigments and

compensate for shortcomings (a) and (b) which are common

problems with using XRF to identify pigments. Second, we only

try to identify presence or absence of pigments, and not their

depth or the layers' sequence from front-to-back, an important

but much more challenging problem. Third, the current

pigment library is limited, and training the model with a larger

range of pigments can make it more accessible to different

paintings. With a sufficient pigment dataset, more advanced

deep learning algorithms can be applied to further boost the

pigment identication performance of the model. For example,

Recurrent Neural Networks (RNNs)35 typically solve problems

with sequential input signals because their internal cells store

the information retrieved from the previous point in time and

use them to generate the next point in time. It will be interesting

to try how RNNs work on XRF data with similar time series

structures. In addition, some unsupervised learning methods,

such as autoencoders,36 have been proposed to extract latent

features of signals without any ground truth labels. This is

another interesting approach to try in future work that may

solve the problem of limited unlabeled datasets in this research

area.

Data availability

The related data and code for this paper can be found at the

following Github repository: deep learning assisted XRF.
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