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X-ray fluorescence spectroscopy (XRF) plays an important role for elemental analysis in a wide range of
scientific fields, especially in cultural heritage. XRF imaging, which uses a raster scan to acquire spectra
pixel-wise across artworks, provides the opportunity for spatial analysis of pigment distributions based on
their elemental composition. However, conventional XRF-based pigment identification relies on time-
consuming elemental mapping facilitated by the interpretation of measured spectra by experts. To
reduce the reliance on manual work, recent studies have applied machine learning techniques to cluster
similar XRF spectra in data analysis and to identify the most likely pigments. Nevertheless, it is still
challenging to implement automatic pigment identification strategies to directly tackle the complex
structure of real paintings, e.g. pigment mixtures and layered pigments. In addition, pigment
identification based on XRF on a pixel-by-pixel basis remains an obstacle due to the high noise level.
Therefore, we developed a deep-learning based pigment identification framework to fully automate the
process. In particular, this method offers high sensitivity to the underlying pigments and to the pigments
present in low concentrations, therefore enabling robust mapping of pigments based on single-pixel XRF
spectra. As case studies, we applied our framework to lab-prepared mock-up paintings and two 19th-
century paintings: Paul Gauguin's Poeémes Barbares (1896) that contains layered pigments with an
underlying painting, and Paul Cezanne's The Bathers (1899-1904). The pigment identification results
demonstrated that our model achieved comparable results to the analysis by elemental mapping,
suggesting the generalizability and stability of our model.
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as is offered by open-architecture and hand-held versions of the
XRF instrument. To fully characterize the heterogeneous nature

1 Introduction

X-ray fluorescence spectroscopy (XRF) is a well-established
workhorse technique for elemental analysis in a wide range of
scientific fields,! such as geochemistry,** forensic science®® and
archaeology.” Few areas of research benefit from its use as much
as the investigation of cultural heritage that often necessitates
in situ investigations that take place under ambient conditions
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and complex history of many artworks, XRF often requires
a high number of measurements that are best implemented in
the form of raster-based imaging. To form an XRF image, the
instrument moves across the surface of an object, such as
a painting, while collecting spectra point-by-point that are
spatially redressed to their 2-D locations.® XRF imaging allows
for spatial analysis of pigment distributions based on their
elemental composition.

Conventional XRF-based pigment identification uses spec-
trum evaluation methods® to generate elemental maps, which
existing XRF analysis software, for example, PyMCA,* can fully
support. However, identifying the pigments that cause these
elemental maps and their spectra requires input from experts
that have prior knowledge of the painting technique. Moreover,
many artworks consist of varying pigment mixtures layered in
complicated stratigraphies.”*™ To assist the manual work of
evaluating spectra, machine learning techniques have recently
been applied to pigment identification by clustering pigment-
related spectral features.' For example, XRFast, an open-
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source unsupervised sparse dictionary learning algorithm
developed recently by our group, finds maps of correlated
elements to help in pigment identification, which is an
improvement over the traditional approach that calculates
image correlations." Today, deep learning (DL) has been widely
applied to assist with XRF analysis and has the potential to
perform fully automatic identification of elements and their
sources. For example, Shugar et al. identified 48 different wood
species with the XRF dataset using convolutional neural
networks, reaching an accuracy of 99%.'® They found the range
between 0.7-1.7 keV the most important portion of the spectra
for wood classification, which covers the elements calcium,
aluminum and magnesium. Moreover, Kim et al applied
a neural network on micro XRF data to generate mineral maps
on natural rocks. They showed that DL was a good way to
improve the description of mineral reactivity to rock samples of
different origin, size, and thickness."” Most recently, Jones et al.
proposed a deep-learning-based method to directly identify
pigments from XRF spectra.'® By training a convolutional neural
network, they classified XRF spectra into one of the 15 pigment
classes with an high accuracy, but claimed that it was still
challenging to apply the model to more complex scenarios,
including layered pigments and pigment mixtures. Therefore,
focusing on the complicated stratigraphies of real paintings,
this work builds on these previous studies by proposing a con-
volutional neural networks to automatically identify pigment
mixtures in layered structures and to display 2D pigment maps
based on the probability of their occurrence.

Here we propose an end-to-end pigment identification
framework, including pigment library creation, XRF spectra
simulation, mock-up preparation, a pigment identification DL
model, and 2D pigment map generation. As a case study, we
applied our framework to a 19th-century painting, Paul Gau-
guin's Poémes Barbares (1896), focusing on a set of 19-century
pigments previously identified in this painting.” In addition,
previous analysis revealed a hidden painting beneath the
surface, which tremendously increased the difficulty of pigment
interpretation. Therefore, our DL model targets pigment iden-
tification in the multilayered matrices of the painting. By
training the DL model using 16 224 simulated XRF spectra of
three-layered pigments, followed by finetuning of the model
using 20% of the experimental XRF spectra (ie., 1320 XRF
spectra) from mock-ups, the DL model demonstrated satisfying
performance of pigment identification on the mock-ups as well
as the painting Poémes Barbares. In particular, a high sensi-
tivity toward identifying pigments present in low concentra-
tions is shown.

To further demonstrate the applicability of this approach, we
applied the finetuned model to Paul Cezanne's The Bathers
(1899-1904). This is a single-layered painting created from
a comparable time period to Poémes Barbares, composed of
similar but fewer pigments. The DL model achieved high
probabilities in identifying the pigments in The Bathers, sug-
gesting our model's generalizability and stability.

In all, our framework provides an automatic and quick
pigment identification strategy based on non-invasive XRF
imaging, in particular targeting the paintings' complex layered
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structure to the XRF response. The trained model does not
require expertise or extensive familiarity working with XRF and
pigments, but directly answers where the pigment might exist.
Although the type of pigments are limited to those trained in
the current work, our framework shows great potential for
extension to other types of pigments and paintings, as well as
XRF-based identification problems in the fields beyond cultural
heritage.

2 Experimental method

XRF data from gathered from three sources to build, train, and
test our framework: from existing paintings, from oil-paint
‘mock-ups’ of crossed paint stripes of different pigment
mixtures, and simulated spectra of multilayered pigments.

2.1 XRF datasets

Paul Gaugin's Poémes Barbares (1896) was selected to test our
pigment identification approach. This painting is representa-
tive of the challenging pigment identification tasks present in
many 19th-century paintings, which often involve a plethora of
pigments made available after the industrial revolution. In
addition, the types of pigments and the structure of the paint
layers of Poémes Barbares were studied previously by
combining XRF, reflectance imaging spectroscopy and cross-
section analysis," therefore providing us with reliable ground-
truth measurements of this historical work.

These previous studies show that Poémes Barbares consists
of a visible (top) painting and a hidden (bottom) painting, each
constructed with multiple paint layers and various mixtures of
pigments.” To accommodate this complex layer structure for
the DL approach, we simplified it into a three-layer structure:
one top pigment layer, one bottom pigment layer, and one
ground layer. Referring to the chemical analysis of multiple
cross-sections of the painting, we chose 11 distinct pigments of
interest (Table 1) and calcium carbonate as the ground layer.

Next, we made our own set of layered oil paint mock-ups to
better measure how the layers affect the pigments’ XRF spectra.
For these layered paintings (Fig. 1), we chose a range of the
pigment fractions, binder ratios, and layer thicknesses as
related to Poemes Barbares. We then created sets of 3-layer
mock-ups consisting of crossed strips of paint with these values
and prepared them for XRF measurement, generating 6605 XRF
spectra including 64 pigment layer structures. Unfortunately,
the experimental data caused the overfitting of the deep
learning model due to the lack of variation in the pigment layer
structure. To tackle this problem, we further generated a simu-
lation dataset for these same pigments and thicknesses to train
and validate the deep learning model.

2.1.1 Experimental dataset. The experimental dataset con-
tained XRF spectra of mock-ups with known pigment layer
structure and was used for training and testing the deep
learning model. We prepared the three-layered mock-ups with
various combinations of pigments: six pigment mixtures as the
bottom paint layer (mainly varying in the pigments’ mass frac-
tions, providing 16 bottom layers in total) and four mixtures as
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Table 2 Summary of pigment mixtures in the mock-ups

Index Pigment” Chemical formula Pigment mixture Compound” Mass fraction (%)

1 Calcium carbonate CaCO; Top 1 LW, CM, PB, CB 55, 10, 25, 10

2 Chrome oxide green (CrG) Cr,0; Top 2 VM, CM, CB 30, 30, 40

3 Chrome yellow (CrY) PbCro, Top 3 VM, CrY, 10, VG, SA 39, 6, 39, 6, 10

4 Cobalt blue (CB) Co0-Al,03 Top 4 VM 100

5 Emerald green (EG)? Cu(CH;3CO0),-3Cu(AsO,), Bottom 1A ZW, LW, RL, VM 10, 10, 10, 70

6 Iron oxide (IO) Fe,03 Bottom 1B ZW, LW, RL, VM 10, 20, 50, 20

7 Lead white (LW) 2PbCO; - Pb(OH), Bottom 1C ZW, LW, RL, VM 10, 50, 20, 20

8 Prussian blue (PB) Fe[Fe,(CN)s]3 Bottom 2A ZW, LW, VM 10, 85, 5

9 Red lead (RL) Pb;0, Bottom 2B ZW, LW, VM 10.7, 88.7, 0.6

10 Carmine (CM)* SnoO, Bottom 2C ZW, LW, VM 10, 50, 40

11 Vermilion (VM) HgS Bottom 3A ZW, LW, CB, CrG 10, 15, 15, 60

12 Zinc white (ZW) Zno Bottom 3B ZW, LW, CB, CrG 10, 15, 60, 15

“ Calei b N " balt bl dioris. Bottom 3C ZW, LW, CB, CrG 10, 60, 15, 15
Saleium carbonate, chrome oxide green, cobalt blue, verdigris, iron g 1000 ZW, LW, CrY, VG, SA 10, 45, 15, 12, 18

oxide red (120 M), lead white, Prussian blue, and vermilion were

purchased from Kremer Pigmente (New York, NY). Chrome yellow and Bottom 4B ZW, LW, CrY, VG, SA 10, 30, 30, 12, 18

red lead were purchased from Rublev Colours (Willits, CA). Zinc oxide Bottom 4C ZW, LW, CrY, VG, SA 10, 15, 15, 24, 36

was obtained from Gamblin Artists Colors (Portland, OR). Sodium Bottom 5A W, VM, CrY, VG, SA 10, 5, 5, 32, 48

arsenite EZQO%) and tin oxide (99.99%) were obtained from Sigma Bottom 5B ZW, VM, Cry, VG, SA 78,6,6,4,6

Aldrich. ” Due to the current unavailability of commercial emerald Bottom 5C ZW, VM, CrY, VG, SA 10, 15, 15, 24, 36

green pigment, we mixed the copper carbonate pigment verdigris (VG, Bottom 6 VM 100

CuCH3;COO,-2Cu(OH),) and sodium arsenite (SA, NaAsO,) to
approximate the XRF signal of emerald green, in which the Cu-As
mass ratio was set accordingly. °Since the chemical analysis
suggested that tin oxide (SnO,) was the support of carmine, we solely
used the SnO, powder in preparing the mock-ups to represent
carmine in the XRF dataset.

Top Pigment Layer

3-Layer Mockup Structure

Ground Layer

Fig.1 The structure of mock-up samples. The first and second layers
both contained multiple strips of pigment layers, each strip with its
pigment combination selected from Table 1; the third layer was
a ground layer consisting of calcium carbonate.

the top paint layer, making up 64 different layer structures
(Table 2). Fig. 1 illustrated the structure of our mock-up
samples: the first and second layer both contained multiple
strips of pigment layers, where the combination of pigments in
each strip was selected from Table 2; the third layer was a fixed
ground layer of calcium carbonate.

A tape casting coater (model MSK-AFA-HC100, MTI Corpo-
ration (Richmond, CA)) was used to deposit the paint layer
sequentially with adjustable thicknesses. A new layer was
painted after the previous layer completely dried. In all mock-
ups, we applied a calcium carbonate ground layer of 150-200
pm thickness to match that of Poémes Barbares. As for the
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“The pigments and their corresponding abbreviations used in this
manuscript are listed as below: CB: cobalt blue, CrG: chrome oxide
green, CM: carmine, CrY: chrome yellow, EG: emerald green, IO: iron
oxide, LW: lead white, PB: Prussian blue, RL: red lead, SA: sodium
arsenite, VG: verdigris, VM: vermilion, ZW: zinc white.

pigment layers, the type of mixtures simulated the palette of
both the bottom and top painting in Poémes Barbares. To
include the XRF effects commonly found in layered systems and
pigment mixtures, such as shielding and matrix effects, we
varied the pigment fractions in the bottom paint layers (e.g.
Bottom 1A, Bottom 1B, Bottom 1C in Table 2), while the top
paint layer differed in its layer thickness (30-200 pum).

In preparing the mock-ups, commercial pigments and the
binder were hand-ground for 10 min to obtain a uniform
mixture.”® Since the organic binder would not significantly
affect the XRF signal, we used Galkyd Lite (Gamblin Artists
Colors (Portland, OR)) for its fast-drying property. A pigment-to-
binder ratio (W%/w%) of 3:1 was applied to achieve the
mobility required by the tape casting coater. For lead-
containing paint mixtures which appeared dryer, we added
drops of Gamsol odorless mineral spirits (Gamblin Artists
Colors) to further dilute the mixture. All pigment mixtures were
deposited on pH-neutral art boards (Crescent (Wheeling, IL)).

To collect the experimental XRF dataset, we scanned the
mock-ups with the XGLab ELIO XRF imaging spectrometer
system. The XRF spectra of the mock-ups were acquired at 40 kv
and 40 pA. We set the acquisition time at 10.0 s per point to
increase the signal-to-noise ratio required for deep learning.
The raster scan was executed using a 100 x 100 mm motorized
X-Y linear stage mount (Zaber T-LSM100A) with a step size of 1
X 1 mm.

2.1.2 Simulation dataset. To ensure a sufficient dataset size
for training our DL model, we generated a simulation dataset of
16 224 XRF spectra in total. The spectra were calculated using
the matrixSpectrum function in PyMca5.PyMcaGui.physics.xrf.

This journal is © The Royal Society of Chemistry 2022
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Pigment Class
Chrome Oxide Green

3815x1
XRF Spectrum I

(after preprocessing)

Chrome Yellow
Cobalt Blue
Emerald Green
Iron Oxide
Lead White
Prussian Blue
Read Lead
Carmine

T Y

(# kernel = 64,  * 3 times
kernel size = 5) (# kernel = 64,
kernel size = 3)

¥
(# kernel = 128,
kernel size = 3)

Vermillion
Zinc White

Fig.2 The architecture of the deep learning model. It contained 1D convolutional layers (Conv), normalization layers (Norm), max pooling layers
(Max Pool), a flatten layer, a dropout layer and a fully-connected layer. The input size of each XRF spectrum was 3815 x 1. The output predictions
were in 11 classes (one per pigment). # kernel and kernel size stood for the number and the size of the kernel at the corresponding convolutional

layer, respectively.

McaAdvancedFit of the PyMCA Python package.’ These func-
tions were used outside the PyMCA graphical user interface
(GUI) in a Jupyter Notebook running Python. Basic functionality
and use can be found on the NU-ACCESS Github (https://
github.com/NU-ACCESS). Based on the fundamental
parameter approach,” the matrixSpectrum function simulates
XRF spectra for multilayer samples. In generating the
simulation dataset, we applied a three-layer structure (top
pigment layer — bottom pigment layer — ground layer) similar
with the mock-up paintings. Each of the top and the bottom
layers consisted of a single pigment from the pigment library
(Table 1), with a layer thickness of 50-200 um (10 um interval)
and 100-150 pm (10 pm interval), respectively.

2.2 Data preprocessing

Before feeding the experimental and simulation datasets into
the DL model, several preprocessing steps were necessary. First,
based on preliminary ablation studies, the overlaps between the
sulfur-K lines (2.31 keV) and the lead-M (2.34 keV) or mercury-M
lines (2.20 keV) confused the DL model in distinguishing these
elements. As a result, both the experimental and simulation

Fig. 3 "Poémes Barbares” (1896), oil on canvas, 64.8 x 48.3 cm
(unframed), painted by the French artist Paul Gauguin (1848-1903),
Harvard Art Museums/Fogg Museum, Bequest from the Collection of
Maurice Wertheim, Class of 1906. Object Number: 1951.49 © Presi-
dent and Fellows of Harvard College.

Table 3 The classification results for each pigment class among the models trained from three different datasets: the simulation dataset, the
experimental dataset without finetuning, and the experimental dataset acquired from the mock-ups with finetuning®

Simulation Experimental (no finetune) Experimental (finetune)

Pigment class Accuracy Sensitivity F1 Accuracy Sensitivity F1 Accuracy Sensitivity F1

Cobalt blue 0.950 0.997 0.782 0.870 0.973 0.890 0.899 0.985 0.916
Emerald green 0.964 1.0 0.861 0.773 0.821 0.820 0.859 0.870 0.871
Iron oxide 0.882 0.732 0.687 0.659 0.506 0.550 0.998 0.995 0.997
Prussian blue 0.878 0.572 0.592 0.869 0.771 0.746 0.996 0.994 0.993
Carmine 1.0 1.0 1.0 0.653 0.664 0.685 0.995 0.992 0.995
Vermilion 0.987 0.997 0.955 0.918 0.994 0.952 0.947 0.978 0.970
Zinc white 0.952 1.0 0.813 0.916 0.918 0.956 0.916 0.953 0.954
Chrome yellow 0.933 0.981 0.708 0.631 0.642 0.687 0.831 0.862 0.842
Chrome oxide green 0.942 0.982 0.781 0.563 0.569 0.587 0.798 0.887 0.620
Red lead 0.871 0.653 0.626 0.508 0.458 0.556 0.868 0.687 0.634
Lead white 0.858 0.634 0.629 0.755 0.767 0.860 0.836 0.957 0.886

“ The results sum up the number of pigment class predictions of both the top- and bottom-layered pigments. The results are averaged from five-fold

cross-validation.

This journal is © The Royal Society of Chemistry 2022
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Fig. 4 The Bathers (1899-1904), oil on canvas, 51.3 x 61.7 cm,
painted by the French artist Paul Cezanne (1839-1906), The Art
Institute of Chicago, Amy McCormick Memorial Collection. Object
Number: 1942.457 © The Art Institute of Chicago.

datasets were adonized to start at 2.80 keV to improve the
performance of the DL model.

Also, the simulated XRF spectra lacked the underlying
spectral background signal caused by X-ray scattering and the
equipment properties. Therefore, we estimated this spectral
background from the mean of the measured spectra using
Statistics-sensitive Non-linear Iterative Peak-clipping (SNIP)
algorithm,* which contains a low statistics digital filter and
a multipass peak clipping loop. Then we added the estimated
background to the simulation dataset to better mimic their
experimental counterpart, without significantly changing the
key elemental peaks.

Since the XRF sensitivity to different elements varies, both
the experimental and simulated spectra exhibited skewness of
more than one order of magnitude, while the elemental
concentrations were generally comparable. To reduce this
skewness, a log-log square root transformation (eqn (1)) of the
original spectrum X followed by normalization to X was
applied. This normalization step further enhanced the recog-
nition of the elements with low peak intensities in the spec-
trum. X’ was the final input features to the DL model.

X' = log, (1+1og,(1+ VX)), (1)

2.3 Model architecture

The model consisted of 5 convolutional blocks, where each
block was made up of a 1D convolutional layer, an activation
function LeakyReLU,* a batch normalization layer, and a max-
pooling layer, as shown in Fig. 2. According to preliminary
ablation studies, the number and size of the kernels of each 1D
convolutional layer were set at 64, 64, 64, 64,128 and 5, 3, 3, 3, 3,
respectively. The activation function LeakyReLU, ie., flx) =
max(0.01x, x), kept the positive part of its input while preventing
“the dead ReLU issue” by using a small value when the input
was negative.”® The batch normalization layer sped up the
training process by distributing the input for every layer around
the same mean and standard deviation. The max-pooling layer
downsampled the dimension of the input to half. Finally, the
model was followed by a post-convolutional layer with 128
kernels with a size of 3, a normalization layer, a dropout layer

2676 | J Anal At. Spectrom., 2022, 37, 2672-2682
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with a rate of 0.25, and one fully-connected layer of 11 classes,
outputting the probabilities of each class (each pigment)
between 0 to 1. The output layer used a sigmoid activation
function o(z;) = , where z; was the predicted score from
the model of eacl% class The probabilities as predicted further
built the pigment maps of the paintings. Two datasets, the
simulation and experimental datasets, were used to train the
model and compared. The two training processes applied the
same architecture as described but differed in the initial
weights. The model trained with the simulation dataset used
randomly initialized weights. It was then applied as a pre-
trained model, its weights used as the initial value and
further finetuned in training the model with the experimental
dataset, a strategy known as Transfer Learning (TL).>*

TL is a popular technique that uses the pre-trained weights
from an initial model as the starting point on another model,
which reduces or eliminates the risk of overfitting and allows
for better training speed and model performance.” Therefore in
this paper, we pre-trained the model on the simulation dataset
and then refined it using the experimental dataset. Specifically,
when training with the experimental dataset, the pre-trained
weights from the simulation dataset were first fixed (ie.,
untrainable) in all convolutional layers, whereas only the fully
connected layers were finetuned with the targeted dataset. Next,
all layers were trainable and were further finetuned with the
experimental dataset. The model performances with and
without finetuning were compared in the result section to show
the effectiveness of TL.

Moreover, the loss was calculated to optimize the perfor-
mance of the model by averaging the binary cross entropy of
each predicted class, as defined in eqn (2).

1 N

Loss = ——
0SS N 4

=1 j=1

[Z-log(z) + (1 = 2)-log(1 - z)], (2)
where z was the ground truth label, z was the score predicted
from the model for each class, K was the number of the class,
and N was the number of batch size.

2.4 Training strategy

The training process was completed in two steps. The model
proposed in Fig. 2 was first pre-trained on the simulation
dataset. A total of 16 224 simulated XRF spectra were split into
a testing dataset and a training dataset with a ratio of 1:4. In
training the model, we applied the five-fold cross-validation® by
further dividing the training dataset into ‘5’ groups of equal size
and iteratively selecting one group as the validation set, while
the rest remaining as the training set. Therefore, with the full
iteration, the model's performance was evaluated by the testing
dataset five times. All cohorts of the dataset were preprocessed
following Section 2.2. The model was trained with the Adam
optimizer” with an initial learning rate of 0.001. Adam was
chosen for the model due to its robustness, less convergence
time and fewer parameters for tuning. The batch size was 64,
and on average, it took about 0.95 hours for each fold in the 5-
fold cross-validation for 150 epochs with early stopping
settings. Next, the experimental dataset had 6604 XRF spectra

This journal is © The Royal Society of Chemistry 2022
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Fig. 5 Pigment identification results of Poémes Barbares from the model without finetuning (left half), and the results from the finetuned model
(right half), with results from one pigment on each row. The first column of images in each row shows the pigment map, with highest probability
in red. The second column of images show the elemental map(s) for the pigment calculated by PyMCA, with highest concentrations in green or
blue. The third column images overlay the first two for comparison: it combines the red pigment map with the elements maps in green and
(sometimes) blue. Yellow or white areas depict strong agreement between pigment maps and their corresponding elemental maps. The fourth
column scatter plot compares pigment probability and element concentration data for allimage points, where element concentration sets the x-
axis value (or for the bottom row, the minimum concentration of two elements), and the pigment probability sets the y-axis value. The right half
of the figure shows how finetuning our DL model improves its results, and depicts images in the same arrangement used in the figure's left half.

from the two-layer pigment areas, which we manually picked
from all mock-ups with known ground truth. To confirm the
effect of finetuning on pigment identification, we tested the
model before and after finetuning by the experimental dataset.
Specifically, to test the model before finetuning, which was
trained with the simulation dataset, all experimental datasets

This journal is © The Royal Society of Chemistry 2022

were used as the testing dataset. The model after finetuning was
initialized with the weights that performed the best among the
five-fold cross-validation and was further finetuned with 20% of
the randomly selected data from the experimental dataset, i.e.
1320 XRF spectra. The remaining 80% (5284 XRF spectra) was
used as the testing dataset. Similar to the training process of the
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Fig. 6 Pigment identification results of The Bathers from the finetuned model, including cobalt blue, vermilion, and emerald green from top to
bottom. The first, second and third columns display the pigment map, element map(s) and the comparison figure and scatter plots, respectively.

Fig. 7 Photo image of one mock-up that contains top 2, top 1, top 3,
top 4 (from top to bottom) as top layers and bottom 2 with three
different mass fractions (A, B and C), bottom 1 with three different mass
fractions (A, C and B) (from left to right) as bottom layers.

model trained with the simulation dataset, the finetuned model
was trained with the Adam optimizer with a lower learning rate
of 0.0005. The batch size was 64, and it took an average of 0.2
hours for each of the 5 groups or ‘folds'. All training and testing
processes were performed on an NVIDIA GeForce RTX 2070 GPU
using Tensorflow 2.0 in Python 3.7.

3 Results

3.1 Pigment identification model performance

Table 3 shows the effectiveness of different training approaches
for pigment classification; first trained solely with simulation
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Concentration (%)
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a. VM Ground Truth
Probability (%)

b. Hg-L Elemental Map
Probability (%)

d. VM Pigment Map
(with finetuning)

c. VM Pigment Map
(without finetuning)

Fig. 8 Comparison between pigment maps and elemental maps for
the mock-up. (a) The ground truth of the location of vermilion (VM). (b)
The Hg-L element map directly generated from PyMCA. (c) The VM
pigment map generated from the model without finetuning identifies
Hginthel, 3, and 4 rows and the 3 and 4 columns. It can barely detect
Hg in the 5 and 6 columns. (d) The VM pigment map generated from
the finetuned model indicates VM presence in the 1, 3, and 4 rows and
1, 3, 4, 5, and 6 columns with high probabilities. The only missing
column of the VM pigment map is the second column, which contains
0.6% of vermilion.
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element map directly generated from PyMCA contains both PB and |O.
(c) The PB pigment map generated from our model. (d) The 10
pigment map generated from our model.
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Fig. 10 XRF spectra of the mock-up painting comparing the effect of
highly absorbing pigments. (a) One single layer M that contains lead
white (LW), red lead (RL), vermilion (VM) and zinc white (ZW). The lead
peaks marked in red have high intensities. (b) The single layer M
covered by one layer of vermilion (VM). The existence of VM in the top
layer significantly blocks the XRF signal of the lead-containing
pigments at the bottom, challenging our model's ability to detect the
hidden lead element.

data, then with experimental data without finetuning, then with
the experimental data with finetuning. The overall accuracy,
sensitivity, and F1 score were calculated for each class (each
pigment) averaged from the five fold validation groups of
experimental data on the testing datasets. Accuracy and sensi-
tivity are defined in eqn (3) and (4).

Accuracy = TP+ TN 3)
U = TP+ TN + EN 1 FP’
e . TP
SenSItIVIty = m (4)
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F1 score (the harmonic mean of precision and sensitivity)
evaluates the imbalanced classes, as defined in eqn (5).

2 x Precision x Sensitivity
Fl = — — (5)
Precision + Sensitivity

where

TP

Precision = ————.
recision TP + FP

(6)

The output predictions are classified into TP, TN, FP, and
FN, which are short for true positive, true negative, false posi-
tive, and false negative, respectively. True or false denotes
whether the class exists or not according to the ground truth.
Positive or negative suggests if the (pigment) class is predicted
as existing or non-existing. All four evaluation metrics range
from 0 to 1, and the closer to 1, the better the performance of
the model. The analyses are performed on the same GPU using
the scikit-learn package in Python 3.7.

As shown in Table 3, the model trained from the simulation
dataset generally provided satisfactory accuracy, which ranges
from 0.858 to 1.0. Sensitivity varies from 0.572 to 1.0, and F1
score varies from 0.592 to 1.0. According to the sensitivity and
F1 score, two groups of pigments - iron-containing-only Prus-
sian blue and iron oxide, and lead-containing-only red lead and
lead white - perform worse than other pigments due to the
similar elemental profiles within each group. This model can be
generalized to the experimental data without finetuning but
with relatively worse performance on carmine (tin-based,
according the cross-section analysis), chrome oxide green, and
chrome yellow. Compared with the simulation data, tin has
a much lower concentration in carmine,* causing a bigger error
and therefore a lower accuracy for the experimental data. In the
simulation dataset, there is no pigment mixture. Chrome oxide
green only contains Cr and chrome yellow contains Cr and Pb,
which helps the model to separate them. But Pb also exists in
other pigments in the mock-ups, which confuses the model.
However, finetuning the model on the experimental data
significantly improves the classification results, reaching an
overall accuracy ranging from 0.798 to 0.998, sensitivity from
0.687 to 0.995, and F1 from 0.634 to 0.997. The next section will
further explain our finetuning strategy.

3.2 Tests on Paul Gauguin's Poémes Barbares

Building on the ability to identify the pigments in the mock-up
samples, we applied the models to the XRF dataset obtained
from Poemes Barbares (Fig. 3), which was collected also by the
XGLab ELIO XRF imaging spectrometer system.'” The red rect-
angle Fig. 3 marks the area of investigation.

As shown in Fig. 5, the pigment maps suggest the probability
of pigments' existence as predicted by the pigment identifica-
tion model, where an increased pixel brightness suggests
a higher probability. The probability ranges from 0-100%,
calculated directly from the XRF spectrum image. Their corre-
sponding 2D elemental maps generated from PyMCA are also
shown in Fig. 5 for comparison, where a brighter pixel suggests
a higher elemental concentration. In addition, each pigment
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map and its corresponding elemental map were merged to
better visualize their pixel differences. Note here that as the
elemental maps have a higher dynamic range than the pigment
maps, we adjusted the max limit of the color bar to 99th
percentile of the concentration data to balance the brightness
between the two maps. To further evaluate the performance of
the pigment identification model, Fig. 5 also includes a series of
scatter plots, which summarize the relationship between the
predicted pigment probability and its actual elemental
concentration at each pixel location. With a higher accuracy in
identifying the pigments, the points remain higher in the plot.
If the model identifies a pigment accurately, the probability (y
value) will approach to zero at zero concentration, but will
rapidly increase with any non-zero elemental concentration (x
value).

As shown in Fig. 5, the DL model trained and finetuned
solely on the mock-ups is applicable to the paintings and
simulations as well. Fig. 5 displays the results of six pigments:
cobalt blue, carmine, vermilion, zinc white, and emerald green,
each with a unique elemental spectral profile. By comparing the
models with and without finetuning, the scatter plots suggest
significant effect of finetuning on improving the sensitivity and
accuracy in identifying all pigments, particularly for the situa-
tion of low elemental concentrations such as carmine. As for the
remaining six pigments (chrome oxide green, chrome yellow,
iron oxide, Prussian blue, red lead, lead white), the current
model has not yet been able to distinguish the pigments that
share the same elements (Fig. S2 and S3 in ESIt), as discussed
below.

3.3 Tests on Paul Cezanne's The Bathers

To further demonstrate that our model is also applicable to
other paintings, we applied our same finetuned model to the
XRF dataset of Paul Cezanne's The Bathers (Fig. 4). The XRF
mapping was executed with a MA-XRF system at 40 kV and 1 A,
with an acquisition time of 100 ms per point and a step size of 1
mm. As shown in Fig. 6, pigment maps of cobalt blue, camine
and emerald green perfectly match with their elemental maps
and achieve high probabilities with concentrations increasing.
The pigment identification of this painting shows results
comparable to the Gauguin painting, highlighting the general-
izability and stability of our model. A complete set of the
elemental maps and the pigment maps with and without fine-
tuning are given in Fig. S4 and S6 in ESLT

4 Discussion
4.1 Finetune the model

Finetuning is a general technique popularized in deep learning
models, especially on 2D images, to take advantage of weights
trained on a huge dataset for another similar but smaller
dataset. This technique has shown success in many fields, such
as image recognition, medical diagnosis®* and unsupervised
learning.** In applying this method, the model initially learned
the spectral features from the large simulation dataset followed
by finetuning on the limited experimental data. Table 3
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suggests that finetuning, even using a small subset of the
dataset, can significantly improve the performance of pigment
identification. In particular for the cases of low elemental
concentrations, such as carmine, the accuracy, sensitivity, and
F1 score increased from 0.653 to 0.995, 0.664 to 0.992, and 0.685
to 0.995, respectively.

To better visualize the effect of finetuning, we generated 2D
pigment maps for one mock-up painting (Fig. 7) as an example.
As shown in Fig. 8(a), the vermilion pigment (VM) was present
in three horizontal paint strips (top pigment layer) and all six
vertical strips (bottom pigment layer), but at different concen-
trations. However, neither the Hg elemental map nor the VM
pigment map detected it reliably without finetuning. While
Fig. 8(b) and (c) may reveal the existence of VM at low concen-
trations, finetuning significantly improved the identification
result of VM at low concentrations in Fig. 8(d), reaching its limit
near 0.6% concentration as shown in the second vertical strip.

To our best knowledge, this work is the first to apply transfer
learning to pigment classification using XRF spectra. By fine-
tuning on only 20% randomly selected of the experimental data,
we observed significant improvements in pigment identifica-
tion. On one hand, it improved the model performance even
with a limited training dataset. On the other hand, since mock-
ups are hard to make, it releases the pressure of preparing
a huge experimental dataset. However, as mentioned previ-
ously, since the pigment combination in the experimental
dataset is limited, the finetuned model may overfit. Neverthe-
less, the finetuning technique contributes to extracting the
features related to some specific pigment mixtures in the
painter's palette, which helps the identification of pigments,
especially in a specific painting, with similar painting styles.
Therefore, this finetuning technique can be applied to many
different fields using XRF spectra.

4.2 Pigments with similar elemental profiles

Three groups of pigments in our pigment library posed chal-
lenges due to similar elemental profiles: the chromium-
containing group (chrome oxide green and chrome yellow),
the iron-containing-only group (Prussian blue and iron oxide),
and the lead-containing-only group (lead white and red lead).
Although the two pigments in the chromium-containing group
slightly vary in their elemental map (chrome oxide green only
contains Cr and chrome yellow contains Cr and Pb), the model
failed to distinguish between these two pigments. This is
possibly caused by Pb, which exists almost everywhere in the
painting, often mixed with other pigments (e.g. lead white).
For the other two pigment groups that share similar
elemental profiles, the model before finetuning cannot distin-
guish them and shows low to medium probability for all areas
that contain the element(s). However, the finetuned model can
distinguish between those pigments when present in different
pigment mixtures, but this only applies when the testing dataset
contains the same pigment mixtures as the finetuning dataset.
One special case in our result is that the finetune model can
distinguish Prussian blue (PB) and iron oxide (IO) in our mock-
ups. For example, in the mock-up in Fig. 7, PB exists in the
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second row, and IO appears in the third row (Fig. 9(a)). The only
element detectable by XRF in Prussian blue and iron oxide is Fe.
Therefore, the Fe element map (Fig. 9(b)) shows the location of
both pigments and cannot be used to separate one from the
other. However, Prussian blue pigment map (Fig. 9(c)) and iron
oxide pigment map (Fig. 9(e)), generated from our finetuned
model, show promising results of distinguishing these two
pigments. The two pigment maps both have high probabilities
at the ground truth location of the pigment and fairly low
probabilities at the ground truth location of the other pigment.
At the same time, we notice the pigment maps incorrectly
identify where the Fe element has low concentration or does not
exist, especially for the Prussian blue pigment map, which may
be related to the high tinting strength, and therefore low
concentration where used, of Prussian blue.'®*>* This situation
also appears in the Gauguin and Cezanne painting results:
when the pigment concentration is low, the probability might
vary from 0 to 100%. We infer that this is due to the normali-
zation process during the spectrum preprocessing. Specifically,
the small peaks (low intensities) are enlarged after the
normalization, enhancing both useful information and noise
level. In the Fe element map (Fig. 9(b)), Fe concentration is
much higher in iron oxide than in Prussian blue. Therefore, the
iron oxide pigment map only has a few noisy points at the blank
area (only the ground layer), while the Prussian blue pigment
map shows high probabilities at the 1, 2, 5, 6 columns and the
blank area.

4.3 X-ray absorbent materials

Some pigments can strongly absorb photons at energies needed
for X-ray fluorescence measurements, and absorption by top
layers of a painting can severely distort the spectra detected
from fluorescence of elements in the bottom layers. For
example, the presence of vermilion in the top layer diminishes
the lead peaks of lead white and red lead in the bottom layer
(Fig. 10). In particular, as the energy of the Pb-Lp radiation is
above the Hg-L3 edge, it is absorbed by vermilion in the top
layer, decreasing the Pb-Lp to Pb-La ratio. At the same time, the
absorption gives rise to florescent emission from Hg-La,
increasing the Hg-La to Hg-Lp ratio. The shifts in line ratios for
both elements create an extraordinary case the simulated data
did not adequately describe and our model cannot distinguish
from the underlying lead-containing pigments. This effect was
previously observed in manual data evaluation as well.**

5 Conclusions

XRF-based pigment identification problems have long required
expert analysis and previous knowledge. In this paper, we
pursued an automatic XRF data evaluation framework using
deep learning. Our initial attempts at automatically identifying
individual and overlapped pigments directly from XRF spectra
show promise. While our model only tests a small number of
pigments (11) and a small number of layers (2 + base) in this
current stage, it automatically identified pigments in two
different 19th-century paintings and in the training mock-ups
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and simulations they inspired. We intend this paper to stimu-
late further work in deep-learning assisted XRF studies for
layered-pigment identification, and prompt more discussion of
their feasibility and practicality for broader uses.

We focused on a set of representative pigments identified or
considered present in Paul Gauguin's Poémes Barbares (1896)"
as a starting point and then created mock-ups to generate
experimental datasets to capture nonlinear effects of layer
structures. We added a simulation dataset to reduce the need
for prohibitively tedious and difficult mock-up preparation.
After data preprocessing, we trained the convolutional neural
network with the simulation dataset and then finetuned it with
the experimental dataset, therefore obtaining the pigment
identification model.

Pigment maps are the visualization of the probability output
of our model. The comparison of pigment maps and their cor-
responding element maps shows that our model can success-
fully identify pigments, especially in low concentration or in
overpainted layers. However, the model still has some short-
comings: (a) the model cannot always distinguish pigments
with similar elemental profiles; (b) it does not work when high
absorbing pigments block the radiation emitted from the
hidden layer; (c) the finetuned model needs experimental data
with at least a small set of ground truth measurements to
prevent limited pigment mixtures in the mock-ups from
causing model overfitting and wrong predictions.

This research is still in its early stages, and there are multiple
directions to extend the current work. First of all, including data
from other techniques, such as spectral imaging to get molec-
ular structures, might better differentiate pigments and
compensate for shortcomings (a) and (b) which are common
problems with using XRF to identify pigments. Second, we only
try to identify presence or absence of pigments, and not their
depth or the layers' sequence from front-to-back, an important
but much more challenging problem. Third, the current
pigment library is limited, and training the model with a larger
range of pigments can make it more accessible to different
paintings. With a sufficient pigment dataset, more advanced
deep learning algorithms can be applied to further boost the
pigment identification performance of the model. For example,
Recurrent Neural Networks (RNNs)* typically solve problems
with sequential input signals because their internal cells store
the information retrieved from the previous point in time and
use them to generate the next point in time. It will be interesting
to try how RNNs work on XRF data with similar time series
structures. In addition, some unsupervised learning methods,
such as autoencoders,*® have been proposed to extract latent
features of signals without any ground truth labels. This is
another interesting approach to try in future work that may
solve the problem of limited unlabeled datasets in this research
area.

Data availability

The related data and code for this paper can be found at the
following Github repository: deep learning assisted XRF.

J. Anal. At. Spectrom., 2022, 37, 2672-2682 | 2681



Published on 08 November 2022. Downloaded by Northwestern University on 8/21/2023 9:04:42 PM.

JAAS

Author contributions

Conceptualization, Marc Walton, Aggelos Katsaggelos, Jack
Tumblin, Florian Willomitzer, Matthias Alfeld and Bingjie
(Jenny) Xu; data curation, Pengxiao Hao, Marc Vermeulen and
Alicia McGeachy; formal analysis, Bingjie (Jenny) Xu, Pengxiao
Hao, Yunan Wu and Marc Vermeulen; funding acquisition,
Marc Walton; investigation, Bingjie (Jenny) Xu, Pengxiao Hao,
Marc Vermeulen and Alicia McGeachy; methodology, Bingjie
(Jenny) Xu, Yunan Wu, Pengxiao Hao, Marc Vermeulen, Mat-
thias Alfeld, Aggelos Katsaggelos and Marc Walton; resources,
Kate Smith, Katherine Eremin, Georgina Rayner and Giovanni
Verri; software: Bingjie Xu, Yunan Wu, Marc Vermeulen, Alicia
McGeachy and Marc Walton; writing - original draft, Bingjie
(Jenny) Xu, Yunan Wu, Pengxiao Hao and Matthias Alfeld;
writing - review & editing, Marc Vermeulen, Alicia McGeachy,
Florian Willomitzer, Matthias Alfeld, Jack Tumblin, Aggelos
Katsaggelos and Marc Walton. All authors have read and agreed
to the published version of the manuscript.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The analysis of the Gauguin and Cezanne paintings is part of
NU-ACCESS's broad portfolio of activities, made possible by
generous support of the Andrew W. Mellon Foundation as well
as supplemental support provided by the Materials Research
Center, the Office of the Vice President for Research, the
McCormick School of Engineering and Applied Science and the
Department of Materials Science and Engineering at North-
western University. The authors gratefully acknowledge Eme-
line Pouyet and Gianluca Pastorelli (formerly NU-ACCESS) for
the acquisition of the MA-XRF data on Gauguin's Poemes
Barbares.

Notes and references

1 C. van Hoof, ]J. R. Bacon, U. E. A. Fittschen and L. Vincze, J.
Anal. At. Spectrom., 2021, 36, 1797-1812.

2 H. Rowe, N. Hughes and K. Robinson, Chem. Geol., 2012,
324, 122-131.

3 T. D. T. Oyedotun, Geol. ecol. landsc., 2018, 2, 148-154.

4 P. Sarala, Geochem. Explor. Environ. Anal., 2016, 16, 181-192.

5 K. Langstraat, A. Knijnenberg, G. Edelman, L. Van De Merwe,
A. van Loon, J. Dik and A. van Asten, Sci. Rep., 2017, 7, 1-11.

6 K. Nakano, C. Nishi, K. Otsuki, Y. Nishiwaki and K. Tsuji,
Anal. Chem., 2011, 83, 3477-3483.

7 M. S. Shackley, X-Ray Fluorescence Spectrometry (XRF) in
Geoarchaeology, Springer, 2011, pp. 7-44.

8 M. Alfeld and L. de Viguerie, Spectrochim. Acta, Part B, 2017,
136, 81-105.

9 P. J. van Espen and K. H. Janssens, Handbook of X-Ray
Spectrometry: Methods and Techniques, Marcel Dekker, Inc.,
New York, NY, 1993, ch. 5, pp. 181-293.

2682 | J. Anal At. Spectrom., 2022, 37, 2672-2682

View Article Online

Paper

10 V. Solé, E. Papillon, M. Cotte, P. Walter and J. Susini,
Spectrochim. Acta, Part B, 2007, 62, 63-68.

11 M. Alfeld and K. Janssens, J. Anal. At. Spectrom., 2015, 30,
777-789.

12 F. P. Romano, C. Caliri, P. Nicotra, S. Di Martino,
L. Pappalardo, F. Rizzo and H. C. Santos, J. Anal. At
Spectrom., 2017, 32, 773-781.

13 M. Alfeld, W. De Nolf, S. Cagno, K. Appel, D. P. Siddons,
A. Kuczewski, K. Janssens, ]J. Dik, K. Trentelman,
M. Walton, et al., J. Anal. At. Spectrom., 2013, 28, 40-51.

14 S. Kogou, L. Lee, G. Shahtahmassebi and H. Liang, X-Ray
Spectrom., 2021, 50, 310-319.

15 M. Vermeulen, A. McGeachy, B. Xu, H. Chopp,
A. Katsaggelos, R. Meyers, M. Alfeld and M. Walton, J.
Anal. At. Spectrom., 2022, 37, 2130-2143.

16 A.N. Shugar, B. L. Drake and G. Kelley, Sci. Rep., 2021, 11, 1-
10.

17 J. J. Kim, F. T. Ling, D. A. Plattenberger, A. F. Clarens and
C. A. Peters, Appl. Geochem., 2022, 136, 105162.

18 C. Jones, N. S. Daly, C. Higgitt and M. R. Rodrigues, Heritage
Sci., 2022, 10, 1-14.

19 M. Vermeulen, K. Smith, K. Eremin, G. Rayner and
M. Walton, Spectrochim. Acta, Part A, 2021, 252, 119547.

20 L. F. Sturdy, PhD thesis, Northwestern University, 2016.

21 L. De Viguerie, V. A. Sole and P. Walter, Anal. Bioanal. Chem.,
2009, 395, 2015-2020.

22 C. Ryan, E. Clayton, W. Griffin, S. Sie and D. Cousens, Nucl.
Instrum. Methods Phys. Res., Sect. B, 1988, 34, 396-402.

23 B. Xu, N. Wang, T. Chen and M. Li, 2015, preprint,
arXiv:1505.00853, DOI: 10.48550/arXiv.1505.00853.

24 F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong
and Q. He, Proc. IEEE, 2020, 109, 43-76.

25 M. Raghu, C. Zhang, ]J. Kleinberg, S. Bengio, Transfusion:
Understanding transfer learning for medical imaging,
Advances in neural information processing systems 32, 2019.

26 M. Stone, J. Roy. Stat. Soc. B, 1974, 36, 111-133.

27 D.P.Kingma and J. Ba, 2014, preprint, arXiv:1412.6980, DOI:
10.48550/arXiv.1412.6980.

28 R. Dapson, Biotech. Histochem., 2007, 82, 173-187.

29 H.-W. Ng, V. D. Nguyen, V. Vonikakis and S. Winkler,
Proceedings of the 2015 ACM on International Conference on
Multimodal Interaction, 2015, pp. 443-449.

30 S. Khan, N. Islam, Z. Jan, I. U. Din and J. J. C. Rodrigues,
Pattern Recogn. Lett., 2019, 125, 1-6.

31 Y. Bengio, Proceedings of ICML Workshop on Unsupervised and
Transfer Learning, 2012, pp. 17-36.

32 M. Vermeulen, A. S. O. Miranda, D. Tamburini,
S. E. R. Delgado and M. Walton, Heritage Sci., 2022, 10, 1-22.

33 L. D. Glinsman, et al, PhD thesis, Universiteit van
Amsterdam Host, 2004.

34 C. Neelmeijer, I. Brissaud, T. Calligaro, G. Demortier,
A. Hautojirvi, M. Maider, L. Martinot, M. Schreiner,
T. Tuurnala and G. Weber, X-Ray Spectrom., 2000, 29, 101-
110.

35 A. Sherstinsky, Phys. D, 2020, 404, 132306.

36 P. Baldi, Proceedings of ICML Workshop on Unsupervised and
Transfer Learning, 2012, pp. 37-49.

This journal is © The Royal Society of Chemistry 2022



