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X-ray fluorescence (XRF) spectroscopy is a common technique in the field of heritage science. However,

data processing and data interpretation remain a challenge as they are time consuming and often

require a priori knowledge of the composition of the materials present in the analyzed objects. For this

reason, we developed an open-source, unsupervised dictionary learning algorithm reducing the

complexity of large datasets containing 10s of thousands of spectra and identifying patterns. The

algorithm runs in Julia, a programming language that allows for faster data processing compared to

Python and R. This approach quickly reduces the number of variables and creates correlated elemental

maps, characteristic for pigments containing various elements or for pigment mixtures. This alternative

approach creates an overcomplete dictionary which is learned from the input data itself, therefore

reducing the a priori user knowledge. The feasibility of this method was first confirmed by applying it to

a mock-up board containing various known pigment mixtures. The algorithm was then applied to

a macro XRF (MA-XRF) data set obtained on an 18th century Mexican painting, and positively identified

smalt (pigment characterized by the co-occurrence of cobalt, arsenic, bismuth, nickel, and potassium),

mixtures of vermilion and lead white, and two complex conservation materials/interventions. Moreover,

the algorithm identified correlated elements that were not identified using the traditional elemental maps

approach without image processing. This approach proved very useful as it yielded the same conclusions

as the traditional elemental maps approach followed by elemental maps comparison but with a much

faster data processing time. Furthermore, no image processing or user manipulation was required to

understand elemental correlation. This open-source, open-access, and thus freely available code

running in a platform allowing faster processing and larger data sets represents a useful resource to

understand better the pigments and mixtures used in historical paintings and their possible various

conservation campaigns.

1. Introduction

X-ray uorescence (XRF) spectroscopy has become a go-to

technique in the eld of cultural heritage as an initial non-

invasive and non-destructive way of investigating inorganic

pigments.1–4 Development of XRF scanning for macroscopic

objects (MA-XRF), wherein XRF spectra are acquired across an

artwork by means of a raster scan, now allows for spatial

imaging of pigment distributions based on their elemental

composition. Because the technique is well suited to the anal-

ysis of at 2D objects, it has been used extensively for the study

of easel paintings,5–10 but its application has been extended

further to many other types artworks, such as illuminated

manuscripts,11–13 furniture,14 antique statues,15 stained

glass,16,17 wall paintings,18–20 and works on paper.21–23 The

elemental images produced can then be used as a way of

identifying areas for micro-destructive sampling but can equally

be used to reveal hidden compositions5,10,24,25 or pentimenti.9,26

Importantly pigments are oen inferred from these maps based

on the spatial co-occurrence of certain elements: emerald green,

for instance, is frequently deduced from the combination of

arsenic and copper; smalt is identied based on the presence of

cobalt, nickel, arsenic, and potassium; vermilion is character-

ized by the simultaneous presence of mercury and sulfur; cobalt
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green is associated with the co-located presence of copper and

zinc. However, it is essential to note that the proof positive

characterization of a given pigment can only be accomplished

through molecular or crystallographic methods such as Raman

or infrared spectroscopy, or X-ray diffraction.

The inference of a pigment therefore requires a domain

expert who knows what they are looking for and may be

complicated by the ubiquitous presence of one or more of the

elements, for instance, lead when used for a lead white ground.

Recently, machine learning, articial intelligence (AI), and

more specically, machine and deep learning have been applied

to cultural heritage data sets to identify patterns automatically.

Such approaches are not limited to MA-XRF but branch out to

other imaging techniques such as reectance imaging spec-

troscopy (RIS),24,27,28 as well as to molecular techniques such as

Raman and FTIR,29–31 showing its contribution toward reducing

complexity in large datasets containing 10s of thousands of

spectra.

In MA-XRF, every pixel represents a spectrum that contains

uorescence lines associated with the elemental composition of

surface and sub-surface pictorial layers. Beyond this, the spectra

also feature continuous spectroscopic background from scat-

tered primary radiation, especially in the case of polychrome X-

ray tube sources and incomplete charge collection in the

detector. This whole spectral data carries latent information

about the analyzed material and can help build a robust

machine learning approach toward understanding the material

characteristics. Specic to cultural heritage, due to the limited

number of pigments available to artists until the development

of modern organic painting materials in the late 19th/early 20th

century, for most works of art, one can expect a constrained

palette of pigments that results in just a few unique XRF

spectra. In other words, the number of pigments used to paint

an artwork span a much smaller subspace than the total

number of spectra collected during a single MA-XRF scan. Such

conditions, where similar spectra are repeated multiple times

within an image data cube, are ideally suited to machine

learning capable of extracting a set of bases representing the

limited inorganic painting materials (i.e., pigments or pigment

mixtures) used in the artwork.

One popular way of identifying such bases is by clustering

similar spectra using K-means,32 principal component analysis

(PCA),33 or embedding methods like t-distributed stochastic

neighbor embedding (T-SNE)28 or uniform manifold approxi-

mation and projection (UMAP).24 In a recent article, for

instance, self-organizing maps (SOMs) were implemented in R

as an unsupervised way to cluster similar spectra within an MA-

XRF data cube.34 With clustering methods, the data is modeled

as distributions around discrete points, oen called centroids.

These approaches produce a rst approximation of the spectral

bases that represent the XRF signal but not necessarily a “best”

set of bases that describe a latent space with the more

descriptive and discriminative features.

A more robust approach is matrix factorization which is

performed following a standard linear equation:

yi ¼ Dai (1)

in which the data collected at a certain spatial location i is

represented by a vector of spectra yi ˛ ℝ
P, the dictionary D ˛

ℝ
PxN is composed of columns of pure component or end-

member spectra (e.g., X-ray spectra representing single

pigments), and ai is the corresponding abundance vector. By

placing all the data collected into a matrix Y (the i-th column of

Y is the vector yi), eqn (1) can be re-written as

Y ¼ DA, (2)

where Y ˛ ℝ
PxM, with M the number of spatial locations scan-

ned, D ˛ ℝ
PxN as before, and the i-th column of matrix A ˛ ℝ

NxM

is the vector ai. In our formulation P is the number of channels

in the X-ray spectrum and N is the number of bases or atoms. D

is set as an overcomplete dictionary meaning that N is much

larger than the total number of physical pigments composing

the artwork. Eqn (1) and (2) will be used interchangeably.

In work concerning the analysis of cultural heritage,35,36 the

number of columns of D is taken as the pigments used in the

painting which is estimated by visual inspection of the artwork.

Then based on this number, initial seed spectra for D were

determined by clustering, and A was calculated by performing

linear least squares (LLS) t to Y. In a subsequent step, A was

held constant and the entries of D were updated. This alter-

nating optimization between D and A has been called multi-

variate curve resolution-alternating least squares (MCR-ALS) or

alternatively non-negative matrix factorization and typically

implemented using off-the-shelf commercial soware.

However, there are disadvantages toMCR-ALS. Most notably, the

number of pure component spectra forming D is xed andmust

be known a priori to avoid problems of over- or under-tting of Y

with LLS.

Here we suggest an alternative approach called sparse

dictionary learning,37 in which D and non-zero N are learned

from a set of training data instead of prespecifying the number

of pure spectral components. The benets of determining D

and N from the spectral data cubes itself without pre-clustering

has been demonstrated for synchrotron-based X-ray microscopy

data.38–40 Sparsity penalization of the abundance vectors ai is

key to this work as it reduces tting errors to the observations yi,

especially when the number of spectra composing D is

unknown. Further details about the model are provided in

Section 2.

2. Model definition: a non-negative
K-SVD approach

In our previous work we focused on nding sparse representa-

tions of visible wavelength spectral reectance data41,42 and

expanded our work looking into super-resolution of XRF cubes.

In this current work we apply a more complex approach to MA-

XRF data in which we form an overcomplete dictionary, learned

from the input data, which takes into account the whole spec-

trum, a number of latent experimental factors including

compositional variations, paint thicknesses, attenuation of the

X-ray signal on account of material layering, counting statistics,

and detector noise.

This journal is © The Royal Society of Chemistry 2022 J. Anal. At. Spectrom., 2022, 37, 2130–2143 | 2131
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The standard dictionary learning algorithm is two steps: rst

a sparse coding step is performed based on an initial dictionary,

and second, an update of the dictionary is made to produce

a better t to the data. Sparse coding is always a constrained

optimization problem such as:

min
a

i
kaik0 such that yi ¼ Dai (3)

where k.k0 denotes the ‘0 pseudonorm. The optimization

problem in eqn (3) can be solved by greedy algorithms like

matching pursuit.43 Alternatively, a surrogate to the ‘0 norm can

be used, such as the ‘1 norm, and the relaxed problem, referred

to as the LASSO problem, can be solved instead.43 In this paper,

however, we follow a different approach to the sparse coding

step aimed at solving the following constrained optimization

problem:

min
a

i
kyi � Daik2

2 under the constraint ai $ 0 (4)

where ai $ 0 denotes that the entries of ai are non-negative so

that abundances are physically interpretable as will be dis-

cussed in more detail below. To determine ai under these

conditions, and also obtain a sparse solution that establishes

the number of non-zero Ns, non-negative least squares was

utilized44 followed by a hard thresholding of the coefficients

wherein only the largest values were retained, and small values

were set to zero. This thresholding operation is equivalent to

a projection operator, which represents a non-expansive

mapping. Once the sparse coding is completed, D is opti-

mized via the approximate K-SVD algorithm, in which each

endmember column is improved by an approximate singular

value decomposition (SVD) of nearest neighbors thereby

making it similar to a generalized form of K-means clustering.43

We also impose the constraint that the entries of the end

member spectra are non-negative, denoted as D$ 0. To enforce

this constraint we apply a non-negativity constraint (also a non-

expansive mapping) to the result of the K-SVD, that is, all

negative entries of D are set to zero.

The algorithm alternates between the sparse coding step,

based on the current dictionary, and updating the columns of

the dictionary to better t the data. One of the benets of this

algorithm, is that aer several iterations, all correlated

elemental bands and features (e.g., those elements that belong

to a specic pigment) separate into distinct endmembers in D.

Also, the sparse abundances a form easily interpretable

pigment distribution images that can supplement the typical

elemental distributionmaps which are the output of classic XRF

tting methods offered by such packages of PyMCA.45

The entire algorithm was coded in Julia as a freely available

and open-source package named XRFast and made available on

the NU-ACCESS GitHub (https://github.com/NU-ACCESS/

XRFast.jl). Julia is a high-level, high-performance program-

ming language (comparable to C) which is well suited for

numerical analysis and computational science due to its speed

and ability to handle larger datasets.46 Julia is oen considered

an order of magnitude faster than Python or R,46–48 the

languages regularly used thus far to process MA-XRF or

hyperspectral imaging datasets.24,34 Furthermore, in order to

improve performance, Julia does not require the vectorization

or other optimization of the data like is oen needed in R or

Python. Consequently, with the ever-growing size of the datasets

under study, this algorithm represents a novel and suitable

option for data scientists working with complex, large datasets.

In practice, the algorithm was performed “online”, meaning

that with each iteration of sparse coding and dictionary

learning, a random 5% selection of the original data Y is used.

The 5% threshold can be modied to include fewer or greater

spectra, however in a typical experiment 5% was chosen as an

acceptable compromise between speed and performance.

Likewise, the algorithm was found to converge quickly, with no

more than 10 iterations required.

3. Materials and methods
3.1. Mock-up reference board

The algorithm was rst tested on a mock-up reference board

(Fig. 1) containing a series of stripes of pigments, applied alone

or inmixtures. Themethodology followed for the creation of the

mock-up board is described elsewhere.49 The pigments consist

of zinc white, lead white, cobalt blue, chrome oxide green,

vermilion, Prussian blue, cobalt blue, lead chromate, yellow

ochre, mixture of verdigris and sodium arsenate (to mimic

Emerald green), and tin oxide, as an alternative for organic red

precipitated on tin oxide substrate, all applied on a white

calcium carbonate ground layer. The composition of the various

stripes and pigments composition within the stripes are given

in Table 1.

3.2. Historical painting

A painting belonging to the permanent collection of the

National Museum of Mexican Art (Chicago, USA) was

Fig. 1 Mock-up paint board with stripes (1–8) of pigments mixtures.

Stripes 1 to 4 were applied first and stripes 5 to 8 were applied next and

are therefore overlaid with stripes 1–4. The pigment composition of

the various stripes is given in Table 1.

2132 | J. Anal. At. Spectrom., 2022, 37, 2130–2143 This journal is © The Royal Society of Chemistry 2022

JAAS Paper

P
u
b
li

sh
ed

 o
n
 1

7
 A

u
g
u
st

 2
0
2
2
. 
D

o
w

n
lo

ad
ed

 b
y
 N

o
rt

h
w

es
te

rn
 U

n
iv

er
si

ty
 o

n
 8

/2
1
/2

0
2
3
 9

:1
2
:0

1
 P

M
. 

View Article Online



scientically investigated non-invasively to explore its color

palette. The oil and canvas painting under investigation

(accession number 2000.34, Fig. 2), untitled and by unknown

artist, is dated from the 18th century and derived from an

engraving inspired by the oil on panel sketch entitled “Fran-

ciscan Allegory in Honor of the Immaculate Conception” by

Peter Paul Rubens [Flemish 1577–1640] at the Philadelphia

Museum of Art.50 The area of interest scanned using MA-XRF

and reectance imaging spectroscopy (RIS) is indicated by the

red rectangle in Fig. 2.

3.3. Macro X-ray uorescence (MA-XRF)

Macro X-ray uorescence was carried out on two separate

instruments. An XGLab Elio energy dispersive X-ray uores-

cence analyzer was used to scan the pigment mock-up board

and the instrument described by Pouyet et al.,13 was used to

scan the oil painting in the collection of the NMMA. For the

latter, the X-ray tube and polycapillary optic were replaced by

a 50 W transmission Rh anode X-ray tube (Varex Imaging, Salt

Lake City, UT, USA) and a 500 mm collimator, respectively. The

detector was placed at a 45-degree angle from the collimator

and a 23 mm distance between the collimator and the surface of

the object allows for a safe working distance and minimize as

much as possible the loss of low energy lines.51 The X-ray source

was operated at 40 kV and 1 mA. Due to the large size of the

painting (1.27 � 1.75 m), it was mapped with a 1.5 mm step

size, and a 100 ms per pixel dwell time, for a total of 6 cubes.

Only one cube is presented here due to the presence of most

pigments of interest in that particular area (indicated by the red

square in Fig. 2).

The XGLab Elio instrument is equipped with a high-

resolution large area silicon dri detector with 130 eV at

manganese (Mn) Ka with 10 kcps input photon rate (high

Table 1 Pigment composition of pigment mixtures used for the realization of the mock-up pigment board. The third column reports the

elements that are expected to be identified using XRF whereas the fourth columns reports the identified endmembers associated with each

pigment mixtures following the XRFast data treatment

Stripe Composition (%) Expected elements

Identied endmember

(see Fig. 4)

1 Zinc white (10) Zn EM1
Lead white (15) Pb

Cobalt blue (15) Co

Chrome oxide green (60) Cr

2 Zinc white (10) Zn EM2
Lead white (15) Pb

Cobalt blue (60) Co

Chrome oxide green (15) Cr
3 Zinc white (10) Zn EM3

Lead white (60) Pb

Cobalt blue (15) Co

Chrome oxide green (15) Cr
4 Vermilion (100) Hg/S EM5

5 Lead white (55) Pb EM8

Tin oxide (10) Sn

Prussian blue (25) Fe
Cobalt blue (10) Co

6 Vermilion (30) Hg/S EM6

Tin oxide (40) Sn

Cobalt blue (30) Co
7 Vermilion (100) Hg/S EM5

8 Vermilion (40) Hg/S EM4

Lead chromate (5) Pb/Cr
Verdigris + sodium arsenate (15) Cu/As

Yellow ochre (40) Fe

Board Calcium carbonate (100) Ca EM7

Fig. 2 18th century untitled oil on canvas after an engraving inspired

by the oil on panel sketch entitled “Franciscan Allegory in Honor of the

Immaculate Conception” by Peter Paul Rubens [Flemish 1577–1640] at

the Philadelphia Museum of Art, 127.3 � 175.3 cm2, painted by an

unknown artist (National Museum of Mexican Art, Chicago, United

States).

This journal is © The Royal Society of Chemistry 2022 J. Anal. At. Spectrom., 2022, 37, 2130–2143 | 2133

Paper JAAS

P
u
b
li

sh
ed

 o
n
 1

7
 A

u
g
u
st

 2
0
2
2
. 
D

o
w

n
lo

ad
ed

 b
y
 N

o
rt

h
w

es
te

rn
 U

n
iv

er
si

ty
 o

n
 8

/2
1
/2

0
2
3
 9

:1
2
:0

1
 P

M
. 

View Article Online



resolution mode), 170 eV at Mn Ka with 200 kcps input photon

rate (fast mode), changeable lters, and a rhodium (Rh) trans-

mission target with 50 kV maximum voltage and 4 Wmaximum

power. The size of the analyzed spot is 1 mm in diameter.

Elemental 2D mapping of the surface can be achieved through

automatic XY raster scanning. In our case, the following

measurement conditions were used: 10 smeasurement time per

point, 40 kV tube voltage, 40 mA tube current, 100 msmovement

delay, and a dimension of the scanned area of 5 � 7.3 cm (50

row and 73 columns with 1 mm distance between 2 rows or

columns).

XRF data processing and creation of pigments/colors and

comparative elemental distribution maps was undertaken

through a custom-made Jupyter Notebook running in the Julia

programing language for dictionary learning and with a custom

made Jupyter Notebook running Python and utilizing the

PyMCA library,45 respectively. The images are given in Fig. 3.

Prior to undertaking the data reduction through the dictionary

learning algorithm, the MA-XRF data is compressed through

a log–log-square root operator.52 This operation is typically

performed in conjunction with baseline removal (as with the

SNIP algorithm).53 Here the log–log-square root operator is used

to emphasize minor spectral bands or features that would

otherwise be suppressed or eliminated by the SVD

decomposition.

3.4. Reectance imaging spectroscopy (RIS)

Reectance imaging spectroscopy data was acquired using

a Resonon Pika II hyperspectral camera measuring between 400

and 900 nm with 2.1 nm spectral resolution, with a total of 240

channels. Only data between 410 and 900 nm were used for

pigment identication due to noise affecting lower wavelength

channels. The system was connected to a stage allowing the

scanning of about 30 cm of the object's width, with a pixel size of

0.5 � 0.5 mm. During acquisition, the object was illuminated

using two broad spectrum tungsten halogen lamps placed at 45�

of the objects normal. A Spectralon diffuse white reectance

standard (Labsphere, North Sutton, USA) was used as a calibra-

tion target to convert the image cubes to diffuse reectance. RIS

acquisition was performed using the SpectrononPro soware

(Resonon, Inc., Bozeman, MT, USA). The raw hyperspectral data

cubes were converted to a tiff stack in Fiji and the partially

overlapped areas of each scan were stitched together using

registration and stitching plugins available in the open-source

image processing package Fiji suite,54,55 prior to further process-

ing. Processing of the data collected was undertaken using the

UMAP method described in Vermeulen et al.24

4. Results
4.1. Mock-up pigment board

The elemental maps relevant for the identication of pigments

obtained through the classic MA-XRF data processing of the

mock-up pigment board are given in Fig. 3. All anticipated

elements were identied and consistent with the pigment

mixtures used to create the mock-up pigment board, as

described in Section 3.1.

The correlated element maps and their associated XRF

spectra obtained through the dictionary learning approach

developed in this article are given in Fig. 4. To illustrate the

speed associated with using Julia programming language, the

data processing of the 50 � 73 � 4096 pixels cube took 10

seconds. As illustrated, the number of endmembers (EMs) is

eight (8), all presenting a unique XRF signature instead of noise

components within D. The 8 EMs identied correspond to the 7

pigment mixtures described in Table 1 (mixtures 4 and 7 being

the same pigment) and the calcium carbonate ground.

4.2. Historical painting

The maps of elements relevant for the identication of

pigments obtained through the classic MA-XRF data processing

of historical painting board are given in Fig. 5.

Fig. 3 Elemental maps obtained using PyMCA. Elements identified include arsenic (As), copper (Cu), calcium (Ca), cobalt (Co), chrome (Cr), iron

(Fe), zinc (Zn), mercury (Hg), lead (Pb), sulfur (S), and tin (Sn).
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The correlated element maps and their associated XRF

spectra obtained through the dictionary learning approach

developed in this article are given in Fig. 6. To illustrate the

speed associated with Julia, the data processing of the 536 �

548 � 4096 pixels cube took 8 minutes and did not require any

tting of the sum spectrum, nor extensive experience of the end

user. As illustrated, the number of endmembers is six (6).

Some small contribution for copper (Cu) and zinc (Zn) found

for endmembers 1, 2, 4, 5, and 6 can be associated with the

brass used for the collimator, rather than the studied materials

themselves. Similarly, iron (Fe) and lead (Pb) are found in all

endmembers independently of the color of the materials.

According to microsample taken on the edges of the painting

(not shown) and microinvasive analyses (SEM-EDX, Fig. S1†),

the signal for these elements may be associated with the red

Fig. 4 Correlated element maps and associated XRF spectra (linear scale) obtained using the dictionary learning approach. See Section 3.1 for

description of mock-up.
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iron oxide/oxy-hydroxide and white Pb-rich layers found as

ground/imprimaturs.

5. Discussion
5.1. Identication of pigment mixtures and pigments of

known complex elemental composition

The identication of all 7 stripes of pigments as illustrated in

Fig. 4, clearly highlights the ability of the algorithm to, quickly

and accurately, identify pigments of complex elemental

compositions. Indeed, among others, EM4 presents all

elements expected for the complex mixture of vermilion (Hg),

lead chromate (Pb/Cr), verdigris and sodium arsenate (Cu/As)

and ochre (Fe) expected for mixture 8 (Table 1), whereas EM6

is being identied based on the elemental signature of the

complex mixture 6 (Table 1), composed of vermilion (Hg), cobalt

blue (Co) and tin oxide (Sn). It is important to highlight that the

algorithm can differentiate between the Hg coming from

mixture 6 and 8 as well as the Hg coming frommixtures 4 and 7,

also suggesting the power of such an approach. The identi-

cation of the aforementioned pigment mixtures using the

elemental maps presented in Fig. 3 would have required amuch

more difficult and time-consuming cross-identication process,

encouraging possible mistakes. Similarly, yet simpler,

vermilion and copper-based pigments mixed with lead white

were identied in the historical painting (Fig. 6). In both cases,

Pb is likely used as lead white to yield desired lighter shade. The

identication of vermilion solely based on the Hg elemental

map (Fig. 5) is unambiguous as Hg is only found in this red

pigment. Nonetheless, the pigment was also conrmed through

RIS based on its very characteristic spectrum with inection

point at 590 nm (Fig. S2a†). The lack of additional features in

the reectance spectrum does not suggest any other pigments

despite the increased absorbance in the 600–700 nm range,

which has been previously observed for vermilion.24,56 However,

the presence of lead white, in mixture with vermilion, would go

undetected in RIS due to the lack of features for the pigment in

the visible and near infrared range used for this study. While

clear from the dictionary learning approach, the additional

presence of Pb in the red areas is however not evident from the

Pb–L elemental map due to the overall presence of lead

throughout the composition (Fig. 5). Only inspection of the

signal intensity for each pixel or image manipulation such as

RGB composite image composed of Hg, and Pb for the red and

blue channels, respectively highlight a similar result as indi-

cated by the pinkish magenta color created when blue (Pb) and

red (Hg) overlap (Fig. 7a).

In the case of the Cu-based and Pb-based pigment mixture

observed in the wing of the angel, embellishments of the blue

robe gemstones of the crown and inner sleeves of the kings in

the lower le quadrant (endmember map 3 (EM3); Fig. 6), and

likely identied as aged verdigris or copper resinate based on its

RIS features (Fig. S2b†),57–59 while the presence of Pb is clear

based on the dictionary learning approach XRF spectrum

Fig. 5 Elemental maps obtained using PyMCA. Elements identified include arsenic (As), barium (Ba), bismuth (Bi), calcium (Ca), cobalt (Co),

copper (Cu), iron (Fe), mercury (Hg), potassium (K), manganese (Mn), nickel (Ni), lead (Pb), titanium (Ti), and zinc (Zn).
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presented in Fig. 6, its presence along with Cu is not evident

from the Pb map, again due to the overall presence of the

element in the composition (Fig. 5). RGB Pb/Cu composite

image suggests however the presence of the element mixture

based on the magenta color produced by the overlapping of the

two elemental maps (Fig. 7b), which shares similarities with the

distributionmap produced by the dictionary learning approach.

This, comparatively to what was described for the Hg/Pb

pigment mixture, shows the strength of the machine learning

approach providing the same conclusions as what is obtained

by overlapping individual elemental maps without having to

Fig. 6 Correlated element maps and associated XRF spectra (linear scale) obtained using the dictionary learning approach.

Fig. 7 (a) RGB composite image for Hg (red), and Pb (blue), showing the correlation between Hg and Pb (magenta) in the red areas of the

composition, and (b) RGB composite image for Cu (red), and Pb (blue), showing the correlation betweenCu and Pb (magenta) in the dark (likely to

be green) areas of the composition.
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undertake any image manipulation, oen requiring the user to

know what they are looking for.

The correlation between Hg and Pb and Cu and Pb is further

indicated by the correlation plots obtained using Fiji plugin

ScatterJ, which enables the comparison of two images and to

extract statistical and spatial information based on their pixel

values. When two images are completely uncorrelated, the

correlation plot will feature one horizontal and one vertical line

intersecting in the origin, corresponding to the pixel values of

both images (e.g., Hg and Zn, Fig. S3a and b†). When the images

are fully correlated, as one would expect in the case of elements

found in a pigment, the correlation plot will present a diagonal

line (e.g., As and Ni, Fig. S3c and d†). When elements are not

fully correlated but are still found together in the same area, as

a result of heterogeneous mixtures of pigments, variations in

pixel intensities may be expected and may lead to further

correlation variations that what is observed for fully correlated

elements. This is what is observed for both the Cu/Pb and the

Hg/Pb correlation plots (Fig. 8). Furthermore, the Cu/Pb corre-

lation plot also suggests two mixtures (Fig. 8b and c): one richer

in Pb (purple rectangle, dress embellishments and angel wing)

and one poorer in Pb (red rectangle, crown emerald and green

from outts). Consequently, the dictionary learning approach

provided the same results as what is obtained through the

standard pipeline without requiring further investigation and

image manipulation.

The algorithm proved suitable to identify complex mixtures

but appears to be suitable to identify single pigments

Fig. 8 (a) Elemental maps for lead (Pb), copper (Cu) and mercury (Hg), (b) Cu/Pb and Hg/Pb correlation plots highlighting a non-fully correlation

between the elements, likely associated with heterogeneous mixtures of pigments and (c) back mapping of the two areas (Pb-rich, purple and

Pb-poor, red) associated with the Cu/Pb maps and likely corresponding to two Cu/Pb ratios.

Fig. 9 Reflectance imaging spectroscopy distribution map of materials associated with smalt (a) and associated reflectance curve (b) presenting

the characteristic features of smalt.
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presenting a complex elemental composition. This is high-

lighted on the historical painting, where the Virgin Mary's blue

robe and the round rocks on which she stands contains cobalt

(Co), nickel (Ni), arsenic (As), potassium (K) and bismuth (Bi)

according to the elemental maps presented in Fig. 5. Such

complex elemental mixture was equally suggested by the

dictionary approach developed in this article and presented in

the endmember map 1 (EM1, Fig. 6) as suggested by the pres-

ence of Co, Ni, As, K and Bi in the associated XRF spectrum. The

combined presence of Co, Ni, Bi and As in a blue area is

considered a good marker of smalt,60 this pigment being

a ground blue potassium glass containing cobalt. The identi-

cation of smalt in these specic areas of the painting is further

conrmed by its very specic reectance curve with character-

istic features in the 550–650 nm range (Fig. 9).57,61 Its presence

in the blue robe of the central gure is not surprising as smalt

was oen used, in the 17th century, as an inexpensive substitute

for the costly ultramarine blue pigment.60 Aluminum (Al) and

silicon (Si) are both elements present in smalt, but are consid-

ered too light to be identied with XRF under the conditions

used for this study. While As, Ni and Bi are not technically

elements present in the molecular structure of smalt, they have

oen been associated with this pigment as trace elements

associated with the cobalt ores such as smaltite ([Co, Ni]As3�2),

erythrite ([Co, Ni]3[AsO4]2$H2O) and cobaltite ((Co,Fe)AsS).60,62–65

Similarly to the Hg from mixture 4 and 7, while elemental

maps would also lead to the identication of smalt as suggested

by the co-localization of the elements As, Bi, Co, Ni and K,

elements such as K appear to be also associated with other

pigment(s) or mixture(s) of pigments as suggested by its pres-

ence in the borders and areas of loss (see K–K and Pb–L maps in

Fig. 5). The specicity of the dictionary learning algorithm,

searching for pixels presenting similar XRF spectra, is therefore

an asset to differentiate between these various areas that may

contain similar elements coming from various pigments/

pigment mixtures. Furthermore, the dictionary learning

approach presented here simplies the data processing step by

reducing the number of maps and therefore, the time-

consuming map comparison step.

While not present in this particular painting, other pigments

with unique elemental composition, such as Emerald/Scheele's

greens (As/Cu), cadmium yellow/red (Cd/S/Se), cerulean blue

(Co/Sn), cobalt green (Co/Zn), chrome yellow/orange (Pb/Cr),

Egyptian blue (Cu/Ca), lead tin yellow (Pb/Sn), and Naples

yellow (Pb/Sb) are expected to respond similarly when analyzed

through the dictionary learning pipeline presented here.

5.2. Easier detection of minor elements

The algorithm proved successful in identifying either pigments

of complex elemental compositions (smalt) or mixtures of

pigments (vermilion/Cu-based green and lead white or various

Fig. 10 Elemental maps for (a) Fe, (b) Ca, (c) brightness and contrast-adjusted Ca, (d) dictionary learning endmember maps 4 (EM4), and (e)

extracted XRF spectrum from an Fe-rich inner sleeve (red dot) and EM4-associated XRF spectra highlighting the use of a Fe/Ca-rich pigment

(EM4).
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mixtures of zinc white, lead white, cobalt blue, and chrome

oxide green). Yet, the algorithm also proved valuable to identify

elements likely found in minor amount in a complex mixture.

Many times, such elements may go undetected in the elemental

maps due to the dynamic range of the greyscale elemental

maps. Indeed, when elements show large counts in certain

areas, these areas appear very bright in the elemental map and

will quench the range, making areas with fewer counts appear

much less intense to the point it may go undetected. This is

what is observed in the case of the Cr used in mixture 8 where

lead chromate represents only a very small proportion of the

pigment mass compared to the other pigments of the mixture

accounting for 95% of the total pigment mass. Consequently,

and because Cr is found in much greater quantity in mixture 1,

the Cr in mixture 8 goes undetected in the Cr elemental map

(Fig. 3-Cr) while being positively identied through the dictio-

nary learning approach (Fig. 4-EM4). A similar issue is observed

in the historical painting where it is difficult to say without any

further user manipulation that the inner sleeve of the Virgin

Mary contains anything except for Fe based on the elemental

maps created using PyMCA (Fig. 10a). From the non-

manipulated elemental maps, no Ca appears to be found in

this area (Fig. 10b). However, the extracted XRF spectra (red

spectrum in Fig. 10e) clearly shows that, while Fe is the main

element found in this area, Ca, is also present but went unde-

tected in the elemental maps. This is most likely due to the

bright Ca-rich areas that will quench the poorer (darker)

elemental counts areas of the image. The presence of the Ca

only becomes more evident when drastically adjusting the

contrast and brightness of the image (Fig. 10c), further

requiring some user input. The dictionary learning approach

did however identify Ca in the Fe-rich brown areas of the

composition (EM4, Fig. 10d and black spectrum in Fig. 10e).

This again shows how the algorithm can work around images

visual limitations and provide the users with images that reect

better the full nature of the material under study.

Ca found in the Fe-rich brown areas may have been used as

additive in the Fe-based ochre pigment to yield darker shades as

Ca may correspond to the addition of bone black. However, the

nal characterization of these materials would require further

molecular analyses, not available in the frame of this study.

5.3. Identication of various conservation materials with

similar composition

According to Fig. 4, the dictionary learning algorithm presented

in this paper was able to easily differentiate mixtures 1, 2 and 3,

Fig. 11 Dictionary learning endmember maps (a) EM5 and (b) EM6 and associated XRF spectra highlighting the use of two different materials in

the retouched areas. The spectra are also presented in linear scale (c) to further highlight the Ca, Ti and Zn elemental intensity variations that are

reduced using the logarithmic scale often used.
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all presenting the same elemental composition (Zn, Pb, Co, Cr)

with only variations in composition (Table 1). While it would

have been possible to identify the various pigment mixtures

based on elemental variations observed in the elemental maps

created by PyMCA, the dictionary learning approach, by its

ability to look at pixel-wise spectra and recognize patterns,

appears a much easier and faster methodology. This can be

a very interesting approach to differentiate between various

artists having collaborated on a single painting, various stages

of a painting using the same pigment mixture with variations in

its composition, and various conservation campaigns, oen

using similar conservation materials. This is well illustrated by

how the machine learning approach clearly identies two types

of complex materials containing mainly elements oen asso-

ciated with modern conservation materials (Ca/Ti/Fe/Mn/Zn,

Fig. 11). Despite Ca and Ti found in both materials, the algo-

rithm can differentiate the two materials as having different

composition in Ti and Ca, one being Ti- and Zn-rich and the

other Ca-rich. These observations provide extra understanding

on the past conservation treatments undertaken on the artwork.

Such level of information-digging is very difficult to achieve

through classic elemental maps approach due to various

factors, including the variation in dynamic range.

6. Conclusion

This study looked at the feasibility and advantages of machine-

learning-based correlated elements mappings as an alternative

processing of MA-XRF datasets. The algorithm was tested on

a pigment mock-up board with known pigment mixtures and

then applied to a historic painting from 18th century Mexico

and presenting pigments with characteristic composition,

pigments mixtures, and retouching areas. The open-access,

user-friendly, fully available online machine learning

approach, using the recently developed Julia programming

language, for increased processing speed and larger data

handling, showed great advantages over the traditional

elemental map processing and pipelines using Python or R

when it comes to identify pigments with characteristic compo-

sition such as smalt, composed of elements such as Co, Ni, As,

Bi, and K. Identication of smalt with the traditional elemental

map approach required the user to create the various elemental

maps and compare them to one another to highlight areas of

elemental co-presence when the machine learning approach

create a single distribution map of the co-localized elements,

identied through an associated XRF spectrum. As a result, no

image manipulations to create the popular RGB composite

images highlighting elemental co-presence is required, saving

the user time and user-based oversights. While smalt was

identied in this study, similar outcomes are expected for

pigments of known specic elemental composition such as

Emerald/Scheele's green (As/Cu), cadmium yellow/red (Cd/S/

Se), cerulean blue (Co/Sn), cobalt green (Co/Zn), chrome

yellow/orange (Pb/Cr), Egyptian blue (Cu/Ca/Si), lead tin yellow

(Pb/Sn), and Naples yellow (Pb/Sb). The dictionary learning

approach also allowed us to identify pigment mixtures, in our

case mixtures of colored pigments (vermilion and most likely

copper-based verdigris or copper resinate) with a white base

(likely to be lead white), providing further information on the

artists' technique. The novel machine learning approach also

demonstrated its power in terms of highlighting elements

which elemental counts in some areas do not allow the user to

distinguish them easily as their brightness and contrast is

quenched by the dynamic range of the distribution map.

Finally, we were also able, using the machine learning

approach, to extract more information about previous conser-

vation treatment than the classic elemental map approach

would allow us to without further data manipulation. This study

demonstrates that machine learning, made available to all

through the open-access data treatment pipeline, is a valuable

tool for the data treatment of MA-XRF obtained on artworks and

allows the user to extract more and more specic information

than what is usually possible using the classic elemental

mapping. However, it is important to note that this approach

does not replace the user-based knowledge of the pigments and

conservation materials required to contextualize the results.
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