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ABSTRACT

Using prosthetic devices requires a substantial cognitive workload. This study investigated classi-
fication models for assessing cognitive workload in electromyography (EMG)-based prosthetic
devices with various types of input features including eye-tracking measures, task performance,
and cognitive performance model (CPM) outcomes. Features selection algorithm, hyperpara-
meter tuning with grid search, and k-fold cross-validation were applied to select the most
important features and find the optimal models. Classification accuracy, the area under the
receiver operation characteristic curve (AUC), precision, recall, and F1 scores were calculated to
compare the models’ performance. The findings suggested that task performance measures,
pupillometry data, and CPM outcomes, combined with the naive bayes (NB) and random forest
(RF) algorithms, are most promising for classifying cognitive workload. The proposed algorithms
can help manufacturers/clinicians predict the cognitive workload of future EMG-based prosthetic
devices in early design phases.
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Practitioner summary: This study investigated the use of machine learning algorithms for clas-
sifying the cognitive workload of prosthetic devices. The findings suggested that the models
could predict workload with high accuracy and low computational cost and could be used in
assessing the usability of prosthetic devices in the early phases of the design process.

Abbreviations: 3d: 3 dimensional; ADL: Activities for daily living; ANN: Artificial neural network;
AUC: Area under the receiver operation characteristic curve; CC: Continuous control; CPM:
Cognitive performance model; CPM-GOMS: Cognitive-Perceptual-Motor GOMS; CRT: Clothespin
relocation test; CV: Cross validation; CW: Cognitive workload; DC: Direct control; DOF: Degrees of
freedom; ECRL: Extensor carpi radialis longus; ED: Extensor digitorum; EEG:
Electroencephalogram; EMG: Electromyography; FCR: Flexor carpi radialis; FD: Flexor digitorum;
GOMS: Goals, Operations, Methods, and Selection Rules; LDA: Linear discriminant analysis; MAV:
Mean absolute value; MCP: Metacarpophalangeal; ML: Machine learning; NASA-TLX: NASA task
load index; NB: Naive Bayes; PCPS: Percent change in pupil size; PPT: Purdue Pegboard Test; PR:
Pattern recognition; PROS-TLX: Prosthesis task load index; RF: Random forest; RFE: Recursive fea-
ture selection; SHAP: Southampton hand assessment protocol; SFS: Sequential feature selection;
SVC: Support vector classifier

1. Introduction doubled by 2050 due to the increasing rate of contri-

Amputee patients experience severe functional disabil- buting diseases (Amputee Coalition 2021). Amputees

ity in activities of daily living (ADLs) due to the lack of
prosthetic device usability (Bowker 2004; Montagnani,
Controzzi, and Cipriani 2015). More than two million
amputees live in the U.S., and about 185,000 amputa-
tions occur each year. This number is expected to be

use prosthetic devices regularly to perform ADLs.
These activities may not be possible without pros-
thetic devices or require additional effort and time
(Gaskins et al. 2018; Lusardi, Jorge, and Nielsen 2013).
However,

the devices are often reported to be
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challenging to use, which can lead to reduced utilisa-
tion and device rejection (Engdahl et al. 2015). About
53% of passive hand users, 50% of body-powered
hook users, and 39% of myoelectric hand users reject
prosthetic arms (Kannenberg and Zacharias 2014). The
main reasons for rejection were poor dexterity, glove
durability, and lack of sensory feedback (Biddiss,
Beaton, and Chau 2007; Bowker 2004; Montagnani,
Controzzi, and Cipriani 2015).

Using prostheses requires substantial cognitive resour-
ces (Geurts and Mulder 1994; Geurts et al. 1991; Heller,
Datta, and Howitt 2000; Hofstad et al. 2009; Williams
et al. 2006). Cognitive resources are used to compensate
for the loss of motor control and mitigate the damage
of somatosensory feedback from the amputated limb
(Childress 1980; Heller, Datta, and Howitt 2000; Herberts
and Korner 1979; Krewer et al. 2007; Williams et al. 2006;
Witteveen et al. 2012). Therefore, using prostheses can
cause a lack of cognitive capacity to perform other men-
tal activities (Heller, Datta, and Howitt 2000; Williams
et al. 2006). High mental workload can also reduce the
primary task performance (Duysens et al. 2012). In case
of upper limb amputation, most of the current control
strategies use limited information (i.e. shoulder move-
ments or recorded electromyography (EMG) signals) for
activating several degrees of freedom (DOF) of the pros-
thetic devices, which is non-intuitive and unnatural, and
can result in high cognitive workload (CW) (Cordella
et al. 2016). Therefore, it is essential to assess CW of
prosthetic devices early in the design and development
process to improve device usability.

1.1. Cognitive workload classification

Using machine learning (ML) algorithms for the classifi-
cation of CW has several advantages as compared to
inferential statistics. First, ML algorithms can deal with
the ambiguity and uncertainty associated with non-
linear factors, which is not possible with inferential sta-
tistics (Moustafa, Luz, and Longo 2017). For example,
multivariate analysis of variance (MANOVA) is still lim-
ited to model multifaced nature of CW (Matthews et al.
2015; Wickens 2017). ML algorithms can also be used to
find relationships in high dimensional spaces compared
to statistical modelling (Hillege et al. 2020). Finally, ML
approaches can be used to predict CW of using pros-
thetic devices in real-time (Braarud et al. 2021). With the
recent development in experimental devices and ML
techniques, it is possible to design an interface to adapt
in real-time based on the classified CW level (Zahabi,
Wang, and Shahrampour 2021).

A recent review of literature found four types of
CW measures in prosthetic device studies including

physiological measures [e.g. electroencephalogram
(EEG), heart rate variability, pupil diameter change],
subjective measures [e.g. NASA-Task Load (NASA-TLX)
Index], performance measures, and cognitive perform-
ance model (CPM) outcomes (e.g. number of cognitive
operators) (Park and Zahabi 2022). Although physio-
logical, subjective, and performance measures were
used more frequently in previous studies as compared
to CPM measures, Zahabi et al. (2019) found that cog-
nitive models, such as the Goals, Operations, Methods,
and Selection Rules (GOMS) method can be used to
assess cognitive workload and usability of using
upper-limb prosthetic devices.

Several ML algorithms have been used to classify CW
in different domains. The most frequently used methods
were support vector classifier (SVC) (Meyer 2017), ran-
dom forest (RF) (Liaw and Wiener 2002), and Naive
Bayes (NB) (Majka 2018). Furthermore, the SVC
(Ghaderyan and Abbasi 2016; Pettersson et al. 2020)
and RF algorithms were found to have the highest clas-
sification accuracy in prior studies (Badarna et al. 2018;
Skaramagkas et al. 2021). Neural network (Sharma et al.
2021; Walambe et al. 2021) and NB (Nourbakhsh, Wang,
and Chen 2013b; Raufi 2019b) algorithms have been
used in prior studies with large datasets. While a major-
ity of studies used physiological measurements as input
features (e.g. heart rate, pupil diameter, respiration rate,
brain signal or skin conductance) (Meteier et al. 2021;
Momeni et al. 2019; Wang et al. 2013), some investiga-
tions used task performance outcomes (e.g. response
time in mental arithmetic task) as input features for clas-
sifying CW (Appel et al. 2019; Li et al. 2020). Although
several optimisation methods exist including the ensem-
ble method (Skaramagkas et al. 2021), recursive feature
elimination (RFE) (Raufi 2019b), k-fold cross validation
(CV) (Momeni et al. 2019), grid search (Mock et al. 2016)
and random search (Skaramagkas et al. 2021), previous
studies did not clearly state their feature selection meth-
ods (Hillege et al. 2020; Li et al. 2020) or hyperpara-
meter tuning (Momeni et al. 2019; Wang et al. 2013),
which are essential for optimising the ML algorithms.

1.2. Research gaps and objective

There has not been any investigation on the classifica-
tion of CW for prosthetic devices, although high CW is
one of the major challenges with existing prosthetic
devices. In addition, although several measures, such
as physiological responses and subjective measures
have been used as input features in CW classification
algorithms, no study used CPM outcomes as input fea-
tures to classify CW. CPM models can be generated by



observation of different tasks and using knowledge
elicitation approaches with small sample sizes, do not
require extensive human-subject experiments, and
therefore can be used in the early stages of the design
cycle. Lastly, a majority of previous studies skipped
optimisation processes in developing their models.
Therefore, the objective of this study was to classify
the level of CW in using EMG-based prosthetic devices
based on various features, metrics, and tasks.

In our preliminary study (Park et al. 2022), we
explored a subset of features using an example of ADL
(i.e. clothespin relocation test; CRT). We classified cogni-
tive workload into two classes (low or high) and com-
pared the accuracy of models to investigate the
feasibility of CW estimation in this domain. In this study,
we explored a more comprehensive list of features, eval-
uated the algorithms using two tasks (CRT and
Southampton Hand Assessment Protocol—SHAP) with a
larger dataset, explored more detailed classes of work-
load, and used five metrices [accuracy, area under the
receiver operation characteristic curve (AUC), Precision,
Recall, and F1 score] to evaluate the model outcomes.

2. Methods
2.1. Participants

Thirty able-bodied participants (18 males and 12
females) were recruited for this study (Age: M=22.9
years; SD=2.8 years). All participants had 20/20 or
corrected vision with no prior experience using a pros-
thetic arm or a myoelectric exoskeleton for upper
limbs. Participants’ dexterity level was assessed using
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the Purdue Pegboard Test (PPT) (Tiffin and Asher
1948). The experiment protocol was approved by the
Institutional Review Board at the University of North
Carolina at Chapel Hill. The number of participants
was determined based on pilot tests. Pilot tests were
conducted with six participants (randomly assigned
two participants to each of the device configuration).
Effect sizes (d) were calculated for each of the
dependent variables. Among all the calculated effect
sizes, the minimum effect size (0.6) (associated with
the percent change of pupil size (PCPS) responses)
was selected to have the most conservative approach,
which is between the medium and large effect size of
Cohen’s d (Cohen 1988). With this effect size and
including other parameters, such as alpha (x=.05)
and power (1—f=.8), the sample size for each device
configuration was calculated as 9.43 using the ‘pwr’
package in R 4.2.2 (Champely et al. 2018; Sakai and
Sakai 2018). Finally, we round up this value to 10 and
recruited in a total of 30 participants (i.e. 10 partici-
pants per each device configuration). This sample size
was larger than the average number of participants
used in prior studies assessing the cognitive workload
of prosthetic devices with able-bodied subjects (i.e.
M =13.46, SD = 6.49) (Park and Zahabi 2022).

2.2. Experiment setup

A commercial prosthetic device (Motion Control ETD,
Filauer) with 2-DOF of actuation in hand open/close
and wrist pronation/supination was used to test three
control schemes: direct control (DC), pattern recogni-
tion (PR), or continuous control (CC). A custom pros-
thetic hand adapter was designed and fabricated as a
bypass device, as shown in Figure 1. The weight of
the device was 4.54 lb.

For the DC control scheme, muscle activation levels
were estimated with the EMG signals from two chan-
nels [hand close/wrist pronation for the flexor carpi
radialis (FCR) channel; hand open/wrist supination for
the extensor carpi radialis longus (ECRL) channel;
Figure 2] based on the mean absolute value (MAV)

Figure 2. EMG sensor placement.
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from each channel (Resnik et al. 2018; White et al.
2017). Participants could control only one DOF or
mode [either rotation mode (wrist pronation/supina-
tion) or open/close mode (hand flexion/extension)] at
a time. If one of the MAV from two channels exceeded
its preconfigured threshold, the motor for the cur-
rently active DOF would move in the corresponding
mode (hand close/wrist pronation for FCR channel;
hand open/wrist supination for ECRL channel) at
speed proportional to the magnitude of the EMG sig-
nal. If the thresholds of both channels were exceeded
via co-contraction of forearm muscles by the partici-
pants (i.e. power grip), the active mode was switched.
The experimenter manually adjusted thresholds and
proportional control gains for each channel based on
feedback from the participants.

For training of the PR configuration, participants
performed five hand gestures (labelled as hand close,
hand open, wrist pronation, wrist supination, and no
movement). Each movement class was held for 4s and
was followed by a 5s rest period. All movement
classes were performed twice. EMG data were simul-
taneously collected and labelled with the current
movement class. Four commonly used time domain
features (MAV, number of zero crossings, waveform
length, and number of slope sign changes) were
extracted from EMG signals following the methods
used in prior studies (Resnik et al. 2018; White et al.
2017). The features and labels were used to train a
Linear discriminant analysis (LDA)-based classifier to
predict one of the five-movement classes from the
input features. The speed was set proportional to the
sum of the magnitudes of the four EMG signals.
During the calibration, the experimenter manually
adjusted control gains based on the classification per-
formance and feedback from the participants.

In the CC control scheme, EMG data were recorded
simultaneously with kinematic data from a Leap
Motion Controller (Leap Motion, Inc., USA). The device
uses a camera to accurately estimate the positions of
segments in the hand and forearm (Butt et al. 2018;
Dyshel et al. 2015). Estimates of the positions of the
phalangeal, palm, and forearm segments were
recorded at 120 Hz and used to calculate wrist prona-
tion/supination and metacarpophalangeal (MCP) flex-
ion/extension joint angles. Muscle activations were
estimated from the recorded EMG signals by calculat-
ing the MAV using a sliding window incremented in
10ms steps resulting in 100Hz input EMG data. The
kinematics data were downsampled to 100Hz to
match the EMG data. Training data were collected
from participants while they performed three motion

types: MCP flexion/extension only, wrist pronation/su-
pination only, and simultaneous wrist and MCP. All
motions were performed in a pattern in which partici-
pants moved their wrist/MCP between one of the five
positions (fully flexed/pronated, relaxed, fully exten-
ded/supinated) to a metronome set at a 1Hz fre-
quency. Three 10s trials were recorded for each
motion type to be used for training. An artificial neural
network (ANN) algorithm was developed for each par-
ticipant for both the wrist and MCP using the Deep
Learning Toolbox in MATLAB 2018b (Mathworks Inc.,
USA). The ANNs were trained to map processed EMG
signals to joint positions. Velocity was estimated by
differentiating the estimated positions.

A Pupil-core eye tracking system (Pupil Labs,
Germany) was used to collect pupil data. The system
hardware included one world camera and two eye
cameras. The eye cameras detected and tracked the
pupil with 3-dimensional models. Gaze parameters
were gathered in normalised 3D gaze positions and
binocular vergence. Eye movements were recorded
with .6 degrees accuracy [i.e. the average angular off-
set (distance) (in degrees of visual angle) between fix-
ations locations and the corresponding locations of
the fixation targets], .02 precision [i.e. the root mean
square of the angular distance (in degrees of visual
angle) between successive samples], and frequency of
200Hz. The eye-tracking system was calibrated using
Apriltag markers. Dismissing rate during the calibra-
tion was consistently controlled to be <20% based on
the criteria defined by the manufacturer (Pupil Labs).
The pupil size was calculated by measuring the rela-
tive size of eye camera pixels in millimetre unit in the
3D eye model.

2.3. Task

For assessing CW of prosthetic devices, two ADLs
were used in this study including the CRT and the
SHAP (Figure 3). CRT is a commonly applied ADL for
assessing the usability of upper limb prostheses
(Stubblefield et al. 2005; Zahabi et al. 2019). SHAP—
door handle task was selected as another appropriate
testbed based on our previous study as it includes a
combination of upper limb movements including
shoulder elevation/depression, arm abduction/adduc-
tion, arm flexion/extension, arm medial/lateral rotation,
forearm flexion/extension, and wrist supination/prona-
tion (Park et al. 2020). The CRT requires participants to
move as many pins as possible from the horizontal
rod to the vertical rod in 2min. The SHAP task
requires participants to rotate the door handle using a
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Figure 3. Clothespin relocation task and Southampton Hand Assessment Procedure Task.

power grip until it is fully open, then release the han-
dle as quickly as possible. The SHAP form-board was
placed in front of the participant with the blue side
facing upward, ~8cm from the front edge of the
table. The door handle task was demonstrated to the
participant using slow, precise movements, ensuring
that the participant was aware of the proper grip for
completing the task. The demonstration was carried
out using the corresponding hand under assessment
to avoid any confusion for the participant.

2.4. Experiment design and variables

The experiment followed a between-subject design in
which each participant was randomly assigned to one of
the three prosthetic configurations (i.e. DC, PR, or CQ).
This approach was selected to reduce learning effects
that might occur for participants as a result of working
with different prostheses across multiple test trials. Upon
being assigned to a specific type of prosthesis, all partici-
pants experienced two tasks (i.e. CRT and SHAP door
handle tasks), including three trials for each task.

CW of participants was measured while performing
the tasks using task performance measures, pupillary
measures, CPM outcomes, and perceived workload rat-
ings. Task performance was captured by watching
recorded videos of participants performing the tasks
and using measures including the numbers of pins
moved (for the CRT) and time to rotate door handle
five times (for the SHAP task). In addition, the time to
complete one cycle of each task was measured in milli-
seconds [i.e. the best (fastest) task completion time to
move one pin from one bar to another bar in CRT or
the best (fastest) task completion time to rotate the
door handle once in SHAP]L. Pupillary measures
included the percent change in pupil size (PCPS) and
blink rate. PCPS has been used in previous studies to
assess CW of prosthetic devices (Zhang et al. 2016).
Blink rate has also been frequently used as an indicator

of CW (Cardona and Quevedo 2014; Fogarty and Stern
1989; Martins and Carvalho 2015). Blink rate is defined
as the number of eye closures in a given period
(White et al. 2017). Eye blinks and blink duration
decreases as visual workload increases (De Waard and
Brookhuis 1996).

For developing CPMs, task analysis was initially con-
ducted for each type of configuration and task. Based
on the findings of the task analysis, six Cognitive-
Perceptual-Motor GOMS (CPM-GOMS) (John 1990)
models were developed in Cogulator (Estes 2017). The
models generated outcomes including task completion
time for one cycle, number of cognitive, perceptual,
and motor operators, and the number of memory
chunks. A list of features used in this study is shown
in Table 1.

NASA-TLX score was used as a ground truth or tar-
get variable to compare with the findings of CW clas-
sification algorithms, as this measure has been used
extensively in prior studies using prosthetic devices
(Connan et al. 2016; Deeny et al. 2014; Markovic
et al. 2018). Participants were asked to rate their per-
ceived workload using the NASA-TLX questionnaire
after each trial.

2.5. Procedure

Before the experiment, participants signed the informed
consent form, an informed consent form addendum for
research during the COVID-19 pandemic, and a demo-
graphic questionnaire. After the participants signed all
documents, they were asked to complete the Edinburgh
Handedness Test (Oldfield 1971) and the Purdue
Pegboard Test (PPT) (Tiffin and Asher 1948; White et al.
2017). The PPT was conducted three times to determine
if they fell within the range of ‘normal’ manipulative dex-
terity. Participants were recruited for the experiment if
they received a right-hand dominance score of 0.7 or
greater based on the Edinburgh Handedness Test and



6 J. PARK ET AL.

Table 1. List of input features and their description.

Category Features Data type Description
Device configuration Device control scheme (i.e. DC, PR, CC) Categorical Type of device configuration
Task performance measures Task performance Continuous Number of pins moved in 2 min
Number of training trials Discrete Number of training sessions needed to pass the
training criteria
Tasks completion time of one cycle Continuous Best (fastest) task completion time to move one
pin from one bar to another bar
Pupillary measures Percent change in pupil size Continuous Percent change in pupil size
Blink rate Continuous Blinks per minute
CPM outcomes Number of cognitive operators Discrete Number of cognitive operators in CPM
Number of perceptual operators Discrete Number of perceptual operators in CPM
Number of motor operators Discrete Number of motor operators in CPM
Tasks completion time estimate from Continuous Best (Fastest) task completion time to move one
model pin from one bar to another bar from CPM
Memory chunks Continuous Number of memory chunks

their PPT score was no more than one standard deviation
below the normal mean dexterity for their age and gen-
der group (Tiffin and Asher 1948).

Once participants completed the PPT test, they
donned the prosthetic adapter, and EMG electrodes
were placed on their skin based on the assigned con-
trol mode. A verbal description of the prosthesis DOF
and control strategy was provided. For participants
assigned to the DC group, the prosthesis was acti-
vated during the EMG threshold configuration proced-
ure. Participants were allowed to practice controlling
the device until they reported comfort with the DC
control. Participants then advanced to the formal
training period. Participants assigned to the PR group
were instructed to perform specific arm motions and
to observe the feedback (the classified gestures includ-
ing hand open, hand closed, wrist pronated, wrist
supinated, and relaxed hand and wrist) from the
experimenter’s laptop screen. Five seconds of rest
were allowed between each posture. Participants
assigned to the CC group were asked to perform 10s
trials three times for each movement type—isolated
hand open/close, isolated wrist pronation/supination,
and simultaneous movements—at a 0.25 Hz tempo set
on a metronome, resulting in 9 total trials. Angles of
the metacarpophalangeal joints and the wrist’s rota-
tion angle were recorded using a Leap Motion
Controller placed ~4" below the participant’s hand at
120 Hz simultaneously with EMG data. The MAV of the
EMG was calculated with a 200ms sliding window
adjusted in 10 ms increments, and the joint angle data
were down-sampled to 100Hz to match the EMG
data. The processed EMG and motion data were used
to train two neural networks for the 2 DOF. Gains for
the controller’'s output and thresholds to reduce small
unintentional movements from the user were adjusted
using feedback from them. After the classifier was
trained, participants were allowed to practice

controlling the device until they reported comfort
with the control.

Once the participants received training for their
assigned control mode, they were trained on the task-
specific training, which assessed mastery of device
handling and the respective control mode. The train-
ing session required participants to use the prosthesis
to move three clothespins from a horizontal bar at the
base of the workstation to a vertical bar extending
upward on the clothespin apparatus. They began with
the movement of the rightmost clothespin and, as
quickly as possible, completed all pins. An experi-
menter recorded the time to move the three consecu-
tive clothespins. If participants dropped a clothespin,
they were required to restart the trial. A training criter-
ion was established based on pilot test data generated
from learning curve analysis, including when partici-
pants achieved asymptotic performance with the
device and at what level (task time). If the average
task completion time of three sequential trials was
within 15-25s for the PR, 20-35s for the DC, and 16-
23s for the CC mode, the participant passed the train-
ing and proceeded to the actual experimental
trials. Upon completion of the training trials, the eye-
tracking system was calibrated for the participants,
and they could begin the actual experiment trials after
having 5 min of rest.

Participants were provided instructions on how to
complete the two tasks. The order of tasks was rando-
mised to avoid any learning effect from one task to
another. For CRT trials, the instruction included mov-
ing as many clothespins as possible from the horizon-
tal rod to the vertical rod and back within 2 min. The
number of successfully relocated clothespins was
recorded at the end of each trial. For SHAP—Door
Handle task, participants were instructed to rotate the
handle five times as fast as possible. The participant’s
eyes were tracked throughout each trial. All
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Figure 4. Experiment procedure.

Table 2. Distribution of data points in each class.

Task Target (number of classes) Class Number of data points
CRT Two High 54
Low 36
SHAP Two High 50
Low 40
Three High 24
Moderate 45
Low 21

participants completed a total of three trials for each
task and were provided with a 5-min rest period after
each trial. After each actual trial, participants filled out
the NASA-TLX questionnaire. Figure 4 illustrates a
summary of the experimental procedure.

2.6. Cognitive workload classification

2.6.1. Data labeling

Participants’ NASA-TLX scores and weights for each
dimension were collected based on the procedure
described in Hart and Steveland (1988). We collected
the weights before the first trial of the experiment by
asking the participants to complete the pairwise com-
parison rating form. After each trial, participants com-
pleted the workload ratings for each dimension based
on what they experienced during that trial. Using
these weights, the weighted average was calculated
for each trial to have a single and overall score of
NASA-TLX and then the overall scores were clustered
into different classes. Since this target variable [i.e. the
overall NASA-TLX score (0-100%)] was a continuous
variable, there was a need to group the data into dif-
ferent categories before classification.

A clustering analysis was conducted on all partici-
pants’ NASA-TLX scores to find the optimal number of
classes of CW using the NbClust package in R. There
are several clustering analysis approaches, and each
algorithm generates different results based on specific
indices or methods (e.g. kmeans). We tested all the
combinations of clustering methods and indices and
found that the most frequent optimal number of
classes determined from different methods were two,
four, and three clusters, respectively. Although we
could simply select the most frequent optimal number
of classes (which was having two classes of workload),

we decided to include the top three selected classes
as having more detailed classification (e.g. low,
medium, high workload) would provide more precise
estimate of workload. However, due to the lack of suf-
ficient number of data points in some of these classes,
only two or three classes of CW were used in our ana-
lysis. Table 2 illustrates the distribution of data points
for each class.

2.6.2. Algorithm selection

Three algorithms of Random Forest (RF), Support Vector
Classifier (SVC), and Naive Bayes (NB) were selected to
classify CW since (1) they were used extensively in
recent studies (Braarud et al. 2021; Kaczorowska,
Plechawska-Wojcik, and Tokovarov 2021; Meteier et al.
2021; Shao et al. 2021; Sharma et al. 2021; Walambe
et al. 2021), (2) included physiological data (e.g. pupill-
ometry) and task performance (e.g. response time on
secondary task) measures as their input features, and (3)
exhibited high prediction accuracy (>80%) in small
datasets  (Kaczorowska, Plechawska-Wdjcik, and
Tokovarov 2021).

2.6.3. Optimisation and validation

Given the small dataset (i.e. 90 datapoints for each task
= 10 participants per control scheme x 3 control
schemes x 3 trials), overfitting was the major concern
for establishing the ML structure. Therefore, we first
split our dataset into training (70% of the data) and test-
ing (30% of the data) groups. We randomly partitioned
the data from 30 participants into the training and test-
ing datasets (i.e. the data points of one participant only
appeared either in training or testing dataset). Then, 10-
fold CV was employed to optimise the hyperparameters
(Gotze, Gurtler, and Witowski 2020b). A hyperparameter
grid search method was conducted using the sklearn
Python library (Pedregosa et al. 2011) and a Pipeline
function to streamline testing across three different
model types (i.e. RF, SVC, and NB). RF has a wide range
of applications and is noted to perform well for classifi-
cation tasks, even with default hyperparameter input
(Donges 2021). Of the many configurable inputs to the
random forest model, the three most notable and influ-
ential variables are the number of trees in the model
forest, the maximum tolerable depth of each tree, and
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the number of features necessary at each branching
point (Probst 2019). Limiting the number and depth of
trees reduces overfitting of the data; otherwise, though
a model may be ideal for the training data if allowed to
infinitely grow, out-of-sample performance would be
extremely poor. Considering the number of data points
at each branching point in the tree is another means of
limiting the shunting of model performance towards
narrow-minded behaviour. In preliminary testing, how-
ever, the number of features necessary at each breaking
point continuously output its default value of 2, and
thus it was not considered in the final grid search.

SVC employs a spatial approach to delineating class
margins and has a reputation for being computation-
ally expedient in rudimentary modelling. Many studies
with similar dataset challenges have employed SVC to
classify data efficiently (Braarud et al. 2021; Raihan-Al-
Masud and Mondal 2020). In these situations, a linear
kernel type was used, specifying which subtype of
SVC to employ (Meteier et al. 2021). In doing so, the
chief remaining hyperparameter was the regularisation
variable (‘c’ in Table 3). This parameter calculates the
amount of tolerable error the algorithm considers
before passing a model as output. Like the tree count
for random forest, a regularisation constant that is too
small could massively overfit the data.

For NB, given our small and unbalanced dataset, a
complement NB model was implemented as this
method is more appropriate for imbalanced dataset
(Rennie et al. 2003). Hyperparameter grid searching
was performed only for the ‘alpha’ parameter with the
values contained in Table 3 as it determines the
portion of the largest variance of all features that are
added to variances for calculating stability (Jain 2021;
Rennie et al. 2003). Controlling the degree of smooth-
ness permitted by the model in delineating different
classes allowed a balance to be obtained between

Table 3. Classifiers and hyperparameters.

cross-validated performances in the grid search
k-folding.

2.6.4. Feature selection

To make modelling more efficient, feature selection
methods were used to eliminate less-contributory fea-
tures from the training data set. Each of the selection
methods attempted to increase testing performance.
Therefore, the K-Best method of selection was
employed as the representative method of the univari-
ate filter class of selectors (Aggarwal 2018). For more
multivariate methods, the recursive feature selection
(RFE) and forward feature selection methods were
employed (Ferreira and Figueiredo 2012; Raihan-Al-
Masud and Mondal 2020). RFE considers multivariate
feature contribution as a whole and iteratively elimi-
nates the least contributory features until the desired
count is obtained (Guyon et al. 2002). Sequential for-
ward selection (SFS) adds features by order of signifi-
cance until the number of features is obtained. RFE
and SFS have demonstrated a decent performance in
improving model accuracy and efficiency in prior stud-
ies (Ferreira and Figueiredo 2012). Each of the three
algorithms was employed for each model type and
was executed and tested for specified feature counts
1-13 (i.e. the total number of features in the dataset).

2.6.5. Model evaluation

The validation and test datasets were used for model
evaluation. Cross-validation score, classification accur-
acy, area under the receiver operating characteristic
curve (AUCQ), precision, recall, and F1-score were calcu-
lated as measures of model performance (Ding et al.
2020; Skaramagkas et al. 2021). Cross-validation is a
technique for evaluating ML models with split datasets
(Hastie et al. 2009; Kuhn 2008). Accuracy is the ratio of
correctly classified samples. F1-score is the harmonic

Classifier Hyperparameter Definition Range References
RF n_estimators Number of trees in the [start: 100, end: 1000, step Gotze, Gurtler, and Witowski
forest size: 100] 2020a, 2020b
max_depth Maximum number of layers [1,13,1] Mullainathan and Spiess 2017;
of decisions tolerated Nadi and Moradi 2019
min_samples_split Number of samples Fixed as default value 2 Gotze, Gurtler, and Witowski
necessary to be present 2020a, 2020b
in the creation of a
branching point in the
tree (default: 2)
SvC C Regularisation parameter— [0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, Raihan-Al-Masud and Mondal
i.e. how much error 5,6,7,8,9 10] 2020
tolerable in producing
model
Kernel Specifies which kernel to Fixed as linear Braarud et al. 2021; Meteier et al.
use in the program 2021
Naive-Bayes Alpha Additive (Laplace/Lidstone) 20 points from [1, 10] spaced Jain 2021; Rennie et al. 2003

smoothing parameter

evenly in log-space




mean of recall (i.e. probability of detecting each class)
and precision (i.e. reliability of results in each class).
The F1-score was obtained by calculating recall and
precision separately for each class and averaging
them, weighted by the number of samples in each
class. We used F1, recall, and precision because they
are useful metrics for both balanced and imbalanced
datasets, while accuracy is usually a good metric for a
balanced dataset (Jeni, Cohn, and De La Torre 2013).
In addition, the computation time for grid search was
calculated (Intel® Core i7-8700 @ 3.20 GHz). We calcu-
lated grid search time because grid search was the
most demanding and the dataset was extremely small.
To improve the reliability and generalisability of ML
results, we ran each of the models with 15 random
seeds per suggestion from Colas, Sigaud, and Oudeyer
(2019) and calculated the average prediction perform-
ance. In every run, 21 participants (70% of the total
dataset) were randomly partitioned into training/vali-
dation sets.

3. Results

The average performance of each algorithm over 15
runs with random seeds is presented in Table 4.
Considering AUC, for the CRT, the best model was NB
with two classes, and it resulted in 0.78 of AUC (model
No. 9 in Table 4). The model exhibited decent per-
formance across other metrics including test accuracy,
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cross-validation score, precision, recall, and F1 score
(Grandini, Bagli, and Visani 2020; Sokolova and
Lapalme 2009). For the SHAP, the RF model with two
classes (model No. 10) exhibited the best performance
(AUC: 0.74). Although the AUC of model 12 is the
highest among all SHAP results, the model selected
only one feature (task completion time for one cycle),
which is the indication of underfitting. The RF and NB
algorithms exhibited accuracies above random guess-
ing (i.e. 0.5) in all 15 runs for both CRT and SHAP tasks
when the target variable (i.e. CW) was classified in two
clusters. Meanwhile, the SVC algorithm performed bet-
ter (i.e. higher accuracy) than random guessing in 60%
of all runs. Regarding the AUC, the RF and NB algo-
rithms had better performance than random guessing
in 80 and 73% of all runs, respectively, while the SVC
algorithm had higher AUC than random guessing only
in 40% of times.

If we consider AUC as the criterion to determine
the best model, the important features to classify CW
were PCPS, task performance, number of cognitive
operators, and device configuration (i.e. model No. 9
in Table 4). For the SHAP, task performance, task com-
pletion time for one cycle, number of training trials,
and number of cognitive operators were selected in
the best model (i.e. model 10). Considering the test
accuracy, the important (or selected) features in the
best CRT model (i.e. model No. 7) included: blink rate,
TCT of one cycle, number of cognitive operators,

Table 4. Summary of average classification performance by taking different classes as targets.

Task No. Target Classifier Feature selector CV score Test accuracy AUC Precision Recall F1-Score

CRT 1 Two classes RF K-Best 0.94 0.72 0.65 0.70 0.69 0.68
2 RFE 0.89 0.71 0.51 0.58 0.61 0.59
3 SFS 0.92 0.57 0.61 0.62 0.60 0.57
4 SvC K-Best 0.57 0.65 0.49 0.44 0.56 0.48
5 RFE 0.71 0.45 0.45 0.49 0.50 0.41
6 SFS 0.54 0.74 0.63 0.72 0.78 0.72
7 NB K-Best 0.64 0.83 0.73 0.83 0.81 0.82
8 RFE 0.57 0.72 0.61 0.58 0.63 0.58
9 SFS (best) 0.64 0.80 0.78 0.79 0.81 0.78

SHAP 10 Two classes RF K-Best (best) 0.86 0.69 0.74 0.72 0.71 0.67
1" RFE 0.82 0.72 0.72 0.66 0.69 0.67
12 SFS 0.76 0.74 0.81 0.76 0.77 0.74
13 SVC K-Best 0.54 0.63 0.51 0.52 0.57 0.49
14 RFE 0.51 0.57 0.45 0.54 0.60 0.52
15 SFS 0.44 0.58 0.31 0.58 0.57 0.54
16 NB K-Best 0.63 0.67 0.53 0.79 0.70 0.65
17 RFE 0.49 0.61 0.59 0.52 0.57 0.51
18 SFS 0.54 0.63 0.68 0.65 0.67 0.62
19 Three classes RF K-Best 0.72 0.52 0.50 0.47 0.51 0.44
20 RFE 0.72 0.56 0.60 0.39 0.38 0.38
21 SFS 0.45 0.53 0.38 0.18 0.33 0.23
22 SvC K-Best 0.55 0.53 0.46 0.24 0.40 0.29
23 RFE 0.45 0.56 0.52 0.38 0.41 0.35
24 SFS 0.49 0.67 0.38 0.40 0.54 0.46
25 NB K-Best 0.46 0.43 0.45 0.50 0.39 0.41
26 RFE 0.42 0.48 0.58 0.41 0.44 0.39
27 SFS 0.44 0.54 0.49 0.44 0.46 0.43

CV: cross-validation; AUC: area under curve; CRT: Clothespin Relocation Test; SHAP: Southampton Hand Assessment Procedure; RF: random forest; SVC:
support vector classifier; NB: Naive Bayes; RFE: recursive feature elimination; SFS: sequential forward selection.
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Table 5. Hyperparameter values for random forest models.

Table 8. Grid search time (seconds).

Feature

Task No. Target selector n_estimators max_depth

CRT 1 Two classes K-Best 389 8
2 RFE 175 6
3 SFS 150 5

SHAP 10 Two classes K-Best 278 7
11 RFE 460 7
12 SFS 200 5
19 Three classes K-Best 700 10
20 RFE 100 8
21 SFS 125 5

CV: cross-validation; AUC: area under curve; CRT: Clothespin Relocation
Test; SHAP: Southampton Hand Assessment Procedure; RFE: recursive fea-
ture elimination; SFS: sequential forward selection.

Table 6. Hyperparameter values of models with support vec-
tor classifier.

Regularisation

Task No. Target Feature selector parameter (c)
CRT 4 Two classes K-Best 0.88

5 RFE 0.83

6 SFS 0.50
SHAP 13 Two classes K-Best 1.89

14 RFE 0.50

15 SFS 1.00

22 Three classes K-Best 425

23 RFE 0.71

24 SFS 0.50

CV: cross-validation; AUC: area under curve; CRT: Clothespin Relocation
Test; SHAP: Southampton Hand Assessment Procedure; RFE: recursive fea-
ture elimination; SFS: sequential forward selection.

Table 7. Hyperparameter values of Naive Bayes models.

Task No. Target Feature selector Alpha
CRT 7 Two classes K-Best 11.29
8 RFE 10.48
9 SFS 1.00
SHAP 16 Two classes K-Best 43.50
17 RFE 11.89
18 SFS 127.43
25 Three classes K-Best 127.43
26 RFE 11.17
27 SFS 5.12

CV: cross-validation; AUC: area under curve; CRT: Clothespin Relocation
Test; SHAP: Southampton Hand Assessment Procedure; RFE: recursive fea-
ture elimination; SFS: sequential forward selection.

number of training trials, and the device configuration.
The important features in the best SHAP model (i.e.
model 10) included the task completion time for one
cycle, number of training trials, and the device config-
uration. Hyperparameters values of all models includ-
ing the best models are shown in Tables 5-7.

CV scores of the RF algorithm were higher as com-
pared to other algorithms. This could be because RF is
an ensemble learning method that combines multiple
decision trees to make more accurate predictions
(Hastie et al. 2009; Kuhn 2008). Furthermore, it can
handle both numerical and categorical data, and can
deal with the missing data and outliers more effect-
ively than some other algorithms (Kuhn 2008).
However, AUC of the RF algorithm was worse than

Feature selector

Classifier Target RFE K-Best SFS
RF Two 4092.6 1282.2 21,767.4
Three 5107.2 2023.2 13,851.6
SvC Two 25.2 228 747.6
Three 336 354 428.4
NB Two 234 264 582
Three 20.4 19.8 303.6

that of other algorithms, which means the model is
not able to distinguish between positive and negative
samples with high accuracy, which may indicate that
it is not good at discriminating between the two
classes (Gareth et al. 2013).

Regarding the target variable, in general, classifying
the NASA-TLX scores into smaller number of classes
led to better algorithm performance than having
larger number of classes under the clustering algo-
rithms (i.e. algorithms in NbClust package).

The grid search time for every combination of clas-
sifiers, targets, and feature selectors suggested that
the SVC and NB algorithms outperformed the RF in
terms of computational cost (Table 8). Both SVC and
NB performed within a few seconds. Among the three
feature selectors, SFS exhibited significantly longer
computational time as compared to other two
selectors.

Therefore, considering all the metrics and computa-
tional costs, the NB algorithm with two classes was
selected as the best model for CRT (model No. 9 in
Table 4). For the SHAP task, the RF algorithm per-
formed better than other algorithms although its com-
putational time was much longer than other methods.

The best models (models 9 and 10) were released to
Github (https://github.com/hsilab/pros_cw). Users can
download the uploaded files and estimate CW based on
the instructions in the readme file. However, it is impor-
tant to note that the models were generated based on
the performance of able-bodied participants and with
two ADL testbeds which might limit the generalisability
of the models to other applications.

4, Discussion
4.1. Classification performance

The findings suggested that CW of using prosthetic
devices can be classified with reasonable accuracy and
low computational cost. This study is the first investiga-
tion that included CPM outcomes as input features in
ML algorithms. Some CPM outcomes (i.e. number of
cognitive operators) and task performance features
were included in the best models. This can suggest the
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possibility of predicting CW of prosthetic devices with-
out conducting human-subject experiments because
task performance can also be modelled from the CPM
outcomes. Some CPM outcomes, such as the number of
perceptual operators were not selected in the best
models. This might be because the perceptual opera-
tors only appeared in the DC control scheme. In PR and
CC configurations, there were no perceptual operators
in the outcome of cognitive models because all percep-
tual operators were in parallel with cognitive or motor
operators. However, if the task is more complex or with
other prosthetic device configurations, more CPM out-
comes might be included as important features in
the algorithm. There are several advantages of using
CPM over human-subject experiments. For example,
the analyst can conduct CPM in the early design pro-
cess. It is a faster and safer approach than the experi-
mental approach as it can minimises human
participant’s involvement. It can also quantify and pre-
dict human behaviour in natural tasks with simple tools,
such as Cogulator (Estes 2017) or CogTool (John and
Suzuki 2009) based on human information processing
theory. Lastly, CPM can also generate task performance-
related features without the need of conducting
human-subject experiments and by using the results of
task analysis and operator times from the literature
(Estes 2017).

This study suggested that multiple metrics should
be considered to evaluate the ML algorithms and find
the best model(s). For example, although the accuracy
of some models was above 70% (e.g. model No. 1 in
Table 4), their AUC was relatively low (e.g. 0.65).
Precision and Recall were also helpful to test the
robustness of ML algorithms and to avoid ‘accuracy
paradox’ (due to unbalanced classes) (Afonja 2017;
Valverde-Albacete, Carrillo-de-Albornoz, and Peldez-
Moreno 2013). For example, model 24 exhibited rea-
sonable accuracy (0.67) among other algorithms for
the SHAP task. However, its recall percentage was low
(around 0.5), which implies that those models are not
useful for classifying CW when the target variable is
not well-balanced. Considering only precision or recall
scores individually is also not sufficient for evaluating
ML algorithms. For example, we can have a recall
score of 100% even though the accuracy of the model
is low. In this case, precision will be close to 0. Thus,
F1-score should be used to reflect the imbalance
between precision and recall because it is a harmonic
average between these two measures.

The results also revealed that task performance
measures were more promising in predicting CW as
compared to other features that were collected from
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the experiment. This finding is in line with the results
of prior studies that found primary task measures as a
key indicator of CW for prosthetic devices. Wood and
Parr (2022) recently developed a questionnaire for
measuring CW of prostheses as an extension of NASA-
TLX, which is called prosthesis task load index (PROS-
TLX). While validating their questionnaire, the authors
used task performance as an indicator of CW as there
was a high correlation between the task performance
and the evaluated scores on PROS-TLX. Deeny et al.
(2014) also found high positive correlation under the
complicated task condition between the task perform-
ance and the self-report workload score. Task perform-
ance measures have advantages in that they evaluate
participants’ performance on the task of interest dir-
ectly. However, these measures often lack scientific
rigour, making interpretation of the results difficult as
unknown or uncontrolled factors may affect results
rather than the intended manipulations in the study
(Park and Zahabi 2022; Wilson and Schlegel 2004;
Wood and Parr 2022). Therefore, some studies sug-
gested using physiological measures of workload
instead (Cain 2007). We found that pupillometry meas-
ures were selected as important features in the mod-
els. The results support the findings of previous
studies that used eye-tracking data for measuring CW
of prosthetic devices (White et al. 2017; Zahabi et al.
2019; Zhang et al. 2016). Eye-tracking measures have
been widely applied to other domains to measure CW
of operators, such as simulations for emergency res-
ponders (Appel et al. 2019), construction (Li et al.
2020), and foetal ultrasound examination (Sharma
et al. 2021).

It was also found that the models with two classes
performed better than models with three classes. This
is intuitive from a general classification stance since
two classes are simpler than several classes to be clas-
sified as it has only one threshold. This is in line with
previous studies that found smaller number of labels
led to high classification accuracy (Nourbakhsh, Wang,
and Chen 2013b; Wang et al. 2013).

Although the sample size was small, the NB algo-
rithm exhibited reasonable average performance
across multiple runs, which is in line with prior studies
that found NB was more accurate than the SVM algo-
rithm in classifying CW (Nourbakhsh, Wang, and Chen
2013a; Raufi 2019a). There are several advantages of
NB that resulted in classification accuracy above 70%.
First, NB can compensate for class imbalance (Murphy
2006). Second, NB can perform well with small data-
sets (Huang and Li 2011) and it is a fast and
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computationally effective approach (Jadhav and
Channe 2016; McCallum and Nigam 1998).

The RF model did not perform as well as NB and
some of the models had overfitting issues, which was
mainly due to the detailed hyperparameter tuning on
an extremely small dataset. Prior studies found that
with small and imbalanced datasets, RF could gener-
ate either poor results due to a lack of diversity in the
dataset or might cause overfitting (Tang, Garreau, and
von Luxburg 2018). SVC also performs poorly when
the dataset is imbalanced. This is mainly due to the
weakness of the soft margin optimisation (Batuwita
and Palade 2013) that allows SVC to make a certain
number of mistakes and keep margin as wide as pos-
sible so that other points can still be classified cor-
rectly. This could result in the hyperplanes being
skewed to the minority class when imbalanced data is
used for training. The second reason is related to the
issue of an imbalanced support vector ratio. That is,
the ratio between the positive and negative support
vectors becomes imbalanced and as a result, data-
points at the decision boundaries of the hyperplanes
have a higher chance of being classified as negative.
The major reason why RF generated longer computa-
tional time is that it included more hyperparameters,
especially the number of trees in the forest and their
levels, than the other two algorithms. Basically, train-
ing time complexity of RF is faster than SVC (Kumar
2019). However, RF took much longer time than SVC
due to the burden of hyperparameter tuning. In add-
ition, the main limitation of RF is that a large number
of trees can make the algorithm too slow and ineffect-
ive for real-time predictions (Donges 2021). SFS
demanded extensive computational time because it is
a wrapper method that needs to train the classifier for
each feature subset, and therefore the method can be
impractical.

The findings suggested two ML algorithms (RF or
NB) for the classification of CW for prostheses. Our
intention was not to propose one specific algorithm
or feature selector which should be used for all types
of tasks mainly because depending on the characteris-
tics of the dataset, several factors can affect the algo-
rithm performance, including size and quality of the
dataset, complexity of the models, and potential
biases in the dataset (Dietterich 2000; Goodfellow,
Bengio, and Courville 2016; Murphy 2012). We suggest
researchers to use the findings of this study as a start-
ing point in estimating CW of prosthetic devices and
explore other models depending on the characteristics
of their dataset.

4.2. Practical implications

There are several merits of having a model to estimate
CW of upper limb prostheses for clinicians, device
designers, and other researchers in the ergonomics
field. Clinicians can test CW of prostheses before rec-
ommending them to amputees. For instance, using
the model, clinicians can estimate CW of a specific
prosthesis by measuring PCPS, training, and task per-
formance, and adding specific features of the device
configuration (e.g. control algorithm), as they are the
most important features of the best models. The
model can also be used by device developers or
designers to estimate CW before developing the phys-
ical prototype. Whenever they design a novel control
scheme, they can test it with this model to see any
improvement in CW.

By estimating the CW of prostheses in advance, the
model could contribute to ergonomically-designed
upper limb prostheses. If the model can accurately
predict CW, it could be used to identify situations
where users are at risk of experiencing mental fatigue
or injury due to excessive CW. This information could
be used to modify prostheses or to provide users with
training on how to manage their CW more effectively
(Hudgins, Parker, and Scott 1993; Kaczmarek et al.
1991). By reducing cognitive workload and fatigue,
users of upper limb prostheses may be able to work
more efficiently and effectively and use these devices
for ADLs, which could lead to increased productivity
(Biddiss and Chau 2007; Oskoei and Hu 2008) and bet-
ter quality of life and greater independence (Biddiss
and Chau 2007). Lastly, developing an ML model to
predict CW for upper limb prostheses can advance the
research and innovation in this area, which has previ-
ously relied only on human subject experiments. We
have released the codes for the best models on
Github  (https://github.com/hsilab/pros_cw) so that
other researchers can use or update the model based
on their application.

4.3. Limitations and future work

The first limitation of this study was the small dataset
that was used for training the models. Future studies
with larger datasets are necessary to validate the find-
ings of this investigation. Second, the models were
generated based on the performance of able-bodied
participants. The decision to work with an able-bodied
population was made due to the limited number of
trans-radial amputees in the surrounding area. In add-
ition, since most patients currently use devices with
DC modes (commonly used in myoelectric control),
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recruiting such patients could have produced a bias in
their performance. Therefore, there is a need for fur-
ther investigation with amputees, as an actual user
population, to validate the models.

5. Conclusion

This study classified CW of prostheses considering dif-
ferent features, evaluation metrics, and tasks. The find-
ings suggested that the NB and RF algorithms are
most promising for classifying CW into two classes
(high vs. low). It was found that including some of the
CPM outcomes in the model could improve the algo-
rithm performance. The proposed algorithms can help
manufacturers/clinicians predict CW of future pros-
thetic devices in the early design phases.
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