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Abstract— Limb amputation can cause severe functional 

disability in performing activities of daily living (ADLs). Using 

prosthetic devices as aids for such activities requires substantial 

cognitive resources. Machine Learning (ML) algorithms can be 

used to predict cognitive workload (CW) of prosthetic device 

prototypes early in the design process and serve as a tool for 

improving device usability. The objective of this study was to 

explore subsets of input features that can be easily captured 

during early stages of the design cycle to classify CW of 

electromyography (EMG)-based upper-limb prostheses. An 

experiment was conducted with 30 participants to collect task 

performance and pupillometry data, and to provide a basis for 

generating cognitive performance model (CPM) outcomes. 

Three ML algorithms, including the random forest (RF), 

support vector machine (SVM), and naïve Bayesian (NB) 

classifier were developed. The most important subset of features 

was selected based on classification accuracy and computational 

and experimental cost. Findings revealed that the CPM 

outcomes and prosthetic device configuration were the most 

important features for reasonably classifying CW responses 

under low cost. Also, the SVM classifier can be used for near-

real time classification of CW. Future studies should include 

additional data and improve hyperparameter tuning 

parameters, as well as advanced CPM techniques to improve the 

performance of algorithms. 

Keywords—prosthesis, cognitive workload, machine learning, 

cognitive performance modeling, classification 

I. INTRODUCTION 

Approximately 2.1 million Americans live with 
amputations and about 185,000 amputation surgeries 
performed each year [1]. Limb amputation can cause severe 
functional disability for the performance of activities of daily 
living (ADLs). Amputees use prosthetic devices on a regular 
basis to perform ADLs. Prosthetic devices require substantial 
amount of cognitive resources [2], which can lead to device 
rejection. Prosthetic devices with high cognitive workload 
(CW) can have a negative impact on task performance, which 
can reduce user satisfaction and device usability [3]. Thus, 
assessing CW of prostheses are critical to ensure device 
usability [4]. 

To classify CW, machine learning (ML) algorithms can be 
used with several advantages compared to inferential statistics 
such as ANOVA. First, ML algorithms can be used to find 
relationships among features in high dimensional spaces and 
deal with non-linear factors and uncertainty without strict 
assumptions in inferential statistics [5]. Second, the method 
allows for classification of CW in near real-time [6]. With 
these advantages, several ML algorithms have been used to 
classify CW of operators in various domains such as 
construction or aviation. The most frequently used methods 
were support vector machine (SVM) [7], random forest (RF) 
[8], and Naïve Bayes (NB) algorithms [9]. A majority of 

This project was funded by the National Science Foundation (No. IIS-
1856676/1856441/1900044).  

20
22

 IE
EE

 3
rd

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 H

um
an

-M
ac

hi
ne

 S
ys

te
m

s (
IC

H
M

S)
 | 

97
8-

1-
66

54
-5

23
8-

0/
22

/$
31

.0
0 

©
20

22
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IC

H
M

S5
67

17
.2

02
2.

99
80

67
6

Authorized licensed use limited to: Texas A M University. Downloaded on August 21,2023 at 20:09:37 UTC from IEEE Xplore.  Restrictions apply. 



978-1-6654-5238-0/22/$31.00 ©2022 IEEE 

studies used physiological measurements (e.g., heart rate) as 
input features to classify CW [10, 11] and some used task 
performance outcomes (e.g., task completion time) [12, 13]. 
However, prior studies had several limitations. First, there has 
not been any investigation on classification of CW for 
prosthetic devices, although high CW is one of the major 
challenges with existing prosthetic devices. Second, although 
several measures such as physiological responses, task 
performance, and subjective responses have been used as 
input features in CW classification algorithms, no study used 
cognitive performance model (CPM) generated outcomes as 
input features to classify CW. CPM models and their 
outcomes can be generated by observation of different tasks 
and using knowledge elicitation approaches with small sample 
size and do not require extensive human subject experiments, 
and therefore can be used in early stages of the design cycle 
[14]. Third, there were limited number studies exploring the 
effect of a subset of features on ML outcomes. Some studies 
tested subsets of features, however, they are limited to only 
physiological [12] or task performance data [6]. Therefore, 
this research aimed to investigate a subset of multimodal input 
features to classify CW in using electromyography (EMG)-
based prosthetic devices with acceptable accuracy and low 
computational and experimental cost. 

II. METHOD 

A. Human-subject experiment 

Thirty able-bodied participants (18 males and 12 females) 
were recruited for this study (Age: M=22.9 yrs.; SD=2.8 yrs.). 
All participants had 20/20 vision without prior experience of 
participating  in studies with prostheses or myoelectric 
exoskeleton for upper-limbs. The experiment protocol was 
approved by the Institutional Review Board at the University 
of North Carolina at Chapel Hill. A commercial 2-DoF 
(Degree of Freedom) prosthetic device (Motion Control ETD, 
Filauer) in hand open/close and wrist pronation/supination 
was used with three control modes including: direct control 
(DC), pattern recognition (PR), and continuous control (CC). 
A custom prosthetic hand adapter was designed and fabricated 
as a bypass device, as shown in Figure 1 (Left).  

For the DC mode, EMG signals were collected from two 
channels (hand close/wrist pronation for the flexor carpi 
radialis; hand open/wrist supination for the extensor carpi 
radialis longus) based on the mean absolute value (MAV) of 
each channel [15, 16]. Participants could only control the hook 
with one DoF (i.e., either rotation or open/close) by wrist 
flexion and extension. The experimenter manually adjusted 
thresholds and proportional control gains for each channel 
based on feedback from the participant. Participants were 
trained with five hand gestures (hand close/open, wrist 
pronation/supination, inactive) in the PR mode. EMG data 
were collected and labeled simultaneously with a certain 
movement class. Four commonly used time domain features 
(MAV, number of zero crossings, waveform length, and 
number of slope sign changes) were extracted from EMG 
signals following the methods used in our prior studies [15, 
16]. A Linear discriminant analysis (LDA)-based classifier 
was trained based on the features and labels to predict one of 
the five-movement classes. The speed was set proportional to 

the sum of the magnitudes of all EMG signals. During the 
calibration, the experimenter manually adjusted control gains 
based on the classification performance. In the CC mode, 
EMG data were recorded simultaneously with kinematic data 
from a Leap Motion Controller (Leap Motion, Inc., USA). A 
camera was used to accurately estimate the positions of 
segments in the hand and forearm [17, 18]. Estimated 
positions of the phalangeal, palm, and forearm segments were 
recorded at 120 Hz and used to calculate wrist 
pronation/supination and metacarpophalangeal (MCP) 
flexion/extension joint angles. Muscle activations were 
estimated from the recorded EMG signals. Training data was 
collected from participants with three gestures: MCP 
flexion/extension only, wrist pronation/supination only, and 
simultaneous wrist and MCP. An artificial neural network was 
created for each participant using the Deep Learning Toolbox 
in MATLAB 2018b (Mathworks Inc., USA). Pupil dilation 
and blink rate were measured using the Pupil-Core eye 
tracking system (Pupil Labs, Germany). 

 

Figure 1. Prosthetic device (Motion Control ETB, Filauer, 4.54lb) 

(Left), A participant trying to pick up a pin (Right) 

The experiment followed a between-subject design in 
which each participant was randomly assigned to one of the 
three prosthetic configurations (i.e., DC, PR, or CC) to avoid 
potential fatigue or learning effect from one trial to the next. 
Clothespin Relocation Test (CRT) was used as an ADL in this 
experiment as it is a widely used ADL for assessing usability 
of upper limb prostheses [19]. The CRT required participants 
to move as many pins as possible from the horizontal bar to 
the vertical bar and vice versa in 2 minutes with various hand 
gestures in each control mode [20] (Figure 1 – Right). 

CW of participants was measured by primary task 
performance, pupillometry data, CPM outcomes, and 
perceived workload ratings. Task performance was captured 
by counting the numbers of pins moved and the shortest time 
to move one pin from one bar to another in each trial. The 
number of training trials to achieve mastery in the task was 
also included as another task performance measure. To 
develop CPMs, hierarchical task analysis (HTA) trees were 
initially created for each type of control mode. Based on the 
findings of the HTA, three Cognitive-Perceptual-Motor 
GOMS (CPM-GOMS) [21] models were developed in 
Cogulator for each control scheme [22]. The models generated 
outcomes including the task completion time (TCT) for one 
cycle, number of cognitive, perceptual, and motor operators, 
and the number of memory chunks required to perform the 
task. Each participant rated their CW using the NASA Task 
Load Index (NASA-TLX) scale after each trial and it was used 
as a ground truth or target variable in the ML algorithm, as this 
measure has been used extensively in prior studies using 
prosthetic devices [23, 24].  
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Once participants arrived at the lab, they signed the 
informed consent form, and filled out the demographic 
questionnaire. Then, they completed the Edinburgh 
Handedness Test (EHT) [25] and the Purdue Pegboard Test 
(PPT) [26, 16] to ensure that they were eligible for the study 
with a certain level of hand dexterity. Once participants 
completed the EHT and PPT, they were equipped with the 
prosthesis and EMG electrodes were placed on their skin 
based on the assigned control mode. Participants were allowed 
to interact with the device until they reported comfort with the 
control mode and the classifier was sufficiently trained. Once 
the participants received training for their assigned control 
mode, they were trained on the CRT, which assessed the 
mastery of device handling and the respective control mode. 
If the average TCT to move three pins in three sequential trials 
was within 15–25s for the PR, 20–35s for the DC, and 16-23s 
for the CC mode, the participant was allowed to proceed to the 
experimental trials. These thresholds were defined based on 
our prior studies with a similar prosthetic device. Upon 
completion of the training trials, the eye-tracking system was 
calibrated for the participants, and they could begin the 
experimental trials after having 5 minutes of rest. In 
experimental trials, participants were instructed to move as 
many clothespins as possible between the two bars within 2 
minutes. All participants completed three trials with a 5-min 
rest period after each trial. After each trial, participants filled 
out the NASA-TLX questionnaire.  

B. Cognitive Workload Classification 

Three algorithms (RF, SVM, and NB) were selected to 
classify CW as they exhibited high prediction accuracy (> 
80%) with small datasets in previous studies [27]. The 
prediction outcome was the level of CW which was 
categorized in three classes of “high”, “moderate”, and “low” 
CW based on the findings of the clustering analysis on NASA-
TLX scores collected from the experiment.  

The dataset included 90 datapoints (10 participants per 

each control scheme ✕ 3 control schemes ✕ 3 trials). To 
avoid overfitting, we split the dataset into training (70% of the 
data) and testing (30% of the data) groups. To ensure 
generalizability of the predictive algorithms, 10-folds cross 
validation (CV) was employed to optimize the number of 
hyperparameters [28]. Across 10-folds CV, a hyperparameter 
grid search method was used employing the sklearn Python 
library [29] and a pipeline function to streamline testing across 
three classifiers. This is because scanning over every 
permutation of a wide range of values for each set of 
hyperparameters increases out-of-sample test performance  
[30].  

Feature selection methods were used to eliminate less-
contributory features from the dataset, to make modeling more 
efficient, and to improve classification accuracy. K-Best 
method was used as a representative method of the univariate 
filter class of selectors [31]. K-Best estimates and stratifies the 
contribution of each variable to the target class and chooses 
the k (number of features specified) best ranking features to 
model from. In addition, the recursive feature elimination 
(RFE) and sequential feature selection (SFS) methods were 
employed as members of the wrapper class of selectors [32, 

33]. RFE, similar to backwards feature selection, considers 
multivariate feature contribution as a whole and iteratively 
removes the least contributory features until the desired count 
is obtained [34]. SFS performs the opposite, adding features 
by order of significance until the number of features is 
obtained. Both RFE and SFS have demonstrated a decent 
performance in improving model accuracy and efficiency in 
prior studies [32].  

Classification accuracy on the test dataset was considered 
as the foremost important metric of algorithm performance [6, 
12]. In addition, computational cost was defined as the time 
for grid search in each run. Lastly, experimental cost was 
selected as the third measure to evaluate the best subset of 
features, which included resources such as time, monetary 
cost, difficulty of modeling, and potential risks of having low 
quality data due to poorly designed experimental protocol 
(e.g., unexpected noise in eye-tracking data). 

Four groups of input features were tested in this study 
including pupillometry data, device configuration, task 
performance, and CPM outcomes. Therefore, fourteen subsets 

of features were composed as shown in Table 1 (i.e.,  +
 + 


). Since the purpose of this study was to explore the 

optimal subset of features, it excluded the set with all of the 
features.  

III. RESULTS 

A. Classification Performance  

The algorithm accuracy differences were statistically 
evaluated using Cochran’s Q test (α  = 0.05) which is an 
extension of McNemar’s test [35]. The Cochran’s Q test was 
only performed under the K-Best feature selector because it 
was the fastest selector. There was no significant difference in 
accuracy between the RF and NB algorithms and between the 
RF vs. SVM algorithms (p > .05). However, SVM 
significantly outperformed NB (p < .05). In addition, RF and 
SVM outperformed random guessing (p < .05), while NB was 
not significantly different from random guessing (p > .05). It 
was also revealed that the accuracy of RF algorithm heavily 
relied on the primary task performance feature as subsets 1, 2, 
4, 5, 7, 9, and 12 exhibited higher accuracy (>0.80) than the 
other subsets. Good models were defined as models that 
exhibited at least 70% accuracy [36]. 

B. Computational Cost 

As shown in Table 1, the SVM and NB algorithms were 
faster than the RF in terms of training the model. Most cases 
under SVM and NB algorithms could be trained in near-real 
time (less than 1 sec.). Meanwhile, RF required several 
minutes to train, except for some cases with only one subset 
of features (Subset ID 11-14).  

C. Experimental Cost 

If a feature subset included pupillometry data, it was 
labeled as “high” in terms of experimental cost, as it requires 
conducting human subject experiments equipped with devices 
to collect bio signals which can be time consuming and costly 
[37]. If the feature subset only included CPM outcomes or 
device configuration, it was assumed to have “low” 
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experimental cost because the data can be generated from 
CPM without the need for conducting human subject 
experiments. If the feature included only task performance 
measures, the subset was labeled as having “moderate” 
experimental cost because it needs conducting a study with 
human participants but does not require physiological data 
collection.  

IV. DISCUSSION 

This study developed ML algorithms and explored a 
subset of input features that can predict CW when using EMG-
based prosthetic devices with acceptable accuracy and low 
computational and experimental cost. This was the first study 
that estimated CW of prosthetic devices with ML algorithms. 
There are several studies which measured CW of prosthetic 

Table 1. Summary of machine learning results  

*Note: Pupil features include: pupil diameter and blink rate. Task performance (TP) features include: number of moved pins from the 
experiment, shortest time to move one pin, and number of training trials. Device configuration (Conf) features include: DC, PR, and CC. 
Cognitive performance model (CPM) features include: estimated time to move one pin, number of cognitive, perceptual, or motor 
operators, and number of memory chunks 
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devices, however, they employed human-subject experiments 
to collect physiological data, task performance, or subjective 
assessment and relied on inferential statistics and not ML [14]. 
It was found that the SVM algorithm can be used to classify 
CW in near-real time with a reasonable classification accuracy 
and therefore, can be used for predicting the workload of using 
EMG-based prosthetic devices early in their design and 
development process possibly further alleviating amputee 
challenges in performing ADLs.  

This study was the first to include CPM outcomes as input 
features in the ML algorithm. There are several advantages of 
using CPM over human subject experiments. The CPM does 
not require extensive human-subject experimentation. 
Furthermore, it can quantify and estimate human behavior in 
simple tasks with tools such as Cogulator [38] or CogTool 
[39] based on well-established theories (e.g., human 
information processing). Combining CPM outcomes with 
other features captured from human subject experiment can 
increase prediction accuracy. Furthermore, combination of 
CPM outcomes and device configurations was found as a 
good candidate for near-real time classification of CW for 
designing upper-limb prostheses, which can minimize the 
demand of having human-subject experiments and modeling 
efforts. Although subsets 11 and 14 in Table 1 have the same 
test accuracy as subset 8, we recommend subset 8 because this 
subset of features would have more stabilized classification 
results with larger datasets. That is, using only one type of 
feature, either device configuration or CPM outcomes can 
increase the risk of having low classification accuracy with 
larger datasets [12].  

Another contribution of this research was inclusion of 
experimental cost to select the best subset of features, unlike 
other ML studies that only focused on computational cost. 
This is an important consideration as human subject studies 
are challenging due to the difficulties of collecting high 
quality data from participants, especially when physiological 
data are collected (due to the devices being intrusive) [40, 17].  

Regarding ML algorithms, we found that while RF 
generated a large number of trees in its training process, the 
model performance heavily depended on task performance 
features as compared to other features. This was shown with 
high test accuracy of RF especially for subsets 1, 2, 4, 5, 7, 9, 
and 12. In RF, task performance was always selected and 
regarded as the most important feature in all subsets. This can 
be problematic as it can be an indicator of overfitting, although 
we tried to minimize the effect of small dataset with 
hyperparameter tuning and feature selection. Furthermore, RF 
required substantial computational cost to train the model as it 
builds many trees to combine the decision trees to determine 
a class. In addition, hyperparameter setting in RF was more 
complex than that of SVM and NB, which extended the model 
running time.  

SVM algorithm exhibited more stabilized classification 
performance as compared to RF, even with the extremely 
small dataset in this study. Throughout all subsets of features 
(subset 1-14), SVM showed around 70% accuracy. It is also 
known that low-complexity models such as SVM generate the 
best results because it does not put much emphasis on a small 

outstanding characteristic of the dataset, which can exhibit 
low risk of overfitting [41]. In addition, a simple 
hyperparameter tuning enabled short grid search time. 
Regarding the feature selector, both RFE and K-Best worked 
well for SVM to train the model within one second. However, 
SFS demanded extensive computational time because it is a 
wrapper method which needs to add each feature to the model 
and train the classifier for each feature subset. 

This study had some limitations. First, the experiment was 
conducted with able-bodied participants due to the limited 
number of amputee patients in the area [14]. The result can 
change if participants were experienced users of prosthetic 
devices. Future studies should validate the model outcomes 
with amputee patients. Future research should also include 
additional data to avoid the risk of overfitting. In addition, 
additional hyperparameter tuning method (e.g., random 
search) or parameters should be considered to improve the 
classification accuracy in SVM and NB, which currently 
could not go beyond 70%.  
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