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Abstract— Limb amputation can cause severe functional
disability in performing activities of daily living (ADLs). Using
prosthetic devices as aids for such activities requires substantial
cognitive resources. Machine Learning (ML) algorithms can be
used to predict cognitive workload (CW) of prosthetic device
prototypes early in the design process and serve as a tool for
improving device usability. The objective of this study was to
explore subsets of input features that can be easily captured
during early stages of the design cycle to classify CW of
electromyography (EMG)-based upper-limb prostheses. An
experiment was conducted with 30 participants to collect task
performance and pupillometry data, and to provide a basis for
generating cognitive performance model (CPM) outcomes.
Three ML algorithms, including the random forest (RF),
support vector machine (SVM), and naive Bayesian (NB)
classifier were developed. The most important subset of features
was selected based on classification accuracy and computational
and experimental cost. Findings revealed that the CPM
outcomes and prosthetic device configuration were the most
important features for reasonably classifying CW responses
under low cost. Also, the SVM classifier can be used for near-
real time classification of CW. Future studies should include
additional data and improve hyperparameter tuning
parameters, as well as advanced CPM techniques to improve the
performance of algorithms.

Keywords—prosthesis, cognitive workload, machine learning,
cognitive performance modeling, classification
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I. INTRODUCTION

Approximately 2.1 million Americans live with
amputations and about 185,000 amputation surgeries
performed each year [1]. Limb amputation can cause severe
functional disability for the performance of activities of daily
living (ADLs). Amputees use prosthetic devices on a regular
basis to perform ADLs. Prosthetic devices require substantial
amount of cognitive resources [2], which can lead to device
rejection. Prosthetic devices with high cognitive workload
(CW) can have a negative impact on task performance, which
can reduce user satisfaction and device usability [3]. Thus,
assessing CW of prostheses are critical to ensure device
usability [4].

To classify CW, machine learning (ML) algorithms can be
used with several advantages compared to inferential statistics
such as ANOVA. First, ML algorithms can be used to find
relationships among features in high dimensional spaces and
deal with non-linear factors and uncertainty without strict
assumptions in inferential statistics [5]. Second, the method
allows for classification of CW in near real-time [6]. With
these advantages, several ML algorithms have been used to
classify CW of operators in various domains such as
construction or aviation. The most frequently used methods
were support vector machine (SVM) [7], random forest (RF)
[8], and Naive Bayes (NB) algorithms [9]. A majority of
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studies used physiological measurements (e.g., heart rate) as
input features to classify CW [10, 11] and some used task
performance outcomes (e.g., task completion time) [12, 13].
However, prior studies had several limitations. First, there has
not been any investigation on classification of CW for
prosthetic devices, although high CW is one of the major
challenges with existing prosthetic devices. Second, although
several measures such as physiological responses, task
performance, and subjective responses have been used as
input features in CW classification algorithms, no study used
cognitive performance model (CPM) generated outcomes as
input features to classify CW. CPM models and their
outcomes can be generated by observation of different tasks
and using knowledge elicitation approaches with small sample
size and do not require extensive human subject experiments,
and therefore can be used in early stages of the design cycle
[14]. Third, there were limited number studies exploring the
effect of a subset of features on ML outcomes. Some studies
tested subsets of features, however, they are limited to only
physiological [12] or task performance data [6]. Therefore,
this research aimed to investigate a subset of multimodal input
features to classify CW in using electromyography (EMG)-
based prosthetic devices with acceptable accuracy and low
computational and experimental cost.

II. METHOD

A. Human-subject experiment

Thirty able-bodied participants (18 males and 12 females)
were recruited for this study (Age: M=22.9 yrs.; SD=2.8 yrs.).
All participants had 20/20 vision without prior experience of
participating in studies with prostheses or myoelectric
exoskeleton for upper-limbs. The experiment protocol was
approved by the Institutional Review Board at the University
of North Carolina at Chapel Hill. A commercial 2-DoF
(Degree of Freedom) prosthetic device (Motion Control ETD,
Filauer) in hand open/close and wrist pronation/supination
was used with three control modes including: direct control
(DC), pattern recognition (PR), and continuous control (CC).
A custom prosthetic hand adapter was designed and fabricated
as a bypass device, as shown in Figure 1 (Left).

For the DC mode, EMG signals were collected from two
channels (hand close/wrist pronation for the flexor carpi
radialis; hand open/wrist supination for the extensor carpi
radialis longus) based on the mean absolute value (MAV) of
each channel [15, 16]. Participants could only control the hook
with one DoF (i.e., either rotation or open/close) by wrist
flexion and extension. The experimenter manually adjusted
thresholds and proportional control gains for each channel
based on feedback from the participant. Participants were
trained with five hand gestures (hand close/open, wrist
pronation/supination, inactive) in the PR mode. EMG data
were collected and labeled simultaneously with a certain
movement class. Four commonly used time domain features
(MAV, number of zero crossings, waveform length, and
number of slope sign changes) were extracted from EMG
signals following the methods used in our prior studies [15,
16]. A Linear discriminant analysis (LDA)-based classifier
was trained based on the features and labels to predict one of
the five-movement classes. The speed was set proportional to
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the sum of the magnitudes of all EMG signals. During the
calibration, the experimenter manually adjusted control gains
based on the classification performance. In the CC mode,
EMG data were recorded simultaneously with kinematic data
from a Leap Motion Controller (Leap Motion, Inc., USA). A
camera was used to accurately estimate the positions of
segments in the hand and forearm [17, 18]. Estimated
positions of the phalangeal, palm, and forearm segments were
recorded at 120 Hz and wused to calculate wrist
pronation/supination and metacarpophalangeal (MCP)
flexion/extension joint angles. Muscle activations were
estimated from the recorded EMG signals. Training data was
collected from participants with three gestures: MCP
flexion/extension only, wrist pronation/supination only, and
simultaneous wrist and MCP. An artificial neural network was
created for each participant using the Deep Learning Toolbox
in MATLAB 2018b (Mathworks Inc., USA). Pupil dilation
and blink rate were measured using the Pupil-Core eye
tracking system (Pupil Labs, Germany).

Figure 1. Prosthetic device (Motion Control ETB, Filauer, 4.541b)
(Left), A participant trying to pick up a pin (Right)

The experiment followed a between-subject design in
which each participant was randomly assigned to one of the
three prosthetic configurations (i.e., DC, PR, or CC) to avoid
potential fatigue or learning effect from one trial to the next.
Clothespin Relocation Test (CRT) was used as an ADL in this
experiment as it is a widely used ADL for assessing usability
of upper limb prostheses [19]. The CRT required participants
to move as many pins as possible from the horizontal bar to
the vertical bar and vice versa in 2 minutes with various hand
gestures in each control mode [20] (Figure 1 — Right).

CW of participants was measured by primary task
performance, pupillometry data, CPM outcomes, and
perceived workload ratings. Task performance was captured
by counting the numbers of pins moved and the shortest time
to move one pin from one bar to another in each trial. The
number of training trials to achieve mastery in the task was
also included as another task performance measure. To
develop CPMs, hierarchical task analysis (HTA) trees were
initially created for each type of control mode. Based on the
findings of the HTA, three Cognitive-Perceptual-Motor
GOMS (CPM-GOMS) [21] models were developed in
Cogulator for each control scheme [22]. The models generated
outcomes including the task completion time (TCT) for one
cycle, number of cognitive, perceptual, and motor operators,
and the number of memory chunks required to perform the
task. Each participant rated their CW using the NASA Task
Load Index (NASA-TLX) scale after each trial and it was used
as a ground truth or target variable in the ML algorithm, as this
measure has been used extensively in prior studies using
prosthetic devices [23, 24].
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Once participants arrived at the lab, they signed the
informed consent form, and filled out the demographic
questionnaire. Then, they completed the Edinburgh
Handedness Test (EHT) [25] and the Purdue Pegboard Test
(PPT) [26, 16] to ensure that they were eligible for the study
with a certain level of hand dexterity. Once participants
completed the EHT and PPT, they were equipped with the
prosthesis and EMG electrodes were placed on their skin
based on the assigned control mode. Participants were allowed
to interact with the device until they reported comfort with the
control mode and the classifier was sufficiently trained. Once
the participants received training for their assigned control
mode, they were trained on the CRT, which assessed the
mastery of device handling and the respective control mode.
If the average TCT to move three pins in three sequential trials
was within 15-25s for the PR, 20-35s for the DC, and 16-23s
for the CC mode, the participant was allowed to proceed to the
experimental trials. These thresholds were defined based on
our prior studies with a similar prosthetic device. Upon
completion of the training trials, the eye-tracking system was
calibrated for the participants, and they could begin the
experimental trials after having 5 minutes of rest. In
experimental trials, participants were instructed to move as
many clothespins as possible between the two bars within 2
minutes. All participants completed three trials with a 5-min
rest period after each trial. After each trial, participants filled
out the NASA-TLX questionnaire.

B. Cognitive Workload Classification

Three algorithms (RF, SVM, and NB) were selected to
classify CW as they exhibited high prediction accuracy (>
80%) with small datasets in previous studies [27]. The
prediction outcome was the level of CW which was
categorized in three classes of “high”, “moderate”, and “low”
CW based on the findings of the clustering analysis on NASA-
TLX scores collected from the experiment.

The dataset included 90 datapoints (10 participants per
each control scheme X 3 control schemes X 3 trials). To
avoid overfitting, we split the dataset into training (70% of the
data) and testing (30% of the data) groups. To ensure
generalizability of the predictive algorithms, 10-folds cross
validation (CV) was employed to optimize the number of
hyperparameters [28]. Across 10-folds CV, a hyperparameter
grid search method was used employing the sklearn Python
library [29] and a pipeline function to streamline testing across
three classifiers. This is because scanning over every
permutation of a wide range of values for each set of
hyperparameters increases out-of-sample test performance
[30].

Feature selection methods were used to eliminate less-
contributory features from the dataset, to make modeling more
efficient, and to improve classification accuracy. K-Best
method was used as a representative method of the univariate
filter class of selectors [31]. K-Best estimates and stratifies the
contribution of each variable to the target class and chooses
the & (number of features specified) best ranking features to
model from. In addition, the recursive feature elimination
(RFE) and sequential feature selection (SFS) methods were
employed as members of the wrapper class of selectors [32,
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33]. RFE, similar to backwards feature selection, considers
multivariate feature contribution as a whole and iteratively
removes the least contributory features until the desired count
is obtained [34]. SFS performs the opposite, adding features
by order of significance until the number of features is
obtained. Both RFE and SFS have demonstrated a decent
performance in improving model accuracy and efficiency in
prior studies [32].

Classification accuracy on the test dataset was considered
as the foremost important metric of algorithm performance [6,
12]. In addition, computational cost was defined as the time
for grid search in each run. Lastly, experimental cost was
selected as the third measure to evaluate the best subset of
features, which included resources such as time, monetary
cost, difficulty of modeling, and potential risks of having low
quality data due to poorly designed experimental protocol
(e.g., unexpected noise in eye-tracking data).

Four groups of input features were tested in this study
including pupillometry data, device configuration, task
performance, and CPM outcomes. Therefore, fourteen subsets
of features were composed as shown in Table 1 (i.e., (D +

(:) + (;‘)). Since the purpose of this study was to explore the

optimal subset of features, it excluded the set with all of the
features.

ITII. RESULTS

A. Classification Performance

The algorithm accuracy differences were statistically
evaluated using Cochran’s Q test (a = 0.05) which is an
extension of McNemar’s test [35]. The Cochran’s Q test was
only performed under the K-Best feature selector because it
was the fastest selector. There was no significant difference in
accuracy between the RF and NB algorithms and between the
RF vs. SVM algorithms (p > .05). However, SVM
significantly outperformed NB (p < .05). In addition, RF and
SVM outperformed random guessing (p <.05), while NB was
not significantly different from random guessing (p > .05). It
was also revealed that the accuracy of RF algorithm heavily
relied on the primary task performance feature as subsets 1, 2,
4,5,7,9, and 12 exhibited higher accuracy (>0.80) than the
other subsets. Good models were defined as models that
exhibited at least 70% accuracy [36].

B. Computational Cost

As shown in Table 1, the SVM and NB algorithms were
faster than the RF in terms of training the model. Most cases
under SVM and NB algorithms could be trained in near-real
time (less than 1 sec.). Meanwhile, RF required several
minutes to train, except for some cases with only one subset
of features (Subset ID 11-14).

C. Experimental Cost

If a feature subset included pupillometry data, it was
labeled as “high” in terms of experimental cost, as it requires
conducting human subject experiments equipped with devices
to collect bio signals which can be time consuming and costly
[37]. If the feature subset only included CPM outcomes or
device configuration, it was assumed to have “low”
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experimental cost because the data can be generated from
CPM without the need for conducting human subject
experiments. If the feature included only task performance
measures, the subset was labeled as having “moderate”
experimental cost because it needs conducting a study with
human participants but does not require physiological data
collection.

Table 1. Summary of machine learning results

IV. DISCUSSION

This study developed ML algorithms and explored a
subset of input features that can predict CW when using EMG-
based prosthetic devices with acceptable accuracy and low
computational and experimental cost. This was the first study
that estimated CW of prosthetic devices with ML algorithms.
There are several studies which measured CW of prosthetic

i T SF;iEtr; Test Accuracy (0-1) Computational cost (sec) Expecf{i:rslteﬂtal

RF NB SVM RF NB SVM

11 RFE 089 0.63 048 134.50 048 059

12 Pupil = TP~ CPM | KBEST 080 0.7 0.7 65.24 2.26 0.70

1-3 SFS 0.89 0.7 0.7 917.74 16.22 9.60

2-1 RFE 089 0.67 0.67 0.78 ).54

22 Conf+TP+CPM | KBEST 089 0.63 07

23 SFS 089 0.59 0.7

3-1 RFE 0.59 0.59 0.7

32 Conf + Pupil + CPM | KBEST 0.78 0.7 0.7

33 SFS 0.7 0.7

4-1 RFE 0.59 0.56

42 Conf+Pupil= TP | KBEST 0.67 0.7

43 SFS 0.7 0.7

5-1 RFE 0.67 0.67

52 TP « CPM KBEST 0.63 0.7

53 SFS 0.59 0.7

6-1 RFE 0.59 0.7

6-2 Pupil + CPM KBEST 0.7

6-3 SFS 0.7

7-1 RFE 048

7-2 Pupil + TP KBEST 089 0.67

7-3 SFS 089 0.59

8-1 RFE 0.56 0.7

8-2 Conf + CPM KBEST 0.56 0.7 0.7

8-3 SFS 0.56 0.7 0.7

9-1 RFE 089 0.67 0.67

92 Conf+ TP KBEST 080 0.78 0.7

9-3 SFS 0.89 0.59 0.7

10-1 RFE 0.59 0.56 0.7

10-2 Conf + Pupil KBEST 0.78 0.7 07

10-3 SFS 0.59 0.7 0.7

11-1 RFE 0.56 0.7 0.7

112 CPM KBEST 0.56 0.63 0.7

11-3 SFS 0.56 0.7 0.7

12-1 RFE 0.81 0.59 0.7

12-2 TP KBEST 0.81 0.7 0.7 0.52

12-3 SFS 0.81 0.59 0.7 2524 120

13-1 RFE 0.52 048 07 8.78 042

13-2 Pupil KBEST 0.59 0.7 0.7 6.78 055

13-3 SFS 0.48 0.7 0.7 6.37 0.80

14-1 RFE 0.56 0.7 0.7 19.50 025 |

14-2 Conf KBEST 0.36 0.7 0.7 1539 038

14-3 SFS 0.56 0.7 0.7 24.49 0.68

*Note: Pupil features include: pupil diameter and blink rate. Task performance (TP) features include: number of moved pins from the
experiment, shortest time to move one pin, and number of training trials. Device configuration (Conf) features include: DC, PR, and CC.
Cognitive performance model (CPM) features include: estimated time to move one pin, number of cognitive, perceptual, or motor

operators, and number of memory chunks
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devices, however, they employed human-subject experiments
to collect physiological data, task performance, or subjective
assessment and relied on inferential statistics and not ML [14].
It was found that the SVM algorithm can be used to classify
CW in near-real time with a reasonable classification accuracy
and therefore, can be used for predicting the workload of using
EMG-based prosthetic devices early in their design and
development process possibly further alleviating amputee
challenges in performing ADLs.

This study was the first to include CPM outcomes as input
features in the ML algorithm. There are several advantages of
using CPM over human subject experiments. The CPM does
not require extensive human-subject experimentation.
Furthermore, it can quantify and estimate human behavior in
simple tasks with tools such as Cogulator [38] or CogTool
[39] based on well-established theories (e.g., human
information processing). Combining CPM outcomes with
other features captured from human subject experiment can
increase prediction accuracy. Furthermore, combination of
CPM outcomes and device configurations was found as a
good candidate for near-real time classification of CW for
designing upper-limb prostheses, which can minimize the
demand of having human-subject experiments and modeling
efforts. Although subsets 11 and 14 in Table 1 have the same
test accuracy as subset 8, we recommend subset 8 because this
subset of features would have more stabilized classification
results with larger datasets. That is, using only one type of
feature, either device configuration or CPM outcomes can
increase the risk of having low classification accuracy with
larger datasets [12].

Another contribution of this research was inclusion of
experimental cost to select the best subset of features, unlike
other ML studies that only focused on computational cost.
This is an important consideration as human subject studies
are challenging due to the difficulties of collecting high
quality data from participants, especially when physiological
data are collected (due to the devices being intrusive) [40, 17].

Regarding ML algorithms, we found that while RF
generated a large number of trees in its training process, the
model performance heavily depended on task performance
features as compared to other features. This was shown with
high test accuracy of RF especially for subsets 1, 2, 4,5, 7,9,
and 12. In RF, task performance was always selected and
regarded as the most important feature in all subsets. This can
be problematic as it can be an indicator of overfitting, although
we tried to minimize the effect of small dataset with
hyperparameter tuning and feature selection. Furthermore, RF
required substantial computational cost to train the model as it
builds many trees to combine the decision trees to determine
a class. In addition, hyperparameter setting in RF was more
complex than that of SVM and NB, which extended the model
running time.

SVM algorithm exhibited more stabilized classification
performance as compared to RF, even with the extremely
small dataset in this study. Throughout all subsets of features
(subset 1-14), SVM showed around 70% accuracy. It is also
known that low-complexity models such as SVM generate the
best results because it does not put much emphasis on a small
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outstanding characteristic of the dataset, which can exhibit
low risk of overfitting [41]. In addition, a simple
hyperparameter tuning enabled short grid search time.
Regarding the feature selector, both RFE and K-Best worked
well for SVM to train the model within one second. However,
SFS demanded extensive computational time because it is a
wrapper method which needs to add each feature to the model
and train the classifier for each feature subset.

This study had some limitations. First, the experiment was
conducted with able-bodied participants due to the limited
number of amputee patients in the area [14]. The result can
change if participants were experienced users of prosthetic
devices. Future studies should validate the model outcomes
with amputee patients. Future research should also include
additional data to avoid the risk of overfitting. In addition,
additional hyperparameter tuning method (e.g., random
search) or parameters should be considered to improve the
classification accuracy in SVM and NB, which currently
could not go beyond 70%.
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