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Abstract. If dark matter resides in a hidden sector minimally coupled to the Standard Model,
another particle within the hidden sector might dominate the energy density of the early
universe temporarily, causing an early matter-dominated era (EMDE). During an EMDE;,
matter perturbations grow more rapidly than they would in a period of radiation domination,
which leads to the formation of microhalos much earlier than they would form in standard
cosmological scenarios. These microhalos boost the dark matter annihilation signal, but
this boost is highly sensitive to the small-scale cut-off in the matter power spectrum. If
the dark matter is sufficiently cold, this cut-off is set by the relativistic pressure of the
particle that dominates the hidden sector. We determine the evolution of dark matter density
perturbations in this scenario, obtaining the power spectrum at the end of the EMDE. We
analyze the suppression of perturbations due to the relativistic pressure of the dominant
hidden sector particle and express the cut-off scale and peak scale for which the matter
power spectrum is maximized in terms of the properties of this particle. We also supply
transfer functions to relate the matter power spectrum with a small-scale cut-off resulting
from the pressure of the dominant hidden sector particle to the matter power spectrum that
results from a cold hidden sector. These transfer functions facilitate the quick computation
of accurate matter power spectra in EMDE scenarios with initially hot hidden sectors and
allow us to identify which models significantly enhance the microhalo abundance.

Keywords: cosmology of theories beyond the SM, dark matter theory, physics of the early
universe, power spectrum
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1 Introduction

Recent null results for WIMP dark matter in direct detection experiments [1-3] and collider
searches [4-13] have prompted interest in theories in which dark matter lives in a hidden
sector only weakly coupled to the Standard Model [14-19]. In several hidden sector theories,
long-lived massive particles dominate the energy content of the universe prior to Big Bang
Nucleosynthesis (BBN), leading to an early matter-dominated era (EMDE) [20-28]. An
EMDE enhances small-scale density perturbations in dark matter because subhorizon dark
matter perturbations grow linearly with scale factor during matter domination, as opposed
to the logarithmic growth that occurs during radiation domination [29-32]. This growth can
lead to the formation of dense sub-Earth-mass microhalos long before structures are expected
to form in scenarios without an EMDE [29, 30, 32].

Although these microhalos do not affect the large-scale structure of the universe, they
boost dark matter (DM) annihilation rates, potentially producing detectable gamma-ray
signals [32-35]. The DM annihilation signal is highly sensitive to the small-scale cut-off in
the matter power spectrum because the cut-off scale sets the formation times and central



densities of the microhalos that form due to an EMDE [32, 35, 36]. For instance, changing
the cut-off scale by a factor of two causes the DM annihilation boost to increase by two
orders of magnitude [35]. Therefore, an accurate calculation of this small-scale cut-off is
key to observationally constraining scenarios with an EMDE. In this work, we determine
the small-scale cut-off scale that results from the relativistic pressure of the particle that
dominates the hidden sector.

If the particle that dominates the energy density of the universe during the EMDE is
initially relativistic, the growth of density perturbations is inhibited for modes that enter the
horizon while the particle has significant pressure. We obtain exact solutions of the evolution
of perturbations during an EMDE caused by a massive particle (which we call Y') in the
hidden sector. We include the process by which this particle transitions from relativistic
to nonrelativistic behavior before dominating the energy content of the universe. While
perturbation equations for a relativistic hidden sector particle have been solved previously
for a single set of parameters [21], we provide analytical expressions for the power spectrum
peak and cut-off scales in terms of the statistics of the Y particles and the initial ratio of
densities of Y and Standard Model (SM) particles. It is also possible that the Y particle
experiences cannibalistic number-changing interactions that alter the evolution of its pressure;
the resulting cut-off to the matter power spectrum was computed in refs. [26, 28]. Our analysis
of how the Y particle generates a cut-off in the matter power spectrum in the absence of such
interactions completes our understanding of how the pressure of the particle that dominates
the energy density during the EMDE inhibits the growth of dark matter perturbations during
the EMDE.

We provide fitting forms for transfer functions between the cases with a hot and cold
hidden sector. These transfer functions facilitate the easy computation of the power spectrum
cut-off caused by the pressure suppression of density perturbations. We also consider how
our transfer functions change the boost factor calculations presented in ref. [34] (hereafter
B19), in which the cut-off in the power spectrum was taken to be a Gaussian function of
wavenumber with the cut-off scale set as the horizon scale when the mass of the dominant
hidden sector particle is equal to the hidden sector temperature. Finally, we use our transfer
functions to determine which EMDE scenarios generate observable enhancements to the
microhalo population.

This paper is organized as follows. In section 2, we study the evolution of the different
components of the universe in our model, including the density, sound speed and equation
of state of the Y particles as they transition from being relativistic to nonrelativistic. In
section 3, the evolution of the density perturbations in the Y particles and dark matter
before, during, and after the EMDE is determined, and the suppression of perturbation
growth due to the pressure of the Y particles is analyzed. In section 4, we present expressions
for the wavenumber of the peak scale, for which the matter power spectrum is maximized.
In section 5, we provide fitting forms for transfer functions for the computation of the matter
power spectrum in scenarios with an initially relativistic particle dominating the hidden
sector. Section 6 presents calculations of the dark matter annihilation boost and the power
spectrum peak height using our transfer functions; we also discuss prospects for detecting the
microhalos generated in EMDE cosmologies. Our results are summarized in section 7. The
full calculation of the density, pressure, and sound speed of the Y particles is presented in
appendix A. Appendix B contains the derivations of several relations between the parameters
that describe the EMDE and the properties of the Y particle. The equations that govern the
evolution of perturbations and their initial conditions are detailed in appendix C. Finally,



we provide an online application for computing EMDE-enhanced power spectra with the
accurate small-scale cut-off that is described in appendix D. This paper uses natural units
throughout, in which c=h = kg = 1.

2 Evolution of the homogeneous background

Our model considers a universe with three components: dark matter X; the thermal bath
of relativistic SM particles, which we call radiation (denoted by the subscript R); and a
particle Y with mass m that decays into SM particles. X and Y live in a hidden sector that
is thermally decoupled from the Standard Model and has its own temperature Ts. The Y
particles are initially relativistic but transition to nonrelativistic behavior as the temperature
of the hidden sector decreases. We assume that the X particles have frozen out before our
calculations begin and are nonrelativistic with mx > Tis and px(a) oc 3.

We first establish the evolution of the homogeneous energy densities of the various
components of our model. We begin our calculations at scale factor a;, which is chosen such
that Thsi = Ths(a;) = 300m, so that the Y particles are initially relativistic. The initial SM
density is set by the parameter n = pr(a;)/py(a;). The Y particles are weakly coupled to
the SM particles with a decay rate I'. Such couplings of the hidden sector to the Standard
Model can arise via various renormalizable interactions, including the lepton portal [14, 37],
the Higgs portal [14, 38, 39], and the vector portal [14, 40]. To obtain the evolution of the
energy densities of these three components, the coupled equations for px, py and pgr are
solved numerically:

py + 3H(1 + wy)py = —I'mny; (2.1a)
pr+4Hpr = I'mny; (2.1b)
px +3Hpx =0, (2.1c)

where overdots denote d/dt and H = a/a. In eq. (2.1a), ny is the number density of
Y particles, and wy is their time-varying equation of state parameter, defined as the ratio
between pressure and density, wy = Py /py. The time evolution of wy encodes the transition
from relativistic to nonrelativistic behavior for the Y particles, which we solve for exactly;
the process is detailed in appendix A. The terms on the r.h.s. of egs. (2.1a) and (2.1b) depend
on mny instead of py because the longer lab-frame lifetimes of faster particles compensate
for the higher energies released by their decays [28]. We assume that X and Y particles are
coupled only gravitationally, with no momentum exchange between the two species. However,
the effects of additional couplings are discussed in section 4.1.

Figure 1 shows the solutions to egs. (2.1) for a chosen set of parameters. The transition
from py (a) o< a=* to py o< a~3 can be modeled by a broken power law with a pivot scale factor
given by ay,/a; = bThsi/m where b depends only on the statistics of the Y particles. We find
that b is 2.70 for bosons and 3.15 for fermions; these values of b are derived in appendix A.
It follows from eq. (2.1b) that pg o< g«(T)T* o< a=* when I'mny < Hpgr, where g.(T) is the
relativistic degrees of freedom contributing to the energy density of relativistic SM particles.
However, all our analytical results assume that entropy is conserved in the visible sector
when I'mny < Hpg, so that g.s(T)a3T? is constant, where g.g is the relativistic degrees
of freedom contributing to the entropy density of the SM bath. When I'mny exceeds Hppg,
pr x a~3/2 due to the entropy injection from the decay of the Y particles into the visible
sector. After the Y particles decay away, pr < a~* again.
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Figure 1. The background evolution of the energy densities of the Y particles, SM radiation and
dark matter (X) as a function of scale factor, for parameters m = 2TeV and n = 1000. The pivot
scale factor a, marks the transition from py o a=* to py o a=® . The yellow shaded region shows
the EMDE, which begins at the scale factor agom. At the end of the EMDE, py rapidly decreases,
and the universe becomes radiation dominated.

The EMDE;, indicated by the yellow shaded region in figure 1, starts when py exceeds pr
at the scale factor aqom- We parameterize this point by the temperature of the SM radiation
Tiom, 50 that pr(adem) = (7%/ 30)g*(Tdom)Tc‘fom. We show in appendix B that Tyom can be
expressed in terms of our model parameters as

|>—A

n- 4, (2.2)
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where g equals the number of degrees of freedom of the Y particles, T; is the temperature of
the SM radiation at a;, and f is 1 if the Y particles are bosons and 7/8 if they are fermions.

The EMDE lasts until I'/H becomes comparable to unity. After this point, the co-
moving number density of the Y particles starts decreasing rapidly. Shortly thereafter, py
becomes negligible and the universe transitions to radiation domination. This transition,
called reheating, is not an instantaneous process, but we find it useful to define a reheating
temperature Try in terms of the decay rate as

87G w2

=/ ——¢g.(T] T4 2.
3 309( RH) TRy > (2.3)

which sets I" equal to the Hubble rate in a purely radiation-dominated universe at temperature
Tru. It is also useful to define agy as the scale factor at which
3 g 4
py (ap)a, = apy %g*(TRH)TRH' (2.4)

Note that Try is the quantity defined in eq. (2.3) and does not equal T'(agry)-



In our broken-power-law model, py (ap)as = py(a;)aj. Since the Y particles are rela-
tivistic at a;, py (a;) = fg(7r2/3O)Tflls’i; it follows from the definition of agy that
4
3

1
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To relate agy to the scale factor today (ag), we note that there is negligible transfer of entropy
from the decay of the Y particles to the SM radiation for a > barp. We find numerically
that T'(5arp) = 0.2047Try and use entropy conservation from Sagy to ag to express

(2.5)

arn 1 [ g.s(Ty) )HTO}, (2.6)
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where Tj is the temperature of radiation in the Universe today.

3 Evolution of perturbations

The Einstein equations are perturbed to obtain the equations for the evolution of the density
contrast 0 = (p — p)/p (where p denotes homogeneous background density) and the velocity
dispersion 6 = ad;v* for each fluid, where v* = dz’/dt. We work in the Newtonian gauge, in
which the metric is given by

ds? = —(1 + 2¢)dt* + a*(t) (1 + 26)(da® + dy? + d2?). (3.1)

We neglect anisotropic stress and set @ = —¢. The perturbation equations and initial
conditions are provided in appendix C.

Figure 2 shows the time evolution of |9;|/®¢, where ® is the primordial metric pertur-
bation in a radiation-dominated universe and i denotes the three fluids in our model. Also
shown is the evolution of the Y density perturbation if the Y particles were pressureless (dy).
The left panel shows a mode that enters the horizon after the Y particles have become non-
relativistic, with Ti,s/m = 0.00018 at horizon entry. In the absence of pressure, subhorizon
density perturbations in Y grow logarithmically with scale factor during radiation domina-
tion and linearly during the EMDE. After the EMDE, radiation domination resumes and dx
and dy start growing logarithmically. For this mode, dy coincides with dy . because the Y
particles are already pressureless when the mode enters the horizon. In contrast, the right
panel of figure 2 shows a mode that enters the horizon when the Y particles have significant
pressure, with wy = 0.14 and T},s/m = 0.21 at horizon entry. For this mode, the growth of
dy is suppressed compared to that of dy,. until the Y particles become pressureless. As a
result, dy starts linear growth later than dy,. and dy < dy,. at the end of the EMDE.

The right panel of figure 2 also shows how the evolution of dx is affected by the pressure
of the Y particles. When the mode enters the horizon during radiation domination, dx starts
to grow logarithmically with the scale factor. The pressure of the Y particles delays the onset
of linear growth during the EMDE because the Y particles are not as clustered as they would
have been if dy had also grown logarithmically prior to the EMDE. Instead of growing linearly
with scale factor throughout the EMDE, dx converges to dy because the X particles fall into
the gravitational wells generated by the Y particles. Due to this convergence, we will focus
hereafter on analyzing the behavior of Jy .

To quantify which scales undergo growth suppression, we consider the continuity and
Euler equations for the evolution of density and velocity perturbations in the Y particles
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Figure 2. The evolution of perturbations for two modes, plotted as a function of a/ay, where ay, is
the scale factor of horizon entry for the mode. The mode in the left panel enters the horizon after the
Y particles have become pressureless (T,s/m = 0.00018 at horizon entry); there is no suppression of
dy for this mode. The mode in the right panel enters the horizon when the Y particles have significant
pressure (Th,s/m = 0.21 at horizon entry) because of which dy is suppressed compared to dy,, the YV’
density perturbation if the Y particles are nonrelativistic.

along with the Poisson equation. Since the comoving number density of Y particles remains
constant until I' ~ H at the end of the EMDE, we can neglect the decay terms when the
pressure of the Y particles is significant. We then have the following equations (taken from
appendix C):

ddy Oy dgb) 3. 5

da o (1 - wY) (CLQH + 3da a(CsY wy)éy, (32&)

dby 1 dwy Oy CQY k2 Sy k2 ¢

da g T wn)ty - : - 3.2h
da a( wY) Y da 1 +wY (1 +’U)Y)G,2H a2H7 ( )
do k? 4rG

CL%=— <1+3a,2H2>¢+ 3H2(pY5Y+pR6R)7 (3.2C)

where ¢y, = §Py /Spy is the sound speed of the Y particles (see appendix A). In eq. (3.2¢),

the contribution of the dark matter term (dxpx) on the r.h.s. is neglected because px < py.

Working in the subhorizon limit where k > aH and using H? = (87G/3)(py + pr), eq. (3.2¢)
implies that

<i>2¢w 3 pydy + prdR

aH 2 py+pr

To obtain the evolution of dy, we neglect the derivative of ¢ in eq. (3.2a) as it is small

compared to y /(a?H) and neglect the (c2, —wy)dy term in eq. (3.2a) since ¢, — wy ~ 0.

Similarly, the term proportional to (dwy /da)fy in eq. (3.2b) is neglected because dwy /da is

(3.3)



K
R
0

H
2
Ne
.
T
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

= Jeans Length

........ HOI"iZOH

Comoving
Length in Mpc

10—10 i
10—11 . . . . . .
101 102 108 104 100 106 107
] T T

,e? - Oye = /"'/:,/’/ -~
>~ ! = ,/”’//,/ o
S 10! T et T
T _—-__—-__—._-:.!_"_—__‘A__:__—__—_l —\I——r"’_f \/ \ \/

107t : A - - : -
101 102 103 10% 100 109 107

a/a;

Figure 3. Top: the comoving wavelengths of two modes (horizontal lines), placed relative to the
comoving Jeans length Ay = k:J_l and the comoving horizon (aH)~!. The yellow shaded region is the
EMDE. Bottom: the thick curves show the evolution of perturbations in the case where Y particles
have relativistic pressure and the thin curves show the case where Y particles are treated as cold. The
dashed curve corresponds to a scale that is always larger than the Jeans length, while the dot-dashed
curve shows a scale that is much smaller than the Jeans length when it enters the horizon.

of the order of (c?,, — wy). Differentiating eq. (3.2a) with respect to a and using eqs. (3.2b)
and (3.3) gives

3 (14+wy)orpr

20 pr+py

a®H? 2 pp+py

da? a

d*5y 1|d(a*H)/da dsy 1 [k 3 (1+wy)py
1_ _ S
[ aH +( 3U)y) da +a2 1)
(3.4)

As figure 2 shows, dr begins oscillating shortly after the mode enters the horizon. The
gravitational contribution of the drpr term on the r.h.s. of eq. (3.4) thus averages to zero
and the term can be ignored. We can then express eq. (3.4) as

2
By |y (k2 = k3] oy =0, (3.5)

a aH da ' (a2H)?

d*5y 1 |d(a*H)/da
+ - @z
da?  a

+ (1 — 3’11})/)]
where we define the time-varying Jeans wavenumber

31
SITUY Y ey (3.6)
2 CSY IOR + py

K3(a)

When the Y particles are relativistic, kj is roughly proportional to a~! because cﬁy is constant
and py o a~%. As the Y particles become colder, kj increases proportional to a'/? because
czy x a~2 and py o a~3. This behavior is shown in the top panel of figure 3, where the

black line shows the Jeans length Ay = kJ_l.
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Figure 4. Density perturbations in Y at arp as a function of wavenumber, with m = 5TeV,
Tru = 20MeV and 1 = 500. The blue curve shows the solution in the case where the Y particles
are initially relativistic (dy). The orange dashed curve shows the case when they are treated as
pressureless for the same Trir (dy,c). The dot-dashed grey curve shows the estimate of dy (k) used by
B19: dy,.(k) exp[—k?/(2k2)], where k,, is the horizon wavenumber when m = Ti.

The sign of the coefficient of dy in eq. (3.5) determines whether dy grows or oscillates.
Figure 3 illustrates the contrast between the growing and oscillating solutions. The top
panel shows the comoving length scales (k~!) corresponding to two different modes, plotted
relative to the Jeans length. The bottom panel shows the time evolution of dy for the two
modes. The thin lines show the evolution of each mode if the Y particles are treated as
nonrelativistic (Jy,.). When k < kj (so that k=1 > );), the coefficient of y in eq. (3.5) is
negative, which leads to a growing solution for dy. The mode represented by the red dashed
line in figure 3 is such an example; its wavelength is always larger than the Jeans length. The
bottom panel shows how the amplitude for this mode grows logarithmically with a during
radiation domination and then grows linearly with a during the EMDE. In contrast, for the
mode indicated by the purple dot-dashed line, the perturbation amplitude oscillates when
k~! < A and starts growing when k~! > \;. Since dy starts growing only when the Jeans
length becomes smaller than the mode wavelength, ¢y is reduced compared to dy,.

The suppression of perturbation modes that enter the Jeans horizon is readily apparent
in figure 4, which shows dy and dy,. evaluated at ary as a function of wavenumber scaled by
kru = arul’. If the Y particles are always pressureless, modes that enter the horizon before
the EMDE grow logarithmically with a during radiation domination and then linearly with
a during the EMDE, so that dy,.(k > kdom, aru) < In(k/kdom), where kqom = @domH (Gdom)
is the horizon wavenumber at agon,- Modes that enter the horizon during the EMDE grow
linearly with a from horizon entry until agy, so that dyc(kru < k < Kkdom, aru) x (k/ kru)?.
The shape of dy,.(k) after the EMDE only depends on the ratio kqom/kru, which (as shown
in appendix B) can be expressed in terms of our model parameters as

=

- >]é{ gATD)]%{On/m}%"_ 37

kru (Tru 95 (Tdom Tru



If the Y particles are initially relativistic, the growth of perturbations is suppressed
for scales close to or smaller than the maximum value of the Jeans length (shown by the
wavenumber kj min = /\Llnax in figure 4). For these modes, dy does not begin to grow until
the Jeans length becomes smaller than the mode’s wavelength. As a result, 0y at ary is
increasingly suppressed compared to dy,. as k increases, as the blue curve in figure 4 shows.
The suppression leads to a peak in dy (k) at the wavenumber k. For k > kyi, modes start
growing not only later, but also at different points in the oscillation cycles of their amplitudes.
This leads to an oscillation pattern in dy (k) with a decaying envelope.

B19 modeled the suppression of modes that enter the horizon when the Y particle is
relativistic by multiplying dy.(k) by exp[—k?/ (2]@5)], where k, is the wavenumber of the mode
that enters the horizon when m = Tis. In appendix B, we derive expressions for &, /kqom for
a universe with > 1. Using the expression for ky/kgqom from eq. (B.14) with eq. (3.7) yields

(m/b)

Tru

1 1
ky :b{ gf 75| _g(T) |°
ki 9«(Tru)] | 9+y92 (Taom)
where g,y = ¢+(T(ay)), with a,/a; = Tis;/m. The cut-off used by B19 does not describe
dy (k) accurately: figure 4 shows that dy falls off at smaller wavenumbers than k. In section 4,
we derive the model dependence of the actual peak and cut-off scales of dy (k).

2
3

(1+n)z, (3.8)

4 The peak scale

In order to determine the observational signatures of an EMDE, it is necessary to evaluate
the location and amplitude of the peak in the matter power spectrum, since this peak sets the
masses, formation times, and central densities of the first microhalos [41, 42]. In this section,
we provide expressions for the peak wavenumber ki for which éy (k)/®¢ is maximized.

Due to the gravitational coupling between X and Y particles during the EMDE, the
peak wavenumber of dx (k) is generally very close to that of dy (k). However, the peaks
are not exactly equal in all cases. The relative closeness of the peaks of dy (k,ary) and
dx (k,arm) depends on the duration of the EMDE, quantified by kgom/kru. Figure 5 shows
dx (k,arn) and dy (k,arg) for three different EMDE durations. The leftmost panel shows a
short EMDE with kqom/kru = 4.8, in which case the peak wavenumbers of dy and dx differ
by 10% at the end of the EMDE. This difference arises because the EMDE is too short for dx
and Jy to become equal for modes close to the peak wavenumbers. For scales smaller than
the second peak in the left panel of figure 5, dy oscillates throughout the EMDE because the
Jeans length does not fall below the comoving wavelengths of these modes before ary. As a
result, the Y particles do not cluster and never exert a coherent gravitational pull on the X
particles. The X particles drift during the EMDE and dx does not approach dy. For longer
EMDEsS, the peaks of dx and dy are nearly identical. The middle panel of figure 5 shows the
case with kqom/krg = 17.7, for which the peak wavenumbers of dx and dy differ by 1.3%.
For kqom/krm = 32.6, this discrepancy between the peak scales falls to 0.4%. Therefore, the
peak in Jy generally matches the corresponding peak in the matter power spectrum after
the EMDE.

4.1 The effect of kinetic coupling in the hidden sector

Thus far, we have assumed that the Y particles and the dark matter X are coupled only
gravitationally. In this section, we explore how scatterings between X and Y particles affect
the peak amplitude and scale of dx and dy.
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Figure 5. Density perturbations at arpy as a function of wavenumber for three different EMDE
durations.

If the X and Y particles are initially kept in kinetic equilibrium through a scattering
process, the momentum transfer rate (dp/dt)/p to the X particles from this scattering is
given by ny(m/mx)(ov), where (ov) is the velocity-averaged scattering cross section. This
interaction modifies the Euler equation for the velocity perturbations in the dark matter [43]:

2
Ok = —9X—5—H¢+nymﬂx<;—v>(9y—9x)7 (4.1)
where the prime denotes d/dIna. The corresponding coupling term in the Euler equation
for 0y is suppressed by a factor of px/py and can be neglected. The coupling strength is
parameterized by the scale factor of kinetic decoupling a4, which is defined by the relation
ny (aka){ov) = H(akd)-
To study the effect of this kinetic coupling, we consider three examples with n = 300,
kdom/kRH = 36, and

1. no kinetic coupling between X and Y particles,

2. kinetic coupling with aiq = 0.5aqom = 150a,, such that the X and Y particles decouple
before the EMDE starts but after the Y particles have become cold, and

3. kinetic coupling with arpy = 1.4ary, such that the X and Y particles remain coupled
until after the Y particles have decayed into SM radiation.

While ny (ov) > H, 0x ~ 0y. As the hidden sector temperature decreases, the Y particles
become nonrelativistic. In this regime, we can use the results of ref. [43] for the momentum
transfer rate for the collision of two nonrelativistic particles and take (ov) oc /Tps. For all
these cases, we choose myx/m = 50 so we can assume the DM particle is much heavier than
the Y particle and wx ~ 0. This ensures that the evolution of px is given by eq. (2.1c).
Figure 6 shows dy (k,aru) and dx(k,aru) for the three cases mentioned above. The
amplitude and the location of the first peak remain the same between the cases. Gravita-
tional coupling during the EMDE is strong enough to make dx and dy converge to within a
0.5% difference for wavenumbers close to kpk, even without kinetic coupling. The left panel
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Figure 6. Density perturbations as a function of wavenumber, evaluated at ary, with n = 300,
kdom/kru = 36 and mx/m = 50. dx (k, arm) is plotted for cases with three different kinetic coupling
strengths. The labels mark the scale factor of kinetic decoupling axq for the different coupling sce-
narios. For the case with no coupling (leftmost panel), the peak wavenumbers of dx and dy differ
by 0.4%.

of figure 6 also shows that dy and dx differ for scales smaller than the peak scale in the case
with no kinetic coupling. For these modes, dy oscillates for a portion the EMDE, and the Y
particles do not exert a coherent gravitational force on the DM until dy stops oscillating. As a
result, d x has not fully converged to dy at agg. Comparing the left and middle panels of fig-
ure 6, it is apparent that scatterings tie dx to dy for these modes. Therefore non-gravitational
interactions between the X and Y particles only serve to tighten the correspondence between
dy and 0x and do not significantly affect the matter power spectrum.

4.2 Scenarios with initially subdominant Y particles

To derive an analytical expression for kpx when the Y particle is initially subdominant (n > 1),
we adopt the approach used to find the peak scale for cannibalistic hidden sector particles [28].
The peak scale enters the horizon after the Y particles have become nonrelativistic but before
the onset of the EMDE. Since dp oscillates rapidly after the peak scale enters the horizon,
the term proportional to drpr in eq. (3.4) does not affect the evolution of dy. In addition,
the term proportional to py /(py + pr) in the coefficient of dy on the Lh.s. is negligible since
py < pp prior to the EMDE. Using entropy conservation in the visible sector, we can write
a®H = a?H (a;)[g«(T(a;))/g«(T(a))]"/6. The first term in the coefficient of ddy /da in eq. (3.4)
is then proportional to d1n g.(7'(a))/dIna, which is negligible. We also set 1 4+ wy to unity,
since wy is small compared to 1 and decreases as a~2 when the modes close to the peak scale
enter the horizon. With these approximations, eq. (3.4) can be written as

d25y 1 d&y C2Yk2(5y
— 2 =0. 4.2
i " da (a2H)? (42)

In appendix A, we present a piecewise model for ¢2y (a): ¢2y(a) = 0.33a2./a for a 2
1.4a,. Here, ap. = 1.43a, for bosons and 1.41a, for fermions, where a, = bVTjsia;/m is
the pivot scale factor for broken power law that models py(a) and b is 2.70 for bosonic Y
particles and 3.15 for fermionic Y particles. The different factors 1.41 and 1.43 reflect that
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the Y particles have slightly different pressure for the same value of a/a, if their statistics
are different, which leads to the pivot points for their sound speed being at slightly different
values of a/a,. Since the peak scale enters the horizon when a 2> 1.4a,, we can use ¢y (a) =
0.33azc/a2 in eq. (4.2), which then describes a simple harmonic oscillator in Ina with the

k-dependent frequency wy, = ﬁapkgcl/ﬁ/(a?Higil/G), where g, = ¢9+(T'(a)), 9i = 9+(T'(a;)) and
B = 0.82 for bosons and § = 0.80 for fermions. The factor of g;/ % introduces a slight time-

dependence into wg; we neglect this variation and set g, = gr = ¢«(T'(ax)) when solving
eq. (4.3). The solution is

dy (k,a) = Ajsin [wk In (Aza)] : (4.3)

a

Since wy, encodes the effect of the relativistic pressure of the Y particles, the expression
for dy for small wy should match the evolution of cold dark matter in radiation domina-
tion [44]: dx(a) = A®gln(Ba/ay) with A = 9.11 and B = 0.594. The coefficients A; and
Ag are determined by evaluating eq. (4.3) when wp < 1 and matching it to this function.
Prior to the EMDE, In(a/ax) < 10 for modes near the peak scale, and the argument within
the sine in eq. (4.3) is small compared to unity if wy < 1. Using the approximation that
sinx ~ z for x < 1, it follows that A; = A®y/wy, and Ay = B.

The peak wavenumber kpi can be found by maximizing the amplitude dy (K, adgom)-
Using the expressions for A1 and Ao, we have

1
A®o sin [wk In (Badomﬂ = A®o sin lwk In <\/§B [ Ik ] ok )1 , (4.4)
W ak W gdom] Kdom

where the second equality results from using the expression for ay/aqom in radiation domina-
tion from eq. (B.11). Neglecting the weak k-dependence of (g /gdom)'/® and ®¢ while setting
the derivative of eq. (4.4) with respect to k equal to zero implies

tan [wpkln <\/§Bkm{ [gpk]é>1 =wpk [1+1In <\/§Bkm{ { Ik F)} : (4.5)

kdom 9dom kdom 9dom

5Y(k7 adom) -

Since kpk is an extremum of dy (k), the tangent function on the Lh.s. is well-described
by a Taylor expansion to second order around kpk. Using this expansion and solving the
resulting equation for kpi yields

st [ae]| -2 ()]

kdom | gdom 3
where W is the Lambert W-function and

2
.
V6B a; a;H; (9) ] 3

/6 ap kdom 9pk

,_
(SIS

(4.7)

We express a;H;/kqom = (adom/(v264))(gdom/9i)"/6 (using eq. (B.11)) and use the defini-
tion of agom/ap from eq. (B.5) to simplify the dependence of r on the model parameters.
Substituting B = 0.594, we have

_[oss (g \?
"= [ 6 (gpkgdom> 77] . (48)
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Finally, we use the expression for ky/kqom from eq. (B.14) to eliminate kgom from eq. (4.6)
and obtain

1
1k 11.03 2 9
3 pk _ L n —3/2 9; 2/3 4
ok ky (gygdom)6 /Bb 1 _|_n” [077 <gpkgdom> n ] . ( 9)

In the above expression, gpk = g«(T'(apk)) and gdom = g«(Tdom). The r.h.s. of this expression
includes an additional factor of 1.08 that brings the kpx values into better agreement with
those obtained from the numerical solutions of the perturbation equations.

To establish the relation between the peak scale and our model parameters, the peak
scale can be rewritten in physical units. Using egs. (2.3) and (2.6), and substituting Tp =
2.726 K and g.5(Tp) = 3.91 , kg = arul’ can be expressed as

kR g% (Trm) Tru 3 1
To = 7.68 l /3 NGV x 10° Mpc™ . (4.10)
g*S (0'204TRH)

Using the definition of k,/krn from eq. (3.8), the peak wavenumber is

ki 0.9 [fg] [ 9+(Tan)
ap ﬂ b4 Q*S(O'2TRH)

where we have ignored the variation of g, before the EMDE for simplicity. In eq. (4.11),
kpk/ao depends on Tru because the reheat temperature determines when the EMDE ends
and thus affects the expansion history of the Universe after the peak scale enters the horizon.

The points in figure 7 show ki /k, for different 7 values as determined from the numeri-
cal solutions for the evolution of dy-, while the solid lines for n > 1 show kpk/k, from eq. (4.9)
with ¢.(T") = 100. The analytical expression explains the variation of kyk/k, with n and
predicts the peak scale of dy (k, agy) to within 3% of the numerically determined peak scale
for n > 100. As n decreases, the peak scale enters the horizon closer to the pivot point of cgy.
Since the asymptotic late-time expression for czy was used in the derivation of eq. (4.9), its
prediction for ki diverges from the numerically determined peak wavenumber for 7 < 100.

1

:| 3 72
1GeV] W3 (0.77n3)

1
3

1
—
R ]3 { m x 106 Mpc™!,  (4.11)

1MeV

4.3 Scenarios with initial Y-domination

If n < 1, pp remains subdominant until reheating. The EMDE begins when py starts
decreasing proportional to a3 at a = ap, and this pivot also determines which modes are
suppressed by the relativistic pressure of the Y particles. The numerical solutions to the
perturbation equations for < 0.1 indicate that kpy enters the horizon while the Y particles
are still relativistic (apx < a,) and that apx = ap\/1+1/7, where v = 2.055 and 2.065 for
bosonic and fermionic Y particles, respectively. The factor v accounts for a slight difference
between ki for fermionic and bosonic Y particles, which arises because the Y™ particles have
slightly lower pressure at a given value of a/a, if they are fermions compared to if they are
bosons.

For a < ap, H(a) o< a=2 and thus k o« a;'. Therefore, kyy/k, = v/v/T+ 7. The
wavenumber k, = a,H (a,) can be obtained by expressing H?(a,) = 87G (py (ap)+pr(ay))/3 =
8nGpy (ap)(1 +n)/3. In this expression, py(ap) can be written using eq. (2.4) and the ex-
pression for a,/ary from eq. (2.5). Finally, taking I" from eq. (2.3),

kp _ W H(ap) _[ af (m/b)
kru arm T 9x«(Tru) Tru

1
6

tJTE (4.12)
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Figure 7. The peak wavenumber kp that maximizes dy (k), scaled by k, and plotted against 7, the
initial value of py/pr. The dots represent the kpx determined from numerical data for m = 2 TeV
and the lines represent the analytical predictions for kpk/ky, given by eq. (4.9) for n > 1 and by
eq. (4.13) for n < 1. The plotted quantity kpk/k, depends only on n and the statistics of the Y
particles. Different colors show cases with different Y particle statistics. This plot assumes g.(T") =
g«s(T') = 100. The black crosses show kpi/k, for a boson Y particle for m = 200 GeV; they overlap
with the black dots, confirming that kpk/k, is independent of m.

To express k), in terms of k,, we again use the scaling k o a,;l, which applies since
ay < ap. Using this scaling yields k,/k, = a,/a, = b, so that

ko v 1

gl 4.13
ky byIT (4.13)

]

This prediction for kpk/k, is shown by the solid lines in figure 7 for n < 1. The value given
by eq. (4.13) agrees with the peak scale to within 1% for n < 0.1. For n > 0.1, ki enters
the horizon after cgy begins to decrease. This makes kyk/k, diverge from the prediction
of eq. (4.13), which is valid for cases in which ¢y (apx) ~ 1/3. We can use eq. (4.12) and
ky/kp = b in conjunction with the definition of kry from eq. (4.10) to express kpy in physical
units as

1 1 1 2
kpk fg]é { g*(TRH) ]3 { TrRu :|§ { m :|§ 6 -1
ek _ g, 19 106 Mpe'. 4.14
g 07657 {54 702y ) [Mev]| |1Gev) <10 Mpe (4.14)

5 Transfer functions

Solving the Boltzmann equations with an initially relativistic Y particle is computationally
expensive. To facilitate the computation of the matter power spectrum in such hidden-sector
cosmologies, we present analytical transfer functions that relate dy (k) to dy,c(k). The transfer
function is defined as

dy (k)

dy.c(k)’

T(k) = (5.1)
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Figure 8. Comparing the transfer functions for X and Y perturbations for a case with kqom/krn =
17.7. In the top panel, the solid line shows Ty = T'(k) and the dashed line shows T'x (k), while the
bottom panel shows the relative difference between the two. The two transfer functions agree to
within 5% for T'(k) > 0.25.

where both dy (k) and dy,.(k) are evaluated at agy. For n > 1, we calculate dy,. by setting
wy = ciy = 0 and py(a;) = py(@dom)(ddom/ai)?, thus obtaining the evolution of density
perturbations in cold particles for the same value of py (a) during the EMDE. If the relativistic
Y particles initially dominate the universe, making the Y particles cold radically alters the
evolution of the Hubble rate. To avoid conflating the effects of changing the Hubble rate
with the effects of the Y particles’ pressure, we use an analytical expression for dy,. when
computing T'(k) when 1 < 1, as described in section 5.2.

We focus on transfer functions for the Y density perturbations because they are less
sensitive to the duration of the EMDE than transfer functions for DM perturbations would
be. In most cases though, these transfer functions can be applied directly to the DM power
spectrum. Figure 8 shows the correspondence of T'(k) and T'x (k) = dx(k, aru)/dx (k, arn)
for kqom/kru = 17.7 (where 0x . is the DM perturbation if the Y particles were pressureless).
The bottom panel shows the relative error between T' and Ty, which remains within 5% for
T'(k) > 0.25. Longer EMDES lead to even closer agreement between T'x (k) and 7'(k).

We wish to fit a functional form to 7'(k) that accurately models the transfer function.
As can be seen in figure 9, the oscillatory pattern in dy (k) for k > kpx has a much lower
amplitude than dy (kpk): dy at the second peak scale is < 0.256y (kpk) for both n < 1 and
n > 1. Since perturbations at the scale of the first peak will collapse long before modes
on smaller scales, we do not expect perturbations with k > kp to significantly affect the
microhalo population. We will therefore prioritize accurately describing the first peak in
dy (k), while neglecting the smaller peaks at k > kpx. The function that best fits T'(k) and
accurately describes the first peak in dy (k) is

T (k) = exp {— ( k )"] , (5.2)

kcut

where both n and k¢ are fitting parameters.
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Figure 9. Comparing the amplitude of the first and second peaks in Jdy (k). For both n < 1 and
1 > 1, the second peak amplitude < 0.25dy (kpk)-

5.1 Scenarios with initially subdominant Y particles

Figure 10 shows T'(k) for m = 2TeV, Trg = 20MeV and n = 500. The transfer function
equals unity for k& < kjmin. As k increases beyond kj min, 7'(k) falls off in amplitude as dy
is increasingly suppressed relative to dy,.. After the fall-off, T'(k) shows oscillations in £ that
reflect the small-scale decaying oscillations of dy (k) due to the pressure of the Y particles.
Figure 10 also shows the transfer function used in B19, given by exp[—k?/ (2k§)}, and we see
that our transfer function falls off at comparatively smaller k values.

The dashed orange curve in figure 10 shows the fit to T'(k) using the function given by
eq. (5.2), with fit parameters key/krg = 6539 and n = 2.7. The bottom panel shows the
percentage error between 7'(k) and the fitting function. At k = kpy, the value of the fitting
function is within 1% of the numerical value of T'(k).

For n between 3 and 1500, the best-fit values for n are between 2.60 and 2.78. Since this
variation is small for a range of 7 that spans nearly two orders of magnitude, we fix n = 2.7
for n > 1. With n fixed, we derive an expression for the cut-off scale kqy by relating it to
the peak scale evaluated in section 4.2. For k > 10kgom, the numerical solutions for dy,.(k)
follow a logarithmic function of aqom/ak, where the mode k enters the horizon at ay:

1
kdom>2 |:g*(T(ak)):| 6k
Oy.e(k > 10kqom, =4.86P | 0.21 s 5.3
Y ( > d aRH) 0 < kru " 9x (Tdom) kdom ( )

where eq. (B.11) was used to express agom/aj in terms of k/kgom. Differentiating dy (k) =
dy,c(k)T'(k) with respect to k, while ignoring the weak k-dependence of ¢.(7'(ay)) and using
the expression for T'(k) given by eq. (5.2) with n = 2.7 generates a relation between k., and
the peak wavenumber kpx that maximizes dy (k):

7

’7;‘“ = [2.7log (0.21 {g*(T(aPk))r F )] - (5-4)

Pk gx (Tdom) kdom
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Figure 10. Transfer function T'(k) = dy (k)/dv,.(k), evaluated at agn for m = 2 TeV, Try = 20 MeV
and 7 = 500. The dashed orange curve shows T'(k) given by our model, with k., given by eq. (5.5)
and n = 2.7. The transfer function exp[—kQ/(2k§)] used in B19 is shown by the grey dotted curve,
where k, is the wavenumber corresponding to the horizon when m = Tjg, given by eq. (3.8). The
bottom panel shows the percentage error between T'(k) and our model prediction.

)
o

Using eqs. (4.6) and (4.7) and the expression for kpy/k, from eq. (4.9), we have

kcut_g Ui
b\ Ity
(5.5)

where g = g2(T})/9x(Taom)g«(T(apk)), W is the Lambert W-function and b is 2.70 if the ¥
particles are bosons and 3.15 if they are fermions. The coefficient o accounts for the slight
difference in the peak scale values for Y particles following different statistics, as described
in section 4.2: o = 1.82 and 1.84 for bosonic and fermionic Y particles, respectively.

1
9+(T(ay)) g« (Taom) | © «,,—3 12 13 12 s
W™2(0.77g5n3)[In{0.18gsnW ~2(0.77gon3) }]"",
gg(T(apk))

The numerical solutions for three values of n are shown in figure 11 along with the
curves given by eq. (5.2) with n = 2.7 and k¢ calculated using eq. (5.5). The percentage
errors between the functional forms and T'(k) are plotted in the bottom panel. For n = 1500,
which was the maximum value of 7 for which 7'(k) was computed, the functional form with
n = 2.7 is within 1% of the numerical value of T'(k) at kyk. The percentage error remains
less than 8% for T'(k) > 0.25. The numerically determined ke is within 4% of the analytical
expression given by eq. (5.5) for n > 50.

For smaller values of 7, kcyy < 10kqom, and the expression given by eq. (5.3) becomes
increasingly inaccurate. In addition, our analytical prediction of kpy diverges from the peak
wavenumber in the range n < 50. Thus, the prediction of kcy given by eq. (5.5) becomes
inaccurate. For 1.1 < n < 50, we empirically find that a power law describes the variation of
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Figure 11. Top: the functional form T'(k) = exp[—(k/keut)*”] (dashed black lines) compared to
the numerically evaluated T'(k) = dy (k)/dv,c(k) at agm for three different values of . The dotted
vertical lines mark kpk. The value of ke is given by eq. (5.5). Bottom: percentage error between the
numerical T'(k) and the best fit functions.

keut/ky with n:
kcut (0% + 0].5 _0 21
= e 5.6
ky 1 (5.6)

This expression predicts the cut-off scale to within 2.5% error for 1.1 < n < 50.

In the n > 1 regime in figure 12 we show the numerically determined k., divided by
k, as points plotted for different values of n for cases when the Y particles are bosons (red)
and fermions (black). For n > 50, the expressions given by eq. (5.5) are plotted as the solid
curves. For 1 < 7 < 50, the power law fits given by eq. (5.6) are plotted as the dashed curves.
The numerically determined ket /k, values are shown for m = 2TeV (dots) and m = 200 GeV
(crosses). The overlap of the dots and crosses demonstrates that the validity of the power
law fit of eq. (5.6) is independent of m.

5.2 Scenarios with initial Y-domination

If » < 1, the universe is initially dominated by the energy density of the Y particles, and
Sy.c(k,arn) o< agu/ay < (k/kru)? for all k > kry. From our numerical solutions, we find

2
by-o(k, ags) = 0.62B0m, (ki) . (5.7)
RH

Here, dy, is evaluated by setting the initial conditions outlined in appendix C, and ®q,, =
9®%,/10 is the primordial metric perturbation in a matter-dominated universe. This expres-
sion for dy,.(k,arn) is used to evaluate T'(k) when n < 1.

We fit the functional form exp|[—(k/kcut)™] to the transfer function, treating n and keyt
as free parameters. From fitting 7'(k) for 1073 < n < 1, the 7-dependence of n can be

— 18 —



0.8 s .
—— Y Particles Are Bosons
\ Y Particles Are Fermions
oo % e m=2TeV
Qt +  m =200 GeV
06 ) \_*_
E R
= 0.41
0.2 1
104 107 107t 100 10 107 10°
n

Figure 12. The cut-off scale wavenumber for the transfer function, plotted as kcu/k, against 7,
the initial value of pr/py. The different colors indicate Bose-Einstein or Fermi-Dirac statistics for
the Y particles. The solid curves for n > 50 show the analytical predictions for kcu/k, given by
eq. (5.5), whereas the dashed curves show the power law fits given by eq. (5.6) for 1 < n < 50.
The solid curves for 7 < 1 show the analytical predictions given by eq. (5.11). The dots and crosses
represent the kcy determined by fitting the functional form exp[—(k/kcut)™], with crosses showing
cases with m = 200 GeV and dots showing m = 2TeV for the range 1 < 1 < 50. This plot assumes
9+(T) = g«s(T') = 100.

summarized as

(5.8)

2.2-029(n—0.1) 01<n<l1
n =
2.2 n < 0.1.

The value of n falls with increasing 7 in the range 0.1 < 1 < 1 as the contribution of
the SM radiation density to the Hubble rate becomes increasingly significant. To find an
analytical expression for keyi, we use eq. (5.7) with T'(k) = exp[—(k/kcut)"] and maximize
dy (k) = T'(k)dy,(k) with respect to k to obtain the peak wavenumber kpy in terms of Keyt:

eu n 1/n
p kt = (§> . (5.9)
P

Substituting kpk/ky from eq. (4.13), we have

1
Ecut _ 1 <E) n 1 (5.10)

where v = 2.055 and 2.065 for bosonic and fermionic Y particles, respectively, and once
again, b = 2.70 if the Y particles are bosons and b = 3.15 if they are fermions.

For n < 0.1, n = 2.2, which can be substituted in eq. (5.10) to obtain k¢u/ky =
1.04v/(by/T+n). As n increases from 0.1 to 1, n decreases linearly and kpi/k, increases
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Figure 13. Top: numerically obtained transfer functions T'(k) (solid blue lines) and curves given by
exp|—(k/keus)"] (dashed orange lines) for the cases n = 0.001 (left) and n = 0.99 (right). For the
dashed curves, k. is given by eq. (5.11) and n by eq. (5.8). Bottom: percentage error between the
numerical T'(k) and the curves given by our models.

relative to the prediction of eq. (4.13). Since the cut-off scale follows the relation keyq o
kpk(n/ 2)1/7_ the rise of kpk/ky nearly cancels out the effect of n decreasing. As a result,

kew 104y 1
k, b JItn

predicts keyt to within 2% error even for 0.1 <7 < 1.

Figure 12 shows kcyt/ky in the range n < 1 for the cases when the Y particles are bosons
(red) and fermions (black). The solid lines for 77 < 1 show the predictions of eq. (5.11). The
discontinuity at 7 = 1 between the analytical predictions given by egs. (5.6) and (5.11) arises
because eq. (5.7) for dy.(k) was used to evaluate T'(k) for cases with n < 1. Unlike the dy,.
used in T'(k) for n > 1, eq. (5.7) neglects the contribution of the SM radiation density to the
Hubble rate.

Figure 13 shows T'(k) and the functional form exp[—(k/kcut)"] with kcye given by
eq. (5.11) and n by eq. (5.8), for the cases n = 0.001 (left panel) and n = 0.99 (right panel).
The bottom panels show the percentage error between 7'(k) and the functional forms.

(5.11)

6 The peak amplitude and observational prospects

Having determined the transfer functions and the cut-off scale, we can estimate how the
EMDE impacts the dark matter annihilation rate today. Following the same procedure as
ref. [34], we use the Press-Schechter formalism [45] to obtain the abundance of microhalos,
and then we calculate the annihilation rate per volume assuming that the microhalos have an
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Figure 14. The boost to the DM annihilation signal as a function of the duration of the EMDE,
quantified by kdom/krm. The solid lines show the boost if the transfer functions given by this work
are used, while the dashed lines show the boost if the transfer functions from ref. [34] are used. Using
our transfer functions increases the value of kqom/krm that produces a given value of By because our
transfer functions suppress perturbations on larger scales, so a longer EMDE is required to generate
the same enhancement to the matter power spectrum.

NFW profile with concentration ¢ = 2 at their formation time. The increase of the annihila-
tion rate due to microhalo formation is quantified by the boost factor B(z) = (p%)/{px)?—1.
The resulting boost factor initially increases with time as more halos form, but then it starts
to decrease as the earliest-forming microhalos are absorbed into larger halos and their Press-
Schechter abundance decreases. The first microhalos are very dense and are expected to
survive their absorption into larger halos [46-48], so we take the maximum value of B(z) to
be the boost factor today (By).

Figure 14 shows By as a function of kgom/kru for n = 12.69, which corresponds to a
hidden sector containing vector Y particles (¢ = 3) and Dirac fermion X particles (gx = 4)
that kinetically decoupled from the SM particles while the Y and X particles were relativistic.
The solid lines show By calculated using the transfer functions given by this work for three
Tru values, while the dashed lines show By for the same reheat temperatures calculated
using the exp[—k?/(2k2)] transfer function assumed in ref. [34]. As the duration of the
EMDE increases, earlier structure formation leads to higher boost factors. The growth of
density perturbations during the EMDE can even lead to halo formation prior to matter-
radiation equality. Following ref. [34], we only consider halos that form at redshifts less than
105, and this restriction is responsible for the plateau at By ~ 2 x 10'8. The boost increases
with increasing Try at fixed kqom/kru due to a longer period of logarithmic growth for dx
after the EMDE.

If the EMDE is long enough, microhalos form before reheating. These microhalos are
dominated by Y particles, so they dissipate when the Y particles decay [34]. The released
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dark matter particles have randomly oriented velocities with magnitudes boosted by nonlinear
structure formation. This gravitational heating imposes a free-streaming cut-off on the power
spectrum after reheating that reduces the boost factor to the standard ACDM prediction,
By ~ 10%. We implement gravitational heating following the “optimistic” approach from
ref. [34]: a free-streaming cut-off is applied to the matter power spectrum based on the
minimum virial velocity of the halos that contain 20% of the dark matter at the end of the
EMDE, and no free-streaming cut-off is imposed if less than 20% of the dark matter is bound
into halos during the EMDE. The sharp decrease in By due to gravitational heating can be
seen at kqom/kru =~ 100 in figure 14. The slight red tilt of the primordial power spectrum
causes the reduction of the boost due to gravitational heating to move to higher values of
kqom/kru for higher Try.

Figure 14 shows that By for kqom/kru < 80 is smaller for our transfer functions com-
pared to those from ref. [34]; our transfer functions suppress longer-wavelength perturbations,
which reduces the amplitude of the peak in the power spectrum and delays the formation
of bound structures. For kqom/kru = 80, the comparatively fewer microhalos predicted by
our transfer functions at reheating implies that the reduction of the boost due to gravita-
tional heating happens for larger kqom/kru (longer EMDEs) compared to when the transfer
functions from ref. [34] are used.

Figure 14 demonstrates that the annihilation boost does not strongly depend on TRy,
but it is highly sensitive the duration of the EMDE, which sets the peak amplitude of the
matter power spectrum for a fixed value of n. While the peak scale controls the size of the
first microhalos that form during or after an EMDE, the peak amplitude determines their
formation times because gravitational collapse occurs when ¢ ~ 1.68. The central density of
a halo forming at a; scales as af’. Consequently, structures form earlier and have denser
cores if the power spectrum has a higher peak [42], which yields larger annihilation boosts
up to the point that the peak becomes high enough that halos form during the EMDE.

If the Y particles initially dominate the universe, the amplitude of the peak in the matter
power spectrum depends only on the duration of EMDE: a longer EMDE implies a longer
period of linear perturbation growth, translating to a higher peak in the power spectrum.
If the Y particles are initially subdominant, then the peak amplitude also depends on how
long the universe remains radiation dominated after the Y particles become nonrelativistic.
Figure 15 demonstrates that agom/a, depends exclusively on 7: agom/a, remains the same
if m is varied while 7 is held fixed. We use the transfer functions derived in the previous
section to calculate dpx = dy (kpk) and evaluate observational prospects in terms of  and the
duration of the EMDE.

If the Y particle is initially subdominant (n > 1), the following fitting function describes
dy.c(k,arm) well for k > 10kgrs:

kd0m>2 In(1+ 0.22q) ,

c 1 ) = U. @ ’ 1
Sy, > 10k, o) = 05960 oo anla) (6.1)

kru
where ¢ = k/kgom and p(q) = [1 + 1.11¢ + (0.94¢)% + (0.63¢)* + (0.45¢)*]~"/%. The peak
amplitude is dy (kpk) = Jy.c(kpk)T (kpk), where T(k) = exp[—(k/keut)*7]. Equation (6.1)
shows that dy,.(kpk) is separable into (kdom/krm)?, which sets the duration of the EMDE,
times a function of kpx/kdom. The ratio kpk/kqom depends only on 1 and the Y particle
statistics, as shown by eq. (4.6). Furthermore, kyi/kcut also depends only on 7 and the
statistics of the Y particles, as illustrated by egs. (5.5) and (5.6). The peak scale is given by
eq. (4.9), and eq. (5.5) provides kcyt, for n > 50. For 1 < n < 50, the power-law fit of eq. (5.6)
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Figure 15. The effect of varying m and n on the evolution of SM and Y densities. The solid blue,
dashed yellow and dotted orange lines show pya* as a function of a/ ap, where a,, is the scale factor
at which the Y particles can be considered to have become nonrelativistic. The EMDE begins when
the respective lines cross the horizontal black line, which shows pra®. The blue and orange lines have
the same m = 1TeV but different 7; aqom/a, differs for these cases. In contrast, the solid blue and
dashed yellow lines have the same agom/a, even with different values of m since 7 is the same.

gives keut, and the peak scale is well-described by the fit

ky b TI )

where o = 1.82 and b = 2.70 for bosonic Y particles and o = 1.84 and b = 3.15 for fermionic Y’
particles. This prescription for calculating d,x matches the numerically determined maximum
of oy (k) to within 4%. As expected, dpx = 6y (kpk) depends on kgom/kru and 7.

Figure 16 shows dpk/dy (kru) at arp for a bosonic Y particle, where dy (kru, arn) ~
3.05® is the value of dy at the scale at which the power spectrum begins deviating from
the power spectrum in scenarios without an EMDE, and we have continued to neglect the
scale-dependence of ®(. Since dy (k) ~ dx (k), and dx (k) only logarithmically increases with
k for modes that enter the horizon during radiation domination, this ratio nearly equals the
maximum enhancement to the power spectrum. Figure 16 shows that dpx increases with
increasing Kqom/kRrHu, as expected. Figure 16 also shows that dy is rather sensitive to 7 for
1 < 10, but that sensitivity wanes as 7 increases. As can be seen in figure 4, dy (k) continues
to rise steeply with k for k 2 kqom and plateaus when k 2 10k4om. Therefore, oy sharply
depends on kp if kpkx S 10kqom but then becomes less sensitive to kpk as increasing 7 increases
kpk/kdom- The variation of the peak height with 1 thus becomes weaker, as indicated by the
contours in figure 16 becoming increasingly vertical as n increases.

If the Y particles dominate the universe before they become nonrelativistic (n < 1), the
expression for dy,. from eq. (5.7) implies that

2
— ky 2 Kop [ Kpk n]
6pk = 062¢0m (kR_H> (k_y exXp | — (a) 5

(6.2)

(6.3)

— 923 —



10g10[0pk /0 (krn)] at @ = agn

103 _

Gravitational |-

kdom/ kru

Figure 16. Contours of log;y[dpk/0(kru)|, the maximum enhancement to dy at the end of the
EMDE, as a function of  and k4om/kru for cases in which the universe is initially dominated by SM
radiation. This plot takes ¢.(7') = 100. The red dotted region shows cases in which microhalos are
erased at the end of the EMDE and gravitational heating suppresses structure formation after the
EMDE. The thick dashed contours mark the largest kqom/kru values that are compatible with IGRB
observations for three values of the DM annihilation cross-section and myx = 10% GeV, with the labels
showing the (ov) value considered. For instance, the white region to the left of the dashed contour
with logo[dpk/0(kru)] = 1.72 is allowed for (ov) > 10~2 GeV 2. The deep blue region is excluded if
(ov) > 10717 GeV 2. The yellow hatched region can be probed with pulsar timing arrays with 100
pulsars observed weekly for 25 years for cases with Try < 20 MeV.

where kpi/kru was split into (ky/kru)(kpk/ky). The expressions for kpk/ky and keyt/ky can
be taken from eqs. (4.13) and (5.11) respectively, while n is given by eq. (5.8). The peak
amplitude can be predicted to within 4% error for 7 < 1 using these expressions.

Equation (6.3) shows that d,y is proportional to (k,/kru)?; this ratio sets the duration
of the EMDE. Apart from k,/kgrnu, the other factors in eq. (6.3) depend only on 1 and the Y’
particle statistics. For n < 0.1, the n-dependence becomes negligible as the universe becomes
increasingly Y-dominated at the time of horizon entry of the peak scale. Figure 17 shows the
peak enhancement to dy at the end of the EMDE as a function of k, /kry and 7 for a bosonic
Y particle. The contours show that dpx increases with k,/krn as the EMDE becomes longer
and that the enhancement is independent of n for n < 0.1.

For very long EMDEs, By falls below 10® due to gravitational heating (as can be seen
in figure 14). All scenarios with higher power spectrum peaks will be similarly affected
by the destruction of bound structures during reheating. In figures 16 and 17, the red
dotted regions indicate points with dpk/8(kru) = 1044, which is the peak enhancement for

{n, kdom/kru} = {12.69,150}. These areas mark the parameter combinations for which
gravitational heating reduces the abundance of microhalos after the EMDE.

If dark matter is a thermal relic, then it is possible to constrain EMDE cosmologies
using limits on the dark matter annihilation rate. Reference [34] calculated an annihilation
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Figure 17. Contours of log,[0pk/d(kri)], the maximum enhancement to dy at the end of the EMDE,
as a function of n and k, /kry for cases in which the universe is initially dominated by the Y particles.
The red dotted region shows cases in which microhalos form during the EMDE and gravitational
heating suppresses structure formation after the EMDE. The thick dashed contours show the limits
of the parameter space compatible with IGRB observations for three values of the DM annihilation
cross-section and mx = 10° GeV, with the labels showing the (ov) value considered. The yellow
hatched region can be probed with pulsar timing arrays with 100 pulsars observed weekly for 25 years
for cases with Trpy < 20 MeV.

rate per mass in a given volume if the dark matter resides within a population of microhalos:

Tpyu 1 [ {ov)/m%k —47 2
—= =2 | 22X ) By x (8.098 x 10 x Qxh?, 6.4
Mx 2 < Gev—4 ox{ ) * (6.4)

where (ov) is the velocity-averaged DM annihilation cross-section and Mx is the total dark
matter mass in the volume. Since the annihilation rate in these scenarios is proportional to
the number density of microhalos and thus the dark matter density, the annihilation signal
produced is similar to that from decaying dark matter. Assuming that annihilation and decay
events both produce two primary particles, the annihilation rate can be related to an effective
DM lifetime by equating the rate of particle production from annihilation, 2M x (T'py/Mx),
to the particle production rate from decaying DM of mass 2mx and lifetime 7, given by
(2/7)[Mx/(2mx)]. This yields 7.7 = 2mx(I'pm/Mx), which should be compared to the
bounds on the lifetime of DM particles with mass 2mx.

Using Fermi-LAT observations of the Isotropic Gamma Ray Background (IGRB) [49],
ref. [50] established 7.¢ > 10%® seconds for a variety of decay channels and DM masses
ranging from 10 GeV to 10° GeV. By connecting By to peak height, we can estimate the
allowed regions of the EMDE parameter space based on this lower limit on 7eg. Using
Qxh? = 0.12 and myx = 10°GeV, the IGRB constraint on 7.g translates to By < 1010
for (ov) = 1072 GeV 2, which is close to the canonical WIMP DM cross-section of 2.2 x
10726 ecm? s71 [51]. From figure 14, we see that {1, kqom/kru} = {12.69, 7} corresponds to
By = 10'. The white unshaded region to the bottom left in figure 16 marks all points with
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dpk values that are smaller than dpx for {n, kqom/kru} = {12.69, 7}, marking the allowed
parameter space based on this constraint. The white unshaded region to the left in figure 17
marks the allowed area of the 7-k,/krn space for cases with n < 1 based on the same peak
height limits.

If the DM particle freezes out during or before the EMDE, then a smaller annihilation
cross section is required to generate the observed DM density [22, 52, 53]. Lowering the cross-
section increases the upper limit on By, expanding the allowed parameter space. Considering
(ov) = 10712 GeV~2, the light blue regions to the left of the thick dashed contour line with
logo[0pk/0(kru)] = 2.39 are allowed in addition to the white regions in figures 16 and 17.
With (ov) = 1071° GeV 2, the allowed region increases to include the medium blue regions
to the left of the contour lines with log,[0pk/0(kru)] = 2.73, with only the deep blue regions
excluded in both plots.

The annihilation contours in figures 16 and 17 are presented as estimates because they
assume that the relation between By and 4,k for a single value of 7 can be extended to other
1 values. Power spectra with the same peak heights have different peak scales for different
values of 7, but the fact that By is largely insensitive to Tryg indicates that By does not
depend strongly on kpy. Changing 1 also changes the shape of the power spectrum around
its peak. The impact of peak shape on By has not been extensively studied, but the values
for By computed in ref. [35] for a power spectrum with n < 1 and the By values for n = 12.69
in figure 14 differ by less than an order of magnitude for power spectra with the same dpy.
We conclude that the By — d,k relation for n = 12.69 provides a strong indication of which
dpk values can be ruled out by limits on the dark matter annihilation rate.

It is also possible to detect the microhalos that form after an EMDE through their
gravitational influence. Pulsar timing arrays (PTAs) are promising probes of EMDE cos-
mologies [54, 55]: PTAs are sensitive to both the Shapiro time delays as signals pass through
microhalos and the Doppler shifts that result when a microhalo pulls on a pulsar, with
the latter being most sensitive to sub-earth-mass microhalos [56]. With weekly observa-
tions and an RMS timing residual of 10 ns, ref. [55] showed that microhalos resulting from
EMDE-enhanced power spectra with Tryy < 20 MeV and keyt/kru > 20 can be detected at
20 significance if 100 pulsars are observed for 25 years or if 1000 pulsars are observed for
15 years.

Reference [55] used power spectra from initially ¥Y-dominated EMDEs [29] with a Gaus-
sian cut-off. A cut-off given by kcut/krg = 20 on their power spectra implies that §(k)
peaks at around 24kry with a value close to 27§(kry). Consequently, power spectra with
0(24kru) 2 276(kru) will produce microhalos that have similar detection prospects to those
produced by initially Y-dominated EMDE scenarios with keys/krm 2 20. Such cases are
marked by the yellow hatched regions in figures 16 and 17; we expect that these EMDE
scenarios with Trgy < 20MeV will generate signals that are detectable by the PTAs de-
scribed above.

Another possible method of observing the microhalos resulting from an EMDE comes
from how they impact the magnification of stars that pass behind the lensing caustics of
galaxy clusters [57-59]. As the star passes through the caustic, fluctuations in the dark
matter density generate variations in the star’s brightness, which can be used to detect
sub-earth-mass microhalos. Reference [42] identified the ranges of microhalo masses and
central densities that can be detected using this method by imposing lower bounds on the
magnitude of the observed brightness fluctuations and on the abundance of microhalos. They
demonstrated that microhalos that meet their detection criteria are generated by a power
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spectrum that rises as k? for kry < k < kpk and decreases sharply for k > ki, reaching a
peak enhancement of 10* times the ACDM power spectrum at kpx =~ 108'5k‘eq, where keq is the
horizon scale at matter-radiation equality. Employing our transfer functions, the parameters
Tru = 4MeV with n = 0.01 and k,/kru = 100 generate a power spectrum with a k* rise
before a peak at the scale kpx ~ 108'5kzeq. The peak enhancement is dpk/0(kru) = 126,
corresponding to a power spectrum peak enhancement factor of ~ 10%. Using Try = 4 MeV,
n = 8 and kgom/kru = 20 generates a power spectrum with a similar peak scale and peak
enhancement. Although the scaling is not strictly k% for krg < k < kpk in this case, the
power spectrum is logarithmic for only a narrow range of k£ near the peak, making this
power spectrum roughly similar to one that rises as k* before the peak. For similar peak
enhancements, power spectra with a k* rise before the peak and larger kpk values from cases
with Tryg up to a few hundred MeV also result in microhalos that can be detected using
caustic microlensing observations [42].

7 Summary and discussion

The linear growth of dark matter perturbations during an early matter-dominated era (EMDE)
leads to the formation of microhalos much earlier than in standard cosmologies [29, 30, 32].
These dense microhalos may be detected gravitationally by upcoming pulsar timing ar-
rays [42, 54, 55] and through their impact on stellar microlensing events in galaxy clus-
ters [42, 57-59]. They can also boost the dark matter annihilation rate by several orders of
magnitude [32, 34, 35]. Perturbation growth is suppressed for modes that enter the horizon
while the particle that dominates the universe during the EMDE has significant relativistic
pressure. The DM power spectrum manifests this suppression as a small-scale cut-off, which
strongly affects the DM annihilation signal [32, 35]. The small-scale cut-off also impacts
the prospects of detecting the structures formed in EMDE cosmologies via pulsar timing
arrays [42, 54, 55] and caustic microlensing [42]. It is therefore important to accurately cal-
culate this cut-off scale, so that EMDE scenarios with initially hot hidden sectors may be
tested against observational data. In this paper, we have investigated the small-scale cut-off
in the matter power spectrum that results from the relativistic initial state of the particle
responsible for the EMDE.

We employed a custom Boltzmann solver to calculate the evolution of perturbations in a
universe with an initially relativistic hidden sector particle (Y'). We found that the evolution
of subhorizon perturbations in the Y particle density (dy ) depends on the wavelength of the
perturbation mode compared to a time-varying Jeans length. This Jeans length is set by the
sound speed of the Y particles, and it increases while they are relativistic and then starts
decreasing after they transition to nonrelativistic behavior. As long as the Jeans length
is greater than a perturbation mode’s wavelength, dy oscillates, while it grows when the
Jeans length drops below the mode wavelength. Therefore, linear growth during the EMDE
starts later for smaller-scale modes. This suppression of growth due to relativistic pressure
generates a peak in the power spectrum of dy: for wavelengths smaller than the peak scale,
the power spectrum falls off in amplitude due to the delayed onset of growth during the
EMDE, whereas longer wavelength modes have less time to grow during the EMDE because
they enter the horizon later. This peak is inherited by the dark matter power spectrum as
dark matter particles fall into the gravitational wells created by the clustered Y particles
during the EMDE.
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To describe how the relativistic pressure of the Y particles affects the matter power
spectrum, we provided transfer functions that relate the matter perturbations of initially
cold and hot hidden sectors. These transfer functions generate the matter power spectrum
following an EMDE arising from an initially hot hidden sector without the cumbersome
calculation of the density evolution of the hidden sector particle as it transitions from rel-
ativistic to nonrelativistic behavior. The transfer functions take the form exp[—(k/kcut)"],
where n depends on pgy/py when the Y particles were relativistic (n) and kcyt is the cut-off
scale. We found that kcy/ky is a function of 7 and the Y particle statistics, where k, is the
wavenumber of the mode that enters the horizon when the hidden sector temperature equals
the Y particle mass m. The ratio k,/kru, where kry is defined as the horizon wavenumber
at the end of the EMDE, depends on 1 and is proportional to (m/Tgru)%®. We found that
eyt is smaller than k,, which was used as an estimate of the cut-off scale in ref. [34]. Our
result also disproves the claim in ref. [21] that the horizon scale at the start of the EMDE
sets the cut-off scale.

The cut-off scale determines the power spectrum peak height, which sets the formation
times and central densities of the first microhalos. The peak height ¢,k depends on the EMDE
duration and 1. Longer EMDESs translate to larger dpx since they involve longer periods of
linear perturbation growth. For n < 1, dpi o (k:y/k:RH)Q. For n > 1, épk o (kdom/kru)?,
where kqom is the horizon wavenumber at the start of the EMDE. If n < 0.1, the peak
height is independent of ) because the subdominant SM radiation density does not affect the
evolution of perturbations prior to the end of the EMDE. For n > 1, the peak height depends
on n because 1 determines how long it takes the Y particle to dominate the universe after it
becomes nonrelativistic. Relating the peak height to n and the EMDE duration enables the
discussion of observational prospects and constraints in the parameter space of hidden-sector
EMDE histories.

If the peak is high enough for microhalos to form during the EMDE, the evaporation of
these microhalos at reheating causes the ejection of DM particles at high speeds in random
directions. This gravitational heating leads to a free-streaming cut-off on the power spectrum
after the EMDE. The exact evolution of this free-streaming cut-off and its relation to the
abundance of microhalos that formed during the EMDE is unknown, with recent studies [60]
even suggesting that the remnants of evaporated halos may re-collapse into bound structures
around the epoch of matter-radiation equality. We identified the regions of parameter space
where 20% or more of the dark matter is gravitationally heated; the affected parameter
space has peak enhancement d,/8(kgn) = 10%%. This corresponds roughly to cases with
N 4 kgom/kru = 250 for 1 < n < 1000 and ky,/kru = 800 for n < 1.

Since the microhalos that form after an EMDE track the dark matter density, the an-
nihilation rate within microhalos can be compared to the rate of particle production from
decaying dark matter to define an effective DM lifetime. We used constraints on the dark
matter lifetime [50] based on the Fermi-LAT observations of the Isotropic Gamma Ray Back-
ground (IGRB) [49] to derive bounds on the dark matter annihilation boost By. By connect-
ing the bounds on By to the peak height, we identified the allowed regions of the parameter
space of hidden-sector EMDE histories. Assuming a DM mass of 10° GeV with an annihi-
lation cross-section close to the canonical value of 1072 GeV~2, the IGRB constraint allows
cases obeying n'/3kqom /kru < 25 for n > 1, or cases with ky/kru < 35 for n < 1. Smaller
cross-sections are required to match the currently observed DM relic abundance if the DM
freezes out during or before an EMDE; the allowed parameter space expands for these lower
cross-section values and for higher values of DM mass. Since kcyt < ky, our transfer functions
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yield less structure formation for the same EMDE duration compared to ref. [34]. For cases
not involving gravitational heating, we therefore obtain smaller annihilation boost factors
for the same EMDE duration. In addition, this reduced structure formation also delays the
onset of gravitational heating, which happens for longer EMDEs compared to ref. [34].

We also found that a large portion of the parameter space of hidden-sector EMDEs
can be probed with the pulsar timing arrays discussed in ref. [55]. For example, weekly
observations of 100 pulsars for 25 years would detect microhalos generated from EMDEs
with Try < 20MeV, 30 < ky/kra S 800, and 1 < 0.1, where the upper limit on k,/kru
comes from the uncertainty associated with the disruption to the post-EMDE power spectrum
due to gravitational heating. If n > 1, the same PTA observations would detect microhalos
resulting from EMDEs with 13 < n'/*kgom/kra < 250 and Ty < 20MeV. Furthermore,
EMDE power spectra for reheat temperatures less than O(100 MeV) with peaks that are
enhanced by a factor of 10% relative to the standard ACDM power spectrum lead to microhalos
that produce detectable brightness fluctuations when stars pass through the lensing caustics
of galaxy clusters [42].

Our calculation of the small-scale power spectrum cut-off that results from the relativis-
tic pressure yields a more accurate mapping between the properties of EMDE cosmologies
and the observable signals that can help detect or constrain them. Our work thus improves
our ability to probe the microscopic properties of hidden sectors and the expansion history

of the early universe.
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A The evolution of the homogeneous hidden sector background

The Y particles that dominate the energy density of the universe during the EMDE are
initially relativistic and transition to a pressureless state as the hidden sector temperature
decreases. This appendix presents calculations for the evolution of the equation of state,
pressure, and density of the Y particles.

A.1 Method

We use energy conservation and number density conservation to formulate a system of coupled
differential equations for quantities related to the hidden sector temperature T} and the
chemical potential of the Y particles, denoted by . We will assume here that the Y particle
has g degrees of freedom and write the energy density py, pressure Py, and number density
ny as thermodynamic integrals:

g [~ E(p) 2.
py (Ths, p) = ﬁ/o SE—1)/The £ 17 dp; (A.la)
2
g [*Dp 1 2.
PY(ThS7 N) - 67'('2 A E(p) e(E*/‘«)/Ths ¥ 1]7 dp; (Alb)
0 1
ny (Ths, 1) = = pidp, (A.lc)

T2 Jo (B—w)/Ths + 1
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where the +1 in the denominator denotes fermions (upper sign) or bosons (lower sign).
These integrals can be expressed in terms of dimensionless quantities: z = p/Tys, © = m/Ths,

= —pu/Ths, € = % =Y p;:m2 = /22 + 22 so that

gm4 o0 22

pY(:B> A) T o244 0 eletA) £ 1 dz; (A2a)
4 oo 4.1
_gm z%e .
Py (z,A) “on%d J, A L1 dz; (A.2Db)
3 00 2
_gm z
ny (z, A) =0m23 Jy @™ 11 dz. (A.2¢)
We also introduce the notation
© 22 f(z,2,A)
Conservation of energy density and number density imply
py +3H(1 +wy)py =0, (A.4a)
ny +3Hny =0, (A4b)

where wy (x,A) = Py(z,A)/py(xz,A) and overdots denote proper time derivatives. Note
that we have ignored the decay of the Y particles because an EMDE only occurs when the Y
particles transition to nonrelativistic behavior well before they decay. To transform eqs. (A.4)
into differential equations for x and A, we express py and ny in terms of & and A. For oY,

we have A ()
. gm . ee\c .
pYy = 727721.4 (le J [6(6+A) T1 A) N (A5)
where
4 . 6(6+A) A
And similarly,
3 (e+A)
o — I gl T A
ny =5 53 (le J L(H_A) < 1] A) , (A.7)
where
Ny =3y | A8
1__; []_:’U 6(6(6+A):l:1) : ( )
Substituting these definitions in egs. (A.4) and isolating & and A yields
. 3HNyRy —3H(1—|—’UJY)R()N2
_ A9
v RiN; — N1 Ry ’ (4.92)
. 3H(1 + ’UJy)R()Nl — 3HNyR;
A= . A.9b
R{Ny — N1Ry ( )

Equations (A.9) are solved to obtain the hidden sector temperature 7,5 and the chemical
potential p of the Y particles as a function of time. With Tjs and p obtained, the time
evolution of the Y particle density and pressure can be calculated using egs. (A.1a) and (A.1b)
respectively. Finally, the equation of state wy and the sound speed cgy can be computed;
wy = Py /py and %y, = 6Py /Spy = P} /p\, = wy — w),/(3(1 + wy)), where primes denote
d/dIna.
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A.2 Modeling the transition from relativistic to nonrelativistic behavior

The evolution of py can be modeled by a broken power law with a pivot point a,. Since
the Y particles become nonrelativistic long before their comoving density is altered by their
decays, an expression for a, can be obtained by conserving nya® through the transition from
relativistic to nonrelativistic behavior.
We use the ansatz ap/ a; = bl /m, where Tig; is the hidden sector temperature at
a;. Let us assume that the Y particles have become fully nonrelativistic at scale factor
anr- Conserving particle number implies ny (a;)ai = ny (an)ad,. Since the Y particles are
nonrelativistic at an,, we can write
py (any) = mny (an,) = mny(ai)%. (A.10)

nr

Using the broken-power-law model for py (a), we can also express

oy (ane) = pv (@) ()4 () (A1)

ap Qny

where we have used py (a) oc a™* for a; < a < a, and py (a) a3 for ap < a < any. At ay,
the Y particles are relativistic with a temperature T ;, therefore ny (a;) = gf'¢ (3)T§’S7i /2
and py (a;) = gwaTflls’i/?)O, where g is the degrees of freedom of the Y particles, f is 1 or 7/8
if the Y particles are bosons or fermions respectively, and f’ is 1 if the Y particles are bosons
and 3/4 if they are fermions. Equating the definitions of py (an,) from egs. (A.10) and (A.11)
and using the expressions for ny (a;) and py (a;) from above with a,/a; = bTs;/m, we obtain

_ S
EUSE)

Substituting the values of f and f’ yields b = 2.70 if the Y particles are bosons and b = 3.15
if they are fermions.

The evolution of wy and cgy can also be described by broken power laws. Both these
quantities are equal to 1/3 when the Y particles are relativistic and are proportional to a2
when the Y particles become nonrelativistic. This behavior is illustrated for a case with
m = 1TeV and Tis; = 200m by the blue solid curves in figure 18. We find that wy and cgy
are well-described by the functional form

(A.12)

f((l,ab,D):l

1 1-2D
: 1+<G>D1 : (A.13)

ap

where ayp is the bending scale factor where the function transitions from the early-time power
law to the late-time power law and D models the width of the transition.

Treating aj, and D as fit parameters, the numerical solutions for wy and c2y were fit to
the above function for a range of masses and values of T, ;/m for both boson and fermion Y’
particles. The best fit values are presented in table 1. The orange dashed lines in figure 18
show the functions of the form given by eq. (A.13) with the best fit values of a; and D given
in table 1. The bottom panels show the relative error between the numerical solution and
the best fit functions. The error stays within 1.5% for wy and 1.2% for %, and stays within
0.2% at late times for both quantities.
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Figure 18. Top: numerical solutions and fitting functions for wy (left) and c% (right) for a fermion
Y particle of m = 1 TeV and Tys(a;) = 200m. The fitting function curves use the best fit parameters
given in table 1. Bottom: the relative error between the numerical solution and the fit function, given
by 1 — Numerical /Fit.

Quantity wy 2y
(ap/ai)/(Thsi/m) | D | (ap/ai)/(Thsi/m) | D
Boson Y 3.05 0.57 3.91 0.55
Fermion Y 3.49 0.56 4.48 0.54

Table 1. Best fit parameters for equation of state wy and sound speed CEY for the functional form
given by eq. (A.13).

We also used the fitting function for wy with the best fit parameters and integrated
eq. (A.4a) to obtain py to compare it with the numerical solution of py. The relative error
between the numerical and integrated py peaks at 0.5% and stays constant at 0.2% at late
times. Our fitting forms for wy can be used to obtain the time evolution of py to within
this error.

In the derivation of the peak wavenumber in section 4, we also use a piecewise model for
cgy, in which C?Y is approximated as a sharply broken power law with a pivot point, so that

, a < Qpe, (A14)

7, @ > Qpe,

with ap. = 1.43a, for bosonic Y particles and ap. = 1.41a, for fermionic Y particles, where
a, is the pivot scale factor for the evolution of py (a).
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B Relating the start of the EMDE to model parameters

In a universe that is initially dominated by relativistic SM particles, the EMDE starts when
the energy density of the Y particles exceeds the energy density of the SM particles at a scale
factor agom, when the SM temperature is Tyom. Here, we derive a few important expressions
for quantities related to the start of the EMDE in terms of the parameters of our model: m
(the Y particle mass), n (the ratio of the initial energy densities of SM radiation and the ¥
particles), the reheat temperature Ty defined in eq. (2.3), and b, which is 2.70 and 3.15 if
the Y particles are bosons and fermions, respectively. In the following, g denotes the degrees
of freedom of the Y particles, and f is 1 or 7/8 for boson or fermion Y particles, respectively.

We first evaluate agom/ap, where a, is the pivot scale factor for the broken power law
followed by py(a). Since entropy is conserved for the SM radiation before the Y particle
decays become significant, we have g.(T)a>T? = constant, where we assume g,(T) = g.s(7T).
As a result, pr o g.(T(a))~Y3a=%. Then,

1/3
PR(ap) — gdémaéom (Bl)
Pdom gzl,/ga%
where gdom — g*(Tdom)a 9p = g*(T(ap)) and Pdom — pR(adom) = PY(adom) =
(72/30) g*(Tdom)Télom. Furthermore, since py o a3 from ap to agom, we can write
py(ap) _ a?lom. (B2)
Pdom ag
Using egs. (B.1) and (B.2), we have
1
PR(ap) _ 9dom ® Adom (B 3)
py (ap) 9p ap

Similarly, we can express pr(a,) = pr(ai)[gi/gp)"[ai/ay)?, where g; = g.(T;). Since py
a~* from a; to ay, py(ay) = py(a;i)]ai/ap)* = n~pr(a;)[ai/ayt. Combining the previous two

expressions yields
1
\ 3
pR<CLp) =1 <gl> . (B4)
9p

Equating eqgs. (B.3) and (B.4) gives us

Adom :< 9i >én' (B.5)

Qp 9dom

The above relation can be used to express Tyom in terms of our model parameters. We can
use py X a~* from a; to ap and py o a3 from ap to agom to write

Py (@dom) = py (ai) (ai>4 < % >3. (B.6)

Qp Gdom

According to our model for the evolution of py(a), ap/a; = bTisi/m and py(a;) =
(72/30)g fTﬁlSd' In addition, we use the expression for aqom/a, from eq. (B.5) and equate

py (@dom) t0 (72/30)gx(Taom) 1, to obtain
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w""
Mw

(B.7)

()t

Pdom = gfl (gdom>_3 (7:)477 (B.8)

Next, we derive an expression for kqom/kru = (aH )q,.,./(aral’). We divide eq. (B.5)
by eq. (2 5) to get adom/arm, substitute I' from eq. (2.3) and use pgom from eq. (B.8) in

H(agom) = v/2(87G/3) pdom to obtain

1 1 2
Fidom _ \/5< af ) ( g-(T3) ) <(m/b)>3 -
kru 9«(Tru) 9+(Taom) Tru
We also find it useful to derive an expression for k/kqom = (aH)q, /(aH )q,,,, for a mode k
that enters the horizon at a, during the period of radiation domination before the EMDE.

Since the energy densities of the Y particles and the radiation are equal at aqom, we have
H?(agom) = 2 x (87G/3)pr(agom). It follows that

o) () (e m0)

1 1
g(?odeOm = (gf) 4 < >
9dom

which gives

N|=

(B.9)

where g = ¢+(T'(ax)), and

1
k 1 (gd0m> 6 adom
= — . B.11
kdom \/§ 9k Qg ( )
Using eq. (B.11) with eq. (B.5) yields
kp g \° 7
= L B.12
kdom (gpgdom> \/5 ( )

for a universe with n > 1.

Finally, we obtain an expression for ky/kqom = ayH (ay)/(adomH (adom)) Where a, is
the scale factor at which Ty = m. For this derivation, we relax the assumption of radiation
domination before the EMDE because py contributes significantly to H(a,) for n < 10.
Since the Y particles are relativistic at a, and Tj o< a~! for a; < a < Gy, We can express
ay = aiThsi/m = ap/b. Using eq. (B.5), this yields

1
Gdom _ ( Ji )3 bn. (B.13)

Ay Jdom

Next, we can express H2(a,) = 87G|py (ay) + pr(ay)]/3 = 87Gpr(ay)[l +n71]/3. Using the
scaling pp(a) o< g(T(a))~"/3a=* with the definition of pgem from eq. (B.8) in H?(agom) =
167G pdom/3, and the expression for agom/ay from eq. (B.13), we obtain

1
ky :< g? >6b?7\/1+77‘1

B.14
kdom GyJdom \/E ( )

— 34 -



C Perturbation equations
We work in the Newtonian gauge:
ds? = —(1 4 2)dt? + a®(t)(1 + 2¢) (da® + dy® + d=?). (C.1)

Ignoring anisotropic stress, we have 1) = —¢. In the absence of decays, the general equations
for the density contrast § = (p — p)/p and velocity dispersion 6 = a0d;dv*/dt of a fluid for a
Fourier mode k are [61]:

5’—1—(1+w)%+3(c§—w)5+3(1+w)¢’:0,

w' gfk?ii 2£:
1+w 1+waH aH

(C.2)
0 + (1 —3w)f +

0,

where primes denote d/dIna, w = P/p is the ratio of the pressure and density of the fluid,
and the sound speed is ¢2 = §P/6p = P'/p' = w — w'/3(1 + w).

The effects of Y particles decaying into SM radiation are incorporated into the pertur-
bation equations as in ref. [32], which assumed a nonrelativistic Y particle. Their treatment
can be used because wy is negligible in the epoch when the decay of the Y particles is signif-
icant, i.e. Twy /H ~ 0 at all times. The O(T'wy /H) corrections to these equations are given
in ref. [28]. The full coupled system of equations for the three fluids and gravity is

0x
! o /.,
Oy = oI 3¢ ; (C.3a)
r_ _ 1.2 (Z) .
o = —bx — K (C.3Db)
S =—(1+w )H—Y—S(CQ —wy)dy —3(1+w )¢’+£¢- (C.3¢)
Y- Yl sy YIOY Y " ‘
/ 2
= (1 oWy 2 Gy Oy 2@
Oy = —(1 = 3uy)fy 1+wy0Y k 1+ wy aH aH’ (C.3d)
b A0r g v D 4y
O = —5 o — 40/ + pRH(5y Sp—¢); (C.3¢)
5 ¢ T /30
12 OR 42 @ Py L (OUY .
On=Fqam " am T pRH< 4 9R> ’ (C.36)
k2 4rG
/—_ . .
¢ = <1+ 3H2a2> O+ 57 (> ini).- (C.3g)

To determine the initial conditions of the system given by egs. (C.3), we first set
d(a = a;) = ®g. We assume adiabatic perturbations and equate the primordial curvature
perturbation for all three species:

9j

P
G [In p;]”

(C.4)

where j indicates each fluid. For superhorizon modes ¢ = 3®y/2 in a universe dominated
by radiation or relativistic Y particles. Setting (; = ( for each species, we have the initial
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conditions,

1)

(}%Z =2; (C.5a)
ox 3

1) 1

o = 3o l=a (C.5¢)

where a; is the scale factor at which our calculations begin, chosen such that Tjs(a;) = 300m.
The initial conditions for the velocity dispersions are [61]
k2®

Or=0x =0y = . (C.6)

For a universe that is initially dominated by nonrelativistic Y particles, the initial
conditions are similar to those in matter domination. For superhorizon modes, the primordial
curvature perturbation is related to the metric perturbation as (y = 5®,,, /3. The primordial
curvature perturbations for all species, given by eq. (C.4), are set equal to each other, yielding

ox .

=2 (C.7h)
oy

e 2. (C.7c)

The initial conditions for 6; are given by eq. (C.6) with ®,, replacing ®.

D EMDE power spectrum application

The EMDE modifies the matter power spectrum for modes that enter the horizon during
or before the EMDE (k > kry). For an EMDE that results from cold Y particles domi-
nating the universe after inflation, this modification to the power spectrum was described
by ref. [29]. For k < 0.05kgp, the power spectrum remains the same. For k > 0.05kgy,
d(k) — R(k)o(k), where

A (k=) {(%ﬁ W]

R(k) = -
9.111n [(43) n 0.594@’“]

(D.1)

In this equation, a;, is the scale factor of horizon entry for mode k£ and aeq and keq are the
scale factor and horizon wavenumber at matter-radiation equality, respectively. The values
of fi and f2 are determined by the baryon fraction fi, = ppar/(Pb + Pmatter):

fi = 1—0.568f, + 0.094f2;
fo = 1—1.156f, +0.149f2 — 0.074f2.
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Furthermore,

49357 1/4.235
teq _ V2K [ (’“) , (D.2)
ag kcq kru
and the fitting functions for A and B are:
0.609
A(x) = D.
(x) = exp {{1 +2.15(Inz — 1.52)2}1-38] (D-3)

X {9.11 S(5.02 — z) + gm’Q S(x — 5.02)] ;
In B(z) = In(0.594) §(5.02 — z) + In <;> S(z —5.02),

where

S(y) = % [tanh <g> + 1} (D.4)

models a step function.

If an epoch of SM radiation domination precedes the EMDE, modes with & > kqom
grow logarithmically with scale factor after entering the horizon and before the EMDE. This
modifies 6(k > kqom). From our fitting function for dy.(k > 10kru) given by eq. (5.7), we
find that this modification is modeled by the scale-dependent factor

In(1 + 0.22q)

032, [1+1.11¢ + (0.94¢) + (0.63¢)® + (0.45¢)*] /4, (D.5)

Rrp(q) =
where ¢ = k/kgom and Rrp = 1 for 7 < 1. Finally, the small-scale cut-off can be imposed on
d(k) using our transfer functions T'(k) = exp|—(k/keut)"] from section 5. In summary, the
combined effect of the EMDE, an epoch of radiation domination before the EMDE, and the
small-scale cut-off due to the relativistic pressure of the Y particles modifies §(k) by a factor

Rean (k) = R(k) Rrp (K)T (k). (D.6)

The above expression for Rpyp(k) is valid at all times after the EMDE ends. We provide
an online application for the easy computation and visualization of Rgyp.' The calculations
of the peak and cut-off scales in the application neglect the variation of g., the number of
relativistic degrees of freedom in the SM radiation, before the EMDE. The parameters Try,
n and kqom/kru or ky/kru can be varied by the user, and the output is downloadable as
a table.

"https://hganjoo-emde-emde-rk-s7ww2v.streamlitapp.com/.
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