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Abstract. If dark matter resides in a hidden sector minimally coupled to the Standard Model,
another particle within the hidden sector might dominate the energy density of the early
universe temporarily, causing an early matter-dominated era (EMDE). During an EMDE,
matter perturbations grow more rapidly than they would in a period of radiation domination,
which leads to the formation of microhalos much earlier than they would form in standard
cosmological scenarios. These microhalos boost the dark matter annihilation signal, but
this boost is highly sensitive to the small-scale cut-off in the matter power spectrum. If
the dark matter is sufficiently cold, this cut-off is set by the relativistic pressure of the
particle that dominates the hidden sector. We determine the evolution of dark matter density
perturbations in this scenario, obtaining the power spectrum at the end of the EMDE. We
analyze the suppression of perturbations due to the relativistic pressure of the dominant
hidden sector particle and express the cut-off scale and peak scale for which the matter
power spectrum is maximized in terms of the properties of this particle. We also supply
transfer functions to relate the matter power spectrum with a small-scale cut-off resulting
from the pressure of the dominant hidden sector particle to the matter power spectrum that
results from a cold hidden sector. These transfer functions facilitate the quick computation
of accurate matter power spectra in EMDE scenarios with initially hot hidden sectors and
allow us to identify which models significantly enhance the microhalo abundance.

Keywords: cosmology of theories beyond the SM, dark matter theory, physics of the early
universe, power spectrum
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1 Introduction

Recent null results for WIMP dark matter in direct detection experiments [1–3] and collider
searches [4–13] have prompted interest in theories in which dark matter lives in a hidden
sector only weakly coupled to the Standard Model [14–19]. In several hidden sector theories,
long-lived massive particles dominate the energy content of the universe prior to Big Bang
Nucleosynthesis (BBN), leading to an early matter-dominated era (EMDE) [20–28]. An
EMDE enhances small-scale density perturbations in dark matter because subhorizon dark
matter perturbations grow linearly with scale factor during matter domination, as opposed
to the logarithmic growth that occurs during radiation domination [29–32]. This growth can
lead to the formation of dense sub-Earth-mass microhalos long before structures are expected
to form in scenarios without an EMDE [29, 30, 32].

Although these microhalos do not affect the large-scale structure of the universe, they
boost dark matter (DM) annihilation rates, potentially producing detectable gamma-ray
signals [32–35]. The DM annihilation signal is highly sensitive to the small-scale cut-off in
the matter power spectrum because the cut-off scale sets the formation times and central
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densities of the microhalos that form due to an EMDE [32, 35, 36]. For instance, changing
the cut-off scale by a factor of two causes the DM annihilation boost to increase by two
orders of magnitude [35]. Therefore, an accurate calculation of this small-scale cut-off is
key to observationally constraining scenarios with an EMDE. In this work, we determine
the small-scale cut-off scale that results from the relativistic pressure of the particle that
dominates the hidden sector.

If the particle that dominates the energy density of the universe during the EMDE is
initially relativistic, the growth of density perturbations is inhibited for modes that enter the
horizon while the particle has significant pressure. We obtain exact solutions of the evolution
of perturbations during an EMDE caused by a massive particle (which we call Y ) in the
hidden sector. We include the process by which this particle transitions from relativistic
to nonrelativistic behavior before dominating the energy content of the universe. While
perturbation equations for a relativistic hidden sector particle have been solved previously
for a single set of parameters [21], we provide analytical expressions for the power spectrum
peak and cut-off scales in terms of the statistics of the Y particles and the initial ratio of
densities of Y and Standard Model (SM) particles. It is also possible that the Y particle
experiences cannibalistic number-changing interactions that alter the evolution of its pressure;
the resulting cut-off to the matter power spectrum was computed in refs. [26, 28]. Our analysis
of how the Y particle generates a cut-off in the matter power spectrum in the absence of such
interactions completes our understanding of how the pressure of the particle that dominates
the energy density during the EMDE inhibits the growth of dark matter perturbations during
the EMDE.

We provide fitting forms for transfer functions between the cases with a hot and cold
hidden sector. These transfer functions facilitate the easy computation of the power spectrum
cut-off caused by the pressure suppression of density perturbations. We also consider how
our transfer functions change the boost factor calculations presented in ref. [34] (hereafter
B19), in which the cut-off in the power spectrum was taken to be a Gaussian function of
wavenumber with the cut-off scale set as the horizon scale when the mass of the dominant
hidden sector particle is equal to the hidden sector temperature. Finally, we use our transfer
functions to determine which EMDE scenarios generate observable enhancements to the
microhalo population.

This paper is organized as follows. In section 2, we study the evolution of the different
components of the universe in our model, including the density, sound speed and equation
of state of the Y particles as they transition from being relativistic to nonrelativistic. In
section 3, the evolution of the density perturbations in the Y particles and dark matter
before, during, and after the EMDE is determined, and the suppression of perturbation
growth due to the pressure of the Y particles is analyzed. In section 4, we present expressions
for the wavenumber of the peak scale, for which the matter power spectrum is maximized.
In section 5, we provide fitting forms for transfer functions for the computation of the matter
power spectrum in scenarios with an initially relativistic particle dominating the hidden
sector. Section 6 presents calculations of the dark matter annihilation boost and the power
spectrum peak height using our transfer functions; we also discuss prospects for detecting the
microhalos generated in EMDE cosmologies. Our results are summarized in section 7. The
full calculation of the density, pressure, and sound speed of the Y particles is presented in
appendix A. Appendix B contains the derivations of several relations between the parameters
that describe the EMDE and the properties of the Y particle. The equations that govern the
evolution of perturbations and their initial conditions are detailed in appendix C. Finally,
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we provide an online application for computing EMDE-enhanced power spectra with the
accurate small-scale cut-off that is described in appendix D. This paper uses natural units
throughout, in which c = ~ = kB = 1.

2 Evolution of the homogeneous background

Our model considers a universe with three components: dark matter X; the thermal bath
of relativistic SM particles, which we call radiation (denoted by the subscript R); and a
particle Y with mass m that decays into SM particles. X and Y live in a hidden sector that
is thermally decoupled from the Standard Model and has its own temperature Ths. The Y
particles are initially relativistic but transition to nonrelativistic behavior as the temperature
of the hidden sector decreases. We assume that the X particles have frozen out before our
calculations begin and are nonrelativistic with mX � Ths and ρX(a) ∝ a−3.

We first establish the evolution of the homogeneous energy densities of the various
components of our model. We begin our calculations at scale factor ai, which is chosen such
that Ths,i ≡ Ths(ai) = 300m, so that the Y particles are initially relativistic. The initial SM
density is set by the parameter η ≡ ρR(ai)/ρY (ai). The Y particles are weakly coupled to
the SM particles with a decay rate Γ. Such couplings of the hidden sector to the Standard
Model can arise via various renormalizable interactions, including the lepton portal [14, 37],
the Higgs portal [14, 38, 39], and the vector portal [14, 40]. To obtain the evolution of the
energy densities of these three components, the coupled equations for ρX , ρY and ρR are
solved numerically:

ρ̇Y + 3H(1 + wY )ρY = −ΓmnY ; (2.1a)

ρ̇R + 4HρR = ΓmnY ; (2.1b)

ρ̇X + 3HρX = 0, (2.1c)

where overdots denote d/dt and H ≡ ȧ/a. In eq. (2.1a), nY is the number density of
Y particles, and wY is their time-varying equation of state parameter, defined as the ratio
between pressure and density, wY ≡ PY /ρY . The time evolution of wY encodes the transition
from relativistic to nonrelativistic behavior for the Y particles, which we solve for exactly;
the process is detailed in appendix A. The terms on the r.h.s. of eqs. (2.1a) and (2.1b) depend
on mnY instead of ρY because the longer lab-frame lifetimes of faster particles compensate
for the higher energies released by their decays [28]. We assume that X and Y particles are
coupled only gravitationally, with no momentum exchange between the two species. However,
the effects of additional couplings are discussed in section 4.1.

Figure 1 shows the solutions to eqs. (2.1) for a chosen set of parameters. The transition
from ρY (a) ∝ a−4 to ρY ∝ a−3 can be modeled by a broken power law with a pivot scale factor
given by ap/ai = bThs,i/m where b depends only on the statistics of the Y particles. We find
that b is 2.70 for bosons and 3.15 for fermions; these values of b are derived in appendix A.
It follows from eq. (2.1b) that ρR ∝ g∗(T )T 4 ∝ a−4 when ΓmnY � HρR, where g∗(T ) is the
relativistic degrees of freedom contributing to the energy density of relativistic SM particles.
However, all our analytical results assume that entropy is conserved in the visible sector
when ΓmnY � HρR, so that g∗S(T )a3T 3 is constant, where g∗S is the relativistic degrees
of freedom contributing to the entropy density of the SM bath. When ΓmnY exceeds HρR,
ρR ∝ a−3/2 due to the entropy injection from the decay of the Y particles into the visible
sector. After the Y particles decay away, ρR ∝ a−4 again.
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In our broken-power-law model, ρY (ap)a4
p = ρY (ai)a

4
i . Since the Y particles are rela-

tivistic at ai, ρY (ai) = fg(π2/30)T 4
hs,i; it follows from the definition of aRH that

aRH

ap
=

[

fg

g∗(TRH)

]
1
3
[

(m/b)

TRH

]

4
3

. (2.5)

To relate aRH to the scale factor today (a0), we note that there is negligible transfer of entropy
from the decay of the Y particles to the SM radiation for a > 5aRH. We find numerically
that T (5aRH) = 0.204TRH and use entropy conservation from 5aRH to a0 to express

aRH

a0
=

1

1.02

[

g∗S(T0)

g∗S(0.204TRH)

]

1
3
[

T0

TRH

]

, (2.6)

where T0 is the temperature of radiation in the Universe today.

3 Evolution of perturbations

The Einstein equations are perturbed to obtain the equations for the evolution of the density
contrast δ ≡ (ρ− ρ̄)/ρ̄ (where ρ̄ denotes homogeneous background density) and the velocity
dispersion θ ≡ a∂iv

i for each fluid, where vi = dxi/dt. We work in the Newtonian gauge, in
which the metric is given by

ds2 = −(1 + 2ψ)dt2 + a2(t)(1 + 2φ)(dx2 + dy2 + dz2). (3.1)

We neglect anisotropic stress and set ψ = −φ. The perturbation equations and initial
conditions are provided in appendix C.

Figure 2 shows the time evolution of |δi|/Φ0, where Φ0 is the primordial metric pertur-
bation in a radiation-dominated universe and i denotes the three fluids in our model. Also
shown is the evolution of the Y density perturbation if the Y particles were pressureless (δY,c).
The left panel shows a mode that enters the horizon after the Y particles have become non-
relativistic, with Ths/m = 0.00018 at horizon entry. In the absence of pressure, subhorizon
density perturbations in Y grow logarithmically with scale factor during radiation domina-
tion and linearly during the EMDE. After the EMDE, radiation domination resumes and δX

and δY start growing logarithmically. For this mode, δY coincides with δY,c because the Y
particles are already pressureless when the mode enters the horizon. In contrast, the right
panel of figure 2 shows a mode that enters the horizon when the Y particles have significant
pressure, with wY = 0.14 and Ths/m = 0.21 at horizon entry. For this mode, the growth of
δY is suppressed compared to that of δY,c until the Y particles become pressureless. As a
result, δY starts linear growth later than δY,c and δY < δY,c at the end of the EMDE.

The right panel of figure 2 also shows how the evolution of δX is affected by the pressure
of the Y particles. When the mode enters the horizon during radiation domination, δX starts
to grow logarithmically with the scale factor. The pressure of the Y particles delays the onset
of linear growth during the EMDE because the Y particles are not as clustered as they would
have been if δY had also grown logarithmically prior to the EMDE. Instead of growing linearly
with scale factor throughout the EMDE, δX converges to δY because the X particles fall into
the gravitational wells generated by the Y particles. Due to this convergence, we will focus
hereafter on analyzing the behavior of δY .

To quantify which scales undergo growth suppression, we consider the continuity and
Euler equations for the evolution of density and velocity perturbations in the Y particles
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If the Y particles are initially relativistic, the growth of perturbations is suppressed
for scales close to or smaller than the maximum value of the Jeans length (shown by the
wavenumber kJ,min = λ−1

J,max in figure 4). For these modes, δY does not begin to grow until
the Jeans length becomes smaller than the mode’s wavelength. As a result, δY at aRH is
increasingly suppressed compared to δY,c as k increases, as the blue curve in figure 4 shows.
The suppression leads to a peak in δY (k) at the wavenumber kpk. For k > kpk, modes start
growing not only later, but also at different points in the oscillation cycles of their amplitudes.
This leads to an oscillation pattern in δY (k) with a decaying envelope.

B19 modeled the suppression of modes that enter the horizon when the Y particle is
relativistic by multiplying δY,c(k) by exp[−k2/(2k2

y)], where ky is the wavenumber of the mode
that enters the horizon when m = Ths. In appendix B, we derive expressions for ky/kdom for
a universe with η > 1. Using the expression for ky/kdom from eq. (B.14) with eq. (3.7) yields

ky

kRH
= b

[

gf

g∗(TRH)

]
1
6

[

g3
∗(Ti)

g∗yg2
∗(Tdom)

]
1
6
[

(m/b)

TRH

]

2
3

(1 + η)
1
2 , (3.8)

where g∗y = g∗(T (ay)), with ay/ai = Ths,i/m. The cut-off used by B19 does not describe
δY (k) accurately: figure 4 shows that δY falls off at smaller wavenumbers than ky. In section 4,
we derive the model dependence of the actual peak and cut-off scales of δY (k).

4 The peak scale

In order to determine the observational signatures of an EMDE, it is necessary to evaluate
the location and amplitude of the peak in the matter power spectrum, since this peak sets the
masses, formation times, and central densities of the first microhalos [41, 42]. In this section,
we provide expressions for the peak wavenumber kpk for which δY (k)/Φ0 is maximized.

Due to the gravitational coupling between X and Y particles during the EMDE, the
peak wavenumber of δX(k) is generally very close to that of δY (k). However, the peaks
are not exactly equal in all cases. The relative closeness of the peaks of δY (k, aRH) and
δX(k, aRH) depends on the duration of the EMDE, quantified by kdom/kRH. Figure 5 shows
δX(k, aRH) and δY (k, aRH) for three different EMDE durations. The leftmost panel shows a
short EMDE with kdom/kRH = 4.8, in which case the peak wavenumbers of δY and δX differ
by 10% at the end of the EMDE. This difference arises because the EMDE is too short for δX

and δY to become equal for modes close to the peak wavenumbers. For scales smaller than
the second peak in the left panel of figure 5, δY oscillates throughout the EMDE because the
Jeans length does not fall below the comoving wavelengths of these modes before aRH. As a
result, the Y particles do not cluster and never exert a coherent gravitational pull on the X
particles. The X particles drift during the EMDE and δX does not approach δY . For longer
EMDEs, the peaks of δX and δY are nearly identical. The middle panel of figure 5 shows the
case with kdom/kRH = 17.7, for which the peak wavenumbers of δX and δY differ by 1.3%.
For kdom/kRH = 32.6, this discrepancy between the peak scales falls to 0.4%. Therefore, the
peak in δY generally matches the corresponding peak in the matter power spectrum after
the EMDE.

4.1 The effect of kinetic coupling in the hidden sector

Thus far, we have assumed that the Y particles and the dark matter X are coupled only
gravitationally. In this section, we explore how scatterings between X and Y particles affect
the peak amplitude and scale of δX and δY .
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the Y particles have slightly different pressure for the same value of a/ap if their statistics
are different, which leads to the pivot points for their sound speed being at slightly different
values of a/ap. Since the peak scale enters the horizon when a & 1.4ap, we can use c2

sY (a) =
0.33a2

pc/a
2 in eq. (4.2), which then describes a simple harmonic oscillator in ln a with the

k-dependent frequency ωk = βapkg
1/6
a /(a2

iHig
1/6
i ), where ga = g∗(T (a)), gi = g∗(T (ai)) and

β = 0.82 for bosons and β = 0.80 for fermions. The factor of g1/6
a introduces a slight time-

dependence into ωk; we neglect this variation and set ga = gk ≡ g∗(T (ak)) when solving
eq. (4.3). The solution is

δY (k, a) = A1 sin

[

ωk ln

(

A2
a

ak

)]

. (4.3)

Since ωk encodes the effect of the relativistic pressure of the Y particles, the expression
for δY for small ωk should match the evolution of cold dark matter in radiation domina-
tion [44]: δX(a) = AΦ0 ln(Ba/ak) with A = 9.11 and B = 0.594. The coefficients A1 and
A2 are determined by evaluating eq. (4.3) when ωk � 1 and matching it to this function.
Prior to the EMDE, ln(a/ak) . 10 for modes near the peak scale, and the argument within
the sine in eq. (4.3) is small compared to unity if ωk � 1. Using the approximation that
sin x ' x for x � 1, it follows that A1 = AΦ0/ωk and A2 = B.

The peak wavenumber kpk can be found by maximizing the amplitude δY (k, adom).
Using the expressions for A1 and A2, we have

δY (k, adom) =
AΦ0

ωk
sin

[

ωk ln

(

B
adom

ak

)]

=
AΦ0

ωk
sin

[

ωk ln

(√
2B

[

gk

gdom

]
1
6 k

kdom

)]

, (4.4)

where the second equality results from using the expression for ak/adom in radiation domina-
tion from eq. (B.11). Neglecting the weak k-dependence of (gk/gdom)1/6 and Φ0 while setting
the derivative of eq. (4.4) with respect to k equal to zero implies

tan

[

ωpk ln

(√
2Bkpk

kdom

[

gpk

gdom

]
1
6

)]

= ωpk

[

1 + ln

(√
2Bkpk

kdom

[

gpk

gdom

]
1
6

)]

. (4.5)

Since kpk is an extremum of δY (k), the tangent function on the l.h.s. is well-described
by a Taylor expansion to second order around kpk. Using this expansion and solving the
resulting equation for kpk yields

√
2B

kpk

kdom

[

gpk

gdom

]
1
6

=

[

1.5

r
W

(

2r

3

)]− 3
2

, (4.6)

where W is the Lambert W-function and

r =





√
6B

β

ai

ap

aiHi

kdom

(

gi

gpk

)
1
6





2
3

. (4.7)

We express aiHi/kdom = (adom/(
√

2ai))(gdom/gi)
1/6 (using eq. (B.11)) and use the defini-

tion of adom/ap from eq. (B.5) to simplify the dependence of r on the model parameters.
Substituting B = 0.594, we have

r =





0.95

β

(

g2
i

gpkgdom

)
1
6

η





2
3

. (4.8)
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Finally, we use the expression for ky/kdom from eq. (B.14) to eliminate kdom from eq. (4.6)
and obtain

g
1
3

pk

kpk

ky
= (gygdom)

1
6

1.03

βb

√

η

1 + η
W−3/2



0.77

(

g2
i

gpkgdom

)
1
9

η2/3



 . (4.9)

In the above expression, gpk = g∗(T (apk)) and gdom = g∗(Tdom). The r.h.s. of this expression
includes an additional factor of 1.08 that brings the kpk values into better agreement with
those obtained from the numerical solutions of the perturbation equations.

To establish the relation between the peak scale and our model parameters, the peak
scale can be rewritten in physical units. Using eqs. (2.3) and (2.6), and substituting T0 =
2.726 K and g∗S(T0) = 3.91 , kRH ≡ aRHΓ can be expressed as

kRH

a0
= 7.68

[

g
1/2
∗ (TRH)

g
1/3
∗S (0.204TRH)

]

[

TRH

1MeV

]

× 103 Mpc−1. (4.10)

Using the definition of ky/kRH from eq. (3.8), the peak wavenumber is

kpk

a0
=

0.9

β

[

fg

b4

]
1
6
[

g∗(TRH)

g∗S(0.2TRH)

]

1
3
[

TRH

1MeV

]
1
3
[

m

1GeV

]
2
3 η

1
2

W
3
2 (0.77η

2
3 )

× 106 Mpc−1, (4.11)

where we have ignored the variation of g∗ before the EMDE for simplicity. In eq. (4.11),
kpk/a0 depends on TRH because the reheat temperature determines when the EMDE ends
and thus affects the expansion history of the Universe after the peak scale enters the horizon.

The points in figure 7 show kpk/ky for different η values as determined from the numeri-
cal solutions for the evolution of δY , while the solid lines for η > 1 show kpk/ky from eq. (4.9)
with g∗(T ) = 100. The analytical expression explains the variation of kpk/ky with η and
predicts the peak scale of δY (k, aRH) to within 3% of the numerically determined peak scale
for η ≥ 100. As η decreases, the peak scale enters the horizon closer to the pivot point of c2

sY .
Since the asymptotic late-time expression for c2

sY was used in the derivation of eq. (4.9), its
prediction for kpk diverges from the numerically determined peak wavenumber for η < 100.

4.3 Scenarios with initial Y -domination

If η < 1, ρR remains subdominant until reheating. The EMDE begins when ρY starts
decreasing proportional to a−3 at a = ap, and this pivot also determines which modes are
suppressed by the relativistic pressure of the Y particles. The numerical solutions to the
perturbation equations for η < 0.1 indicate that kpk enters the horizon while the Y particles
are still relativistic (apk < ap) and that apk = ap

√
1 + η/γ, where γ = 2.055 and 2.065 for

bosonic and fermionic Y particles, respectively. The factor γ accounts for a slight difference
between kpk for fermionic and bosonic Y particles, which arises because the Y particles have
slightly lower pressure at a given value of a/ap if they are fermions compared to if they are
bosons.

For a < ap, H(a) ∝ a−2 and thus k ∝ a−1
k . Therefore, kpk/kp = γ/

√
1 + η. The

wavenumber kp ≡ apH(ap) can be obtained by expressingH2(ap) = 8πG(ρY (ap)+ρR(ap))/3 =
8πGρY (ap)(1 + η)/3. In this expression, ρY (ap) can be written using eq. (2.4) and the ex-
pression for ap/aRH from eq. (2.5). Finally, taking Γ from eq. (2.3),

kp

kRH
=

ap

aRH

H(ap)

Γ
=

[

gf

g∗(TRH)

]
1
6
[

(m/b)

TRH

]

2
3 √

1 + η. (4.12)
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dark matter particles have randomly oriented velocities with magnitudes boosted by nonlinear
structure formation. This gravitational heating imposes a free-streaming cut-off on the power
spectrum after reheating that reduces the boost factor to the standard ΛCDM prediction,
B0 ∼ 106. We implement gravitational heating following the “optimistic” approach from
ref. [34]: a free-streaming cut-off is applied to the matter power spectrum based on the
minimum virial velocity of the halos that contain 20% of the dark matter at the end of the
EMDE, and no free-streaming cut-off is imposed if less than 20% of the dark matter is bound
into halos during the EMDE. The sharp decrease in B0 due to gravitational heating can be
seen at kdom/kRH ' 100 in figure 14. The slight red tilt of the primordial power spectrum
causes the reduction of the boost due to gravitational heating to move to higher values of
kdom/kRH for higher TRH.

Figure 14 shows that B0 for kdom/kRH . 80 is smaller for our transfer functions com-
pared to those from ref. [34]; our transfer functions suppress longer-wavelength perturbations,
which reduces the amplitude of the peak in the power spectrum and delays the formation
of bound structures. For kdom/kRH & 80, the comparatively fewer microhalos predicted by
our transfer functions at reheating implies that the reduction of the boost due to gravita-
tional heating happens for larger kdom/kRH (longer EMDEs) compared to when the transfer
functions from ref. [34] are used.

Figure 14 demonstrates that the annihilation boost does not strongly depend on TRH,
but it is highly sensitive the duration of the EMDE, which sets the peak amplitude of the
matter power spectrum for a fixed value of η. While the peak scale controls the size of the
first microhalos that form during or after an EMDE, the peak amplitude determines their
formation times because gravitational collapse occurs when δ ' 1.68. The central density of
a halo forming at af scales as a−3

f . Consequently, structures form earlier and have denser
cores if the power spectrum has a higher peak [42], which yields larger annihilation boosts
up to the point that the peak becomes high enough that halos form during the EMDE.

If the Y particles initially dominate the universe, the amplitude of the peak in the matter
power spectrum depends only on the duration of EMDE: a longer EMDE implies a longer
period of linear perturbation growth, translating to a higher peak in the power spectrum.
If the Y particles are initially subdominant, then the peak amplitude also depends on how
long the universe remains radiation dominated after the Y particles become nonrelativistic.
Figure 15 demonstrates that adom/ap depends exclusively on η: adom/ap remains the same
if m is varied while η is held fixed. We use the transfer functions derived in the previous
section to calculate δpk ≡ δY (kpk) and evaluate observational prospects in terms of η and the
duration of the EMDE.

If the Y particle is initially subdominant (η > 1), the following fitting function describes
δY,c(k, aRH) well for k > 10kRH:

δY,c(k > 10kRH, aRH) = 0.596Φ0

(

kdom

kRH

)2 ln(1 + 0.22q)

0.22q
q2p(q), (6.1)

where q = k/kdom and p(q) = [1 + 1.11q + (0.94q)2 + (0.63q)3 + (0.45q)4]−1/4. The peak
amplitude is δY (kpk) = δY,c(kpk)T (kpk), where T (k) = exp[−(k/kcut)

2.7]. Equation (6.1)
shows that δY,c(kpk) is separable into (kdom/kRH)2, which sets the duration of the EMDE,
times a function of kpk/kdom. The ratio kpk/kdom depends only on η and the Y particle
statistics, as shown by eq. (4.6). Furthermore, kpk/kcut also depends only on η and the
statistics of the Y particles, as illustrated by eqs. (5.5) and (5.6). The peak scale is given by
eq. (4.9), and eq. (5.5) provides kcut for η > 50. For 1 < η < 50, the power-law fit of eq. (5.6)
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δpk values that are smaller than δpk for {η, kdom/kRH} = {12.69, 7}, marking the allowed
parameter space based on this constraint. The white unshaded region to the left in figure 17
marks the allowed area of the η-ky/kRH space for cases with η < 1 based on the same peak
height limits.

If the DM particle freezes out during or before the EMDE, then a smaller annihilation
cross section is required to generate the observed DM density [22, 52, 53]. Lowering the cross-
section increases the upper limit on B0, expanding the allowed parameter space. Considering
〈σv〉 = 10−12 GeV−2, the light blue regions to the left of the thick dashed contour line with
log10[δpk/δ(kRH)] = 2.39 are allowed in addition to the white regions in figures 16 and 17.
With 〈σv〉 = 10−15 GeV−2, the allowed region increases to include the medium blue regions
to the left of the contour lines with log10[δpk/δ(kRH)] = 2.73, with only the deep blue regions
excluded in both plots.

The annihilation contours in figures 16 and 17 are presented as estimates because they
assume that the relation between B0 and δpk for a single value of η can be extended to other
η values. Power spectra with the same peak heights have different peak scales for different
values of η, but the fact that B0 is largely insensitive to TRH indicates that B0 does not
depend strongly on kpk. Changing η also changes the shape of the power spectrum around
its peak. The impact of peak shape on B0 has not been extensively studied, but the values
for B0 computed in ref. [35] for a power spectrum with η � 1 and the B0 values for η = 12.69
in figure 14 differ by less than an order of magnitude for power spectra with the same δpk.
We conclude that the B0 − δpk relation for η = 12.69 provides a strong indication of which
δpk values can be ruled out by limits on the dark matter annihilation rate.

It is also possible to detect the microhalos that form after an EMDE through their
gravitational influence. Pulsar timing arrays (PTAs) are promising probes of EMDE cos-
mologies [54, 55]: PTAs are sensitive to both the Shapiro time delays as signals pass through
microhalos and the Doppler shifts that result when a microhalo pulls on a pulsar, with
the latter being most sensitive to sub-earth-mass microhalos [56]. With weekly observa-
tions and an RMS timing residual of 10 ns, ref. [55] showed that microhalos resulting from
EMDE-enhanced power spectra with TRH . 20 MeV and kcut/kRH > 20 can be detected at
2σ significance if 100 pulsars are observed for 25 years or if 1000 pulsars are observed for
15 years.

Reference [55] used power spectra from initially Y -dominated EMDEs [29] with a Gaus-
sian cut-off. A cut-off given by kcut/kRH = 20 on their power spectra implies that δ(k)
peaks at around 24kRH with a value close to 27δ(kRH). Consequently, power spectra with
δ(24kRH) & 27δ(kRH) will produce microhalos that have similar detection prospects to those
produced by initially Y -dominated EMDE scenarios with kcut/kRH & 20. Such cases are
marked by the yellow hatched regions in figures 16 and 17; we expect that these EMDE
scenarios with TRH . 20 MeV will generate signals that are detectable by the PTAs de-
scribed above.

Another possible method of observing the microhalos resulting from an EMDE comes
from how they impact the magnification of stars that pass behind the lensing caustics of
galaxy clusters [57–59]. As the star passes through the caustic, fluctuations in the dark
matter density generate variations in the star’s brightness, which can be used to detect
sub-earth-mass microhalos. Reference [42] identified the ranges of microhalo masses and
central densities that can be detected using this method by imposing lower bounds on the
magnitude of the observed brightness fluctuations and on the abundance of microhalos. They
demonstrated that microhalos that meet their detection criteria are generated by a power
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spectrum that rises as k4 for kRH < k < kpk and decreases sharply for k > kpk, reaching a
peak enhancement of 104 times the ΛCDM power spectrum at kpk ≈ 108.5keq, where keq is the
horizon scale at matter-radiation equality. Employing our transfer functions, the parameters
TRH = 4 MeV with η = 0.01 and ky/kRH = 100 generate a power spectrum with a k4 rise
before a peak at the scale kpk ≈ 108.5keq. The peak enhancement is δpk/δ(kRH) = 126,
corresponding to a power spectrum peak enhancement factor of ≈ 104. Using TRH = 4 MeV,
η = 8 and kdom/kRH = 20 generates a power spectrum with a similar peak scale and peak
enhancement. Although the scaling is not strictly k4 for kRH < k < kpk in this case, the
power spectrum is logarithmic for only a narrow range of k near the peak, making this
power spectrum roughly similar to one that rises as k4 before the peak. For similar peak
enhancements, power spectra with a k4 rise before the peak and larger kpk values from cases
with TRH up to a few hundred MeV also result in microhalos that can be detected using
caustic microlensing observations [42].

7 Summary and discussion

The linear growth of dark matter perturbations during an early matter-dominated era (EMDE)
leads to the formation of microhalos much earlier than in standard cosmologies [29, 30, 32].
These dense microhalos may be detected gravitationally by upcoming pulsar timing ar-
rays [42, 54, 55] and through their impact on stellar microlensing events in galaxy clus-
ters [42, 57–59]. They can also boost the dark matter annihilation rate by several orders of
magnitude [32, 34, 35]. Perturbation growth is suppressed for modes that enter the horizon
while the particle that dominates the universe during the EMDE has significant relativistic
pressure. The DM power spectrum manifests this suppression as a small-scale cut-off, which
strongly affects the DM annihilation signal [32, 35]. The small-scale cut-off also impacts
the prospects of detecting the structures formed in EMDE cosmologies via pulsar timing
arrays [42, 54, 55] and caustic microlensing [42]. It is therefore important to accurately cal-
culate this cut-off scale, so that EMDE scenarios with initially hot hidden sectors may be
tested against observational data. In this paper, we have investigated the small-scale cut-off
in the matter power spectrum that results from the relativistic initial state of the particle
responsible for the EMDE.

We employed a custom Boltzmann solver to calculate the evolution of perturbations in a
universe with an initially relativistic hidden sector particle (Y ). We found that the evolution
of subhorizon perturbations in the Y particle density (δY ) depends on the wavelength of the
perturbation mode compared to a time-varying Jeans length. This Jeans length is set by the
sound speed of the Y particles, and it increases while they are relativistic and then starts
decreasing after they transition to nonrelativistic behavior. As long as the Jeans length
is greater than a perturbation mode’s wavelength, δY oscillates, while it grows when the
Jeans length drops below the mode wavelength. Therefore, linear growth during the EMDE
starts later for smaller-scale modes. This suppression of growth due to relativistic pressure
generates a peak in the power spectrum of δY : for wavelengths smaller than the peak scale,
the power spectrum falls off in amplitude due to the delayed onset of growth during the
EMDE, whereas longer wavelength modes have less time to grow during the EMDE because
they enter the horizon later. This peak is inherited by the dark matter power spectrum as
dark matter particles fall into the gravitational wells created by the clustered Y particles
during the EMDE.
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To describe how the relativistic pressure of the Y particles affects the matter power
spectrum, we provided transfer functions that relate the matter perturbations of initially
cold and hot hidden sectors. These transfer functions generate the matter power spectrum
following an EMDE arising from an initially hot hidden sector without the cumbersome
calculation of the density evolution of the hidden sector particle as it transitions from rel-
ativistic to nonrelativistic behavior. The transfer functions take the form exp[−(k/kcut)

n],
where n depends on ρSM/ρY when the Y particles were relativistic (η) and kcut is the cut-off
scale. We found that kcut/ky is a function of η and the Y particle statistics, where ky is the
wavenumber of the mode that enters the horizon when the hidden sector temperature equals
the Y particle mass m. The ratio ky/kRH, where kRH is defined as the horizon wavenumber
at the end of the EMDE, depends on η and is proportional to (m/TRH)2/3. We found that
kcut is smaller than ky, which was used as an estimate of the cut-off scale in ref. [34]. Our
result also disproves the claim in ref. [21] that the horizon scale at the start of the EMDE
sets the cut-off scale.

The cut-off scale determines the power spectrum peak height, which sets the formation
times and central densities of the first microhalos. The peak height δpk depends on the EMDE
duration and η. Longer EMDEs translate to larger δpk since they involve longer periods of
linear perturbation growth. For η < 1, δpk ∝ (ky/kRH)2. For η > 1, δpk ∝ (kdom/kRH)2,
where kdom is the horizon wavenumber at the start of the EMDE. If η < 0.1, the peak
height is independent of η because the subdominant SM radiation density does not affect the
evolution of perturbations prior to the end of the EMDE. For η > 1, the peak height depends
on η because η determines how long it takes the Y particle to dominate the universe after it
becomes nonrelativistic. Relating the peak height to η and the EMDE duration enables the
discussion of observational prospects and constraints in the parameter space of hidden-sector
EMDE histories.

If the peak is high enough for microhalos to form during the EMDE, the evaporation of
these microhalos at reheating causes the ejection of DM particles at high speeds in random
directions. This gravitational heating leads to a free-streaming cut-off on the power spectrum
after the EMDE. The exact evolution of this free-streaming cut-off and its relation to the
abundance of microhalos that formed during the EMDE is unknown, with recent studies [60]
even suggesting that the remnants of evaporated halos may re-collapse into bound structures
around the epoch of matter-radiation equality. We identified the regions of parameter space
where 20% or more of the dark matter is gravitationally heated; the affected parameter
space has peak enhancement δpk/δ(kRH) & 104.4. This corresponds roughly to cases with
η1/4kdom/kRH & 250 for 1 < η . 1000 and ky/kRH & 800 for η < 1.

Since the microhalos that form after an EMDE track the dark matter density, the an-
nihilation rate within microhalos can be compared to the rate of particle production from
decaying dark matter to define an effective DM lifetime. We used constraints on the dark
matter lifetime [50] based on the Fermi-LAT observations of the Isotropic Gamma Ray Back-
ground (IGRB) [49] to derive bounds on the dark matter annihilation boost B0. By connect-
ing the bounds on B0 to the peak height, we identified the allowed regions of the parameter
space of hidden-sector EMDE histories. Assuming a DM mass of 106 GeV with an annihi-
lation cross-section close to the canonical value of 10−9 GeV−2, the IGRB constraint allows
cases obeying η1/3kdom/kRH . 25 for η > 1, or cases with ky/kRH . 35 for η < 1. Smaller
cross-sections are required to match the currently observed DM relic abundance if the DM
freezes out during or before an EMDE; the allowed parameter space expands for these lower
cross-section values and for higher values of DM mass. Since kcut < ky, our transfer functions
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yield less structure formation for the same EMDE duration compared to ref. [34]. For cases
not involving gravitational heating, we therefore obtain smaller annihilation boost factors
for the same EMDE duration. In addition, this reduced structure formation also delays the
onset of gravitational heating, which happens for longer EMDEs compared to ref. [34].

We also found that a large portion of the parameter space of hidden-sector EMDEs
can be probed with the pulsar timing arrays discussed in ref. [55]. For example, weekly
observations of 100 pulsars for 25 years would detect microhalos generated from EMDEs
with TRH . 20 MeV, 30 . ky/kRH . 800, and η < 0.1, where the upper limit on ky/kRH

comes from the uncertainty associated with the disruption to the post-EMDE power spectrum
due to gravitational heating. If η > 1, the same PTA observations would detect microhalos
resulting from EMDEs with 13 . η1/4kdom/kRH . 250 and TRH . 20 MeV. Furthermore,
EMDE power spectra for reheat temperatures less than O(100 MeV) with peaks that are
enhanced by a factor of 104 relative to the standard ΛCDM power spectrum lead to microhalos
that produce detectable brightness fluctuations when stars pass through the lensing caustics
of galaxy clusters [42].

Our calculation of the small-scale power spectrum cut-off that results from the relativis-
tic pressure yields a more accurate mapping between the properties of EMDE cosmologies
and the observable signals that can help detect or constrain them. Our work thus improves
our ability to probe the microscopic properties of hidden sectors and the expansion history
of the early universe.

Acknowledgments

We thank M. Sten Delos for helpful discussions and Alexander Sobotka, A. Turchaninova
(AT), and Hwan Bae for useful feedback on the paper draft. K.J.M. and H.G. are supported
by NSF Grant AST-2108931. A.L.E. is supported in part by NSF CAREER grant PHY-
1752752.

A The evolution of the homogeneous hidden sector background

The Y particles that dominate the energy density of the universe during the EMDE are
initially relativistic and transition to a pressureless state as the hidden sector temperature
decreases. This appendix presents calculations for the evolution of the equation of state,
pressure, and density of the Y particles.

A.1 Method

We use energy conservation and number density conservation to formulate a system of coupled
differential equations for quantities related to the hidden sector temperature Ths and the
chemical potential of the Y particles, denoted by µ. We will assume here that the Y particle
has g degrees of freedom and write the energy density ρY , pressure PY , and number density
nY as thermodynamic integrals:

ρY (Ths, µ) =
g

2π2

∫ ∞

0

E(p)

e(E−µ)/Ths ± 1
p2dp ; (A.1a)

PY (Ths, µ) =
g

6π2

∫ ∞

0

p2

E(p)

1

e(E−µ)/Ths ± 1
p2dp ; (A.1b)

nY (Ths, µ) =
g

2π2

∫ ∞

0

1

e(E−µ)/Ths ± 1
p2dp , (A.1c)
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where the ±1 in the denominator denotes fermions (upper sign) or bosons (lower sign).
These integrals can be expressed in terms of dimensionless quantities: z ≡ p/Ths, x ≡ m/Ths,

∆ ≡ −µ/Ths, ε ≡ E
Ths

=

√
p2+m2

Ths
=

√
z2 + x2 so that

ρY (x,∆) =
gm4

2π2x4

∫ ∞

0

z2ε

e(ε+∆) ± 1
dz ; (A.2a)

PY (x,∆) =
gm4

6π2x4

∫ ∞

0

z4ε−1

e(ε+∆) ± 1
dz ; (A.2b)

nY (x,∆) =
gm3

2π2x3

∫ ∞

0

z2

e(ε+∆) ± 1
dz. (A.2c)

We also introduce the notation

J [f ] ≡
∫ ∞

0

z2f(z, x,∆)

e(ε+∆) ± 1
dz. (A.3)

Conservation of energy density and number density imply

ρ̇Y + 3H(1 + wY )ρY = 0 , (A.4a)

ṅY + 3HnY = 0 , (A.4b)

where wY (x,∆) ≡ PY (x,∆)/ρY (x,∆) and overdots denote proper time derivatives. Note
that we have ignored the decay of the Y particles because an EMDE only occurs when the Y
particles transition to nonrelativistic behavior well before they decay. To transform eqs. (A.4)
into differential equations for x and ∆, we express ρ̇Y and ṅY in terms of ẋ and ∆̇. For ρY ,
we have

ρ̇Y =
gm4

2π2x4

(

R1ẋ− J

[

εe(ε+∆)

e(ε+∆) ± 1

]

∆̇

)

, (A.5)

where

R1 = − 4

x
J [ε] + xJ [ε−1] − xJ

[

e(ε+∆)

e(ε+∆) ± 1

]

. (A.6)

And similarly,

ṅY =
gm3

2π2x3

(

N1ẋ− J

[

e(ε+∆)

e(ε+∆) ± 1

]

∆̇

)

, (A.7)

where

N1 = − 3

x
J [1] − xJ

[

e(ε+∆)

ε(e(ε+∆) ± 1)

]

. (A.8)

Substituting these definitions in eqs. (A.4) and isolating ẋ and ∆̇ yields

ẋ =
3HN0R2 − 3H(1 + wY )R0N2

R1N2 −N1R2
, (A.9a)

∆̇ =
3H(1 + wY )R0N1 − 3HN0R1

R1N2 −N1R2
. (A.9b)

Equations (A.9) are solved to obtain the hidden sector temperature Ths and the chemical
potential µ of the Y particles as a function of time. With Ths and µ obtained, the time
evolution of the Y particle density and pressure can be calculated using eqs. (A.1a) and (A.1b)
respectively. Finally, the equation of state wY and the sound speed c2

sY can be computed;
wY = PY /ρY and c2

sY = δPY /δρY = P ′
Y /ρ

′
Y = wY − w′

Y /(3(1 + wY )), where primes denote
d/d ln a.
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A.2 Modeling the transition from relativistic to nonrelativistic behavior

The evolution of ρY can be modeled by a broken power law with a pivot point ap. Since
the Y particles become nonrelativistic long before their comoving density is altered by their
decays, an expression for ap can be obtained by conserving nY a

3 through the transition from
relativistic to nonrelativistic behavior.

We use the ansatz ap/ai = bThs,i/m, where Ths,i is the hidden sector temperature at
ai. Let us assume that the Y particles have become fully nonrelativistic at scale factor
anr. Conserving particle number implies nY (ai)a

3
i = nY (anr)a

3
nr. Since the Y particles are

nonrelativistic at anr, we can write

ρY (anr) = mnY (anr) = mnY (ai)
a3

i

a3
nr

. (A.10)

Using the broken-power-law model for ρY (a), we can also express

ρY (anr) = ρY (ai)

(

ai

ap

)4 (
ap

anr

)3

, (A.11)

where we have used ρY (a) ∝ a−4 for ai ≤ a ≤ ap and ρY (a) ∝ a−3 for ap ≤ a ≤ anr. At ai,
the Y particles are relativistic with a temperature Ths,i, therefore nY (ai) = gf ′ζ(3)T 3

hs,i/π
2

and ρY (ai) = gfπ2T 4
hs,i/30, where g is the degrees of freedom of the Y particles, f is 1 or 7/8

if the Y particles are bosons or fermions respectively, and f ′ is 1 if the Y particles are bosons
and 3/4 if they are fermions. Equating the definitions of ρY (anr) from eqs. (A.10) and (A.11)
and using the expressions for nY (ai) and ρY (ai) from above with ap/ai = bThs,i/m, we obtain

b =
f

f ′

π4

30

1

ζ(3)
. (A.12)

Substituting the values of f and f ′ yields b = 2.70 if the Y particles are bosons and b = 3.15
if they are fermions.

The evolution of wY and c2
sY can also be described by broken power laws. Both these

quantities are equal to 1/3 when the Y particles are relativistic and are proportional to a−2

when the Y particles become nonrelativistic. This behavior is illustrated for a case with
m = 1 TeV and Ths,i = 200m by the blue solid curves in figure 18. We find that wY and c2

sY

are well-described by the functional form

f(a, ab, D) =
1

3

[

1 +

(

a

ab

)
1
D

]−2D

, (A.13)

where ab is the bending scale factor where the function transitions from the early-time power
law to the late-time power law and D models the width of the transition.

Treating ab and D as fit parameters, the numerical solutions for wY and c2
sY were fit to

the above function for a range of masses and values of Ths,i/m for both boson and fermion Y
particles. The best fit values are presented in table 1. The orange dashed lines in figure 18
show the functions of the form given by eq. (A.13) with the best fit values of ab and D given
in table 1. The bottom panels show the relative error between the numerical solution and
the best fit functions. The error stays within 1.5% for wY and 1.2% for c2

sY and stays within
0.2% at late times for both quantities.
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B Relating the start of the EMDE to model parameters

In a universe that is initially dominated by relativistic SM particles, the EMDE starts when
the energy density of the Y particles exceeds the energy density of the SM particles at a scale
factor adom, when the SM temperature is Tdom. Here, we derive a few important expressions
for quantities related to the start of the EMDE in terms of the parameters of our model: m
(the Y particle mass), η (the ratio of the initial energy densities of SM radiation and the Y
particles), the reheat temperature TRH defined in eq. (2.3), and b, which is 2.70 and 3.15 if
the Y particles are bosons and fermions, respectively. In the following, g denotes the degrees
of freedom of the Y particles, and f is 1 or 7/8 for boson or fermion Y particles, respectively.

We first evaluate adom/ap, where ap is the pivot scale factor for the broken power law
followed by ρY (a). Since entropy is conserved for the SM radiation before the Y particle
decays become significant, we have g∗(T )a3T 3 = constant, where we assume g∗(T ) = g∗S(T ).
As a result, ρR ∝ g∗(T (a))−1/3a−4. Then,

ρR(ap)

ρdom
=
g

1/3
doma

4
dom

g
1/3
p a4

p

, (B.1)

where gdom = g∗(Tdom), gp = g∗(T (ap)) and ρdom = ρR(adom) = ρY (adom) =
(π2/30)g∗(Tdom)T 4

dom. Furthermore, since ρY ∝ a−3 from ap to adom, we can write

ρY (ap)

ρdom
=
a3

dom

a3
p

. (B.2)

Using eqs. (B.1) and (B.2), we have

ρR(ap)

ρY (ap)
=

(

gdom

gp

)
1
3 adom

ap
. (B.3)

Similarly, we can express ρR(ap) = ρR(ai)[gi/gp]1/3[ai/ap]4, where gi = g∗(Ti). Since ρY ∝
a−4 from ai to ap, ρY (ap) = ρY (ai)[ai/ap]4 = η−1ρR(ai)[ai/ap]4. Combining the previous two
expressions yields

ρR(ap)

ρY (ap)
= η

(

gi

gp

)
1
3

. (B.4)

Equating eqs. (B.3) and (B.4) gives us

adom

ap
=

(

gi

gdom

)
1
3

η. (B.5)

The above relation can be used to express Tdom in terms of our model parameters. We can
use ρY ∝ a−4 from ai to ap and ρY ∝ a−3 from ap to adom to write

ρY (adom) = ρY (ai)

(

ai

ap

)4 (
ap

adom

)3

. (B.6)

According to our model for the evolution of ρY (a), ap/ai = bThs,i/m and ρY (ai) =
(π2/30)gfT 4

hs,i. In addition, we use the expression for adom/ap from eq. (B.5) and equate

ρY (adom) to (π2/30)g∗(Tdom)T 4
dom to obtain
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g
1
4

domTdom = (gf)
1
4

(

gi

gdom

)− 1
12
(

m

b

)

η− 3
4 , (B.7)

which gives

ρdom = gf
π2

30

(

gi

gdom

)− 1
3
(

m

b

)4

η−3. (B.8)

Next, we derive an expression for kdom/kRH ≡ (aH)adom
/(aRHΓ). We divide eq. (B.5)

by eq. (2.5) to get adom/aRH, substitute Γ from eq. (2.3) and use ρdom from eq. (B.8) in
H(adom) =

√

2(8πG/3)ρdom to obtain

kdom

kRH
=

√
2

(

gf

g∗(TRH)

)
1
6
(

g∗(Ti)

g∗(Tdom)

)

1
6
(

(m/b)

TRH

)

2
3

η− 1
2 . (B.9)

We also find it useful to derive an expression for k/kdom = (aH)ak
/(aH)adom

for a mode k
that enters the horizon at ak during the period of radiation domination before the EMDE.
Since the energy densities of the Y particles and the radiation are equal at adom, we have
H2(adom) = 2 × (8πG/3)ρR(adom). It follows that

H(ak)

H(adom)
=

1√
2

(

gdom

gk

)
1
6
(

adom

ak

)2

, (B.10)

where gk = g∗(T (ak)), and

k

kdom
=

1√
2

(

gdom

gk

)
1
6 adom

ak
. (B.11)

Using eq. (B.11) with eq. (B.5) yields

kp

kdom
=

(

g2
i

gpgdom

)
1
6 η√

2
(B.12)

for a universe with η > 1.
Finally, we obtain an expression for ky/kdom = ayH(ay)/(adomH(adom)) where ay is

the scale factor at which Ths = m. For this derivation, we relax the assumption of radiation
domination before the EMDE because ρY contributes significantly to H(ay) for η . 10.
Since the Y particles are relativistic at ay and Ths ∝ a−1 for ai < a < ay, we can express
ay = aiThs,i/m = ap/b. Using eq. (B.5), this yields

adom

ay
=

(

gi

gdom

)
1
3

bη. (B.13)

Next, we can express H2(ay) = 8πG[ρY (ay) + ρR(ay)]/3 = 8πGρR(ay)[1 + η−1]/3. Using the
scaling ρR(a) ∝ g(T (a))−1/3a−4 with the definition of ρdom from eq. (B.8) in H2(adom) =
16πGρdom/3, and the expression for adom/ay from eq. (B.13), we obtain

ky

kdom
=

(

g2
i

gygdom

)
1
6 bη

√

1 + η−1

√
2

. (B.14)
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C Perturbation equations

We work in the Newtonian gauge:

ds2 = −(1 + 2ψ)dt2 + a2(t)(1 + 2φ)(dx2 + dy2 + dz2). (C.1)

Ignoring anisotropic stress, we have ψ = −φ. In the absence of decays, the general equations
for the density contrast δ ≡ (ρ − ρ̄)/ρ̄ and velocity dispersion θ ≡ a∂idv

i/dt of a fluid for a
Fourier mode k are [61]:

δ′ + (1 + w)
θ

aH
+ 3(c2

s − w)δ + 3(1 + w)φ′ = 0 ,

θ′ + (1 − 3w)θ +
w′

1 + w
θ − k2 c2

s

1 + w

δ

aH
+ k2 φ

aH
= 0 ,

(C.2)

where primes denote d/d ln a, w ≡ P/ρ is the ratio of the pressure and density of the fluid,
and the sound speed is c2

s ≡ δP/δρ = P ′/ρ′ = w − w′/3(1 + w).
The effects of Y particles decaying into SM radiation are incorporated into the pertur-

bation equations as in ref. [32], which assumed a nonrelativistic Y particle. Their treatment
can be used because wY is negligible in the epoch when the decay of the Y particles is signif-
icant, i.e. ΓwY /H ≈ 0 at all times. The O(ΓwY /H) corrections to these equations are given
in ref. [28]. The full coupled system of equations for the three fluids and gravity is

δ′
X = − θX

aH
− 3φ′ ; (C.3a)

θ′
X = −θX − k2 φ

aH
; (C.3b)

δ′
Y = −(1 + wY )

θY

aH
− 3(c2

sY − wY )δY − 3(1 + wY )φ′ +
Γ

H
φ ; (C.3c)

θ′
Y = −(1 − 3wY )θY − w′

Y

1 + wY
θY + k2 c2

sY

1 + wY

δY

aH
− k2 φ

aH
; (C.3d)

δ′
R = −4

3

θR

aH
− 4φ′ +

ρY

ρR

Γ

H
(δY − δR − φ) ; (C.3e)

θ′
R = k2 δR

4aH
− k2 φ

aH
+
ρY

ρR

Γ

H

(

3θY

4
− θR

)

; (C.3f)

φ′ = −
(

1 +
k2

3H2a2

)

φ+
4πG

3H2

(

∑

δiρi

)

. (C.3g)

To determine the initial conditions of the system given by eqs. (C.3), we first set
φ(a = ai) = Φ0. We assume adiabatic perturbations and equate the primordial curvature
perturbation for all three species:

ζj = Φ − δj

[ln ρj ]′
, (C.4)

where j indicates each fluid. For superhorizon modes ζ = 3Φ0/2 in a universe dominated
by radiation or relativistic Y particles. Setting ζj = ζ for each species, we have the initial
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conditions,

δR

Φ0
= 2 ; (C.5a)

δX

Φ0
=

3

2
; (C.5b)

δY

Φ0
= −1

2
[ln ρY ]′|a=ai

, (C.5c)

where ai is the scale factor at which our calculations begin, chosen such that Ths(ai) = 300m.
The initial conditions for the velocity dispersions are [61]

θR = θX = θY = − k2Φ0

2H(ai)
. (C.6)

For a universe that is initially dominated by nonrelativistic Y particles, the initial
conditions are similar to those in matter domination. For superhorizon modes, the primordial
curvature perturbation is related to the metric perturbation as ζ0 = 5Φ0m/3. The primordial
curvature perturbations for all species, given by eq. (C.4), are set equal to each other, yielding

δR

Φ0m
= 8/3 ; (C.7a)

δX

Φ0m
= 2 ; (C.7b)

δY

Φ0m
= 2. (C.7c)

The initial conditions for θi are given by eq. (C.6) with Φ0m replacing Φ0.

D EMDE power spectrum application

The EMDE modifies the matter power spectrum for modes that enter the horizon during
or before the EMDE (k > kRH). For an EMDE that results from cold Y particles domi-
nating the universe after inflation, this modification to the power spectrum was described
by ref. [29]. For k < 0.05kRH, the power spectrum remains the same. For k > 0.05kRH,
δ(k) → R(k)δ(k), where

R(k) =

A
(

k
0.86kRH

)

ln





(

4
e3

)

f2
f1

B

(

k
0.86kRH

)

aeq

ak





9.11 ln

[

(

4
e3

)

f2
f1 0.594

√
2k

keq

] . (D.1)

In this equation, ak is the scale factor of horizon entry for mode k and aeq and keq are the
scale factor and horizon wavenumber at matter-radiation equality, respectively. The values
of f1 and f2 are determined by the baryon fraction fb ≡ ρbar/(ρb + ρmatter):

f1 = 1 − 0.568fb + 0.094f2
b ;

f2 = 1 − 1.156fb + 0.149f2
b − 0.074f3

b .
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Furthermore,

aeq

ak
=

√
2k

keq

[

1 +

(

k

kRH

)4.235
]1/4.235

, (D.2)

and the fitting functions for A and B are:

A(x) = exp

[

0.609

{1 + 2.15(ln x− 1.52)2}1.38

]

(D.3)

×
[

9.11 S(5.02 − x) +
3

5
x2 S(x− 5.02)

]

;

lnB(x) = ln(0.594) S(5.02 − x) + ln

(

e

x2

)

S(x− 5.02),

where

S(y) =
1

2

[

tanh

(

y

2

)

+ 1

]

(D.4)

models a step function.
If an epoch of SM radiation domination precedes the EMDE, modes with k > kdom

grow logarithmically with scale factor after entering the horizon and before the EMDE. This
modifies δ(k > kdom). From our fitting function for δY,c(k > 10kRH) given by eq. (5.7), we
find that this modification is modeled by the scale-dependent factor

RRD(q) =
ln(1 + 0.22q)

0.22q
[1 + 1.11q + (0.94q)2 + (0.63q)3 + (0.45q)4]−1/4, (D.5)

where q = k/kdom and RRD = 1 for η < 1. Finally, the small-scale cut-off can be imposed on
δ(k) using our transfer functions T (k) = exp[−(k/kcut)

n] from section 5. In summary, the
combined effect of the EMDE, an epoch of radiation domination before the EMDE, and the
small-scale cut-off due to the relativistic pressure of the Y particles modifies δ(k) by a factor

REMD(k) = R(k)RRD(k)T (k). (D.6)

The above expression for REMD(k) is valid at all times after the EMDE ends. We provide
an online application for the easy computation and visualization of REMD.1 The calculations
of the peak and cut-off scales in the application neglect the variation of g∗, the number of
relativistic degrees of freedom in the SM radiation, before the EMDE. The parameters TRH,
η and kdom/kRH or ky/kRH can be varied by the user, and the output is downloadable as
a table.

1https://hganjoo-emde-emde-rk-s7ww2v.streamlitapp.com/.
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