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The underserved population could be at risk during the times of crisis, unless there is
strong involvement from government agencies such as local and state Health departments
and federal Center for Disease Control (CDC). The COVID-19 pandemic was a crisis of
different proportion, creating a different type of burden on government agencies.
Vulnerable communities including the elderly populations and communities of color
have been especially hard hit by this pandemic. This forced these agencies to change
their strategies and supply chains to support all populations receiving therapeutics. The
National Science Foundation [National Science Foundation (NSF) Award Abstract #
2028612] funded RAID Labs to help federal agencies with strategies. This paper is
based on a NSF funded grant to work on investigating supply chain strategies that
would minimize the impact on underserved populations during pandemic. This NSF
funded study identified the phenomena of last mile importance. The last mile
transportation concept was critical in saving lives during the pandemic for underserved
populations. The supply chain model then maximizes social goods by sending drugs or
vaccines to the communities that need it the most regardless of ability to pay. The outcome
of this study helped us prioritize the communities that need the vaccines the most. This
informs our supply chain model to shift resources to these areas showing the value in real
time prioritization of the COVID-19 supply chain. This paper provides information can be
used in our healthcare supply chain model to ensure timely delivery of vaccines and
supplies to COVID-19 patients that are the most vulnerable and hence the overall impact of
COVID-19 can be minimized. The use of electrical vehicles for last mile transportation can
help in significantly fighting the climate change.
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INTRODUCTION

The understanding of supply chain and transportation in recent
times has brought life and death to underserved communities in
the US and other countries like India, United Kingdom, etc. The
COVID-19 pandemic was a crisis of different proportion,
creating a different type of burden on government agencies.
The COVID-19 pandemic has severely affected the entire
world with more than 168 million cases and over 3.5 million
deaths worldwide (Johns Hopkins, 2021). The US is one of those
countries, which has suffered the most from this disease with
around 33 Million confirmed cases and approximately 600,000
deaths as of May 27, 2021. While this pandemic has affected the
people of all races and origins, the African American and other
communities of color have been specifically affected by the
coronavirus pandemic (Dorn et al., 2020). According to a
study about COVID-19 exacerbating inequalities in the US,
the total number of deaths due to COVID-19 are
disproportionately high among the African American
communities as compared to the overall population in the US
(Dorn et al., 2020). Another study was conducted to assess
differential impacts of COVID-19 on black communities
(Millet et al., 2020). The outcome of their study shows that
counties that have highly black population are more
susceptible to contracting the COVID-19 virus. After
accounting for county-level factors such as age, poverty,
epidemic duration and comorbidities, death due to
coronavirus was significantly higher in black rural and small
metro counties (Millet et al., 2020). According to the Office of
Behavioral Health Equity (Office of Behavioral Health Equity,
2020), the coronavirus pandemic has exposed the deep-rooted
disparity in the health care setup towards the underserved
communities and aggravated the socio-economic factors that
contribute to poor health outcomes. Racial and ethnic
minority groups are experiencing higher rates of COVID-19
infection, hospitalization, and death. Inequities in the social
determinants of health have historically prevented these
groups from having the same opportunities for economic,
physical, and emotional health. These inequities are
highlighted by the factors that contribute to increased risk of
COVID-19 exposure, severe illness from COVID-19, death, and
unintended consequences of COVID-19 mitigation strategies
(CDC 2020).

While the vaccines have already been developed for COVID-
19, the big challenge is how to get these important medicines to
the communities that are most at risk, especially in the
underrepresented minority (URM) community. This challenge
becomes more significant due to health disparities for
underserved communities. An innovative and robust pandemic
vaccine supply chain needs to be designed and developed to tackle
the daunting task of mass vaccination under stringent operating
constraints. Pandemics such as the coronavirus disease (hereafter
COVID-19) exert severe pressure on healthcare systems, which in
turn affects timely delivery and distribution of vaccines to
healthcare centers. Most governments are responding to this
distribution challenge by building or upgrading healthcare
infrastructure to enhance geographic accessibility of health

services. Nevertheless, it is equally important to design an
optimal vaccine supply chain that supports an effective, agile,
and responsive distribution network to maximize geographic
coverage of populations at greater risk while keeping
distribution lean. Evidence-based decision-making to help
optimize and allocate vaccines in a timely manner is critical to
protect lives during the COVID-19 pandemic. Health
organizations are calling for novel approaches and methods to
optimize immunization supply chains and meet the demands of
an increasingly large and costly portfolio of vaccines (World
Health Organization, 2020).

Different vaccines have been created in order to help reduce
the spread of the virus (Calina et al., 2020). Government agencies
ordered a lockdown to be put into place with social distancing and
the use of wearing masks in order to control the COVID-19
pandemic. For long-term purposes, it is necessary to make sure
that the vaccines are distributed evenly between the populations
(National Governors Association Center for Best Practices, 2020).
Given the complexity of global vaccine supply chains and the
constraints related to supply, demand, and capacity, various
distribution scenarios should be formulated to help optimize
the system for acquiring, prioritizing, and distributing vaccines to
the populace (Uscher-Pines et al., 2006; Medlock and Galvani,
2009; Biggerstaff et al., 2015; Davila-Payan et al., 2014). Few
studies have been developed for an effective distribution for
vaccines to make certain that the vaccines are delivered in an
effective manner to the people who are in need themost (Medlock
and Galvani, 2009) and (Lee et al., 2012). These studies did not
fully take into consideration the constraints which affect a vaccine
supply chain which can be optimized to mitigate the risk of the
infection. As a result, a robust model is needed to conceptualize
the process of the downstream vaccine supply chain in order to
ensure efficient distribution of the vaccines.

The process of the distribution of the COVID-19 vaccines is a
complex task. The last mile transportation concept is critical in
saving lives during the pandemic for underserved populations.
The focus of this research on optimizing COVID-19 therapeutics
supply chain to get these lifesaving therapeutics to the
communities that are most at risk, especially the underserved
communities. This becomes more significant due to health
disparities for underserved communities. This National Science
Foundation funded study (Award Abstract # 2028612) identified
the phenomena of last mile importance and its criticality in saving
lives during the pandemic for underserved populations. The
research which has been performed previously has not
incorporated the factors and constraints which affect a vaccine
supply chain which can be optimized to reduce the risk of the
infection. We have defined community health index as a way to
identify those communities, which are most vulnerable to
COVID-19 and using this in our MIP supply chain model to
prioritize highly vulnerable communities with higher service
levels to ensure the timely availability of therapeutics to these
underserved community. This paper develops a mathematical
model to support vaccine allocation decisions based on exposure
risk, and operational constraints including capacity of medical
centers, vaccine stocks, and routes optimization. Using the city of
Houston, Texas, the fourth largest city in US as a case study, we
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applied the proposed model to test different scenarios of vaccine
allocation and distribution with different priority levels. In this
study we assume that the vaccine is already manufactured and
available in the market for distribution and that limited supply
and excessive demand necessitate optimizing the allocation of
vaccine by prioritizing people with higher risk of infection and
greater probability of social contact with others; and that the
vaccine is to be administered at state-run medical centers.

BACKGROUND

An effective distribution of the vaccines is key for the risk
mitigation of the community during a pandemic. A standard
vaccine supply chain consists of the following: manufacture,
packaging, storage, domestic and global distribution, cost-
effective, and uninterrupted supply of vaccines to the
population (U.S. Department of Health and Human Services,
2005). The difference between a standard vaccine supply chain
and a pandemic vaccine is that, previously healthcare and other
vaccine providers were to purchase vaccines directly from the
manufacturers. For government agencies, they are more
susceptible to buy the vaccines directly from the manufacturer
in order to ensure an early vaccination delivery. Government
agencies are then able to distribute the vaccines to health centers
after the vaccines are procured. During pandemic vaccine supply

chain, the healthcare providers register their interest with public
health programs rather than with supply chain vendors (U.S.
Department of Health and Human Services, 2005). Brown et al.
(2014) hypothesized a typical vaccine supply chain as a four-level
delivery system that incorporates the departmental stores, and
one regional store.

Brandeau et al. (2003) showed that the optimum resource
allocation depends on population size, the status of the
pandemic on a local level, precautionary measures such as
wearing masks, and the transmission rate of the infection.
The demand and capacity to distribute the vaccines to the
population, as needed, is an important parameter in the
distribution model. There are, however, unpredictable
emergency situations which will cause challenges when
executing strategies to resolve the vaccine decision issues.
Arora et al. (2010) used a cost-benefit-based model to
optimize aid during public health emergencies. The key
results of the research consisted of the following; a higher
flexibility is to be accomplished by postponing on the
decision of how to pre-allocate; smaller counties benefit more
from mutual help, and lastly, in order for significant savings,
groups should be prioritized in allotting the vaccines.

In the development of an optimum COVID-19 vaccine supply,
it is determined by the constraints imposed by the vaccination
context. Approximately 5.6 billion individuals in the world need to
be vaccinated, meaning that there needs to be a mass production in

FIGURE 1 | Crude and age-adjusted percent of COVID-19 deaths and unweighted population distribution by race (CDC, 2020).
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a short period of time. Vaccine supply is delayed by the capacity of
the method of delivery and the capacity of health care centers to
vaccinate the individuals within the time period.

In the following sub-sections, previous literature on the
communities that are disproportionately affected by the
pandemic, vaccine supply chains and pandemic supply chains
is presented and explored.

The Most at Risk Populations
COVID-19 pandemic has caused disproportionately effects on
vulnerable populations, people of color or those with pre-existing
health conditions. The elderly and underserved communities are
particularly at most risk. 80% deaths reported in the U.S. have
been in adults 65 years old and older (CDC, 2021). As seen in
Figure 1 and Table 1, the percentage of COVID-19 deaths
reported are far higher in elderly population of color as
compared to others.

A study of selected states and cities with data on COVID-19
deaths by race and ethnicity showed that 34% of deaths were
among non-Hispanic Black people, though this group accounts
for only 12% of the total U.S. population (Holmes et al., 2020). In
Chicago, residents in highly segregated neighborhoods with
higher social vulnerability, such as higher levels of poverty and
lower levels of education, income, and employment, are
disproportionately exposed to social and health risks. This
intersection of factors was found to be associated with high
death rates from COVID-19 (Kim and Bostwick, 2020).

Similarly, in a nationwide analysis, counties with higher
population percentages of non-Hispanic Black people
experienced higher COVID-19 confirmed case and death rates
than counties with higher population percentages of non-
Hispanic White people (Mahajan and Larkings-Pettigrew, 2020).

It is also concerning that a high percentage of Americans do
not want to get vaccinated. A study shows that 31.1% of
Americans do not intend to pursue being vaccinated when a
COVID-19 vaccine becomes available (Callaghan et al., 2020).
The likelihood of refusal is higher for Blacks, women, and
conservatives, exacerbating existing disparities in COVID-19

outcomes. Blacks were more likely to be hesitant than Whites
because of concerns about safety and efficacy, because they lack
needed financial resources or health insurance, and because they
already had COVID-19 (Callaghan et al., 2020).

Notably, previous research has also shown vaccine hesitancy
among Blacks, with evidence that Blacks have refused to
participate in HIV/AIDS vaccine trials and are less likely to
receive annual influenza vaccinations (Immunizations and
African Americans, 2018).

Any vaccine or treatment should target these high at risk
populations first to prevent further loss of life. Therefore, this
study looked to identify how socially and medically vulnerable
populations overlapped, if and how much they are being
underserved in the current testing paradigms, and how to
design supply chain for vaccines or drug treatments that
prioritizes the vulnerable ensuring they get treatments they
need regardless of their income status.

Vaccine Supply Chains
The current literature on vaccine supply chain is immeasurable
and hypothesized. The majority of the studies were driven by the
vaccine effectiveness procurement, distribution and allocation to
vaccinate a wider population. Lee et al. (2011) investigated the
impact of a new vaccine on the existing vaccine supply chain with
a deterministic mathematical Equation-Based Model (EBM). The
results illustrated that the distribution of the newly introduced
vaccine needed additional storage and transportation capacity to
effectively implement the program of the vaccination. Similarly,
by taking into account scheduling preferences of patients and
scheduling inconvenience (Abrahams and Ragsdale, 2012),
argued that the distribution of vaccines presents a number of
operations management challenges like, multi-dose vaccine
packages, rapid spoilage upon opening, high-cost of wastage,
and vaccination needs of patients.

Storage capacity is another factor which impacts the vaccine
supply chains. Shittu et al. (2016) analyzed the influence of
variance in supply and demand under scenarios which
enhance the supply chain’s capability to meet the storage

TABLE 1 | Count and percent distribution of deaths involving COVID-19 with distribution of weighted and unweighted percent population by race and time period (CDC
2020).

Year
in which
death
occurred

Age group Non-hispanic
white

Non-hispanic
black

Non-hispanic
american
indian

or Alaska
native

Non-hispanic
asian

Non-hispanic
native

Hawaiian
or other
pacific
islander

Non-hispanic
more
than

one race

Hispanic Unknown

2020/2021 0–4 years 35 30 2 3 2 7 48 4
2020/2021 5–17 years 65 51 5 12 4 2 83 1
2020/2021 18–29 years 704 629 97 93 21 24 1,002 7
2020/2021 30–39 years 1,908 1,777 296 312 58 38 2,960 19
2020/2021 40–49 years 5,486 4,362 539 711 123 119 8,071 46
2020/2021 50–64 years 40,152 21,283 1,873 3,797 389 446 29,597 405
2020/2021 65–74 years 74,064 25,121 1,860 5,631 300 510 28,152 596
2020/2021 75–84 years 111,032 22,396 1,406 6,156 178 504 24,373 563
2020/2021 85 years and above 137,852 16,745 793 6,432 78 375 17,235 374
Total — 371,298 92,394 6,871 23,147 1,153 2,025 111,521 2,015
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requirements. In Nigeria, a simulation was developed for vaccine
storage capacity. The study showed that there was a 55% increase
in the storage capacity which was needed to meet the vaccination
needs. With the establishment of three more vaccine delivery
hubs, there could be a decrease of cold storage requirement of
55–33%. The redesign of old vaccine supply chains can therefore
be crucial for capacity utilization.

Hospitals and other service providers play a vital role in
ensuring that the vaccines are distributed and dispensed
effectively. Lin et al. (2020) created a mathematical model to
analyze the decision of the distributor to use a cold chain or non-
cold chain to deliver the vaccines. Next, the model was to analyze
the influence of a single-step or two-step standard inspection
policy of the retailers on the distributor’s decision whether to use
the cold chain or not. The results represented that the two-step
policy, despite being stricter and more costly, was less effective in
influencing the distributor to select the cold chain option than the
single-step policy was.

Pandemic Vaccine Supply Chains
In the case of pandemics, vaccine supply chains consist of their
own specifics such as, scale, exposure, time-space levels, and
constraints. Uscher-Pines et al. (2006) evaluated a sample of 45
national pandemic influenza prioritization plans, including 19
developed and 26 developing countries. It was found that 28 (14
developed and 14 developing countries) out of 45 nations have
provided for prioritized vulnerable groups of the population for
vaccination. In some countries, higher prioritization of high-risk
individuals by healthcare workers and service workers is
embedded in the national pandemic vaccination plan (ibid).
The study concluded by emphasizing the need to establish
priority settings based on individualized modeling or impact
estimates to enhance the effectiveness of large-scale
vaccination programs to mitigate the risk of community
transmission during a pandemic (Uscher-Pines et al., 2006).

Araz et al. (2012) prioritized 15 counties of Arizona based on
four distinct H1N1 pandemic vaccine distribution strategies: pro
rata distribution; sequential distribution by population size;
sequential distribution by estimated periods of pandemic
peaks; and reverse sequential distribution by estimated order
of pandemic peaks. The study demonstrated that the policies
would be effective to reduce the pandemic’s impact by optimizing
waiting times for vaccines. The results revealed that the two most
effective policies for controlling the epidemic and reducing unmet
demand are pro rata distribution and prioritization of
communities expected to experience the latest outbreak.

Previous research by Huang et al. (2017) and Chen et al. (2020)
has investigated risk-based pro rata distribution and prioritization
for vaccine allocation in order to reduce the spread of the virus.
Medlock and Galvani (2009) used a parametrized model with
survey-based contact andmortality data from influenza pandemics
to determine optimum vaccine allocationminimizing five outcome
measures: deaths, infections, years of life lost, contingent valuation,
and economic costs. They found that optimal vaccination is feasible
by prioritization of schoolchildren and adults from the ages of
30–39 years (Medlock and Galvani 2009). Buccieri and Gaetz
(2013) argued that in a pandemic outbreak, priority for

vaccination should be given to population groups at high risk
and who would experience difficulty reaching health centers, such
as homeless people and other disadvantaged groups, to ensure
equity and utility. During the H1N1 outbreak in Toronto, the city
managed to vaccinate 38 percent of the homeless people via highly
accessible community-based vaccine clinics. TakingNewYork City
as a case study, Chen et al., 2020 applied an age-structured
simulation model to explore the optimal allocation strategy for
the COVID-19 vaccine. They divided the population into seven
compartments, and then each compartment was further divided
into five age-groups. They analyzed the impact of both static and
dynamic policies. The results showed that, when the objective is to
minimize deaths, the optimal static approach is to vaccinate the
oldest group first and then the younger groups. However, when the
target is to mitigate total confirmed cases, then the optimal static
policy is to allocate vaccines to younger people even if the supply is
scarce. Sudan and Taggar (2021) used the concept of Transport
Intelligence and Logistics Systems for recovering Supply Chain
Disruptions in Post-COVID-19 Pandemic.

In recent years, with an increased focus on renewable energy and
the potential reduction of transportation’s impact on climate change
and other environmental issues, the electric vehicles (EVs) have high
importance to address these challenges. Project Drawdown describes
electric vehicles as one of the 100 best contemporary solutions for
addressing climate change (Electric Cars @ProjectDrawdown
#ClimateSolutions, 2020). Even though the emissions from the
power plants are used to fuel the vehicles, the electric vehicles will
reduce the global air pollution significantly Technologies for EV are
increasing which include extending driving ranges and reducing costs
(Chan and Wong, 2004). The EVs are not only helping in fighting
climate change, but also providing more economical mode of
transportation as well. According to a study by Idaho National
Laboratory (2010), the breakdown for a gas-powered car vs. an
electric car comes out to be $9.83 per 100 miles for a gas car and
$5.27 per 100 miles for an electric vehicle. When directly compared,
the cost to power an electric vehicle is about half of what it costs to fuel
your gas-powered car.

This project aims to create a supply chain model that
prioritizes geographic sections in the cities that house
vulnerable communities. The study identified the phenomena
of last mile importance in achieving the objectives. The last mile
transportation concept was critical in saving lives during the
pandemic for underserved populations. Integrating the last mile
concept along with an accessible healthcare index (CHI) will
allow for real-time strategies. The strategies are defined as
mathematical models that could be used in real-time for these
at-risk communities. The use of electric vehicles (EVs) for last
mile transportation will help in reducing carbon emission and
fighting climate change.

METHODOLOGY

Model Overview
The global activities during pandemic influenced the strategies
real-time including testing protocols, ventilators distribution, and
vaccine manufacturing, which impacted the strategies in real-

Frontiers in Future Transportation | www.frontiersin.org September 2021 | Volume 2 | Article 7323315

Jones et al. Last-Mile Transportation for COVID-19



time. Our research objective is to understand how the COVID-19
therapeutics (Immunizations, drugs etc.) can be delivered to
underserved communities including the last mile
transportation, to prevent and minimize the impacts of
COVID-19. For this NSF funded study, we are focusing on the
city of Houston, which is the fourth largest city in US. We worked
with the Houston Department of Health and Human Services
(HDHHS) to capture the data needed to model a community that
has these challenges. The Houston Department of Health and
Human Services HDHHS has the responsibility for community
health, particularly for the underserved population that might not
have commercial insurance plans (Medicaid and Medicare). The
HDHHS also has an elderly care division that distributes care
between the services facilities, the hospitals and home care. Our
research focuses initially on the most vulnerable population for
the COVID-19 population, namely the elderly in underserved
populations who receive personal home services from HDHHS.
For this study, we will focus on 97 zip codes in city of Houston.
The details are shown in Table 2.

We worked with HDHHS to collect the COVID-19 related data
in these zip codes including the total number of reported cases in
each zone, number of active cases and total number of deaths.

Initially, we assume our current demand (dj) is the total
number of cases reported in each zone for modelling supply
chain. We collected the data during the first phase of COVID-19
vaccine distribution where demand was much higher than the
availability of vaccines supply, so we will be focusing on elderly
population above the age of 60 and healthcare workers, who were
supposed to get the vaccine at the earliest.

As mentioned previously, we want to highlight and prioritize the
communities, which are at high risk or are more vulnerable to
COVID-19 outbreak. In this study, we defined a new term called
“Community Health Index (CHI)”. The CHI is calculated using a
proprietary modified health index that takes into account social-
economic indicators and has the ability to use artificial intelligence for
behavior patterning. The data for modified health index and other
indicators for different regions has been provided by HDHHS, which
is used to calculate the community health index. This CHI helps us in
identifying those communities, which house the most vulnerable
populations. We can use this information in our mixed integer
programming (MIP) optimized supply chain model to prioritize
these communities using the concept of higher service level. The
CHI is calculated using below equation (Jones et al., 2020).

Community Health Index � (Modified Health Index
+ Social − Economic Index + Behavior Factors)/3

Health Index: (modified RTN) with heavier weighting of the
HDHHS 8 health factors from the questionnaire. Our health
index is based on Houston’s Vulnerability Index, a mostly health
focused indicator. However, they added some additional data so
that it could be used to identify who needs help in an emergency
like a hurricane or extreme flooding.

Socio-Economic Index: Combination of different indicators
such as education, average income etc. in different zones. Our
Socioeconomic Index is based on the CDC’s Social Vulnerability
Index, which takes into account socioeconomic status, household
compositions and disability, minority status and language, and
housing type and transportation.

Behavioral Index: We are also using the COVID-19 active case
information to inform our CHI. In the future we plan to use AI to
determine who is at risk and who will need treatment soon.

By taking all three of these indices, we produce one simple CHI
score. That CHI score can be used into the supply chain model
and prioritize treatment shipments. The higher the CHI rate,
more vulnerable that zone is to COVID-19.

Multi-Objective Optimization and Supplier
Selection in Supply Chains
The existing literature primarily focuses on optimization of one
objective function viz cost or profit and other important factors
such as customer service and vendor management are neglected.
Since we seek to optimize off of community and to prioritize
geographic regions in supply chain model on the basis of service
levels, we will use multi-objective optimization. There are multiple
techniques for multi-objective optimization such as Σ-constrained
method, sequential optimization, weighted method, and distance-
based model. (Jones et al., 2020). introduced a multi-objective
stochastic supply chain model that incorporates Six Sigma approach
to assess thefinancial risk. Themodel consists of design of four-echelon
supply chain that includes identifying objectives, establishing model
constraints, evaluating the economic risk and formulation of model by
multi-objective Σ constrained method. In this paper, we utilize the
Σ-constrained method to optimize profits and quality objective
function. In the Figure 2, the four-echelon supply chain
configuration is shown. The most important part of this supply

TABLE 2 | assumption and data collection details.

Assumptions and data Measure

Total Zip Codes considered in Harris County (77002-77099) 97
Total Hospital/pharmacies/nursing homes in Harris county considered in our model 278
Total vaccine hubs in Houston for distribution 5
Population of all zip-codes in Harris County 3,270,360
20% population of all zip-codes for elderly population 654,072
Cost of transportation/mile $1
Penalty cost for any shortage $35-$70
Total complete communities in Harris County 10
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chain is last mile transportation from hospitals or therapeutics
distribution points to underserved communities. This last mile
transportation is critical in saving lives during the pandemic for
these underserved populations.

Mathematical Model
This model is based on the supply network design problem. Given a
set of producers, depots, and customers (zip codes), the goal is to
determine how to satisfy customer demand while minimizing
transport costs and service. This problem can be regarded as one
of finding minimum cost flow through a network. Our primary
objective is to ensure that the immunizations and the drugs are
delivered to required population when required, so we use higher
service levels for regions that are highly vulnerable to COVID-19.

Sets and Indices

f ϵ Producers � { Producer}
d ϵDepots � {D1, D2, D3, D4, D5}
c ϵ Customers � {C1, C2, C3, C4, C5, C6, C7, C8, C9, C10}
Sets � Producers ∪​ Depots ∪​ Customers

Parameters

costs,tϵR+ : Cost of shipping one ton from source s to destination t.

supplyf ∈R+:Maximum possible supply from producer f (in tons).
throughd ∈R+ :Maximum possible flow through depot d (in tons).

demandc ∈ R+: Demand for vaccines at customer c (in tons).
We have made several assumptions about the variables as
shown in Table 2. Our focus is on two major cost for this
study. The first cost is the transportation cost from manufacturers
to central hubs, registered providers and finally at-risk
communities including the last mile component. We have
assumed the cost per mile to be 1$/mile based on the estimates
shared by city of Houston. The second cost is the penalty cost
which shows the impact of shortages to these at-risk communities.
For equal distribution, we have considered this amount to be $70,
which was the cost two doses of Pfizer vaccine at the time of data
collection. For prioritized distribution to at-risk communities, the
penalty cost is $70 for at-risk communities and half of it for other
population. We have a total of five major vaccine hubs in Houston
and 278 registered providers in 97 zip codes in Houston.

We have incorporated the service level in our model using the
imputed shortage cost. In the equation, α value will be utilized for
required service level in a particular region, which will be used to
calculate the imputed shortage cost. The higher the service level,
the higher the imputed shortage cost will be, which reflects the
main focus on those regions with higher service levels to
minimize the imputed shortage cost. The secondary objective
is to reduce the overall cost which includes transportation cost
and holding cost. We will use Mixed Integer Programming (MIP)
for transportation cost along with Q,r Inventory Model to
calculate the overall holding cost. We will use the outcome
from GIS mapping and Community health Index to prioritize
more vulnerable zones in that scenario, so that those who need
the medicinal the most can get it on time.

FIGURE 2 | Jones and Azeem’s echelon supply chain Configuration (Jones et al., 2020).
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Decision Variables

flowss,t ∈Ν+: Quantity of vaccines that is shipped from source s
to destionation t

Objective Function
Cost: Minimize total shipping costs.

Minimize Z � ∑
(s,t)∈Sets×Sets

Costs,t p Flows,t + penaltyc p deficitc

Constraints
Producer output: Flow of goods from a producer must respect
maximum capacity.

∑
t∈Sets

Flowf ,t ≤ Supplyf ∀f ∈ Producers

Customer demand: Flow of goods must meet customer demand.

∑
S∈Sets

flows,c + deficitc � demandc ∀c ∈ Customers

Depot flow: Flow into a depot equals flow out of the depot.

∑
s∈Sets

flows,d � ∑
t∈Sets

flowd,t ∀d ∈ Depots

Depot capacity: Flow into a depot must respect depot capacity.

∑
S∈Cities

flows,d ≤ throughd ∀d ∈ Depots

Scenarios
In order to us to find the impact of different supply and demand
scenarios on service levels to at-risk communities and the overall costs,
especially when demand is much higher than supply, we have created
different scenarios, and we will use the data provided by Houston
Health Department in our model to analyze and compare the output
for each scenario. As shown in Table 3, we will run and analyze eight
different scenarios for this study. The first four scenarios are
considering equal distribution for all communities, and last four
scenarios will prioritize underserved communities as highlighted by
Community Health Index score for each region.

In the first scenario, the actual supply of the vaccine and capacity
of the registered providers was far less than the actual demand (20%
of Houston population) consisting of elderly population above 60

and healthcare workers. In second scenario, we doubled the actual
supply of the vaccine and capacity of the registered providers to
measure the performance variables. In third and fourth scenarios,
we increased the supply and capacity by 3 times and 4 times to
again measure the performance variables such as service levels and
costs. As mentioned earlier, first four scenarios were used with
equal distribution for all population without using CHI scores to
prioritize underserved communities. In last four scenarios, we used
the same approach, but by using the CHI scores to prioritize the
underserved communities in our model using higher service level
concept and higher imputed shortage costs or penalty costs.

RESULTS AND DISCUSSION

The section below discusses geographical mapping of city of
Houston using the CHI scores and COVID-19 information as
input, followed by discussion on results of different scenarios
using optimized supply chain model.

Geographical Mapping
Using the Modified Health Index and Social-Economic Index for
each zip code in Houston to calculate the CHI score, as well as the
data for total number of reported cases and deaths for COVID-19
and geographical information, we created a map that overlay
COVID information by zip codes with vulnerable communities,
as shown in Figure 3.

As discussed earlier, at the time of data collection, we were in
phase I of COVID-19 vaccine distribution where demand was far
higher than the supply of vaccines; we considered the elderly
population and healthcare workers as the actual demand, which
is 20% of the total population as per the collected data. The number
of vaccination administration points, including hospitals,
pharmacies and other locations at the time of data collection was
278 in Houston with five major central hubs in Houston providing
vaccine shipments to these locations. All this information was used
to create a newmap along with 86 neighbourhoods as defined by city
of Houston. As shown in Figure 4, the blue starts in the map shows
the vaccine administration points (Hospitals, pharmacies etc.) closest
to different neighborhoods.

Results for Different Scenarios in Equal
Distribution
Using the data collected with the help of Houston Health
Department, we ran our optimized supply chain model for the
first four scenarios with equal distribution for all communities
without prioritizing underserved communities using community
health index (CHI). As described in methodology section, the
actual supply of the vaccine and capacity of the registered
providers is far less than the actual demand (20% of Houston
population) consisting of elderly population above 60 and
healthcare workers in the first scenario. In scenario 2-4, we
increased the supply of vaccines and capacity of registered
providers to measure the performance variables of different
costs and service level.

TABLE 3 | list of all eight scenarios with equal distribution and prioritized
distribution.

Scenarios

Equal Distribution: Current Supply and Capacity (at the time of data collection)
Equal Distribution: Current Supply and Capacity × 2
Equal Distribution: Current Supply and Capacity × 3
Equal Distribution: Current Supply and Capacity × 4
Prioritized 10 complete communities: Current Supply and Capacity
Prioritized 10 complete communities: Current Supply and Capacity × 2
Prioritized 10 complete communities: Current Supply and Capacity × 3
Prioritized 10 complete communities: Current Supply and Capacity × 4
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From our supply chain model output given in Figure 5, for all
scenarios of equal distribution to all communities, we can see that in
the penalty cost due to shortage is very high in scenario 1. This is
because the demand is much higher and the supply of vaccines and
capacity of registered providers of vaccines, this resulted inmajority of
the target population not provided with vaccines and leading to very
higher penalty cost or imputed shortage cost. As we double the supply
and capacity in second scenario, the penalty cost is reduced from 34
Million USD to 22 Million USD, but even then this penalty cost is on
much higher side as still a huge number of target population are not
provided with vaccine. As we keep on increasing the supply of vaccine
and capacity of registered providers in scenario 3 and 4, the penalty
cost keeps on reducing, until it reaches zero at scenario 4, whichmeans
that supply is equal, or more than the demand and all target
population is served.

Similarly, if we look at the transportation cost in Figure 6,
including the last mile from all major hubs to vaccines
administration points (registered providers) to locations of target
population, we observe that the transportation cost is relatively low
for scenario one and as we keep on increasing supply of vaccines in
scenario 2–4, it increases the transportation cost. This is because in

scenario 1, majority of the people are not provided with vaccines
due to vaccine shortage, so less miles of transportation are covered.
As we cover more people in scenario 2–4, transportation cost
increase and gets to maximum level at scenario 4, where all
target population is covered. It is worth noting that the
transportation cost is far lower than the penalty cost. This is
because the primary focus of our study is to save lives of people
by providing them with vaccines, and reducing overall cost is
secondary objective by optimizing routes and allocating optimal
inventory levels, so penalty cost is more significant for our study.

Similarly, if we look at the total cost in Figure 7, we find out that
as we reduce the shortages by increasing the supply of the vaccines,
the total cost is significantly reduced as penalty costs have more
significant and are drastically reduced by minimizing shortages.

The above cost analysis is echoed by the output of service levels
as shown in Figure 8, for equal distribution scenarios. In the first
scenario, the service level is only 32%, which means that only 32%
of the target population is provided with the vaccine. As we keep
on increasing the supply of vaccines and capacity of registered
providers from scenario 2-4, the service levels are increased and
eventually reach 100% in scenario 4, where current supply and

FIGURE 3 | The map of city of Houston with all zip codes and COVID-19 deaths.
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FIGURE 4 | The map of city of Houston with 86 Neighbourhoods and nearest hospitals.

FIGURE 5 | Penalty cost for four scenarios with equal distribution.
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FIGURE 6 | Transportation cost for four scenarios with equal distribution.

FIGURE 7 | Cost comparison for four scenarios with equal distribution.
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capacity is increased 4 times and it becomes equal or more than
the current demand.

Results for Different Scenarios in Prioritized
Distribution
In the previous section, we discussed the results of our supply chain
model for equal distribution of therapeutics to all communities with

four different scenarios of vaccine supply and providers’ capacity to
administer vaccine. In this section, we will discuss the results of
prioritized distribution, using our CHI scores to prioritize underserved
communities using our supply chain model. We will use imputed
shortage cost or penalty cost and service levels as variables to prioritize
these underserved communities in our model.

In Figure 9, we can observe the same trend that we observed
with equal distribution. The imputed shortage cost or penalty cost

FIGURE 8 | Service levels for four scenarios with equal distribution.

FIGURE 9 | Penalty cost for four scenarios with prioritized distribution.
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is very high in scenario 1 with current supply and capacity. As we
increase the supply of vaccine and capacity of vaccine
administration points or providers to match the demand from
scenario 2–4, the penalty cost would increase drastically,
eventually falling to zero in scenario 4 where supply is more
than the demand. This figure for penalty cost for prioritized

distribution looks similar to penalty cost chart for equal
distribution in this case, but it is not always like that. The
difference here is that the zip codes or neighborhoods that
house underserved communities are prioritized here based on
higher CHI scores and this drives our supply chain model to give
higher service levels to these geographic regions of underserved

FIGURE 10 | Transportation cost for four scenarios with prioritized distribution.

FIGURE 11 | Cost comparison for four scenarios with prioritized distribution.
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communities. We will discuss this more when looking at service
levels for prioritized distribution.

Similarly, the same trend is observed for transportation cost for
prioritized distribution in Figure 10. In scenario 1 where supply and
capacity is much lower than the actual demand, the transportation
cost is lower because a high ratio of target population is not provided
with vaccine, so less miles covered from vaccine hub to hospitals to
target population addresses (last mile). As the vaccine supply and
capacity increases in scenario 2–4, more people are provided with
therapeutics and hence higher transportation cost.

Similarly, in Figure 11, we can see that overall cost is reduced
in case or prioritized distribution when the supply and capacity
gets closer to the demand. The penalty cost is again more
significant as compared to transportation cost as saving lives
by ensuring timely vaccine delivery is primary objective.

Now, when we look at service levels for all scenarios for
prioritized distribution in Figure 12, we observe that service
levels increase when we increase the therapeutics supply and
providers’ capacity to match it with the demand.

It is very important to understand the difference between the
service level for equal distribution and service levels for
prioritized distribution. In case of equal distribution, we have
a collective service level for entire population as we do not have
any priority levels for any communities, but in case of prioritized
distribution, the underserved communities get higher priority as
compared to other communities. This means that even when the
demand is much higher than the supply of therapeutics, as in the
case of scenario 1, the prioritized underserved communities will
have a very high service rate, approximately close to 100%, even
though the overall population will still have a low service level of
31%. This means that underserved communities will get vaccine
based on priority even when there is a shortage of vaccine due to
high difference between supply and demand. The last mile
element of our model will also make sure that the lifesaving
therapeutics are actually provided to these at-risk populations.

CONCLUSION

This paper is based on a National Science Foundation funded grant
(NSF Award Abstract # 2028612) to work on investigating supply
chain strategies that would minimize the impact on underserved
populations during pandemic. The underserved population could be
at risk during the times of crisis, unless there is strong involvement
from government agencies such as local and stateHealth departments
and federal Centre for Disease Control (CDC). These government
agencies were designed to help all communities but historically
supporting underserved populations, because they do not have
health insurance. The COVID-19 pandemic was a crisis of
different proportion, creating a different type of burden on
government agencies. Vulnerable communities including the
elderly populations and communities of color have been especially
hard hit by this disease. The allocation and distribution of COVID-19
vaccines in a timelymanner to these at-risk communities is important
not only to end the pandemic but to do so equitably. This forced them
to change their strategies and supply chains to support all populations
receiving therapeutics. The National Science Foundation (NSF)
funded RAID labs to help federal agencies with strategies.

The research focused on making sure that underserved
populations are not left out, especially considering the health
disparities that exist. This project aims to create a supply chain
model that prioritizes geographic sections in the cities that house
vulnerable communities. We collaborated with Houston Health and
Human Services (HHS) to model supply chain for fourth largest city
in US by using the concept of Community Health Index and
COVID-19 Cases and geographical information to create a map
that overlay COVID information by zip codes with vulnerable
communities. The supply chain model then maximizes social
good by sending drugs or vaccines to the communities that need
it the most regardless of ability to pay. The outcome of this study
helped us prioritize the communities that need the vaccines the most.
This informs our supply chain model to shift resources to these areas

FIGURE 12 | Service levels for four scenarios with prioritized distribution.
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showing the value in real time prioritization of the COVID-19 supply
chain. This paper provides information can be used in our healthcare
supply chain model to ensure timely delivery of therapeutics to
underserved populations that are the most vulnerable and hence the
overall impact of COVID-19 can be minimized.

The study identified the phenomena of last mile importance in
achieving the objectives. The last mile transportation concept was
critical in saving lives during the pandemic for underserved
populations. Integrating the last mile concept along with an
accessible healthcare index (CHI) allows for real-time
strategies. The strategies were defined as mathematical models
that could be used in real-time for these at-risk communities. Use
of electric vehicles for last mile transportation will results in
significant cost saving and also help in reducing the carbon
emissions and fighting climate change.

For future work, this can lead to collaborating with programs,
such as Uber eats, Meals on Wheels, partnering with nurses to
administer vaccinations to these populations. Data collected from
the last mile of direct contact withmembers of at-risk communities
to vaccinate or refusal to vaccinate will provide information to help
predict which communities are not vaccinated due to access and
which are vaccine hesitant. The responses from questionnaires
about attitudes toward COVID vaccination and drug development
will help future predictions of which vaccine hesitant communities
are most likely to be persuaded to take the vaccine, increasing the
efficiency of last mile efforts.
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