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Abstract:

The standard model for Ca** oscillations in insulin-secreting pancreatic beta cells centers on
Ca’* entry through voltage-activated Ca?* channels. These work in combination with ATP-28
dependent K channels, which are the bridge between the metabolic state of the cells and
plasma membrane potential. This partnership underlies the ability of the beta cells to secrete
insulin appropriately on a minute-to-minute time scale to control whole-body plasma glucose.
Though this model, developed over more than 40 years through many cycles of
experimentation and mathematical modeling, has been very successful, it has been challenged
by a hypothesis that calcium-induced calcium release from the endoplasmic reticulum through
ryanodine or IP3 receptors is instead the key driver of islet oscillations. We show here that the
alternative model is in fact incompatible with a large body of established experimental data and
that the new observations offered in support of it can be better explained by the standard
model.
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Introduction

Science advances on two legs: an openness to new ideas and a healthy degree of skepticism.
This Commentary will provide readers have the opportunity to exercise both of those legs. In a
recent paper, Posti¢ et al. (1) present a large body of new data on Ca** fluctuations and
oscillations in islets of Langerhans observed in pancreatic slices from mice and argue that this
study “demands an updated model of beta cell activation and bursting activity”.

The essence of their critique of the standard model and their proposed alternative is that
standard methods consider only islets isolated from the pancreas, possibly damaging them, and
then oscillatory responses are studied using unphysiological glucose concentrations. The
baseline glucose that is typically used is 2 — 3 mM, which is below the in vivo baseline of ~ 5
mM. In their view, the use of such low levels of glucose depletes the endoplasmic reticulum
(ER) of Ca** and takes ER Ca’* channels, ryanodine receptors (RYR) and inositol trisphosphate
receptors (IP3R), “out of the game”. Glucose is then often raised to 10 — 12 mM, well above
typical postprandial levels seen under physiological conditions (e.g., in the absence of diabetes).
Furthermore, cytosolic Ca** is most often monitored using Fura-2, a high affinity Ca®* dye which
they consider to be too slow to pick up activity on the millisecond timescale and subject to
saturation given its high affinity. Posti¢ et al. use Calbryte 520 AM in their study, a lower affinity
Ca’*sensing dye that detects faster events and does not saturate in response to high Ca*
transients. It is proposed that fast Ca®* events due to ER Ca** release gated by ryanodine
receptors combine, in some unspecified way, to generate the slow oscillations in activity
observed on the time scale of tens of seconds to minutes.

In this Commentary we consider three questions: (1) are the objections raised by Posti¢ et al. to
the standard methods of studying isolated islets valid? (2) is the alternative model sketched
out by the authors (see for example their Fig. 7) plausible? and (3) can their observations be
accounted for within the framework of the standard model? We announce in advance that the

n u

answers are “no”, “no”, and “yes”. Our conclusions are consonant with another recent review
of the mechanisms of islet Ca®* oscillations, which found little evidence to support a major role
for CICR (2). We will limit our discussion to mouse islets, the most well studied preparation and
the one also used by Postic et al., albeit in their case islets within intact pancreatic slices. We
note, however, that there is considerable evidence for oscillations in human islets that are quite
similar to those in mouse islets (3-5).

Materials and Methods

Islet isolation and treatments

Pancreatic islets were isolated from 3-month-old male Swiss-Webster mice (25-35g) in
accordance with the regulations of the University of Michigan Committee on the Use and Care
of Animals (UCUCA). A previously described (6) and approved animal protocol was followed.
Isolated islets were cultured in standard RPMI 1640 medium containing 11 mM glucose, 10%
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fetal bovine serum (FBS), 10 mM HEPES, and 1% penicillin/ streptomycin. To measure cytosolic

Ca”, islets were either loaded with 2.5 UM of Fura-2AM for 45 min or with 10 uM Calbryte 520
AM for 1 hour in a medium containing 11 mM glucose before imaging.

Modeling:

Mathematical models were simulated using the ode15s function in Matlab 2022b (Natick,
Massachusetts: The MathWorks Inc.). Program code defining the models in both Matlab and
xppaut (http://www.math.pitt.edu/~bard/xpp/xpp.html) compatible files are freely available at
https://doi.org/10.6084/m9.figshare.22529515.

Statistics:
Plateau fractions and periods were extracted from raw Fura-2 AM or Calbryte 520 AM data

using a Matlab program that we developed called OscAr (https://zenodo.org/record/7796008).
Linear mixed effect modeling for Fig. 1 was carried out using the £it 1me function in Matlab

2021b. To assess the significance of glucose concentration (G) and Ca®" sensor (S) for period and
plateau fraction we constructed the following model G and S as fixed variables with mouse and
islet as random grouping variables:

X~1+G+S+ (1| mouse)+(1]islet),

where X is either period or plateau fraction, and used the Matlab compare function to compare
that full model to one containing either only G or only S as fixed variables:

X~1+G+ (1] mouse)+ (1] islet)
or
X~1+S+ (1| mouse)+ (1] islet).

500 bootstrap iterations were performed. The codes and sample data are posted at
https://doi.org/10.6084/m9.figshare.22529515.

Are the objections to the standard methods valid?

The physiologically most relevant Ca**-related phenomena that occur in islets are oscillations
having periods on two main time scales, fast bursting, with a period of 10 — 60 seconds (7) and
slow bursting, with a period of 3 — 10 minutes (8-11). Fura-2 is well able to capture both types
of oscillations. These two time scales, together with the time scale of action potentials during
each burst, correspond to the short, long, and ultra-short time scales shown in the Graphical
Abstract of Postic et al. These have all been studied in detail for over 30 years using fura-2 and
electrical recordings. The slower oscillations occur on the same time scale as pulsatile insulin
secretion measured in vivo, which has a period of ~5 min (9). Fura-2 has also been used to
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study changes in Ca®* over a more diverse range of glucose concentrations than acknowledged
by Postic et al., where ER depletion is unlikely to play a role. See for example recordings made
in 5 vs 8 mM glucose in (12) and 6 -9 mM vs 11 mM in (13).

Fast Ca** transients to near 10 pM have been proposed to reflect nanodomains very near the
mouth of voltage-activated Ca’* channels (VACCs) of the beta cell plasma membrane. These
localized Ca** transients are likely important for insulin secretion, as a subset of insulin vesicles
(the readily or immediately releasable pools) are tightly colocalized to the Ca** channels (14-
18). They also may play a role in inactivating the Ca** channels (19, 20) and activating large-
conductance, voltage-dependent Ca®*-activated (BK) potassium channels (21, 22). While these
processes (which occur on a ms-sec time scale) shape beta-cell action potentials, they are
unlikely to play a critical role in the slow Ca** oscillations governed by bursts of action
potentials (time scale tens of seconds to minutes) described in detail below.

Published measurements of fura-2 fluorescence values agree with independent measurements
of membrane potential V,, with electrodes (6, 8, 23) and voltage-sensitive dyes (23), Perceval
(to monitor ATP/ADP) (11, 24, 25), NAD(P)H auto-fluorescence (24-26), rhodamine 123 (to
measure mitochondrial membrane potential) (27), oxygen consumption (28), and Zimir (to
measure extracellular zinc co-released with insulin) (28, 29), for instance. Electrophysiological
measurements of V,, in particular can faithfully capture very fast events, but when measured
simultaneously with Fura-2, the two align perfectly with respect to the slow events (6, 8),
contrary to the implication of Posti¢ et al. that oscillations in V, are an order of magnitude
faster than the oscillations recorded using Fura-2. The Fura-2 oscillations also align well with
insulin secretion oscillations when the two are measured simultaneously (6, 8, 30).

If Fura-2 measurements were truly deficient, they would not agree with all these other types of
measurements. Finally, while Posti¢ et al. fail to mention metabolic oscillations, we have
recently provided new data and modeling (31) that support metabolic oscillations as the key
driver of slow oscillations, and not just a readout of free Ca”* levels. Another model in current
use differs with our model on this question but is solidly in the camp of the standard model, as
oscillations in it too are governed primarily by Ca** influx, not Ca** release (32-34).

Figure 1 summarizes results obtained in our own experiments using either Fura-2AM or
Calbryte-520 AM to monitor islet Ca*" oscillations. Representative whole islet recording of Fura-
2AM (A) and Calbryte 520 AM (B) oscillations recorded in 6 mM and 8 mM glucose are shown.
Analyses of the periods and plateau fractions of the oscillations are shown by the violin plots in
panels C and D. Recordings made using Calbryte 520 AM were less noisy than those of Fura-2,
as expected from their differing Kds. Thus, the key parameters characterizing Ca®* oscillations,
their frequency and plateau fraction, do not differ significantly from those obtained from the
analysis of Fura-2 oscillations, and therefore we do not believe that mechanistically important
features of islet bursting have been overlooked by the use of Fura-2 in experiments.

Published electrical recordings made from mouse islets in vivo, an even more intact preparation
than the pancreatic slices used by Postié et al., look strikingly similar to those measured in vitro
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(35, 36). This confirms the essential validity of studies of isolated islets and conclusions drawn
therein.

Oscillations measured in solutions containing 6 or 8 mM glucose look very similar in fact to
those seen in 10 — 15 mM glucose, differing only quantitively, with lower frequency and half-
width (see discussion of plateau fraction below and Fig. 1). We therefore do not consider it
plausible that different mechanisms control islet oscillations in 6 vs 10 mM glucose.

While we agree that the ER can be depleted of free Ca®" after islets are exposed to low glucose
for several minutes, by the same token, the ER can also refill quickly once glucose is raised, as

confirmed by (37). Since experimental studies of islet ca* signaling last tens of minutes or
longer, the initial filling state of the ER is unlikely to influence measurements of steady-state

free Ca®* oscillations. We address below the nature of the initial transient rise of Ca** seen in
response to a stepwise increase in glucose, another important question.

Taken together, the six main points raised above clearly do not support a need to overthrow
the current model of islet oscillations, as suggested by Posti¢ et al.

Is the alternative model plausible?

There are important theoretical considerations as well as established experimental

observations that argue against an alternative model where the release of intracellular Ca*" is
the driver of islet oscillations, as detailed below.

In any model in which the rise in cytosolic free Ca** occurs mainly because of ER Ca” release,

changes in ER Ca** must be out of phase with those of cytosolic Ca?*. This was shown early on
(38, 39) and illustrated here in Fig. 2 using the model of Li and Rinzel (40). The oscillations in

this model are due to spike-like releases of Ca*, a form of CICR mediated by IP3 receptors. The
same phase relationship between cytosolic and ER Ca®* would hold in a model based on CICR
involving RyR. In islets, however, ER Ca** has been shown clearly to be in-phase with cytosolic
Ca®!, indicating that Ca®' release cannot be the driver of rises in cytosolic Ca** (37).

This does not mean, however, that CICR or ER Ca** release more generally do not occur in beta
cells. Indeed, Ravier et al (37) provide evidence (see their Fig. 5) that Ca®* release events can
occur in response to strong depolarizing stimulation with KCl or tolbutamide. During those
events ER Ca’' fell as cytosolic Ca®* rose. Most importantly, repetitive Ca®* releases did not
occur in parallel with cytosolic Ca** oscillations in their studies. We are also not saying that
ryanodine or IP3 receptors cannot play a role in T2D or potentially be useful drug targets for
treating disease. However, these are entirely different questions from how oscillations are
generated by beta cells. We do remind readers that the role of KATP channels in disease,
including congenital hyperinsulinemia, neonatal diabetes mellitus, and type 2 diabetes, is well
established (41-43).
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As also shown in Fig. 2, oscillations in the Li-Rinzel model stop very soon after SERCA is blocked
and long before the ER is depleted. This is because the oscillations depend on cycles of Ca**
reuptake and release, not just Ca’* release. The two-parameter plane shows that the threshold
for oscillations depends on the balance between IP3 and the SERCA rate. It demonstrates that
SERCA blockade robustly terminates oscillations, but the degree of block required depends on
the concentration of IP3, and hence on the strength of the stimulus. The behavior shown by

the model is characteristic of pituitary gonadotrophs, as confirmed experimentally in Fig. 4 of
(44).

In islets, however, slow oscillations persist with only quantitative changes in their frequency
and shape after the ER is depleted by the SERCA blocker thapsigargin, indicating at best a minor
role for ER Ca** dynamics in oscillation genesis (45, 46). This work is cited in passing by Posti¢ et
al., but without comment on its implications for their model. However, the persistence of
oscillations when the ER is depleted is incompatible with any model in which ER Ca** release is
the main driver of Ca®* oscillations.

In contrast, the findings in (6, 30, 45, 46) are fully compatible with the standard model in which
rises in cytosolic Ca®* are mainly due to Ca** entry through VACCs. Fast oscillations are more

affected by ER Ca** depletion (47, 48), which Posti¢ et al. confirm, but this can be explained by
the activation of small inward plasma membrane ion currents due to Store-Operated Channels

(SOC) (47, 49). SOC turns on when the ER Ca®* concentration is reduced (50, 51) (see next
section for more about modeling of SOC in beta cells). SOC can link ER Ca®* status to plasma
membrane electrical activity and concomitant Ca** influx, so it was surprising that despite their

emphasis on the importance of ER Ca* for oscillations, SOC does not appear to play a major
role in their verbal model.

The standard model does not, however, require that SOC channels be activated to trigger islet
electrical activation under normal circumstances. What is required, as long known, is that
glucose be at a suprathreshold level (i.e., > 6 or 7 mM). We believe that K(ATP) closure by
glucose metabolism is necessary and sufficient (together with VACCs) to trigger electrical
bursting and concomitant islet Ca®* oscillations. However, given the high electrical impedance
of islet cells, which is on the order of gigaohms, small currents mediated by other channels can
push islets that are near threshold over the edge and trigger bursting. This is likely to be the
case for the glucose concentrations studied in Postic¢ et al.

Postic et al. propose that the role of VACCs in beta cells is primarily to refill the ER. There is a
cell type in which oscillations work that way, the pituitary gonadotroph. Bursting in these cells
is due to the activation of Ca**-activated K* (K(Ca)) channels, which interrupt otherwise
continuous spiking with periodic transient silent phases. But in this case, Vy, is out of phase
with cytosolic Ca®* (52). This was demonstrated experimentally by using K(Ca) channels as a

reporter for cytosolic Ca%, as shown in Fig. 3A, B, reprinted from that paper. We also show this
in @ model simulation in Fig. 3C using a version of the Li-Rinzel model adapted from the same

paper. Note that in gonadotrophs the action potentials, largely driven by Na* current, bring in
very little Ca*, and almost all of the Ca®" rise results from ER release (52).
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In contrast, published recordings in which V., and Ca?*are measured simultaneously show that
this is not the case in beta cells (6, 8, 53). A model of beta-cells similar to the Li-Rinzel model
was proposed many years ago for beta cells (54), but objections were immediately raised based
on the voltage-dependent nature of islet Ca** oscillations, evidenced notably by the ability of
applied current pulses to switch between active and silent phases (55).

When glucose is first stepped from a sub-threshold concentration to > 7 mM, a first phase of
intense action potential firing from a maintained plateau is observed that lasts a few minutes
prior to the beginning of steady-state bursting. Posti¢ et al. assert that this first phase is due to
ER Ca’' release, a hypothesis previously proposed in (56). If this were true, one would expect
then that lowering ER below its level in low glucose would eliminate this first phase activity. In
reality, the opposite happens: the first phase is prolonged when the ER is depleted by removing
external Ca®*. Conversely, increasing ER Ca** by applying KCl prior to raising glucose shortened
the first phase (47). This result was predicted by simulations with mathematical models based
on the hypothesis that the intense spiking during the first phase was a consequence of SOC
activated when the ER is depleted (47). These observations are therefore incompatible with
the hypothesis that the first phase is predominantly a Ca* release event but are consistent with
the standard model.

Posti¢ et al. cite a previous publication (57) as support for their hypothesis that the first-phase
Ca’*transient occurs due to Ca”* release. However, the reference cited concerns the spike of
cytosolic Ca®* observed in response to acetylcholine in a slice preparation. While that spike
genuinely results from a Ca* release event that would be prevented by ER depletion, it is an
entirely different phenomenon from the first phase Ca®' rise that occurs when glucose is first
raised above threshold. The addition of acetylcholine to 6 mM glucose initiated Ca**
oscillations in the cited paper. We believe this is another example of SOC pushing the islet over
threshold. If the glucose concentration had been lower, and hence K(ATP) conductance higher,
acetylcholine addition would have been unable to initiate Ca** oscillations. Furthermore, if
glucose had been higher, acetylcholine would have been unnecessary to trigger oscillations.
Glucose is the primary physiological trigger of islet oscillations.

In summary, not only does the Ca**-release mechanism proposed by Posti¢ et al., and others
previously, make predictions that are contrary to established data for beta cells, we believe that

any alternative model based on intracellular Ca”* release will fail to account for beta-cell Ca**
data.

Can the observations of Posti¢ et al. be explained by the standard model?

The standard model we have been referring to has evolved over more than 40 years through an
iterative process of model predictions and experimental testing. Importantly, the model has
accumulated a strong record of accounting for a diverse array of observations from many
individual laboratories. Furthermore, the continuous development of the model has occurred
with its scope increasing as theoretical and experimental knowledge have advanced in parallel.
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The early development of the standard model is summarized in (58) and later developments
covered in (59-61). Judging by the narrative in Postic¢ et al., one might get the impression that
the standard model is unable to explain the new observations from pancreatic slices.
Nonetheless, it can.

Pioneering experiments by (62-65) in the 1960s and 1970s first established that membrane
potential oscillations in the form of electrical bursting (alternation of silent and active/spiking
periods) are glucose-dependent, and later work showed that they are the cause of the parallel
Ca* oscillations (6, 8, 53). The plateau fraction (duty cycle) of the bursting oscillations
correlates well with the rate of insulin secretion (62, 65), and increases as the glucose
concentration is increased, until a saturating point at which the spiking is continuous (i. e., the
active phase never terminates).

In 1983, a mathematical model developed by Chay and Keizer (66) showed for the first time
that these features could be explained by an ion channel-based model of the Hodgkin-Huxley
family in which the spiking during the burst active phase brought in extracellular Ca”. This
would progressively activate K(Ca) channels until the total level of K* conductance became too
high to support spiking. In the model, pumping Ca* out of the cell during the silent phase
reduced K(Ca) channel conductance, allowing a new active phase to begin. This “minimal
model” also predicted that cytosolic Ca?* would oscillate, which was confirmed experimentally
in 1989 (67), albeit with some differences in shape from the initial predictions. These
differences led to an appreciation that the ER has an important role in shaping the cytosolic
Ca’* transients, and an ER Ca®* compartment was incorporated into revised mathematical
models (49, 68, 69). These models predicted that ER Ca*" would oscillate in-phase with
cytosolic Ca®*, which was confirmed by experiments using D4ER, a genetically encoded Ca**
sensor targeted to the ER (37). As already indicated, a replete, oscillating ER was nonetheless
not required for oscillations, especially slow oscillations, to occur. Instead, the ER acted like a
low pass filter and in doing so improved the model’s ability to simulate the experimentally

observed dynamics of islet cytosolic Ca** signaling.

In 1983, the ATP-dependent K channel (K(ATP)), first discovered in cardiomyocytes (70), was
found in beta-cells (71, 72) and shown by experiment to have the right properties to transduce
changes in glucose concentration into the appropriate level of electrical activity without a need
for other external factors. The K(ATP) channel essentially senses the cytosolic ATP/ADP ratio of
the cell, an indicator of the rate of glucose metabolism, and regulates ca* entry through
VACCs. The Chay-Keizer model, equipped shortly thereafter with K(ATP) channels, was able to
show that progressive block of the channel by increasing ATP/ADP would lead to increased

plateau fraction and increased Ca** (73).

Posti¢ et al. cite the well-known observation that the ATP/ADP ratio rises before K(ATP)
channels close as evidence that other channels are involved in the bursting mechanism (74, 75).
This is true: VACCs must also open, and that cannot happen until the K(ATP) conductance falls
sufficiently. It is likely that a conductance active at low membrane potential, such as a leak
conductance, is also needed to bridge the gap between K(ATP) channel closure and VACC
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opening, but the identity of such a conductance remains unknown (76). As K(ATP) channels are
present in great excess, there is a delay between the ATP/ADP rise and Ca** entry. Indeed, a dip
in cytosolic Ca®* (called phase 0) due to SERCA activation generally precedes the initiation of
action potential spiking and the frank rise in cytosolic Ca** (29, 56, 77). If anything, these
observations support the primacy of Ca** entry over Ca* release.

Limitations of the earlier models based on K(Ca) channels led to a further extension of the
original Chay-Keizer framework in which KATP channels were indirectly regulated by Ca®*
through its effects on the ATP/ADP ratio, by shunting the mitochondrial membrane potential
that drives ATP production (78), activating dehydrogenases (79, 80), and by activating Ca**
ATPases (81). Models combining K(Ca) and K(ATP) mechanisms were able to account in fine
detail for the shapes of Ca®* transients, the long first-phase of spiking that is observed when
glucose is first elevated and precedes steady-state oscillations, and the depolarization and
increased burst frequency seen when islets in elevated glucose are exposed to acetylcholine (6,
49). Finally, the models can account for fast oscillations, slow oscillations and compound
oscillations, in which the fast occur superimposed on the slow within a quantitative and unified
framework. In contrast to the alternative explanations put forth in Posti¢ et al., which does not
provide a mechanism by which fast elementary release events summate to produce slow

oscillations, the standard model is based on well-established processes of Ca** accumulation
and ATP production and consumption that have intrinsically slow timescales.

We now turn to the key specific observations contained in Posti¢ et al. In their Fig. 3 they
showed that stimulating RyR using low-dose ryanodine turned on oscillations in 6 mM glucose,
where they usually did not see them, and in Fig. 4 they showed that blocking RyR using high-
dose ryanodine inhibited oscillations in 8 mM glucose, where they usually did see them. They
concluded from these observations that RyRs are both “necessary and sufficient” to mediate

islet Ca®" oscillations.

Our model offers a different interpretation. When glucose is near threshold (as was the case
here, where glucose was 6 mM), a small variation in SOC conductance can turn bursting on and
off because the effects of small differences in total membrane conductance to overall islet
electrical behavior are amplified in this case. In contrast, at higher glucose levels, RyRs are
generally unable to turn bursting on or off, and at best can only modulate the properties of islet
bursting (illustrated in the model simulation using a version of the integrated oscillator model
(IOM) (59, 82) in Fig. 4A).

The two-parameter plane in Fig. 4B shows that this is a robust feature of the model and that
the boundary of the region in which oscillations occur (i.e., the threshold) depends on the
balance between the rate of efflux of Ca** from the ER (pieak) and glucose concentration. The
rate of efflux determines the concentration of ER Ca®*, and hence the SOC conductance, while
the glucose concentration determines the K(ATP) conductance. As glucose increases, K(ATP)
conductance decreases and less contribution from SOC is needed to support oscillations. Note
that ER Ca”* efflux is modeled here as a passive leak; in contrast to the Li-Rinzel simulations in
Figs. 2 and 3, no spikes of release due to CICR are required to explain this phenomenon.
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We have reported previously that a shift like this occurs spontaneously in beta cells undergoing
ER stress induced by tunicamycin and confirmed that the shifted threshold is mediated by SOC
(83). At high glucose (11 mM), SOC and tunicamycin had only modest effects, as expected from
the model parameter diagrams in Figs, 4B and 5B. The effects on electrical activity were
paralleled by effects on insulin secretion. These results suggest that cells use SOC to adjust the
threshold determined by K(ATP) in a physiological manner.

We have not been able to experimentally verify that a low dose of ryanodine consistently
activates bursting in low G conditions, but we note that Posti¢ et al said they saw this
“occasionally”. Also, it is not clear that the lack of need for ryanodine in higher glucose can be
tested as ryanodine may not be reversible (84).

However, in similar fashion the model predicts that the SERCA inhibitor cyclopiazonic acid
(CPA), which is readily reversible, can trigger oscillations in low G but is not needed in higher G
(Fig. 5). The two-parameter diagram in Fig. 5 shows strikingly that the dependence of
oscillations on SERCA activity in the IOM is opposite to that for the Li-Rinzel model (or any
model of that class): in the IOM decreasing SERCA activity triggers oscillations, whereas in Li-
Rinzel, it abolishes oscillations (compare with Fig. 2). Figure 6 shows experimental confirmation
of this model prediction using isolated islets where cytosolic Ca** was imaged with Fura-2. The
acute application of 25 pM CPA to a Fura-2 loaded islet triggered cytosolic Ca** oscillations in 5
mM glucose. Increasing the glucose concentration to 8 mM in the continued presence of CPA
increased oscillation frequency and plateau fraction. Notably, the oscillations persisted after
removing CPA.

Consistent with our model, but in contradistinction to that of Postic¢ et al., emptying the ER of

Ca’* using CPA triggered oscillations in 5 mM G rather than abolishing them, and CPA can be
removed without abolishing bursting if glucose is raised to a sufficiently high level.

Regarding their reported effect that high dose (100 uM) ryanodine blocked Ca?* oscillations in 8
mM glucose (their Fig. 4), we did not find this in our experiments. Fig. 7 shows a representative

recording of steady-state islet Ca** oscillations in 8 mM glucose before and after the acute
application of 100 uM ryanodine (Ryan). These data showing that high dose ryanodine failed to
block islet Ca** oscillations support the hypothesis that Ca** influx, and not ryanodine-receptor
mediated Ca®* release, mediates islet Ca?* oscillations. Nonetheless, the diagram in Fig. 4B
predicts that that blockage of RyR can push the cells below threshold in 8G by reducing SOC if

at rest RyRs contribute to Ca®* efflux from the ER. This can also fail to occur depending on the
boundary of the region of excitability and the size of the leak due to RyR, which may explain
why we did not see block in our own experiments. Thus, the work of Posti¢ et al. is significant

for pointing to the possible role of RyR in shaping the conditions under which Ca* influx
operates.
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Another objection to the standard model raised by Posti¢ et al. involves the drug isradipine, an
L-type VACC blocker. Their Fig. 5 showed that the effects of isradipine were slow to take effect,

although the recorded Ca* transients they observed were eventually largely abolished. They
attributed this slow action to the time required for the ER Ca*"to drain, since there was no
longer a way to restore ER Ca®* when VACC-mediated Ca®* influx to the cell was blocked by
isradipine. Once the ER was sufficiently drained of Ca®" their interpretation was that the ER Ca*
release events would stop.

The literature is somewhat inconclusive regarding the effects of L-type channel blockers on islet
Ca’* activity, with some published experiments showing that Ca®* oscillations can continue
when L-type calcium channels are blocked (85), whereas the data on insulin secretion is more
clearcut, with insulin secretion shown to be completely or almost completely abolished by ca*
channel blockers (85, 86). Fig. 8 shows that in our hands steady-state islet Ca** oscillations in
11 mM glucose were rapidly and reversibly blocked by addition of the L-type calcium channel
blocker nifedipine in isolated mouse islets.

We think the slow response observed by Posti¢ et al. does not reflect a problem with the
standard model but is more likely a sign of slow solution exchange in the pancreas slice
preparation, where the effects of solution changes they observed never occurred in less than 3
minutes; this is less of a problem in experiments with isolated islets. In addition, it is known
that beta cells also have VACCs that are non-L type and hence would be untouched by

dihydropyridine blockers; these can contribute to Ca** influx as well (85, 87, 88).

Postic et al. also blocked Ca®" entry using diazoxide, a K(ATP) channel opener that
hyperpolarizes the cell and should deactivate all VACCs, not just L-type ones (their Figs. S4-2,
S4-3). They again highlight the slow and incomplete response to diazoxide they observed in
their system. However, we believe this too is a sign of slow solution exchange, as in our hands,
diazoxide added to islets exposed to suprathreshold glucose rapidly and completely abolishes
Ca”* oscillations, reducing Ca”* to baseline levels (see for example Fig. 5 in (25)). As Posti¢ et al.
point out, in high glucose the ER is expected to be replete with Ca** and therefore should be
well able to mediate Ca®* induced Ca** release. In our experiments, and those of many others,
sustained islet Ca®* oscillations are never observed in diazoxide even when the islet is

depolarized with high KCl to maintain ca* entry.

In sum, the standard model can well account for the key observations made by Posti¢ et al.,
using their preparation and their glucose levels. In addition, the standard model can
successfully account for a wide array of other findings made by many groups. To cite just a few
examples, it can account for the effects of ER Ca* release on cytosolic Ca** and membrane
potential (49); it can elucidate the role of K(ATP) channel mutations in human diseases (34); it
has shown how exocytosis is coupled to Ca®" and glucose metabolism(82, 89); it can explain
oscillations in cAMP (90, 91); it can be used to study the implications of heterogeneity of beta-
cell ion channels and gap junctional coupling in islets (92-94); and it can explain the diversity of
oscillation patterns on time scales ranging from seconds to minutes (59). The first steps of
extending the model to human beta cells have been taken (5).
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Conclusions

We thus conclude that the standard model is not significantly challenged by the slice data
presented in Posti¢ et al. and is in fact well able to account for many observations that their
alternative model fails on. We do not, however, claim that current versions of the standard
model account for everything or have no need for improvement.

We do feel that better understanding the role of intracellular Ca** release in beta cells is
worthwhile. However, as we pointed out above, these ideas have been proposed previously,
albeit not subjected to the discipline of mathematical modeling to see if they hold together in a
guantitative and consistent way. We ourselves have attempted to fill this gap by modeling CICR
as a possible mechanism for islet oscillations and found that it led to counterfactual predictions,
most notably that the ER would empty during the active phase of bursting (see Figure 9 in (38)).
We cannot rule out that some model not previously considered would be more consistent with
what we know about beta cells and welcome renewed attempts by others to flesh out the ideas
in Posti¢ et al. in a quantitative, mathematical form. We must say that we are not, however,
optimistic that this can be made to work, as we have discussed herein.

We acknowledge that the novel pancreatic slice preparation is a valid and useful tool, especially
for the study of beta cell pathogenesis in pancreatic slices from human type 1 diabetes organ
donors (95, 96). Compared to slices, fully isolated islets from human donors often do not
survive isolation in good condition for physiological studies.

However, we are concerned that the alternative model of Posti¢ et al taken from slice studies is

based on the premise that the isolated islet is not a reliable physiological model. In fact, a
multitude of studies show that the islet has been and continues to be a most valuable tool for

investigating beta cell function. Another flawed premise is that Ca* release from the ER is
responsible for the cytosolic Ca** events that evoke insulin secretion. Again, there is a large
body of evidence and theory supporting the consensus view that Ca?* influx through voltage-
gated Ca?* channels is the primary way in which intracellular Ca”" is raised to the level where
the exocytosis of insulin granules can occur. The ER plays many important roles in the beta cell,
but it is not the driver of electrical activity and islet Ca** oscillations in this system.

The standard model for islet oscillations was developed over decades based on mutual
interactions between theorists and experimentalists, and the number of findings that can be
explained with the model has grown considerably over time. It should not be discarded lightly.
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Figure Legends

Fig. 1: Comparison of cytosolic Ca”* oscillations from isolated islets recorded using either
Fura-2AM or Calbryte 520 AM. Representative whole islet recording of Fura-2AM (A) and
Calbryte 520 AM (B) oscillations in 6 mM and 8 mM glucose solution. Comparisons of period by
glucose and sensor are shown in (C) and of plateau fraction (PF) in (D). Periods (meanzxsd): 6
mM G, 8.1+2.4 (Fura), 7.74+2.3 (Calbryte); 8 mM G: 5.44+2.4 (Fura), 5.2+1.2 (Calbryte). Plateau
Fractions: 6 mM G: 0.47+0.12 (Fura), 0.46+0.13 (Calbryte); 8 mM G: 0.64+0.14 (Fura),
0.56+0.13 (Calbryte). Linear mixed effect analysis shows G highly significant for period (p = 2e-
3) and PF (p = 2e-3), and sensor NS for both (p = 0.52 for period, 0.40 for PF). N =58 islets from
3 mice for Fura-2AM and 14 islets from 3 mice for Calbryte 520 AM. 30/58 islets in Fura-2AM
and 7/14 islets in Calbryte 520 AM did not have oscillations in 6 mM glucose and were not
included in the analysis.

Fig. 2: Simulations with a version of the Li-Rinzel model for ER-driven Ca”* oscillations (40) show
that cytosolic and ER Ca* are out of phase and that SERCA blockade, modeled as a 50%
reduction in SERCA pump activity, acutely terminates oscillations (A). The two-parameter
diagram of SERCA activity vs. IP3 concentration in (B) shows the border between oscillations
(with period color-coded) and no oscillations (grey region).

Fig. 3: During ER-driven Ca”* oscillations in pituitary gonadotrophs, membrane potential and
cytosolic Ca”* are out of phase. Experimental records reprinted from (52) show that membrane
potential is out of phase with K" current from K(Ca) channels (A) and that K(Ca) current is in

phase with cytosolic Ca®* (B). Together, these imply that Vy, is out of phase with Ca®*. Panel C
shows simulations with the Li-Rinzel model (52) coupled to Hodgkin-Huxley type equations for

membrane potential, again showing that membrane potential and cytosolic Ca** are out of
phase. The ER subsystem is modeled as in Fig. 2.

Fig. 4: Simulations with the integrated oscillator model (IOM) (59) for coupled oscillations in
membrane potential, cytosolic and ER Ca2+, and ATP/ADP ratio, as extended in (82). The model

has been supplemented with a store-operated Ca?* (SOC) current to represent effects of ER ca*
on membrane potential. (A) Starting in 6 mM glucose, no oscillations are seen, but increasing

ER Ca’' leak rate (pieak) by 50% to represent application of low-dose ryanodine triggers
oscillations. After raising glucose to 8 mM, oscillations, increased leak rate is no longer
required for oscillations to continue. (B) The two-parameter diagram shows regions of
oscillation as ER leak rate and glucose concentration are varied (color indicates oscillation
period; grey area denotes space where no oscillations occur).

Fig. 5: Simulations with the IOM as in Fig. 4. (A) Blocking the SERCA pump under subthreshold
conditions can trigger Ca? oscillations. After raising glucose, SERCA blockade is no longer
required to maintain the oscillations that were triggered initially by CPA. The two-parameter
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plane shown is as in Fig. 4 but showing regions of oscillations as SERCA rate and glucose are
varied.

Fig. 6: Experimental confirmation of the prediction shown in Fig. 5 using the reversible SERCA
blocker CPA. Representative image showing that the acute application of 25 uM CPA induces

cytosolic Ca” oscillations in 5 mM glucose in an isolated mouse islet. Upon increasing the
glucose concentration to 8 mM while in the continued presence of CPA, the oscillation
frequency and plateau fraction increased (not shown). Oscillations persisted after washing off
CPA. Representative responses are from 30/38 islets isolated from 3 different mice.

Fig. 7: High dose ryanodine did not block oscillations in 8 mM glucose. Representative

recordings showing steady state islet Ca** oscillations recorded in 8 mM glucose before and
after acute application of 100 uM ryanodine (Ryan). These data support the hypothesis that

Ca?" influx, and not ryanodine receptor-mediated Ca** release, mediates islet Ca** oscillations.
Data shown are representative of 37 islets isolated from 3 mice.

Fig. 8: A representative recording showing the acute application of 10 uM nifedipine (Nif)

reversibly inhibited cytosolic Ca** oscillations in 11mM glucose in an isolated mouse islet. The
response shown is representative of 25/27 islets isolated from 2 different mice.
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Fig. 1 Fura vs Calbryte
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